
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in:

Physics of Fluids

                               

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa37026

_____________________________________________________________

 
Paper:

Webster, M. (in press).  On the use of continuous spectrum and discrete-mode differential models to predict

contraction-flow pressure drops for Boger fluids. Physics of Fluids

 

 

 

 

 

 

 

_____________________________________________________________
  
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

 

Permission for multiple reproductions should be obtained from the original author.

 

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

 

http://www.swansea.ac.uk/library/researchsupport/ris-support/ 

http://cronfa.swan.ac.uk/Record/cronfa37026
http://www.swansea.ac.uk/library/researchsupport/ris-support/ 


 

 1 

On the use of continuous spectrum and discrete-mode differential 

models to predict contraction-flow pressure drops for Boger fluids 

J. E. López-Aguilara,b, M.F. Webstera,1, H.R. Tamaddon-Jahromia, O. Maneroc 

with  

D.M. Bindingd and K. Waltersd 

 
aInstitute of Non-Newtonian Fluid Mechanics, Swansea University, Bay Campus, College of Engineering, 

Fabian Way,  Swansea, SA1 8EN, United Kingdom 

 bFacultad de Química, Departamento de Ingeniería Química, Universidad Nacional Autónoma de México 

(UNAM), Ciudad Universitaria, Coyoacán, CDMX, 04510, Mexico  
cInstituto de Investigaciones en Materiales, UNAM, Ciudad Universitaria, Coyoacán, CDMX, 04510, Mexico  

dInstitute of Mathematics, Physics and Computer Science, University of Aberystwyth, Aberystwyth, SY23 3BZ, 

United Kingdom 

 

Abstract 

Over recent years, there has been slow but steady progress towards the qualitative numerical 

prediction of observed behaviour when highly-elastic Boger fluids flow in contraction geometries. 

This has led to an obvious desire to seek quantitative agreement between prediction and experiment, a 

subject which is addressed in the current paper. We conclude that constitutive models of non-trivial 

complexity are required to make headway in this regard. However, we suggest that the desire to move 

from qualitative to quantitative agreement between theory and experiment is making real progress. In 

the present case with differential models, this has involved the introduction of a generalized 

continuous spectrum model. This is based on direct data input from material functions and 

rheometrical measurements. The class of such models, assumes functional separability across shear 

and extensional deformation, through two master functions, governing independently material-time 

and viscous-response. The consequences of such a continuous spectrum representation are compared 

and contrasted against discrete-mode alternatives, via an averaged single-mode approximation and a 

multi-modal approximation. The effectiveness of each chosen form is gauged by the quality of match 

to complex flow response and experimental measurement. Here, this is interpreted in circular 

contraction-type flows with Boger fluids, where large experimental pressure-drop data are available 

and wide disparity between different fluid response has been recorded in the past. Findings are then 

back-correlated to base-material response from ideal viscometric flow. 

 

1. Introduction  

 

In this paper, the effects of continuous spectrum and discrete-mode time-dependencies are 

explored through the numerical prediction of experimental excess pressure-drop (epd) data 

(and flow structure) for some Boger fluids. To accomplish this task, various axisymmetric 

contraction-expansion geometries are considered, with either sharp or rounded-corners, and 

contraction aspect-ratios (aspect) of four and ten. Accordingly, this work pursues some 

fundamental and taxing questions posed from a background companion paper (López-Aguilar 

et al. 2016a) concerned with the same topic. These questions may be stated as: (i) Can 

discrete-spectrum multimode approximation alone provide desired matching to the 

experimental data?2 (ii) As a consequence, can one make a case for additional material 

                                                           
1 Author for correspondence, email: M.F.Webster@swansea.ac.uk 
2 A question posed by an earlier reviewer 
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characteristic times, as determined principally through extensional response? (iii) From this 

evidence, can one construct a generalised continuous-spectrum model, incorporating functions 

for shear and extensional deformation, which can be driven directly by rheometric 

characterisation data? Hence, bridging the gap between experimentation and computation; 

using the relaxation-time spectrum directly and dispensing with the need for a discrete 

relaxation-time representation; incorporating functional separability over shear and 

extensional description. 

 

Naturally, this leads on to several adjunct ramifications. For example, to the investigation of 

computational tractability and the limits of stable steady-state solutions in such flows. At 

least one experimental data-set [cf. MIT-data, Rothstein and McKinley 2001] exposes this 

phenomenon, its onset and transition, to aid detailed interrogation. Moreover, to the 

identification of the precise role (mutual or conflicting) of normal-stress differences and 

extensional viscosity in the windows of matching to experimental pressure-drops; and their 

counterpart influence on attendant flow-structure, as governed by multiple vortices, vortex 

domination and vortex trends more generally [cf. Mexico-data, Pérez-Camacho et al. 2015]). 

In passing, one notes and correlates, extremes in field response of deformation-rate, normal-

stress differences and extensional viscosity; each of these being observed in complex flow at 

specific flow-rates, to distinguish from trends gathered in viscometric flow at equivalent 

flow-rates. 

