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Background 

Explosive blast trauma occurs by four mechanisms: primary injuries are due to the isolated 

effect of the blast wave on the human body, secondary injuries are due to damage from 

fragments energised from the explosion, tertiary injuries result from acceleration of the body 

against an object or through the explosion energising hard materials in a solid form (not 

fragments) and encroaching upon the person, and quaternary injuries describe other physical 

insults, including burns and smoke inhalation 1.  

Gas-containing organs such as the lungs are particularly susceptible to barotrauma, and 

‘Primary Blast Lung Injury’ (PBLI) is a commonly reported injury amongst blast casualties. A 

review of terrorist bombings worldwide found the incidence of PBLI in immediate fatalities to 

be as high as 47% 2; whilst in a review of military blast casualties that survived to emergency 

admission, PBLI was found in 11.2% of 648 blast casualties. In this series, 16.2% of mounted 

and 17.1% of dismounted injuries developed PBLI, which was significantly associated with 

increased mortality 3,4.  

Laboratory investigations of PBLI have sought to recapitulate the injury under experimental 

conditions. Studies investigating the subsequent immune response have been reported most 

commonly in rats 5-10, mice 11-15 and swine 16,17. These studies have offered overwhelming 

evidence of the neutrophil response to PBLI in animal models, with increases in circulating 

and broncho-alveolar lavage fluid (BALF) neutrophils, increases in Myeloperoxidase (MPO) 

activity in the lung, and neutrophil staining by histology 9-12,14,18,19. However, the immune 

response to tissue damage differs depending on the type of organ injured and their local 

physiology; it remains unclear what specific contribution blast injuries to different parts of the 

body make to the inflammatory response that ensues. Whilst most clinically blast injured 

patients are polytraumatised, discerning these interacting immune responses experimentally is 

necessary for translational studies seeking to better understand, monitor or attenuate the 

immune response in blast trauma.  

  

Further, knowledge of the role played by other immune cells to PBLI is limited – no study has 

characterised the full repertoire of immune cells in PBLI; specifically, the involvement of 

monocytes in PBLI remains unclear. These cells are frequently recruited to sites of 

inflammation; in humans they are characterised by differential CD14 and CD16 expression 20, 

in mice by CCR2, CX3CR1 and Ly6C 21,22 and in rats by CD43 alone or in conjunction with 

His48 23. In rats, CD43 Hi and Lo monocytes are considered to be analogous to the Ly6C Lo 

(Non-classical) and Ly6C Hi (Classical) murine monocytes respectively. Classical Ly6C Hi 

monocytes are recruited to tissues in sterile 24 and infectious 25 models of inflammation. There, 

they can differentiate into inflammatory macrophages and dendritic cells, amplifying or 

resolving inflammation. In rats, circulating monocyte subsets are activated by inflammatory 

stimuli 26, respond differentially to sterile danger signals sub-acutely 27, and have been shown 

to migrate to the lung in LPS-induced pulmonary inflammation 23. Moreover, there is growing 

evidence that inflammation to localised trauma may ‘spill-over’, causing immune effects at 

uninjured distal organs. This has been documented in models of blast limb trauma 28,29 and 

PBLI has been associated with immune changes in the spleen 15,30. 

 

Accordingly, the aim of this study was to utilise a rodent model to investigate the cellular 

immune response elicited from an isolated primary blast lung injury alone. We hypothesized 



that an isolated PBLI would elicit an acute monocytic - in addition to neutrophilic - response; 

we sought to delineate whether this monocyte response was subset selective; if it occurred in 

the blood and or lung, and if so at what acute time points; additionally, we examined the profile 

of immune cells in liver and splenic tissue 6hr after injury to investigate the sub-acute distal 

organ effects of PBLI.   



Methods 

Animals and Licence 

Sprague-Dawley female rats (200-280g) were purchased from Charles River (Kent, UK) under 

Home Office licence. Food and water were supplied ad libitum. U.K. Home Office guidelines 

for animal welfare were strictly observed. This study was performed under full institutional 

and departmental licence with ethic committee and Home Office approval. Euthanasia was 

performed under license by overdose intraperitoneal (I.P.) injection of pentobarbitone.  

