

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:	
Applied Physiology, Nutrition, and Metabolism	
Cronfa URL for this paper:	
http://cronfa.swan.ac.uk/Record/cronfa37056	

Paper:

Nalcakan, G., Songsorn, P., Fitzpatrick, B., Yuzbasioglu, Y., Brick, N., Metcalfe, R. & Vollaard, N. (2017). Decreasing sprint duration from 20 to 10 s during reduced-exertion high-intensity interval training (REHIT) attenuates the increase in maximal aerobic capacity but has no effect on affective and perceptual responses. *Applied Physiology, Nutrition, and Metabolism*

http://dx.doi.org/10.1139/apnm-2017-0597

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

Applied Physiology, Nutrition, and Metabolism Physiologie appliquée, nutrition et métabolisme

Decreasing sprint duration from 20 to 10 s during reducedexertion high-intensity interval training (REHIT) attenuates the increase in maximal aerobic capacity but has no effect on affective and perceptual responses

Journal:	Applied Physiology, Nutrition, and Metabolism
Manuscript ID	apnm-2017-0597.R3
Manuscript Type:	Article
Date Submitted by the Author:	14-Nov-2017
Complete List of Authors:	Nalcakan, Gulbin Rudarli; Ege Univ, faculty of sport science Songsorn, Preeyaphorn; University of Stirling Fitzpatrick, Ben; University of Ulster Yüzbasioglu, Yasin; Ege Univ, faculty of sport science Brick, Noel; University of Ulster Metcalfe, Richard; Swansea University Vollaard, Niels; University of Stirling
Is the invited manuscript for consideration in a Special Issue? :	
Keyword:	VO2max, sprint interval training, SIT, Wingate sprint, affect

SCHOLARONE™ Manuscripts

- 1 Decreasing sprint duration from 20 to 10 s during reduced-exertion high-intensity interval training
- 2 (REHIT) attenuates the increase in maximal aerobic capacity but has no effect on affective and
- 3 perceptual responses

- 5 Gulbin R Nalçakan¹, Preeyaphorn Songsorn², Ben L Fitzpatrick³, Yasin Yüzbasioglu¹, Noel E Brick⁴,
- 6 Richard S Metcalfe^{3,5}, Niels BJ Vollaard^{2*}

7

- 8 ¹ Faculty of Sport Science, Ege University, 35040 İzmir, Turkey (gulbinrn@gmail.com,
- 9 yasinyuzbasioglu@gmail.com)
- 10 ² Faculty of Health Sciences and Sport, University of Stirling, Stirling, FK9 4LA, UK
- 11 (preeyaphorn.songsorn1@stir.ac.uk, n.vollaard@stir.ac.uk)
- ³ School of Sport, Ulster University, Derry/Londonderry, BT48 7JL, UK (bl.fitzpatrick@ulster.ac.uk)
- ⁴ Psychology Research Institute, Ulster University, Derry/Londonderry, BT48 7JL, UK
- 14 (n.brick@ulster.ac.uk)
- ⁵ Applied Sports Science Technology and Medicine Research Centre (A-STEM), Swansea University,
- 16 Swansea, SA1 8EN, UK (r.s.metcalfe@swansea.ac.uk)

17

- * Corresponding Author:
- 19 Dr Niels Vollaard
- 20 Faculty of Health Sciences and Sport
- 21 University of Stirling
- 22 Stirling
- 23 FK9 4LA
- 24 UK
- 25 Phone: +44 1786 466488
- 26 Email: n.vollaard@stir.ac.uk

ABSTRACT

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

27

Purpose: Recent studies have demonstrated that modifying the 'classic' 6x30-s 'all-out' sprint interval training (SIT) protocol by incorporating either shorter sprints (6x10-s or 15-s sprints) or fewer sprints (e.g. 2x20-s sprints; reduced-exertion high-intensity interval training (REHIT)) does not attenuate the training-induced improvements in maximal aerobic capacity (VO₂max). The aim of the present study was to determine whether reducing the sprint duration in the REHIT protocol from 20 s to 10 s per sprint influences acute affective responses and the change in VO₂max following training. Methods: Thirty-six sedentary or recreationally active participants (17 women; mean±SD age: 22±3 y, BMI: 24.5±4.6 kg·m⁻², VO₂max: 37±8 mL·kg⁻¹·min⁻¹) were randomised to a group performing a 'standard' REHIT protocol involving 2x20-s sprints or a group who performed 2x10-s sprints. VO₂max was determined before and after 6 weeks of 3 weekly training sessions. Acute affective responses and perceived exertion were assessed during training. Results: Greater increases in VO₂max were observed for the group performing 20-s sprints $(2.77\pm0.75 \text{ to } 3.04\pm0.75 \text{ L·min}^{-1}; +10\%)$ compared to the group performing 10-s sprints (2.58±0.57 vs. 2.67±3.04 L·min⁻¹; +4%; group×time interaction effect: p<0.05; d=1.06). Positive affect and the mood state vigour increased post-exercise, while tension, depression and total mood disturbance decreased, and negative affect remained unchanged. Affective responses and perceived exertion were not altered by training and were not different between groups.

48

46 Conclusion: Reducing sprint duration in the REHIT protocol from 20 s to 10 s attenuates 47 improvements in VO2max, and does not result in more positive affective responses or lower perceived exertion.