 

Current observations for Boger fluids lie relative to several recent predictive studies 

conducted to match experimental epd and flow-structure data. Firstly, in a set of sharp-

cornered axisymmetric contraction-expansion geometries of contraction-ratios 

aspect={2,4,6,8,10} [Mexico-data]. There, an averaged single-mode swanINNFM(q) model 

(López-Aguilar et al. 2016a) was used, with a novel extra-dissipation component of White-

Metzner-type (White and Metzner 1963), supplementing a FENE-CR base-form to provide 

the networked structure-function (f) (Chilcott and Rallison 1988). The extra-dissipative term 

therein is driven by a new characteristic-time D, which is related to a dissipative extensional 

time-scale. Previously, such an averaged single-mode swanINNFM(q) model (Tamaddon-

Jahromi et al. 2016), successfully matched the large pressure-drops observed experimentally 

in circular contraction-expansion flow  with rounded-corners (aspect=4) [cf. MIT-data, a 

dilute (0.025 wt.%) monodisperse polystyrene in oligomeric polystyrene (PS/PS) Boger 

fluid]; also, in a companion study (López-Aguilar et al. 2016b) comparing circular and planar 

contraction flows (aspect=4) with sharp-corners, offering large pressure-drops in circular but 

not in planar configurations [Aber-data, Nigen and Walters 2002]; and likewise, in capturing 

the experimental drag data for Boger fluids associated with the falling-sphere problem 

(Garduño et al. 2016). 

 

A major finding in our earlier cited work (López-Aguilar et al. 2016a), has proven to be the 

necessity of a rate-varying dissipative extensional material time-scale D; in itself, this has 
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motivated a step-function approximation (of linear-spline form) across a wide range of 

deformation rates. Such a theme reappears in this multimodal approach. 

 

In addition, the present study considers a generalised multimodal discrete relaxation-time 

representation, where some multimodes ( 1

i )may be determined, in principle, through shear-

measurement, and other multimodes ( i

D ) are suggested likewise through extensional-

measurement; the latter affecting dissipation in extension. This facilitates direct comparison 

for discrete-spectra approximations, through solution quality between single-mode (both 

averaged, 1 and D) and multi-mode ( 1

i , i

D ) forms, again taken against target experimental 

data on pressure-drops. Then, as a consequence and likewise, discrete-mode and continuous 

spectrum forms may also be contrasted. Such issues are explored in depth below. 

 

2. A multimodal swanINNFM(q) model 

We begin with the swanINNFM(q) model as in (Tamaddon-Jahromi et al. 2016 and López-

Aguilar et al. 2016a). This may be written in dimensionless shear-extension multimodal form 

as: 

 
 

   
1 1 1

2 A A I
 

    
i

n n
p i

s pi s avg i i ii
i i

f Tr ,
  

  


T D +      (1) 

 

where T is the total stress-tensor, D  is the deformation-rate tensor,  2s s avg   D  

represents the solvent-contribution, 
1


n

pi
i

  is the constituent polymeric-contribution, s  is the 

solvent viscosity,  and 1

i  , 
i

p  are modal relaxation times and respective polymeric-

viscosities for each mode (i).  

 

Here, ( n ) denotes the sum of the individual modes ( i ) in which the polymeric-contribution is 

split, denoted in modal conformation-tensor iA -form on the rhs of Eq.(1). Then, avg  is an 

averaged dissipative-function, given as  
2
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factor is 1
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As such, a dimensionless relaxation-time per mode may be extracted as 1 i

i

U
De

L
 . Here, U 

is an averaged characteristic velocity, based on the flow-rate (Q), and L is a characteristic 

length taken as the radius of constriction. The parity between experimental and predictive De 

is given in detail in (Tamaddon-Jahromi et al. 2016, López-Aguilar et al. 2016a), covering 

both MIT-fluid and Mex-fluid data; see Table 1, where Maxwellian single-mode averaged 

relaxation times are also provided. 

      

Then, based on each individual modal dissipative-factor, i

D , the set of modal dissipative-

functions are defined as: 

   
2

1 i

i D     .          (2) 

Each mode ( i ) contributes to the total polymeric stress in its counterpart conformation-tensor 

iA -form as: 

   1 i i i if Tr


  A A A 0I ,        (3) 

where    
 
       


u u u

Ti
i i i i-

t

A
A A A A  represents the upper-convected derivative 

of each mode.  

Kramers’ rule provides the identity between conformation-tensor iA -form and polymeric 

stress-tensor pi –form. For each mode, such an identity may be written as: 

   
1

i

p

pi i i ii
f Tr




 A A I .        (4) 

 Then, the modal fi-functionals in Eq.(3) are defined as: 

  
  2

1

1



A

A
i i

i

f Tr
Tr L

 .        (5) 

As a consequence under ideal-deformation, the shear-viscosity ƞShear, uniaxial extensional 

viscosity ƞExt and normal-stress response in shear, N1Shear and N2Shear, may be expressed as: 

   
  

2

1

1 2
1 1

2

1 1 1

2
0

3 3
2

 



   

 
  

   

 



i i
n n

pi

Shear s p Shear Shear
i i i

n
i i

Ext avg s i p i i
i i i

; N , N ,
f

f
.

f f

  
  

      
   

     (6) 

Non-zero N2Shear, if desired, may be introduced via a generalised convected derivative, or 

indeed, a Giesekus additional term (Giesekus 1982). Note, beyond ideal deformation setting 

and whilst providing frame invariance, here a generalised shear-rate and extension-rate are 

defined on the basis of the second invariant (I2) and third invariant (I3) of the rate-of-

deformation tensor, so that: 

3
2

2

3
2

1

I
I , ,

I
 


           (7) 



 5 

with regularisation utilised within the denominator of the expression for generalised 

extension-rate. This effectively avoids the possibility of singularity through scaling with 

small to vanishing shear-rates. 