 

Isolated PBLI Model 

Blunt thoracic trauma was induced using a compressed air driven shock tube (Figure S1) as 

detailed in the supplementary. A purpose-built subject support (Figure S2) bolted onto the 

outlet flange of the shock tube was used to expose only the thorax to a single focal shock wave. 

No part of the rat was inside the shock tube at any time. In this study a burst pressure of 14 bar 

was utilised delivering a peak pressure at the chest of ~130kPa. Polyethylene inserts enabled 

driver volume to be reduced to 10% of maximum; producing a short-duration shock wave 

(Figure S3). Full shock tube characterisation and rig details are included in the supplementary.  

 

Procedure and Physiological Measurements 

Rat physiology was recorded using a MouseOx system (Starr Life Sciences Corp, USA) in 

accordance with manufacturer's instructions. Rats were anaesthetized with I.P. injection of 60 

mg/kg ketamine and 0.20 mg/kg medetomidine and a single shock wave was applied to the 

chest. Shams did not receive a shock wave but were otherwise treated identically. After the 

procedure rats were injected with atipamezole I.P. to reverse sedation and were administered 

buprenorphine analgesia sub-cutaneously. 

Following atipamezole injection animals regained consciousness in under 10 mins, with no 

difference in recovery time between sham and blasted rats.  Physiological measurements were 

made 1 min and 5 min after anaesthesia, 1 min and 5 min after shock wave application, 

immediately after recovery and 3hr and 6hr thereafter.  

 

Tissue collection  

Unless otherwise stated, centrifugations were performed at 4ºC and media used throughout was 

Roswell Park Memorial Institute medium (RPMI) (Sigma-Aldrich) containing 10% Fetal 

Bovine Serum (FBS) (Invitrogen, USA). After pentobarbitone overdose, blood was collected 

in citrated tubes on ice from the right femoral vein and centrifuged at 1300g for 10 mins. Each 

sample was obtained from an individual subject, there were no repeat samplings of tissue or 

blood in this study. Plasma was collected and stored at -80ºC for further analysis. Whole lungs 

were lavaged twice using 3mL of ice cold RPMI each with a 30 second pause before collection, 

in order to gain a representative sample of the total lung environment, as performed previously 
23. Volume and duration of lavage were standardised across all samples to ensure consistent 

Broncho-alveolar lavage fluid (BALF) concentrations and lung tissue cytokine measurements. 

BALF was centrifuged at 800g for 5 mins, supernatant was stored at -80ºC and cells were 

resuspended on ice. For FCM tissue analysis: right inferior lung lobes, superior caudate liver 

lobes and spleen were collected in media on ice.  

 

Tissue processing 



Lung and liver lobes were cut by scissor into smaller fragments and suspended in media 

containing tissue digestion enzymes; DNAse I 5mg/mL, Collagenase D 30mg/mL and Dispase 

II 5mg/mL (all from Roche, Switzerland). Tissue was incubated in digestion buffer in a water 

bath with shaking at 37ºC for 30 minutes. After, liver cells were resuspended in 36% Percoll 

(Sigma-Aldrich) 31,23 and centrifuged for 10mins at 500g without break to separate leukocytes 

from fibrous tissue. Spleen was cut into smaller fragments but not subjected to enzymatic 

digestion. All tissues were strained using a 40μM nylon mesh (Fisher Scientific, USA). Red 

blood cells were lysed using Ammonium-Chloride-Potassium buffer as previously described 
23. Cell pellets were resuspended and viable cells counted using Trypan blue staining solution 

on a haemocytometer (Nikon, Tokyo Japan). Liver (Right Lateral Lobe) and lung (left lobe) 

were harvested and fixed for 24hrs in 10% Buffered Formalin. Paraffin-embedded sections (4 

μm) were stained with hematoxylin and eosin (H&E). Images of the slides were captured using 

a light microscope (Leica, Germany). Cytospins were performed on glass covered slips stained 

with Wright-Geimsa stain (Sigma-Aldrich). 