49

50

51

52

Key words:

VO₂max; sprint interval training; SIT; Wingate sprint; affect

5	3	
_	_	

55

56

57

58

59

60

Abbreviations:

ANOVA: analysis of variance; BMI: body mass index; BRUMS: Brunel mood scale; HIIT: high-intensity interval training; IPAQ: International Physical Activity Questionnaire; MICT: moderate-intensity continuous training; PANAS: positive and negative affect schedule; PAR-Q: physical activity readiness questionnaire; RCT: randomised controlled trial; REHIT: reduced-exertion high-intensity interval training; RPE: rating of perceived exertion; SIT: sprint interval training; TMD: total mood disturbance; $\dot{V}O_2$ max: maximal aerobic capacity

INTRODUCTION

Low maximal aerobic capacity ($\dot{V}O_2$ max) is one of the strongest predictors of future chronic disease
and premature mortality (Keteyian et al. 2008; Myers et al. 2002), and longitudinal studies have
demonstrated that increasing $\dot{V}O_2$ max substantially lowers morbidity and mortality during follow up
(Blair et al. 1995; Lee et al. 2011). Thus physical activity and/or exercise interventions that improve
$\dot{V}O_2$ max should be emphasised in public health guidelines (Bouchard et al. 2015; Ross et al. 2016).
$\dot{V}O_2 max \ can \ be \ improved \ through \ moderate-intensity \ continuous \ training \ (MICT) \ (Garber \ et \ al.$
2011), but as perceived lack of time prevents many people from doing such exercise (Kimm et al.
2006; Korkiakangas et al. 2009; Trost et al. 2002), alternative exercise routines such as (sub)maximal
high-intensity interval training (HIIT) and supramaximal sprint interval training (SIT) have been
proposed as time-efficient alternative/adjunct exercise strategies (Gillen and Gibala 2014). However,
the need for recovery periods in between repeated sprints diminishes the time-efficiency of most
HIIT and SIT protocols compared to less strenuous MICT (Gillen and Gibala 2014).
The mechanisms which underpin the increases in $\dot{V}O_2$ max with HIIT and SIT remain unclear (Vollaard
and Metcalfe 2017), but have been proposed to rely on activation of skeletal muscle signalling
pathways involving 5' adenosine monophosphate-activated protein kinase (AMPK), peroxisome
proliferator-activated receptor gamma coactivator 1-alpha (PGC- 1α) (Gibala 2009), and potentially
other signalling molecules such as p38 mitogen-activated protein kinase (p38 MAPK) (Little et al.
2011), sirtuin 1 (SIRT1) (Guerra et al. 2010) and sirtuin 3 (SIRT3) (Edgett et al. 2016). It has been
proposed that the activation of relevant signalling pathways with supramaximal exercise may be
reliant on achieving peak power output (Hazell et al. 2010), but we have proposed an alternative
theory suggesting that activation of signalling pathways could plausibly be related to rapid
glycogenolysis associated with supramaximal exercise (Metcalfe et al. 2015). As glycogen depletion
during supramaximal exercise is limited to the first \sim 15 s of the first bouts of repeated 'all-out'
sprints (Parolin et al. 1999), we have previously proposed that more time-efficient SIT protocols with
fewer and/or shorter sprints may remain effective at improving VO₂max (Metcalfe et al. 2012;

Vollaard and Metcalfe 2017). In recent years we have provided support for this hypothesis by
demonstrating that a reduced-exertion high-intensity interval training (REHIT) protocol involving two
20-s all-out cycle sprints within a 10-min exercise session improves $\dot{V}O_2$ max in sedentary individuals
(Metcalfe et al. 2012; Metcalfe et al. 2016) and patients with type 2 diabetes (Ruffino et al. 2017).
Furthermore, REHIT may improve measures of insulin sensitivity (Gillen et al. 2016; Gillen et al. 2014;
Metcalfe et al. 2012) and blood pressure (Ruffino et al. 2017). With a total time-commitment of 3 \times
10 min per week, the REHIT protocol appears to offer a genuinely time-efficient alternative to MICT
(Vollaard and Metcalfe 2017; Vollaard et al. 2017).
The sprints in the REHIT protocol are shorter (20 s) comparted to those used in most other SIT
protocols (30 s). This shortened sprint duration, and the concomitant lower increase in muscle
metabolites (e.g. lactate, hydrogen ions) and reduction in central motor command can be expected
to reduce perceived exertion (Pageaux 2016; Vollaard and Metcalfe 2017). The strong contribution
of phosphocreatine hydrolysis to energy demands during the first ~10 s of a 30-s Wingate sprint
means that perceived exertion during this phase is relatively low, whereas the gradual switch to
glycolysis as the predominant energy source (Parolin et al. 1999) is associated with severe and
progressive fatigue during the latter stages of the sprint. It follows that if sprint duration in the REHIT
protocol can be reduced further without affecting the associated improvements in $\dot{V}O_2\text{max},$ the
protocol would be perceived as less unpleasant and more tolerable. Recent findings by Townsend et
al. (2017) suggest that reducing sprint duration may attenuate negative affective responses to SIT.
This in turn could potentially lead to better uptake of, and adherence to, SIT as a viable alternative
exercise intervention for reducing risk of noncommunicable disease (Rhodes and Kates 2015).
To date there has been little focus on the effects of sprint duration in SIT protocols on associated
adaptations to $\dot{V}O_2$ max. Hazell and co-workers (2010) suggested that generation of peak power may
be more important as a mechanism for improving $\dot{V}O_2\text{max}$ than the maintenance of a high power
output for a longer duration. Indeed, they observed no difference in the increase in $\dot{V}O_2\text{max}$
between SIT protocols incorporating either 4-6 x 30-s or 10-s sprints (Hazell et al. 2010). This was

supported by Zelt et al. (2014) who found similar increases in $\dot{V}O_2$ max with 4-6 x 30-s or 15-s sprints. Therefore, the present study aimed to determine whether reducing the sprint duration in the REHIT protocol from 20 s to 10 s per sprint affects the associated change in $\dot{V}O_2$ max as well as ratings of perceived exertion and changes in affect and mood state.

113

114

115

METHODS

Compliance with Ethical Standards

The study was approved by the local University Ethics committees (references: SSREC 888/ FC52 2016-17/ 16-8.1/18), and conformed to the standards set forth in the latest revision of the Declaration of Helsinki. The study protocol was fully explained to all participants in written and verbal form before they were asked to provide written consent.