 

On numerical discretisation - A thorough description of the present numerical scheme can be 

found in Wapperom and Webster 1998, Webster et al. 2005, Belblidia et al. 2008 and López-

Aguilar et al. 2015. In short, the unsteady form of the momentum and continuity equations 

are approximated by a finite-element (fe) approach, whereas a finite volume (fv) 

approximation discretises the extra-stress constitutive equation. This results in a time-

stepping hybrid finite-element/finite-volume (fe/fv) scheme. For the momentum subsystem, 

the time-stepping procedure consists of a two-step Lax-Wendroff method developed through 

a semi-implicit Taylor series expansion in time. Then, the momentum-continuity combination 

is translated into an incremental pressure-correction balance, represented through three split 

equation stages per time-step. A Galerkin spatial finite element (fe) discretisation is engaged 

for the momentum equation at a first stage (two-step, semi-implicit form); followed by an 

incremental pressure-correction at a second stage; with finally, incompressibility enforced at 

a third stage. On system solvers - a spatially-efficient element-by-element Jacobi iterative 

scheme is employed for the first and last stages (mass matrix-bound); with a direct Choleski 

decomposition/back-substitution solver for the second pressure-incremental stage. For the 

extra-stress constitutive equation, subcell cell-vertex fv-schemes are applied (through 

diagonalised pointwise nodal-solution, implemented alongside the stage-one Jacobi scheme). 

This cell-vertex fv-scheme utilises fluctuation distribution, as the upwinding technique of 

choice (of conservation form derivation), to distribute control volume residuals and furnish 

nodal solution updates. The non-trivial driving inhomogeneous source terms are 

approximated through a median-dual-cell discretisation, grafted alongside the fluctuation 

distribution, to provide a consistent space-time scheme. In this study, some new and more 

recent algorithmic modifications are necessary to extend steady-state solution tractability well 

into the nonlinear regime, and up to the onset of steady-unsteady transition. These include 

using: a) compatible stress/velocity-gradient representation on parent(fe)-subcell(fv) 

discretisation; b) absolute f-functional constitutive correction; and c) strong centreline 

continuity/velocity-gradient enforcement (see López-Aguilar et al. 2015). 

 

3. New Predictive Findings with SwanINNFM(q) vs López-Aguilar et al. (2016a), 

(aspect=4, sharp-corner, circular) 

On material-function response - averaged single-mode (SM) versus multimode (MM)  

Extensional viscosity ƞExt-response (Fig.1a) – Disparity is apparent in the moderate 

deformation-rate range 1  ={0.1, 1}. In this strain-rate range and for both levels of average 

dissipative-factor D studied, D={0, 0.7}, the MMƞExt lies above that provided by the 

SMƞExt variant. Such response is unified at low strain-rates (linear regime) and at high 

strain-rates. Moreover, for the fixed parameter-set of {s, L}={0.9, 5}, the value of the 

dissipative factor D={0, 0.7} determines the behaviour at high-deformation-rates. For the 

non-dissipative/weakly-dissipative D=0 cases (both SM and MM) ƞExt limiting-plateaux lie 



 6 

at ~7.5 units. In contrast, for the highly-dissipative D=0.7 cases, ƞExt continually rises with 

strain-rate increase (nb. Oldroyd-B response is provided as a cross-reference). 

 

First normal stress N1Shear-response (Fig.1b) – In contrast to rheological properties under 

SM-swanINNFM(q) representation, where only extensional viscosity response is influenced 

with D≠0, one notes multimodal MM-swanINNFM(q) elastic response is also apparent in 

shear deformation. This is on account of and influence from the contributions of the multiple 

relaxation times 1

i . Consistently, the differences in N1Shear-data-curves of Fig.1b segregate 

the various responses in SM and MM-instances; where, SM D={0, 0.7} data-curves appear 

overlapped and relatively retarded against shear-rate, compared to those for MM-cases. This 

shift in N1Shear-behaviour at low-to-moderate shear-rates is due to the slightly larger average 

MM-1avg (~1.5; see Table 1), in comparison to the SM-1avg (=1). At high shear-rates, all SM 

and MM N1Shear-data-curves unify, resulting ultimately in a weaker than quadratic rising 

slope. 

 

On pressure-drops  

In Fig.2 for aspect-ratio aspect=4, both experimental and predicted epd-data are recorded 

against flow-rate Q-increase (interpreted via De). Accordingly, epd-predictions for non-

dissipative/weakly-dissipative D=0 and highly-dissipative D=0.7 cases are provided, under 

single and multimode approximations. The non-dissipative/weakly-dissipative D=0 

predictions capture only the low deformation-rate epd-plateau, up to a De~0.5; henceforth, 

remaining around the level of unity with De-rise. Notwithstanding this, a slight difference is 

observed between SM and MM-forms, with epd-elevation in the MM data-curve, departing at 

De~1. This trend is in keeping with the larger MM-ƞExt-response at intermediate strain-rates, 

with respect to the SM-variant (see Fig.1a). 