 

Flow cytometry 

Flow cytometry was conducted based on staining protocols and methods reported previously 
23. Briefly, cells were stained with antibodies as detailed in Table S1; washed and stained with 

Live/Dead dye (eBioscience, USA) in PBS, before blocking with anti-CD32 and staining with 

antibodies in buffer containing PBS, Bovine Serum Albumin (1%) (BSA) and Sodium Azide 

(0.1%). Cells were stained with antibodies at concentrations stated in Table S1, incubated at 

4ºC for 30mins then washed and fixed (BD Cell Fix) before analysis using a multi-parameter 

flow cytometer (Fortessa LSR BD Biosciences, USA). Compensation was performed using 

fluorescent beads (OneComp eBeads, eBioscience).  

 

ELISA 

BALF was thawed and analysed using a multiplex ELISA (MesoScaleDiscovery Maryland, 

USA) according to the manufacturer’s instructions for IL-6, TNF-α, IL-1β , IFN-y and CXCL-

1. BALF Albumin and MCP-1 were both analysed by ELISA (Bethly Laboratories, USA and 

eBioscience respectively) according to manufacturer’s instructions. In both instances, ELISA 

plates were allowed to develop and absorbance measured on a spectrophotometer (Tecan, 

Switzerland).  

 

Data & Statistics 

In this study, a total of 39 rats were used across the sham and blast groups (Table 1). Where 

duplicate measures were taken, their means were first calculated and then included as a single 

measurement in further analysis (technical replicate); all data were collected from 2-3 separate 

individual experiments (biological replicate) and - unless otherwise stated - expressed as 

median ± 25% and 75% quartiles. Flow cytometric data were analysed using FlowJo v7.6.5 

(Tree Star Inc, USA). Unless otherwise stated, statistical data analysed using a non-parametric 

Mann Whitney t-test in GraphPad Prism v5 (San Diego, USA), *p<0.05, **p<0.01. Except for 

physiological data, individual animals were assayed for each time point. 



Results 

Physiology 

Subject survival was 100%. As shown in Figure 1, rats subjected to a single shock wave 

experienced a transient bradycardia at 1 min (Figure 1A) (258bpm ± 10.30, p<0.05) which had 

returned to sham levels by 5 min. Rats recovered oxygenation (Figure 1B) by 5mins after PBLI 

and showed a mildly increased respiratory rate (Figure 1C) compared to shams throughout the 

study period (p>0.05).  

 

Pulmonary barotrauma and inflammation 

Histological hallmarks of pulmonary barotrauma were observed including free erythrocytes as 

a result of alveolar haemorrhage together with evidence of neutrophil and monocyte cell 

infiltration into the tissue (Figure 2A,B). There was no evidence of abdominal trauma in 

subjects with PBLI by liver histology (data not shown). To assess whether an inflammatory 

response had occurred in the lung and to support the validity of the PBLI initiated, BALF 

proteins were measured. Rises were observed in CXCL-1, IL-6 and TNF-α in the BALF at 3hr 

(p>0.05) (Table 2). We did not detect any significant increases in IFN-γ or IL-1β cytokines in 

the BALF or plasma; we observed a three-fold and two-fold increase in plasma high mobility 

group box 1 protein (HMGB1) and Heat-shock protein 70 (HSP70) respectively at 6hrs (p=0.2) 

(data not shown). 

 

Cellular immune response 

An increase in circulating neutrophils was observed in rats with PBLI (Figure 3A). Compared 

to shams, at 1hr this increase was three-fold (p<0.01) rising to almost five-fold (p<0.05) by 

6hr. Likewise significant increases were seen in CD43Lo/His48Hi monocytes in the blood at 

all time points (Figure 3A); additionally, we saw a non-significant rise in total circulating 

leukocytes across the time course in rats with PBLI. This was most pronounced at 1hr (p<0.01) 

(as illustrated by representative FCM plots in Figure 3B) and remained raised at 3hr (p<0.05), 

beginning to subside by 6hr (p<0.01). No significant differences in CD43Hi/His48Int-Lo 

monocytes, NK, B or T Cells were observed in the blood at any time point following PBLI 

(Table 3); though we did observe a gradual recovery in the number of circulating lymphocytes 

by 6hr. 