Participants

Thirty-six apparently healthy, sedentary or recreationally active participants (**Table 1**) were recruited at sites in the UK (Stirling, Derry/Londonderry) and Turkey (İzmir), and randomised into a group performing the REHIT protocol as previously described by Metcalfe et al. (2012) (REHIT20; n=18, 11 men) and a group performing the same protocol but with the sprint duration reduced by 50% for each session (REHIT10; n=18, 8 men). Randomisation was performed using the sealed envelope method. Exclusion criteria were classification as highly physically active according to the International Physical Activity Questionnaire (IPAQ (Craig et al. 2003)), contraindications to exercise as determined using a standard physical activity readiness questionnaire (PAR-Q (Thomas et al. 1992)), clinically significant hypertension (>140/90 mm Hg), or resting heart rate ≥100 beats·min⁻¹. All participants were asked not to make conscious changes to their diet and physical activity patterns for the duration of the study.

Experimental Procedures

Following measurement of body mass and height, $\dot{V}O_2$ max was determined using an incremental cycling test to exhaustion (Excalibur Sport, Lode, Groningen, the Netherlands), with breath-by-breath measurement of oxygen uptake using a calibrated online gas analyser (Oxycon Pro, Jaeger, Wurzburg, Germany; Quark C-PET, Cosmed, Rome, Italy; CV: 4%). Participants were asked not to perform strenuous exercise or consume caffeine or alcohol the day before and prior to the test, and to drink half a litre of water the morning of the testing day. After a 2-min warm-up at 50 W the

intensity was increased by 1 W every 3 s until volitional exhaustion (failure to maintain rpm >50)
despite verbal encouragement. $\dot{V}O_2$ max was determined as the highest value for a 15-breath rolling
average, and accepted if two or more of the following criteria were met: 1) volitional exhaustion, 2)
a plateau in $\dot{V}O_2$ despite increasing intensity, 3) RER>1.15, and 4) maximal heart rate within 10 beats
of the age-predicted maximum (i.e. 220 - age). This was the case for all participants. Because of
technical difficulties we were unable to complete the post-training $\dot{V}O_2max$ test for one female
participant in the REHIT20 group, so $\dot{V}O_2$ max data are presented for 11 men and 6 women for this
group.
Following the $\dot{V}O_2$ max test, participants performed a 6-week training programme involving 3 training
sessions per week. Training sessions consisted of 10 min of unloaded pedalling (Ergomedic 874e,
Monark, Vansbro, Sweden), with two all-out cycle sprints against a resistance of 7.5% of the
participant's body weight. The first sprint started at 2 min and the second sprint finished at 6 min.
Sprint duration in the REHIT20 group increased from 10 s in the first 3 sessions, to 15 s in sessions 4-
6, and 20 s in all remaining sessions. Sprint duration in the REHIT10 group was exactly half that of
the REHIT20 group in all sessions: duration increased from 5 s in the first 3 sessions, to 7.5 s in
sessions 4-6, and 10 s in all remaining sessions. Participants were asked to increase their cadence to
maximal $^{\sim}3$ s prior to the start of the sprint and to maintain the highest possible cadence throughout
the sprint. Verbal encouragement was provided. A session rating of perceived exertion (RPE) score
using the 6-20 Borg scale (representing the entire training session (Borg 1982)) was taken directly
post-exercise at the last session of each training week. In addition, during the first, fourth, seventh
and eighteenth training session, the changes in psychological affect as a result of exercise were
assessed using the positive and negative affect scale (PANAS (Watson et al. 1988)) and the Brunel
Mood Scale (BRUMS (Terry et al. 1999)). These scales were completed before and within 5 min after
the exercise session. Following the final training session, participants completed a questionnaire on
the acceptability of the intervention, as previously used by Boereboom et al. (2016). A second

 $\dot{V}O_2$ max test was performed on the third day after the final training session, at a similar time as the baseline test and following identical procedures.

Statistical analysis

Data are presented as mean±SD. Based on a coefficient of variation for the $\dot{V}O_2$ max test protocol of 4% (Songsorn et al. 2016), it was calculated that 14 participants were needed in each group to be able to detect a difference in the change in $\dot{V}O_2$ max of 5% between the two groups, with a power of 90% and α =0.05. Independent sample t-tests were used to determine differences between the two groups at baseline. Two-way mixed model ANOVA (intervention [REHIT10 / REHIT20] × trial [pretraining / post-training]) was used to determine differences in the change in $\dot{V}O_2$ max and body mass from baseline to post-intervention between the two groups. Three-way repeated measures ANOVA (intervention [REHIT10 / REHIT20] × training session [session 1 / 4 / 7 / 18] × time [pre-exercise / post-exercise]) was used to assess the effect of acute exercise on affect and mood state, and two-way repeated measures ANOVA (intervention [REHIT10 / REHIT20] × training session [session 3 / 6 / 9 / 12 / 15 / 18]) was used to assess the effect of acute exercise on perceived exertion. A Mann-Whitney U test was used to test for differences between the groups for intervention acceptability. Cohen's d effect sizes are reported. Significance was accepted at p<0.05.

RESULTS

There were no significant differences between participants in the control group and the training
group for mean baseline characteristics (Table 1) or other variables. Of the 36 participants, 23
completed all 18 training sessions, 7 completed 17 sessions, and 6 completed 16 sessions, resulting
in an overall mean adherence of 97% (98% for REHIT10 and 96% for REHIT20). We observed a small
but significant increase in body mass from pre- to post-intervention (main effect of time: $p<0.05$),
but no difference between the change in the REHIT20 group (70.3±11.5 vs. 71.2±11.0 kg) compared
to the REHIT10 group (75.8±18.7 vs. 76.2±18.8 kg). There was a greater increase in $\dot{V}O_2$ max in the
REHIT20 group (2.77 \pm 0.75 vs. 3.04 \pm 0.75 L·min ⁻¹ ; +10%) compared to the REHIT10 group (2.58 \pm 0.57
vs. 2.67 \pm 3.04 L·min ⁻¹ ; +4%; group × time interaction effect: P<0.05; d =1.06; main effect of time:
p<0.001; Figure 1).
Acute REHIT sessions were associated with a small but significant increase in positive affect directly
post-exercise (main effect of time: p<0.05; d =0.23), whereas negative affect was unchanged (Table
2). There were no significant time \times session interaction effects for affect, and no significant
differences were observed between the changes in the REHIT10 and REHIT20 groups. Significant
exercise-induced improvements with small effect sizes (d =0.11-0.21) were observed for the mood
states tension, depression, vigour (main effect of time: p<0.01 for each) and total mood disturbance
(main effect of time: p<0.05), but there were no significant changes for anger, fatigue, or confusion
(Figure 2). Again, no differences were observed between training sessions, nor between the REHIT10
and REHIT20 groups. Ratings of perceived exertion scores averaged between ~13-15 ('somewhat
hard' to 'hard'), with no significant differences between the groups or between training sessions
(Figure 3). Following the final training session, both REHIT programmes were deemed acceptable by
the majority of participants (Figure 4), with no significant differences between the protocols.
Specifically, on average participants in both groups agreed with the statements that they believed
that their fitness had improved, that they would do HIT again, that they would recommend HIT to
others, and that they enjoyed HIT. They were neutral about the statement that HIT was more