 

Indeed, beyond De>0.5, a distinct change in flow response is observed experimentally, 

whereupon a sharp epd-rise is encountered. Such an epd-rise is captured under highly-

dissipative D>0 solutions. In addition, and to illustrate the comparison against the earlier 

findings in López-Aguilar et al. (2016a), the single-mode (SM) predictive limiting-window 

on D is also constructed, viz D={0.5, 0.8}. The expanse of such a window fully captures the 

experimental data above the Newtonian unity reference-line for De>0.5. Within this window 

lies the highly-dissipative (D=0.7) SM and MM-solutions. Once again, the MM epd-data lies 

above that of SM, attributable to its larger ƞExt-response at these intermediate deformation-

rates. 

Due to the solvent-dominated nature of PAA-corn-syrup Boger fluids, as deployed in the 

Mexico-team experiments (Pérez-Camacho et al. 2015), and captured through the 

swanINNFM(q) model with 90% solvent fraction, here the averaged single-modal option 

(which is more pragmatic and efficient in implementation) is observed to perform equally as 

well as the discrete multimodal approach. Nevertheless, there are some apparent differences 
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to be appreciated, both in the rheology and their counterpart energy-related epd-data. Hence, 

one may expect that for more highly polymer-concentrated fluids and broader rate-ranges, 

contributions from the shear-extension multimodal non-linear components may well be 

required to render improved interpretation (finer detail) of complex-flow phenomena. 

 

4. A precursor f(αJm)-model 
 

Based on our earlier prior and collective computational experience with various forms of 

constitutive model, (see for example, Aguayo et al. 2008; Walters et al. 2009a, 2009b; 

Tamaddon-Jahromi et al. 2008, 2010), a new and generalised form has emerged, termed the 

f(αJm)-model. This generalised version combines the principal features of a set of models: 

FENE-CR(f), -Model and Jm-Model (Tamaddon-Jahromi et al. 2011). Such a f(αJm)-model 

is based on a modified White-Metzner construction, in which the rhs viscosity-function term 

producting the deformation-rate tensor D , is itself a function of second and third invariants 

of the rate-of-strain tensor, imbuing frame-invariance.  

 

Such a f(αJm) constitutive equation may be expressed in stress-tensor form as: 

p p 1 1 p 2f )  ( 2 ( f) )


     p D   .        (8) 

Then, functions of  and , are defined on shear-rate  and extension-rate , and 

classified as: 

 

  

 

 

 

 

2 2 2

1 3 1

2 2

1 1

2
31 ( ) 2 ( )

1 2

         

     
, where 

 

, J  0, 0 ≤≤ 1.0 

 

Accordingly, alternative representation of the f(αJm)-model may be expressed in terms of 

ratios of both first normal stress difference (N1, lhs-ratio) and extensional viscosity ( Ext , rhs-

ratio), in this case to the base FENE-CR model, viz: 

 1
p 1 p

1

2 ,D


 

     
    

      

m

m

_ FENE CRf J

Ext
pFENE CR _ f J _ FENE CR

Ext

N
f f

N



 


 


    
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 where   
 

 

2

2 2

1 1

2

22

1 3 1 3

2

1

1

2

1

1

2( )

( ) 2 ( )

2
0 2
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2








 


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  




m

_ FENE CR

Ext

_ J _ FENE CR
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pf J

m

pFENE CR

f
,

f f

f
,

f f

N , m ,
f J

N .
f



 



 


   


     

  



  

   (9) 

 

Through this notational form, one observes the relationship established between  and 

 and base material properties, and indeed, the role that lhs/rhs stress-ratios adopt here. 

Accordingly, this presents the realisation and capability of incorporating rheometrical 

characterisation data directly from experimental measurement into the stress-ratios identified 

in the constitutive Eq(9). That is, assuming such rheometrical data is available, and locating it 

within the numerator of the lhs-ratio viz 
1

mf JN  , and the denominator of the rhs-ratio, viz 

m_ f J _ FENE CR

Ext

  . Then, the remaining components of these stress-ratios come from derived 

theory, being respectively, 1

FENE CRN  and _ FENE CR

Ext

 .  

As gathered from the material functions of Fig.3, such a model possesses a trend in first-

normal stress-difference N1Shear that is ultimately slightly weaker than that apparent with  the 

base FENE-CR form. In Fig.3, N1Shear for f(αJm), is shown under specific parameter setting of 

α=0.1, to show its consequent lateral rate-shift. The role of the J-parameter imbues control on 

the precise departure point on N1Shear to enter the non-linear viscoelastic regime. Note that, 

choosing the dependence of  on , and hence the third invariant in such a manner, 

achieves the desired aim, of matching the FENE-CR extensional viscosity. Clearly, 

extensional viscosity response is independent of the J-parameter setting.  

Unfortunately, and though helpful in derivation analysis, under practical implementation this 

model was found to suffer from premature numerical intractability. Early numerical 

instability resulted, due to the specific characteristics of the  function, and in particular, 

to the roots governing its denominator (as for the Oldroyd-B model). As a consequence 

below, the proposed new model (swanINNFM(q)+ or swAM) has been suggested. We 

proceed to demonstrate that, with alternative manipulation of similar terms in the constitutive 

equation, the computational barriers posed with the f(αJm)-model may be overcome, whilst 

achieving essentially parallel objectives. 
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5. The latest model development: swanINNFM(q)+ (or swAM) model – a continuous 

spectrum function approach 

The continuous spectrum swanINNFM(q)+ (swAM, in short) model is based on formulations 

arising through FENE-CR (Chilcott and Rallison 1988), White-Metzner 1963, Debbaut and 

Crochet 1988, Debbaut et al. 1988, Binding 2013, Binding et al. 1996, and swanINNFM(q) 

(swIM) (Tamaddon-Jahromi et al. 2016, López-Aguilar et al. 2016, Garduño et al. 2016). 