 

A marked increase in neutrophils in the lung was observed following PBLI (Figure 4A). This 

increase was three-fold at 1hr (p<0.01) as illustrated in Figure 4B and two-fold at 3hr (p<0.05) 

as compared to levels in sham controls at each of these time points. By 6hr it had almost 

returned to sham levels. Additionally, significant increases were seen in CD43Lo/His48Hi 

monocyte-macrophages (Figure 4A) which were six-fold higher at 1hr (p<0.01) and two-folder 

higher at 3hr (p<0.05) before subsiding to levels comparable to sham by 6hr. No significant 

differences were found in CD43Hi/His48Int-Lo monocyte-macrophages, NK, B or T Cells 

throughout the time course (Table 3). A significant increase in BALF neutrophils was seen at 

all time points post-injury, peaking at 3hr (Figure 5A). We examined whether any delayed 

changes in BALF monocyte-macrophages occurred at 3 or 6hr; a significant increase in 

CD43Lo/His48Hi monocyte-macrophages was seen at 3hr (Figure 5B) but neither monocyte-

macrophage subset was raised at 6hr (Figure 5B). A significant increase was also observed in 

BALF MCP-1 concentration at 3hr (p<0.05) and 6hr (p<0.01) (Figure 5C).  

 



Distal inflammation 

No significant differences were seen in immune cell proportions in the liver at 6hr (Figure 6A). 

However, we observed a trend towards lower neutrophils and NK Cells, and higher 

CD43Lo/His48Hi monocyte-macrophages and B Cells (p>0.05). In the spleen, significant 

increases in both monocyte-macrophage populations (p<0.05) and decreases in CD4 T Cells 

was observed (p<0.05); no significant differences were seen in neutrophil, NK or B Cells. No 

significant difference was observed in absolute numbers of cells in the spleen between PBLI 

and sham (data not shown).  

 

  



Discussion 

Model 

The aim of this study was to discern the immune response to isolated PBLI - in the absence of 

other blast injury mechanisms or distal organ insult. In this study we utilised a compressed air 

driven shock tube and custom designed rig to induce PBLI through reproducible shock wave 

loading of the chest alone (Figure S2, S3 and Table S3) and not the head and abdomen. Notably, 

we measured the loading at the chest as well as shock tube outlet; a measure lacking from 

previous reports of PBLI 32. Preliminary experiments established that loading the chest with 

138 kPa for ~2ms induced a consistently survivable injury. Female rats were used in this study, 

their immune cell biology is highly comparable to male rats, and demonstrates homology to 

murine and human immune systems – a prerequisite for further translational research.    

 

Hallmarks of pulmonary barotrauma  

PBLI is characterised by several features, including, histological and physiological changes in 

the cardiorespiratory system. A transient bradycardia (as observed in Figure 1) is frequently 

reportedly in PBLI and is due to a vagal nerve mediated reflex, which in the absence of further 

insult resolves rapidly 7,8. We saw a modest but sustained increase in respiratory rate after PBLI, 

which may have been compensatory as a result of pulmonary damage and reduced gas-

exchange, thereby maintaining peripheral oxygenation in subjects 33 throughout the study 

period. PBLI causes damage to lung tissue that promotes cellular infiltration, through the 

destructive effects of stress and shear waves at air-fluid tissue boundaries. In PBLI, studies 

have shown neutrophil infiltration histologically or by assaying activation markers such as 

MPO in BALF or lung homogenates 9-12,14,18,19,34. Our histological data showed marked cellular 

infiltration and free erythrocytes due to alveolar haemorrhage consistent with previous human 

and rodent reports 11,35. Furthermore and in line with previous studies 18,36, we observed 

increased BALF levels of CXCL-1, IL-6, TNF-α and albumin – an indicator of endothelial and 

epithelial barrier damage. Collectively these data support the validity of the injury generated 

in this system resulting in PBLI. 

 

Cellular inflammatory response 

This study is the first to directly enumerate7 immune cells using FCM in a rodent model of 

PBLI. An acute cellular inflammation was observed driven by neutrophils and classical 

monocytes in the blood and lung, together with increases in BALF neutrophils and monocyte-

macrophages.  