- demanding than expected, and on average disagreed with the statements that the physical strain or
- 210 travelling involved with HIT interfered with their life, and that HIT was a time burden.

DISCUSSION

The present study aimed to determine whether a REHIT protocol with 10-s sprints could be equally
effective at improving $\dot{V}O_2$ max compared to a protocol involving 20-s sprints. Unlike previous studies
that found no difference in the increase in $\dot{V}O_2$ max between 2-4 weeks of 4-6 x 30-s sprints vs. 10
(Hazell et al. 2010) or 15-s sprints (Zelt et al. 2014), we observed significantly greater improvements
in $\dot{V}O_2$ max with 2 x 20-s vs. 2 x 10-s sprints. As acute affective responses and perceived exertion
were not affected by sprint duration, we conclude that in protocols with very few sprints the sprint
duration should be longer than 10 s.
The increase in $\dot{V}O_2$ max we observed in response to our original 2x20-s REHIT protocol is similar to
what we have reported in our previous studies (Metcalfe et al. 2012; Metcalfe et al. 2016). This
increase is important as low $\dot{V}O_2$ max is strongly linked to poor health and increased risk of
premature morbidity (Keteyian et al. 2008; Myers et al. 2002). As the prevalence of physical
inactivity remains high worldwide (Hallal et al. 2012), there is an urgent need to establish alternative
exercise interventions that are 1) effective at improving $\dot{V}O_2$ max, and 2) acceptable to populations
that are currently unwilling or unable to adhere to recommended levels of MICT. In an attempt to
address the commonly reported barrier to exercise of perceived lack of time (Kimm et al. 2006;
Korkiakangas et al. 2009; Trost et al. 2002) we previously developed the genuinely time-efficient
REHIT intervention (Metcalfe et al. 2012). REHIT has a total time-commitment of 3 x 10 min per
week and is associated with acceptable session ratings of perceived exertion ('somewhat hard')
(Metcalfe et al. 2012). Nonetheless, there remains a need to establish whether the REHIT protocol
can be made shorter and/or easier in order to enhance the likelihood of sedentary populations
taking up and adhering to this exercise routine. We have recently provided preliminary data
suggesting that a minimum of two sprint repetitions within a training session is required in order to
improve $\dot{V}O_2$ max (Songsorn et al. 2016; Songsorn et al. 2017; Vollaard et al. 2017). Reducing the
sprint duration in the REHIT protocol would do little to reduce the total training time (the bulk of
each training session is spent on the low-intensity warm-up and recovery periods), but if the

resulting protocol remains effective at improving $\dot{V}O_2\text{max}$ it could be beneficial by reducing potential
negative affective responses or perceived exertion (Townsend et al. 2017). However, in the present
study we demonstrate that reducing the sprint duration from 20 s to 10 s attenuates the efficacy of
the REHIT protocol at improving $\dot{V}O_2\text{max},$ and we therefore propose that the original protocol
involving 20-s sprints remains the protocol of choice.
The exact physiological stimuli and molecular signalling pathways responsible for the rapid
improvements in $\dot{V}O_2$ max associated with HIIT and SIT protocols remain unclear (Vollaard and
Metcalfe 2017). As long as this is the case, establishing the shortest and/or easiest exercise
interventions associated with health benefits such as improved $\dot{V}O_2$ max remains a matter of trial and
error, involving studies examining a variety of protocol modifications. Previous work by the groups
of Hazell (Hazell et al. 2010) and Gurd (Zelt et al. 2014) suggested that the sprint duration in SIT
protocols can be substantially reduced from that used in the 'classic' 4-6 x 30-s SIT protocol
popularised by Gibala's group (Burgomaster et al. 2005). On the basis of these results it was
suggested that generation of peak power is a key stimulus for improving $\dot{V}O_2$ max. Our present data
suggest that this is not the case, at least not when the number of sprint repetitions is kept low (2
repetitions). The evidence to date points to a need to repeat all-out sprints of a sufficient duration
(e.g. 2 x 20 s) or number (e.g. 4-6 x 10 s) to achieve clinically meaningful increases in $\dot{V}O_2$ max. The
reasons why certain combinations of sprint repetitions and sprint duration lead to differences in the
effectiveness of the protocols in improving $\dot{V}O_2max$ will remain unclear until we have a more
detailed understanding of the mechanisms responsible for the increase in $\dot{V}O_2\text{max}$ associated with
very low volume SIT protocols (Vollaard and Metcalfe 2017).
This is the first study to provide data on the acute effects of REHIT on affective responses and mood
state. We demonstrate that reducing the sprint duration in the REHIT protocol from 20 s to 10 s does
not reduce session ratings of perceived exertion, nor does it lead to more positive affective
responses or changes in mood state post-exercise. This is important, because a criticism of SIT
protocols has been that all-out sprints are too strenuous for untrained individuals: it has been