Recall, the precursor and motivating discrete-mode swIM model, with its extension-rate-

dependent viscosity (although constant in shear), has already proven well-capable of 

capturing enhanced levels of pressure-drop (Tamaddon-Jahromi et al. 2016, López-Aguilar et 

al. 2016a), and resistance in counterpart settling flows (Garduño et al. 2016). Importantly, 

this has been borne out under experimental measurements, over comparable measures of 

deformation-rates.  

In considering a continuous spectrum function approach, with both viscous and polymeric 

contributions to such a White–Metzner construction (swAM), the ensuing hybrid model-

combination may be expressed in the form: 

 
s s 0 d D1 s d D1

p 1 p 0 s

2( ( ) 2 ( ) ,

f * ( , ) 2 1 ( , )f .

D D

D


           

           
                (10) 

Whilst retaining sufficient generality, this representation assumes functional separability 

across shear and extensional deformation, through its two master functions, ( , ), ( , ),     

governing material-time and viscous-response, viz: 

 

1 sh 1 ext D2 ext

0 sh 1 ext D1 ext

ext D1 d D1 sh

2

d D1 D1

( , ) * ( ) ( ), (0) 1,

( , ) * ( ) ( ), (0) 1,

( ) ( ), ( 0) 1,

( ) 1 .

            

            

          

      

       (11) 

 

Then, each of the two master functions spurns two sub-functions, one for shear and another 

for extension. Under the present study, we also recognise and propose suitable trial functional 

forms for the material-time functions  and , as: 

1
sh 1 m

2

1

1
( )

1 ( )
  

    

 ,  
2

ext D2 m
2

D2

1
( )

1 ( )
   

    

.     (12) 

 

Such functionality emerges as counterpart to that for , and from  1( )  , ,

3 ( )   of the precursor f(αJm)-model above.  

This novel continuous spectrum (swAM)-model predicts, exactly, the shear viscosity and first 

normal stress difference N1Shear in steady simple shear, through the sh ( )   and sh ( )   

functions, whilst 0 . Indeed, the dynamic data from small amplitude oscillatory shear 
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flow, of dynamic viscosity     and storage modulus  G  , may also be linked 

functionally to 
sh ( )   and 

sh ( )  , under which conditions 0  (see appendix A for 

detailed explanation). 

Likewise, the extensional viscosity is predicted exactly through function. As such, 

the (swAM)-model is capable of matching the experimental data, extracted directly from 

rheometrical measurement, as in standard and parallel/orthogonal shear flow superposition 

data. Then, the (swAM)-model (with three time-constants {
1 ,

1D ,
2D } and two power-

indices {m1, m2}) can be organised, through separate functional and parametric control, to 

provide any common practical extensional viscosity response, as required. Hence, in 

principle, this offers the potential to independently vary the weighting of purely dissipative-

stress (non-recoverable) components, as opposed to mixed dissipative-stress (recoverable) 

components; see Eqs.(10-12) above. Furthermore, one can extract f(aJm)-extensional 

viscosity and first normal stress difference, via such rich swanINNFM(q)+ functionality. Note 

that, this model collapses into standard Maxwell form, when β=0 and f=1. Moreover, the 

(swAM)-model offers two power-indices {m1, m2}, enjoying independence of choice over 

response for that in shear to that in extension (see Binding et al. 1996). These power-index 

parameters may be identified by matching to the experimental data for any polymeric liquid 

of interest: generating {m1} from shear-viscosity (ƞShear) and first normal-stress difference 

(N1Shear) data; and {m2} from extensional-viscosity ( )Ext  data. This also attends to the 

respective positions for both constant shear-viscosity and shear-thinning fluids. As for the 

former case, one can take sh 1( ) 1 0       , which also satisfies the limiting requirement 

towards vanishing  , irrespective of {m1}-setting. So for Boger fluid representation, this 

collapses the four sub-function specification to necessitating only three sub-functions. 

The associated extensional-viscosity ( Ext ) and first normal stress difference (N1Shear) of the 

swAM model are given by: 

    1

Ext 0 d D1 0 d D1

2

sh 12 m2 2
sh 1 ext D2 sh 1 ext D2 1

3 ( ) 3 (1 ) ( )

f 1
* , ( )

f f ( ) ( ) 2 ( ) ( ) 1 3( )

           

  
   

                       


 (13) 

m

1

2 2
f J 0 sh 1 0 1

1Shear 1 m
2

1

2 (1 ) [ ( )] 2 (1 )
N N

f f 1 ( )

           
  

    

. 