 

Neutrophils 

PBLI is known to elicit mobilisation of neutrophils from the bone marrow into the blood 9,11,12 

and promote their activation 19,37. We saw significant increases in neutrophils in the blood 

across all time points, which may in part be driven by circulating chemokines and complement 

products previously reported to be elevated in PBLI 12,19,36,37. Additionally, we observed a rapid 

increase in neutrophils in the lung at 1 and 3hr, returning to baseline by 6hr. Blast damage to 

blood vessels leads to their rupture and leakage of vascular contents into the parenchyma as 

seen in this study; it has been shown that neutrophils can attach to these red blood cells in 

haemorrhagic foci 38.  

 

Monocyte-Macrophages  



Understanding of the role of other immune cells in PBLI is limited, with few studies examining 

the monocyte response. Those which have show isolated monocytes 4hr post-injury express 

higher levels of CCR2 mRNA compared to sham, and exhibit reduced migratory potential ex-

vivo to chemoattractants 18. Another study by the same authors, using a combined model of 

PBLI and haemorrhage showed reduced pro-inflammatory cytokine production from 

peripheral blood mononuclear cells (PBMCs) ex-vivo after combined insult at 20hr 15, whilst 

another study at 2hr showed increased cytokine production from peripheral blood mononuclear 

cells 39. 

 

To determine the still unclear nature of the monocyte response to PBLI in vivo, we used FCM 

to examine changes in the two circulating rat monocyte populations. To the best of our 

knowledge, we report for the first time a significant and sustained response of 

CD43Lo/His48Hi (classical) circulating monocytes to PBLI in the rat. These cells were raised 

as early as 1hr after insult and only began to subside by 6hr. Interestingly, this increase was not 

seen amongst the CD43Hi/His48Int-Lo (non-classical) monocyte subset. We found increases 

in plasma MCP-1 in PBLI rats compared to shams at all time-points, however this only reached 

significance at 6hr (data not shown). In a model of primary blast limb injury, CD43Lo but not 

CD43Hi monocytes were raised in the blood of rats subjected to prolonged duration blast waves 
40.  

A study of PBLI in mice suggested increases in BALF mononuclear cells as evidence for 

monocyte migration to the lung 18. Alongside marked changes in circulating cells, we found a 

rapid and significant increase in CD43Lo/His48Hi monocyte-macrophages at 1hr in the lung 

compared to shams (Figure 4A, B), which had all but subsided by 6hr. This increase could be 

in part due to an accelerated recruitment by cytokines and chemokines such as CINC-1, MIP-

2 and enhanced ICAM-1 expression 18,34,36,37 or damage products 41, which we found raised in 

the plasma at 6hr of PBLI rats (data not shown). There was a significant increase in 

CD43Lo/His48Hi monocyte-macrophages at 3hr in the BALF supporting our correlate findings 

in the lung, together with significant increases at 3 and 6hr in the monocyte-macrophage 

chemoattractant MCP-1. 

 

A study of PBLI in mice found no ameliorating effect of neutrophil depletion on acute lung 

injury and suggested monocytes (without subset discrimination) – which were raised in the 

blood - may be implicated in PBLI pathogenesis 37. The elevation of CD43Lo monocytes in the 

blood and CD43Lo monocyte-macrophages in the lung and BALF seen in this study suggest 

they – like their murine Ly6+ equivalents - may play key effector rolls in responding to sterile 

as well as infectious inflammatory stimuli; indeed CD43Lo monocyte-macrophages have been 

reported in significantly increased numbers in the lung at 3 and 24hr in LPS-induced pulmonary 

inflammation 23 and participate from the luminal side of the alveolar-capillary boundary as well 

as from within the parenchyma during lung allograft rejection 42. 

Other immune cells 

Because of the lack of data on other immune cell types in PBLI, and evidence to suggest NK 

Cell 43, B Cell 44, CD4+ 45 and CD8+ 46 T Cell involvement in trauma, we examined their 

changes in the circulation and lung in our model. There were no significant changes in the 

blood or lungs of these cells, supporting the view that PBLI releases damage mediators with 

specific- rather than pan-immune cell effects. Notably, these data highlight the importance of 

enumerating individual immune cell populations in blast injury studies; as lymphocytes 



predominate the circulating immune cell pool in rats23, assaying of total leukocytes numbers in 

the blood may not always rise significantly, even in the presence of significant circulating 

neutrophil or monocyte responses. Moreover, direct enumeration guards against 

misinterpretation of inflammation assays such as MPO – which is highly expressed by classical 

monocytes 47 as well as neutrophils. 