suggested that performing all-out sprints requires too much motivation (which many sedentary
populations lack), and is likely to evoke negative affect which may lead to subsequent avoidance of
further exercise (Hardcastle et al. 2014). However, the evidence on which this criticism is based is
contentious (Jung et al. 2015), and our data suggest that REHIT is not associated with the negative
affective responses described by Hardcastle et al. (2014).
Exercise interventions can only improve health if performed regularly, and therefore exercise
protocols leading to a smaller increase in $\dot{V}O_2max$ could still be deemed acceptable if they were
substantially less strenuous and associated with less negative affect. However, we demonstrate that
acute exercise in a REHIT session is not associated with an increase in negative affect or a disruption
of mood state directly after exercise, and that neither reducing the sprint duration from 20 s to 10 s
nor regularly performing REHIT sessions (i.e. training) modifies the acute responses. Our finding that
REHIT does not result in negative affect directly post-exercise is in contrast to longer SIT protocols
with more sprints (Townsend et al. 2017). Conversely it is in line with Townsend's finding that
shorter and, if sprint duration is kept constant, fewer sprints have less of an impact on affective
responses. Nonetheless, our data should be interpreted with caution given that affective responses
and changes in mood state were only assessed on completion of the exercise session, i.e. ~5 min
following the second sprint. Previous studies which have applied continuous exercise have shown
that affective responses to exercise above the ventilatory threshold follow an inverse U-shaped
curve: affect decreases (and may become negative) during exercise, but then rebounds quickly upon
exercise cessation and mood state may then be enhanced in the immediate post-exercise period
(Ekkekakis et al. 2008). Future studies should determine whether negative affect is present at any
point during the 10-min exercise session. Still, that REHIT may be associated with positive affective
responses immediately post-exercise is in direct contrast to classic SIT (4-6 x 30-s sprints) (Saanijoki
et al. 2015) and at the very least suggests that any potential negative responses will be short-lived.
In conclusion, our present study shows that reducing the sprint duration in the REHIT protocol from
2 x 20 s to 2 x 10 s attenuates improvements in $\dot{V}O_2$ max, but does not impact perceived exertion.

290

291

292

acute affective responses or mood state. Our findings further support the use of the original REHIT protocol consisting of 2 x 20-s sprints, and strengthens our contention that REHIT represents an efficacious, time-efficient, and acceptable alternative to classic SIT and MICT for improving health and reducing risk of future morbidity and premature mortality.

<u> 2</u> 93	Acknowledgements
294	
295	We would like to thank Evangeline Nicol, Jeremy Basset Sagarminaga, Stefanos Strzemiecki, Noel
296	McLaughlin, Patrick Meenan, and Sam Russell for assistance with testing and the training sessions.
297	PS is supported by a PhD studentship provided by Thammasat University.
298	
299	Conflict of interest

The authors declare that they have no conflict of interest.

REFERENCES

- Blair SN, Kohl HW, 3rd, Barlow CE, Paffenbarger RS, Jr., Gibbons LW, Macera CA (1995) Changes in physical fitness and all-cause mortality. A prospective study of healthy and unhealthy men. Jama 273 (14):1093-1098
- Boereboom CL, Phillips BE, Williams JP, Lund JN (2016) A 31-day time to surgery compliant exercise training programme improves aerobic health in the elderly. Tech Coloproctol 20 (6):375-382. doi:10.1007/s10151-016-1455-1
- Borg GA (1982) Psychophysical bases of perceived exertion. Medicine and science in sports and exercise 14 (5):377-381
- Bouchard C, Blair SN, Katzmarzyk PT (2015) Less Sitting, More Physical Activity, or Higher Fitness?

 Mayo Clinic proceedings 90 (11):1533-1540. doi:10.1016/j.mayocp.2015.08.005
 - Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ (2005) Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. Journal of applied physiology 98 (6):1985-1990. doi:10.1152/japplphysiol.01095.2004
 - Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, Oja P (2003) International physical activity questionnaire: 12-country reliability and validity. Medicine and science in sports and exercise 35 (8):1381-1395. doi:10.1249/01.MSS.0000078924.61453.FB
 - Edgett BA, Bonafiglia JT, Baechler BL, Quadrilatero J, Gurd BJ (2016) The effect of acute and chronic sprint-interval training on LRP130, SIRT3, and PGC-1alpha expression in human skeletal muscle. Physiol Rep 4 (17). doi:10.14814/phy2.12879
 - Ekkekakis P, Hall EE, Petruzzello SJ (2008) The relationship between exercise intensity and affective responses demystified: to crack the 40-year-old nut, replace the 40-year-old nutcracker! Ann Behav Med 35 (2):136-149. doi:10.1007/s12160-008-9025-z
 - Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP, American College of Sports M (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine and science in sports and exercise 43 (7):1334-1359. doi:10.1249/MSS.0b013e318213fefb
- Gibala M (2009) Molecular responses to high-intensity interval exercise. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme 34 (3):428-432. doi:10.1139/H09-046
- Gillen JB, Gibala MJ (2014) Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme 39 (3):409-412. doi:10.1139/apnm-2013-0187
 - Gillen JB, Martin BJ, MacInnis MJ, Skelly LE, Tarnopolsky MA, Gibala MJ (2016) Twelve Weeks of Sprint Interval Training Improves Indices of Cardiometabolic Health Similar to Traditional Endurance Training despite a Five-Fold Lower Exercise Volume and Time Commitment. PloS one 11 (4):e0154075. doi:10.1371/journal.pone.0154075
- Gillen JB, Percival ME, Skelly LE, Martin BJ, Tan RB, Tarnopolsky MA, Gibala MJ (2014) Three minutes of all-out intermittent exercise per week increases skeletal muscle oxidative capacity and improves cardiometabolic health. PloS one 9 (11):e111489. doi:10.1371/journal.pone.0111489
- Guerra B, Guadalupe-Grau A, Fuentes T, Ponce-Gonzalez JG, Morales-Alamo D, Olmedillas H, Guillen-Salgado J, Santana A, Calbet JA (2010) SIRT1, AMP-activated protein kinase phosphorylation and downstream kinases in response to a single bout of sprint exercise: influence of glucose ingestion. Eur J Appl Physiol 109 (4):731-743. doi:10.1007/s00421-010-1413-y

Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U, Lancet Physical Activity Series
Working G (2012) Global physical activity levels: surveillance progress, pitfalls, and
prospects. Lancet 380 (9838):247-257. doi:10.1016/S0140-6736(12)60646-1

- Hardcastle SJ, Ray H, Beale L, Hagger MS (2014) Why sprint interval training is inappropriate for a largely sedentary population. Front Psychol 5:1505. doi:10.3389/fpsyg.2014.01505
 - Hazell TJ, Macpherson RE, Gravelle BM, Lemon PW (2010) 10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic performance. Eur J Appl Physiol 110 (1):153-160. doi:10.1007/s00421-010-1474-y
 - Jung ME, Little JP, Batterham AM (2015) Commentary: Why sprint interval training is inappropriate for a largely sedentary population. Front Psychol 6:1999. doi:10.3389/fpsyg.2015.01999
 - Keteyian SJ, Brawner CA, Savage PD, Ehrman JK, Schairer J, Divine G, Aldred H, Ophaug K, Ades PA (2008) Peak aerobic capacity predicts prognosis in patients with coronary heart disease. American heart journal 156 (2):292-300. doi:10.1016/j.ahj.2008.03.017
 - Kimm SY, Glynn NW, McMahon RP, Voorhees CC, Striegel-Moore RH, Daniels SR (2006) Self-perceived barriers to activity participation among sedentary adolescent girls. Medicine and science in sports and exercise 38 (3):534-540. doi:10.1249/01.mss.0000189316.71784.dc
 - Korkiakangas EE, Alahuhta MA, Laitinen JH (2009) Barriers to regular exercise among adults at high risk or diagnosed with type 2 diabetes: a systematic review. Health promotion international 24 (4):416-427. doi:10.1093/heapro/dap031
 - Lee DC, Sui X, Artero EG, Lee IM, Church TS, McAuley PA, Stanford FC, Kohl HW, 3rd, Blair SN (2011) Long-term effects of changes in cardiorespiratory fitness and body mass index on all-cause and cardiovascular disease mortality in men: the Aerobics Center Longitudinal Study. Circulation 124 (23):2483-2490. doi:10.1161/CIRCULATIONAHA.111.038422
 - Little JP, Safdar A, Bishop D, Tarnopolsky MA, Gibala MJ (2011) An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1alpha and activates mitochondrial biogenesis in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 300 (6):R1303-1310. doi:10.1152/ajpregu.00538.2010
 - Metcalfe RS, Babraj JA, Fawkner SG, Vollaard NB (2012) Towards the minimal amount of exercise for improving metabolic health: beneficial effects of reduced-exertion high-intensity interval training. Eur J Appl Physiol 112 (7):2767-2775. doi:10.1007/s00421-011-2254-z
 - Metcalfe RS, Koumanov F, Ruffino JS, Stokes KA, Holman GD, Thompson D, Vollaard NB (2015)
 Physiological and molecular responses to an acute bout of reduced-exertion high-intensity
 interval training (REHIT). Eur J Appl Physiol 115 (11):2321-2334. doi:10.1007/s00421-0153217-6
 - Metcalfe RS, Tardif N, Thompson D, Vollaard NBJ (2016) Changes in aerobic capacity and glycaemic control in response to reduced-exertion high-intensity interval training (REHIT) are not different between sedentary men and women. Eur J Appl Physiol 41 (11):1117-1123
 - Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE (2002) Exercise capacity and mortality among men referred for exercise testing. The New England journal of medicine 346 (11):793-801. doi:10.1056/NEJMoa011858
 - Pageaux B (2016) Perception of effort in Exercise Science: Definition, measurement and perspectives. European journal of sport science 16 (8):885-894. doi:10.1080/17461391.2016.1188992
- Parolin ML, Chesley A, Matsos MP, Spriet LL, Jones NL, Heigenhauser GJ (1999) Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. The American journal of physiology 277 (5 Pt 1):E890-900
- Rhodes RE, Kates A (2015) Can the Affective Response to Exercise Predict Future Motives and Physical Activity Behavior? A Systematic Review of Published Evidence. Ann Behav Med 49 (5):715-731. doi:10.1007/s12160-015-9704-5
- Ross R, Blair SN, Arena R, Church TS, Despres JP, Franklin BA, Haskell WL, Kaminsky LA, Levine BD, Lavie CJ, Myers J, Niebauer J, Sallis R, Sawada SS, Sui X, Wisloff U, American Heart