Herein, noting the additional requirement to specify the functional  of Eq.(12) in 

uniaxial extension. See appendix A for more detail on fuller specification under viscometric 

flow (Binding 2013). 
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6. Further Computational Predictions: Findings and Observations with the swAM-

model 

A major aspect of this study has been to compare and contrast the behaviour in complex 

flows of the continuous-spectrum swAM and discrete-spectrum swanINNFM(q) (or swIM) 

models; the latter swIM-model being taken under both single-mode (SM) and multi-mode 

(MM) versions. This endeavour seeks to calibrate results in terms of prior swanINNFM(q)-

solutions, epd and vortex-enhancement characteristics. Specifically, the intention has been to 

demonstrate that the swAM-model is well capable of predicting realistic fluid response, by 

matching experimental epd-outcome over representative and wide ranges of deformation-

rates. One may emphasise that, all the experimental data and numerical predictions reported 

in this study are dimensionless. 

 

6.1 Numerical predictions versus Mexico experimental data [López-Aguilar et al. 2016a, 

Pérez-Camacho et al. 2015] (aspect=4, abrupt-corner) – base case 

To demonstrate the associated response with the swAM-model, six different parameter-sets 

have been configured, categorised under Fluid-{A, B, C, D E, F}. Parameter selection is 

displayed in Table 2, with corresponding rheological material functions plotted in Figs. 4-6. 

Distinction in extensional-viscosity (ƞext) is established between Fluid-A and Fluid-B, 

through adjustment of the m2-power-index alone (setting m1=0, as with FENE-CR). Fluid-A 

assumes m2=0.5, and represents an underestimate of swanINNFM(q)- Ext
  at rates 

10.4 4.5    . Alternatively, Fluid-B with m2=-0.5, provides an overestimate at rates 

10.4 20    , (see Fig. 4). Notably, both Fluid-A and Fluid-B share the same rheological 

properties with the swanINNFM(q) model, under constant shear-viscosity (ƞShear) and first 

normal stress difference (N1Shear). Moreover, Figure 4 also provides a third Fluid (Fluid-C, 

m1=0, m2=-1.0), possessing an even more exaggerated Ext
  response than that manifested by 

Fluid-B (m2=-0.5).  

 

Both Fluid-D and Fluid-E with m1=0.2, manifest slight weakening in N1Shear, above and 

beyond that for Fluids A-C. Fluid-D and Fluid-E share identical N1Shear properties, but now 

following the f(αJm)-fluid, whilst also maintaining ƞShear constant (see Pérez-Camacho et al. 

2015, for similar experimental N1Shear properties). At the same time, their selection permits 

adjustment over ƞExt. Accordingly, Fluid-D underestimates and Fluid-E overestimates the 

swanINNFM(q)- Ext
  position (Fig. 5), whilst maintaining such weaker N1Shear-response. 
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The sixth fluid option, Fluid-F (m1=0.3, m2=-0.3), is chosen to isolate normal-stress effects 

whilst anchoring Ext
 , using as a basis for comparison the SM-swanINNFM(q)-model. Here, 

the extensional viscosity of Fluid-F and SM-model are matched, when taking D2 13    in 

Eq.(13). Then, one notes with Fluid-F, under this matched Ext
 -setting, the shear rate 

dependence of the first normal stress difference (N1Shear of f(αJm)-fluid) is now weaker than 

that for the SM-model (with the exception of low shear rates), (cf. Fig.6.). 

 

Fig.7 displays epd–findings for the first three variants of swAM(m1=0), with values of power-

law index: m2=0.5 (Fluid-A), m2=-0.5 (Fluid-B), and m2=-1.0 (Fluid-C). In this instance, one 

can observe that for epd(m2=0.5, Fluid-A)-solution underestimates the SM-data. As 

anticipated, the trend denoted by the epd(m2=-0.5, Fluid-B)-solution proves larger than that 

with epd(m2=0.5, Fluid-A)-solution; and this is true across a wide range of De. In the mid-

range 0.8≤De≤1.3, the epd(m2=-0.5, Fluid-B) recorded is seen to provide a closer match to 

the experimental epd-data (agreeing at the extremes, De ={0.8,1.3}); specifically, when taken 

against epd(m2=0.5, Fluid-A) solution. One notes that some epd-elevation is observed with 

Fluid-B in comparison against the SM-data-curve at De>1.2; this being consistent with its 

larger ƞExt-response at intermediate strain-rates. Note also, that across the earlier deformation-

rate range 0≤De≤0.75, both Fluid-A and Fluid-B display close matching to the experimental 

epd-data; somewhat closer than that with either SM or MM epd-data (see Fig.7). Hence, to 

this point, epd(m2=-0.5, Fluid-B) provides the more preferable prediction. 

 

Systematically progressing through the parameter sets, the epd(m2=-1.0, Fluid-C)-solution is 

again observed to capture  the experimental data at low-De, when compared against the SM(

1D =0.7)-data-curve, replicating epd-trends for Fluid-B (see Fig.7). At still higher-De, of 

De>1, epd for Fluid-C rises slightly more rapidly than with Fluid-B, hence intercepting the 

experimental epd-data line somewhat earlier. Clearly, from the data coverage in Fig.7, one 

may deduce that the (swAM)-model achieves equal tractability to the original swIM-model. 