 

Distal organ immune cells 

Evidence suggests distal organs may undergo delayed inflammatory changes following PBLI. 

Hepatic Kupffer cells are thought to become primed to release pro-inflammatory cytokines 

shortly after PBLI 36. In a combined model of PBLI and femoral fracture, significant increases 

in lung and hepatic neutrophil infiltration were observed, peaking at 6hr 48. In rodent models 

of PBLI, splenic immune cells demonstrate supressed cytokine release 30 which may be 

responsible for diminished survival following a septic ‘second-hit’ 39. Yet, another study of 

PBLI found no effect on splenocyte cytokine release unless in the combined presence of 

neutrophil depletion 37, suggesting a neutrophil specific role for splenic suppression.  

 

In light of these varied and conflicting findings we sought to characterise in vivo the respective 

proportions of immune cells in the liver and spleen 6hr post-PBLI (Figure 6). In the liver we 

saw no significant changes in immune cells. In the spleen we saw significant increases in the 

proportion of CD43Lo/His48Hi and CD43Hi/His48Int-Lo monocyte-macrophages, and 

significant decreases in CD3+CD4+ T cells. Collectively these data demonstrate for the first 

time the immune cell environment of two major distal organs in PBLI. This splenic data is 

timely given recent studies in mice show the spleen can directly give rise to Ly-6C+ monocytes 

(analogous to CD43Lo rat monocytes) that respond to sterile inflammation 49. Further 

understanding of the contribution of different tissues and organs to the immune response in 

PBLI is needed.  

 

Clinical implications and limitations 

Blast exposed patients may present with myriad clinical injuries or symptoms, many of which 

could appear benign and thereby complicate simple and rapid triage during mass-casualty 

events. Anecdotal surrogates for PBLI such as tympanic membrane perforation are not 

supported by evidence 50. It is important to identify patients that have suffered PBLI even if the 

injury doesn’t appear immediately life threatening. This study offers evidence to suggest CD43 

Lo classical monocytes – in addition to neutrophils – can be detected in the blood or BALF 

acutely after PBLI; and could offer clinicians an additional triage tool to identify those at 

potential risk of deleterious systemic immune activation or in need of further monitoring. 

Importantly, the immune response in a real-world clinical environment will be additionally 

impacted by interacting blast injury mechanisms and damage to distal organs, as well as the 

immune response to therapeutic intervention such as blood transfusion. A limitation of this 

study is that it does not examine quantitatively whether circulating or BALF immune cells 

correlate with injury severity; this should be a focus of further research.   

 

Conclusion 

In summary, this study shows that isolated PBLI leads to a rapid increase in circulating 

neutrophils and – for the first time - CD43Lo/His48Hi monocytes. These cells are also elevated 

in the lung at 1 and 3hrs but return to baseline levels by 6hrs.  We show specific monocyte-



macrophage immune cell changes in the spleen but not liver 6hr after injury. The methodology 

employed in this study adds clarity to the varied roles played by immune cells in PBLI across 

several tissues. Neutrophils and classical monocytes may serve as tools in translation studies 

to assess blast injured subjects or patients, including those considered susceptible to systemic 

immune activation or ‘second-hits’ such as infection. 
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Figure 1 Physiological effects of shock wave induced PBLI 

Legend 

Physiological measurements after sham (——) or PBLI (------). Rats were anesthetized and 

subjected to a single shock wave or sham procedure. An infra-red neck collar Sensor was used 

to measure heart rate (A), arterial oxygen saturation (B) and respiratory rate (C). Recordings 

were taken at 1 min and 5 min after induction of anaesthesia, 1 min and 5 min after PBLI, after 

recovery when rats were awake, and 3hr and 6hr thereafter. Peri-anaesthesia n= 9-19; at 3hrs 

n=6-11; at 6hrs n=3 from 2-3 independent experiments presented mean ± SEM using unpaired 

t-test where *p<0.05. 

 

Figure 2 Histological changes in the lung after injury 

Legend 

Histological imaging of lungs after sham or PBLI. Left lung lobes were fixed in formaldehyde, 

embedded in wax, cut and stained with H&E. Images are representative obtained from a light 

microscope at 10X (A), 40X or 100X (B) magnification. Images are representative.   