- Association Physical Activity Committee of the Council on L, Cardiometabolic H, Council on Clinical C, Council on E, Prevention, Council on C, Stroke N, Council on Functional G, Translational B, Stroke C (2016) Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement From the American Heart Association. Circulation 134 (24):e653-e699. doi:10.1161/CIR.00000000000000461
- 407 Ruffino JS, Songsorn P, Haggett M, Edmonds D, Robinson AM, Thompson D, Vollaard NB (2017) A
 408 comparison of the health benefits of reduced-exertion high-intensity interval training
 409 (REHIT) and moderate-intensity walking in type 2 diabetes patients. Applied physiology,
 410 nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme 42 (2):202-208.
 411 doi:10.1139/apnm-2016-0497
 - Saanijoki T, Nummenmaa L, Eskelinen JJ, Savolainen AM, Vahlberg T, Kalliokoski KK, Hannukainen JC (2015) Affective Responses to Repeated Sessions of High-Intensity Interval Training. Medicine and science in sports and exercise 47 (12):2604-2611. doi:10.1249/MSS.0000000000000721
 - Songsorn P, Lambeth-Mansell A, Mair JL, Haggett M, Fitzpatrick BL, Ruffino J, Holliday A, Metcalfe RS, Vollaard NB (2016) Exercise training comprising of single 20-s cycle sprints does not provide a sufficient stimulus for improving maximal aerobic capacity in sedentary individuals. Eur J Appl Physiol 116 (8):1511-1517. doi:10.1007/s00421-016-3409-8
 - Songsorn P, Ruffino J, Vollaard NB (2017) No effect of acute and chronic supramaximal exercise on circulating levels of the myokine SPARC. European journal of sport science 17 (4):447-452. doi:10.1080/17461391.2016.1266392
 - Terry PC, Lane AM, Lane HJ, Keohane L (1999) Development and validation of a mood measure for adolescents. J Sports Sci 17 (11):861-872. doi:10.1080/026404199365425
 - Thomas S, Reading J, Shephard RJ (1992) Revision of the Physical Activity Readiness Questionnaire (PAR-Q). Canadian journal of sport sciences = Journal canadien des sciences du sport 17 (4):338-345
 - Townsend LK, Islam H, Dunn E, Eys M, Robertson-Wilson J, Hazell TJ (2017) Modified sprint interval training protocols. Part II. Psychological responses. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme 42 (4):347-353. doi:10.1139/apnm-2016-0479
 - Trost SG, Owen N, Bauman AE, Sallis JF, Brown W (2002) Correlates of adults' participation in physical activity: review and update. Medicine and science in sports and exercise 34 (12):1996-2001. doi:10.1249/01.MSS.0000038974.76900.92
 - Vollaard NB, Metcalfe RS (2017) Research into the Health Benefits of Sprint Interval Training Should Focus on Protocols with Fewer and Shorter Sprints. Sports medicine Epub: 8 April. doi:10.1007/s40279-017-0727-x
- Vollaard NBJ, Metcalfe RS, Williams S (2017) Effect of Number of Sprints in an SIT Session on Change
 in VO2max: A Meta-analysis. Medicine and science in sports and exercise 49 (6):1147-1156.
 doi:10.1249/MSS.000000000001204
- Watson D, Clark LA, Tellegen A (1988) Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol 54 (6):1063-1070
- Zelt JG, Hankinson PB, Foster WS, Williams CB, Reynolds J, Garneys E, Tschakovsky ME, Gurd BJ (2014) Reducing the volume of sprint interval training does not diminish maximal and submaximal performance gains in healthy men. Eur J Appl Physiol 114 (11):2427-2436. doi:10.1007/s00421-014-2960-4

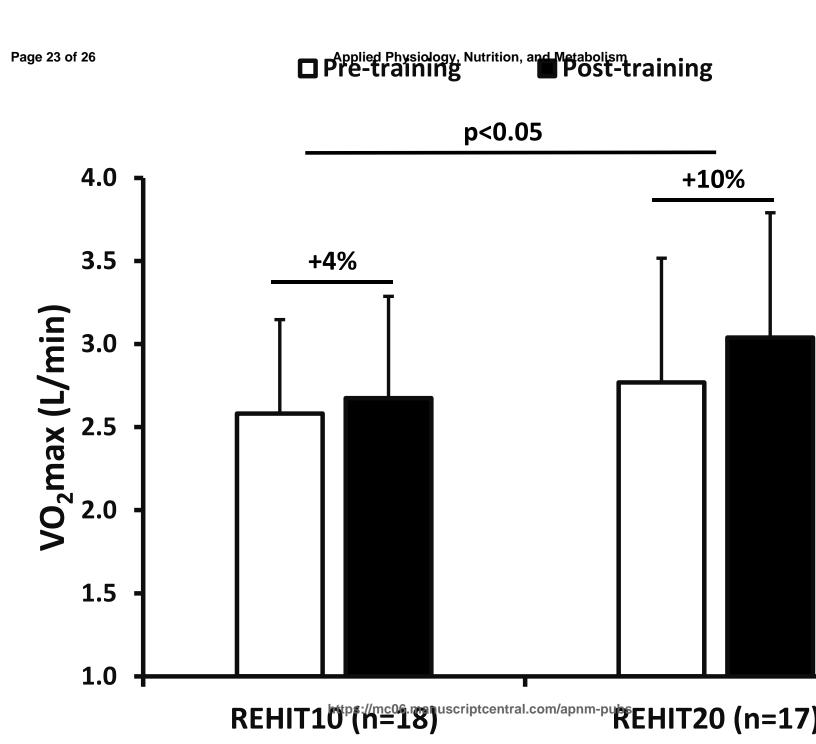
448 **Table 1** participant characteristics

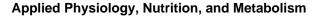
	REHIT10 (n=18)	REHIT20 (n=18)
Sex (male / female)	8 / 10	11 / 7
Age (y)	22±4	22±2
BMI (kg·m ⁻²)	25.3±5.9	23.8±24.1
Baseline VO₂max (mL·kg⁻¹·min⁻¹)	34±9	39±7
Physical activity level (MET-min·week ⁻¹)	911±739	981±769

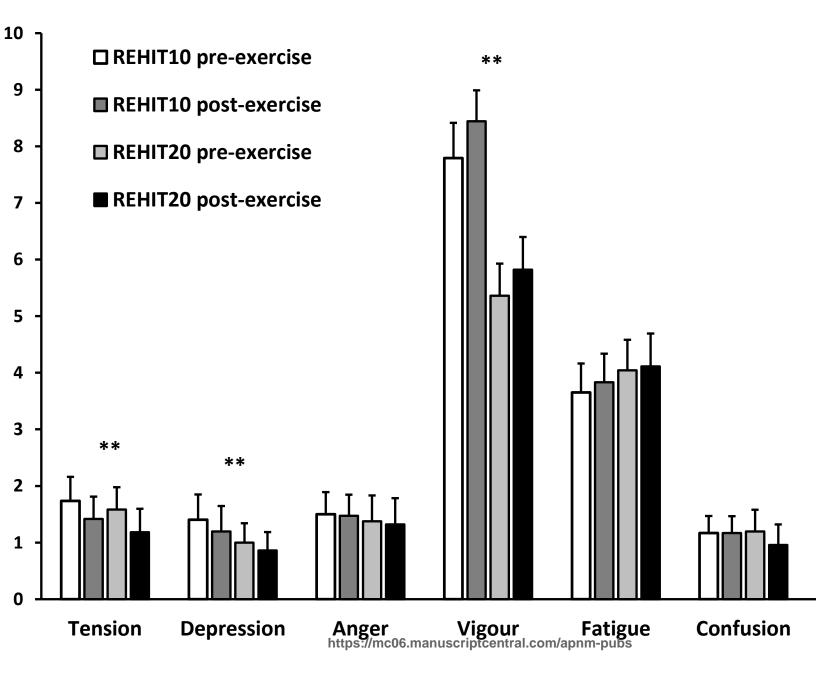
Values shown are means±SD. Physical activity level was determined using the IPAQ.