 

Next, one considers epd-trends for Fluid-D and Fluid-E with m1≠0, as demonstrated in 

Fig.9a. Recall, both Fluid-D and Fluid-E share the same weakened/thinning first normal 

stress difference (N1Shear of f(αJm)-fluid) and the same constant shear-viscosity (ƞShear) 

properties; hence distinction in this regard may be ruled out as one looks to their differing 

extensional response. Firstly, epd-levels of both Fluid-D and Fluid-E, lie well below those for 

the (SM) or (MM) solutions; hence reflecting the N1Shear-weakening influence. Here, and 

particularly beyond De=0.5, the epd(Fluid-E)-solution proves more elevated than that offered 

with epd(Fluid-D). As strain-rate increases, this correlates with the higher levels observed in 

Ext  of Fluid-E against Fluid-D (see Fig.5).  
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It is possible to fine-tune epd-matching for Fluid-E, when one considers gradually tighter fits 

to the original Mexico-experimental N1-data. Recall that to this point, only the general form 

of N1 has been considered under  of Eq(12), essentially taking the J-factor that 

products 
1 as unity in N1Shear for f(αJm), so 

1
sh 1 m

2

1

1
(J )

1 (J )
  

    

 . Specifically, the role 

of the J-factor in N1–response, is to determine the precise rate-location at which the strong-

quadratic-Oldroyd-B form gives way to weakening. Then, Fig.8a,b demonstrate what can be 

achieved when J<1 is selected, with three alternatives to Fluid-E, those being Fluid-{E1, E2, 

E3}. Clearly, improved matching to Mexico-N1-data (Fig. 8a), has the desired outcome of 

elevating away from Fluid-E(epd), and towards the Mexico-experimental-epd as rates rise 

and for De>0.8, see Fig.9b. One notes with Fluid-E3, that the FENE-CR L-parameter is 

slightly raised to L=7, from the base-form of L=5, so that in combination with the J-

parameter, still further improved matching to Mexico-N1-data is extracted in the extreme rate-

range {101, 102}. Unfortunately, taking into account the error-bars anticipated on the 

experimental epd-data, the benefits of such fine adjustment with Fluid-E3 still remain 

somewhat inconclusive. 

 

Furthermore in Fig.10, one turns to the epd-results for Fluid-F, with equitable Ext -response 

of SM, and yet whilst retaining the weaker N1Shear-behaviour of f(αJm)-fluid. Then, epd(Fluid-

F) lies consistently below the SM-reference epd-data. Once again, and as observed in epd-

levels for both Fluid-D and Fluid-E, the drop noted in epd(Fluid-F) from epd(SM) is 

substantiated by the N1Shear-weakening influence. 

 

In general, and from the numerical solutions in complex flow obtained thus far with the six 

different trial fluids (Fluids A-F) above, one may conclude that the swAM-model enjoys at 

least the same computational tractability as the original swIM-model. Hence, this effectively 

demonstrates that the computational tractability hurdle, presented earlier with the f(αJm)-

model, has been overcome. The swAM-formulation subsumes and therein offers a master-

class, over both f(αJm) and SM-swanINNFM(q) models. The MM-swanINNFM(q) form 

stands apart with its multi-modal discrete spectrum, as opposed to single functions used under 

swAM. 

 

6.2 Numerical predictions versus MIT experimental data [Tamaddon-Jahromi et al. 

2016, Rothstein & McKinley 2001] (aspect=4, rounded corner): computational tractability 

and limit points of stable steady-state solutions 

To widen the comparison basis further, particular attention has been given to matching the 

well-founded pressure-drop data obtained experimentally by the MIT-team, as reported in 

Rothstein and McKinley (2001), see Fig.12. That is, when using the rounded-corner version 

4:1:4 geometry and their particular choice of PS/PS Boger fluids. The swanINNFM(q)-model 

or swIM  (Tamaddon-Jahromi et al. 2016, López-Aguilar et al. 2016a] has already proved 
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well-capable of reproducing such large experimental excess pressure-drops (epd). Note, the 

discussion therein on Deborah number selection and matching to the Maxwellian relaxation-

time extracted for the MIT-fluid (
1 0.146s , see Table1). Here, in Fig.12 and plotted 

against increasing flow-rate (De), hollow symbols represent stable steady-state solutions 

reported, whilst full symbols show the tracking of counterpart oscillatory flow emergence and 

onset. One can observe that the epd(
1D
=0.14)-solution for swIM well-tracks the Rothstein 

and McKinley epd-data to around De~3.2. Moreover, through extensional-viscosity capping, 

the Rothstein and McKinley limiting-plateau on epd-data (Rothstein and McKinley 2001) 

may also be resolved, as further illustrated in Fig.12. Such capping was achieved by 

restriction on the maximum strain-rate permitted within the dissipative function 
d D1( )    

(Tamaddon-Jahromi et al. 2016).  

 

Subsequently under the Q-increase mode, and specifically to demonstrate the computational 

tractability properties of the new model (swAM), solutions are presented with two selected 

fluids (Fluid-A1 and Fluid-B1), in contrast to the foregoing swIM-solutions. The majority of 

material parameters for Fluid-A1 and Fluid-B1 follow those of Fluid-A and Fluid-B above 

(see Table 2; then notably m1=0, with FENE-CR N1Shear properties), except that the material-

time constants, elastic ( 2D ) and viscous ( 1D ), are now set to ( 1 2 0.14 D D  ), as 

appropriate for MIT-fluids, see further explanation in Tamaddon-Jahromi et al. (2016). One 

notes in passing, that MIT-fluids are reported in Rothstein and McKinley (2001), to closely 

follow swIM-FENE-CR N1Shear properties (as in Fig.11b); hence the base-choice of m1=0. For 

comments on epd(Fluid-A1+)-solutions with m1≠0, and matching to linear viscoelastic data, 

see Appendix A. In Fig.11a, the corresponding extensional viscosities of Fluid-A1, Fluid-A1+ 

and Fluid-B1 are provided alongside that for swIM-model. Beyond a strain-rate of O(1) and 

up to ~O(30), the extensional viscosity of swIM falls between that for Fluid-A1 and Fluid-B1. 