 

Figure 3 Neutrophils and CD43Lo/His48Hi Monocytes are elevated in the blood after PBLI  

Legend 

Total cells, neutrophils and CD43Lo/His48Hi monocyte levels (A), representative flow 

cytometry (FCM) images (B) in the blood at 1, 3 and 6hr after sham (-) or PBLI (+). Cells were 

distinguished and enumerated by 9-colour FCM. Data are: at 1hr n=7-8, at 3hr n=6-7, at 6hr 

n=5, in each group from 2-3 independent experiments presented as median ± 25th and 75th 

percentile where *p<0.05,**p<0.01. 

 

Figure 4 Rapid recruitment of Neutrophils and CD43Lo/His48Hi Monocyte-Macrophages to 

the lung 

Legend 

Fold changes in total neutrophils and CD43Lo/His48Hi monocyte-macrophages (A), 

representative flow cytometry (FCM) images (B) in the lung at 1, 3 and 6hr all compared to 

time point specific shams. Cells were distinguished and enumerated by 9-colour FCM. Data 

are: at 1hr n=7-8, at 3hr n=6-7, at 6hr n=5, in each group from 2-3 independent experiments, 

presented as median fold change over sham-specific time point group ± 25th and 75th 

percentile where *p<0.05,**p<0.01.  

 

Figure 5 Cellular BALF changes after PBLI  

Legend 

Total neutrophils and neutrophils as percentage of total cells (A) in BALF at 1, 3 and 6hr; total 

CD43Lo/His48Hi monocyte-macrophages (B) 3 and 6hr; concentration of MCP-1 in the BALF 

at 1, 3 and 6hr (C) after sham (-) or PBLI (+). Cells were distinguished and enumerated by 

FCM. Cellular data are: total cells in each group at 1hr n=5, 3hr n=6-7, 6hr n=5-6; neutrophils 

in each group at 1hr n=7-8, at 3hr n=6-7, at 6hr n=5-6; CD43Lo and CD43Hi monocytes in 

each group at 3hr n=6, at 6hrs n=2-3. MCP-1 ELISA data in each group are: 1hr n=3-5, 3hr 

n=5, 6hr n=5 from 2-3 independent experiments run in duplicate. All data presented as median 

± 25th and 75th percentile where *p<0.05, **p<0.01. Summary error measures are not 

presented where n<=3.  

 



Figure 6 Immune cells in distal tissues at 6hr  

Legend 

Proportions of neutrophils, CD43Lo/His48Hi monocyte-macrophages, NK, B and T cells of 

total cells in Liver (A) and Spleen (B) at 6hr after sham (-) or PBLI (+). Cells were 

distinguished and enumerated by FCM. Liver data in each group are n=5-6; spleen data in each 

group are n=4-6; both from 2-3 independent experiments presented as median ± 25th and 75th 

percentile where *p<0.05, **p<0.01. 

 

Table 1: Study groups and subjects 

Legend 

Subjects included in this study at each time point.  

 

Table 2 Pulmonary inflammatory changes in the BALF  

Legend 

CXCL-1, IL-6 and TNF-α cytokines and albumin in the BALF at 1, 3 and 6hr after sham or 

PBLI. Multiplex ELISA data in each group: CXCL-1, IL-6 and TNF-a all n=4 in duplicate 

from 2-3 independent experiments at all time points; Albumin data in each group: at 1hr n=5, 

3hr n=6-7, 6hr n=5-6, all in duplicate from 2-3 independent experiments. Data presented as 

median ± 25th and 75th percentile where *p<0.05,**p<0.01. 

 

Table 3 Immune cells in the blood and lung 

Legend 

CD43Hi/His48Lo monocyte-macrophages, NK, B and T cells at 1, 3 and 6hrs in the blood and 

lung. Data are: at 1hr n=7-8, at 3hr n=6-7, at 6hr n=5, in each group from 2-3 independent 

experiments presented as median ± 25th and 75th percentile where *p<0.05,**p<0.01. Lung 

data is shown as a ratio to time-specific sham groups. CD8 data were unobtainable in sufficient 

numbers at 6hrs and are not included.  
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