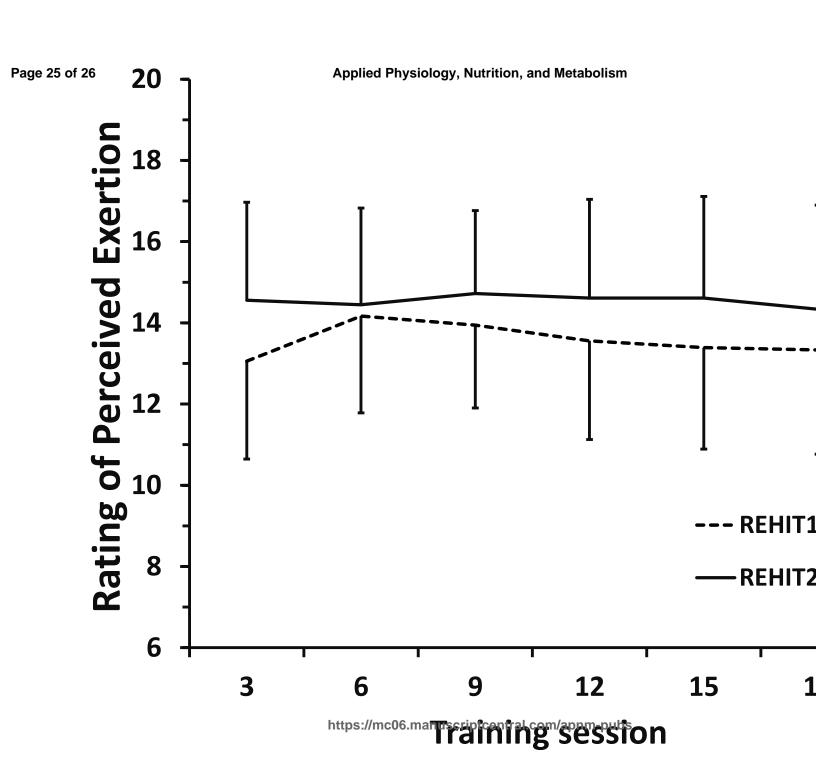
Table 2 Effects of REHIT10 and REHIT20 on positive and negative affect

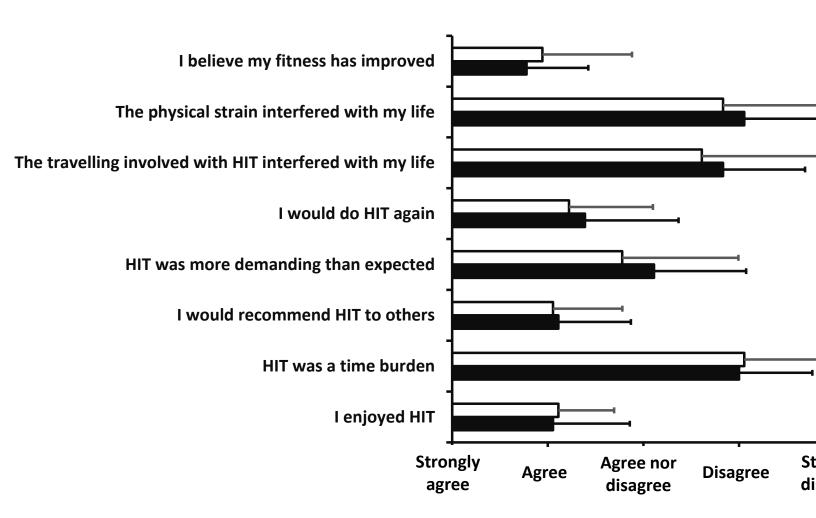
	Positive affect				Negative affect			
	REHIT10		REHIT20		REHIT10		REHIT20	
	Pre- exercise	Post- exercise	Pre- exercise	Post- exercise	Pre- exercise	Post- exercise	Pre- exercise	Post- exercise
Session 1	24±7	26±7	22±7	22±6	15±4	16±6	14±3	13±4
Session 4	22±6	26±7	19±7	19±7	15±4	15±5	13±5	13±5
Session 7	23±6	25±6	19±8	20±10	15±5	15±5	13±3	13±4
Session 18	25±6	26±8	20±9	21±9	15±5	16±5	14±5	14±5


Figure 1 Changes in $\dot{V}O_2$ max in response to 6 weeks of REHIT10 and REHIT20. The mean 10% increase in $\dot{V}O_2$ max following REHIT20 was significantly higher than the 4% increase following REHIT10 (p<0.05).


Figure 2 Effects of REHIT10 and REHIT20 on mood state as determined using the Brunel Mood Scale (BRUMS). As no main or interaction effects of training session were observed, values for training sessions 1, 4, 7, and 18 were averaged. Values shown are means±SD. TMD: total mood disturbance. Main effects of time: * p<0.05, ** p<0.01.


Figure 3 Rating of perceived exertion (RPE) as taken at the end of the last training session of each week. Participants were asked to rate the 10-min training sessions as a whole. No significant differences were observed between REHIT10 and REHIT20, nor between the training sessions.


Figure 4 Acceptability of REHIT. Acceptability was assesses using a modified questionnaire as used by Boereboom et al. (2016). Answers were given on a five-point Likert scale ranging from 1 - strongly agree to 5 - strongly disagree. No significant differences in the mean responses were observed between REHIT10 and REHIT20.



Applied Physiology, Nutrition, and Metabolism