This correlates well with epd-findings for Fluid-A1 and Fluid-B1. 

 

The epd(Fluid-A1) and epd(Fluid-A1+)-solutions are observed to be only marginally smaller 

than with swIM-( 1 0.14D ), this becoming more apparent beyond De~3.2 in Fig.12. Yet 

positively, one notes similar swAM-tractability properties exhibited as with swIM. Hence, use 

of a spectrum function, or discrete relaxation-times (SM or MM), has not affected this 

position.  

 

Then, epd(Fluid-B1)-findings prove larger than with swIM-( 1 0.14D ) in Fig.12; in fact, 

they follow more closely swIM-( 1 0.16D )-outcome beyond De=4.1, but clearly whilst 

using the reduced value of 1 0.14D . One notes that, swIM-( 1 0.16D ) steady-state 

solutions are stable to De~4.4, whilst the stability threshold for Fluid-B1 is a little more 

generous, to around De~4.6.  
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6.3 Numerical predictions versus Mexico experimental data [López-Aguilar et al. 2016a, 

Pérez-Camacho et al. 2015] (aspect=10, abrupt-corner) 

Finally, and in keeping with the set of abrupt-corner flows considered, the more stringent 

αaspect=10 flow-scenario is addressed. This provides significant differences in epd-data when 

compared to αaspect=4 [Mexico-data, Pérez-Camacho et al. 2015, López-Aguilar et al. 2016a]. 

Conspicuously for αaspect=10, one must track larger deformation-rates to capture the 

experimental data, and the level of epd increases some four times, from αaspect=4 to αaspect=10 

configurations. The position on extensional viscosity for swIM-(
1 {0.2, 0.3, 0.4}D ) is 

charted in Fig.13. There, equivalent data are also provided for swAM (Fluid-A2, Fluid-B2), 

with m2≠0 as for Fluid-A and Fluid-B, and (
1 2 0.3D D   ) chosen to match the [Mexico-

data αaspect=10, Pérez-Camacho et al. 2015, López-Aguilar et al. 2016a]. Note that, under 

matching in extension, the extensional viscosity of swIM-( 1 0.3D  ) is located between that 

for swAM (Fluid-A2) and swAM (Fluid-B2) forms. The corresponding epd-data is then 

presented in Fig.14. Here again, and as expected, swIM-( 1 0.3D  ) epd-data lies between the 

epd-data of swAM (Fluid-A2) and swAM (Fluid-B2); refer to their corresponding extensional 

viscosities, as plotted in Fig.13. 

 

Vortex behaviour A comparative set of streamline-patterns is provided in Fig.15, where 

trends in vortex-structure growth with rise in flow-rate may be contrasted across the three 

fluids, swIM-fluid, swAM(Fluid-A2) and swAM(Fluid-B2). Here, each column contains 

sample streamline-fields, representative of low, intermediate and high flow-rates regimes. In 

a first phase of low De(Q), particularly at De=1.39, the variation of rheological-response 

from the parent swIM-model to the swAM(Fluid-A2) and swAM(Fluid-B2), provokes early 

upstream lip-vortex (lv) formation. In contrast, swIM-streamlines display symmetrical salient-

corner vortices (scv).  

 

The increase of flow-rate towards an intermediate-Q second-phase of kinematical-response 

triggers lip-vortex enhancement, and coexistence of the two vortex-patterns, lip- and salient-

corner vortices. Across the various fluid options, upstream-to-downstream scv-lv coexistence 

varies in degree. For instance, at De(Q)=3.47, swAM(Fluid-A2) displays scv-lv coexistence at 

both upstream and downstream locations; whilst swAM(Fluid-B2) possesses an upstream 

elastic-corner vortex (ecv) and coexistent downstream scv-lv structures. In contrast, swIM 

upstream scv-lv coexist, whilst a single retracted scv is apparent downstream of the 

constriction. With further increase of flow-rate up to De(Q)=4.2 of Fig.15, but still lying 

within the intermediate vortex-phase regime, ecv-formation is witnessed upstream of the 

contraction with both swAM(Fluid-A2) and swIM. Such ecv-response is borne out of the 

coalescence of the earlier lip- and salient-corner vortices, present at lower flow-rates. 

Downstream, coexistent lip- and salient-corner vortices remain apparent at this flow-rate of 

De(Q)=4.2. Here, one notes that vortex-structures, for both swAM(Fluid-A2) and (Fluid-B2), 

seem slightly larger than those of the parent swIM-fluid. 
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Finally at larger flow-rates, a third phase-regime in streamline-pattern is observed, 

characterised by the growth and enhancement of upstream and downstream elastic-corner 

vortices. So, at De(Q)=17.4, one notes significant enhancement in rotational-strength for all 

fluids (see rotation-loci in intense blue). Notably, swAM(Fluid-B2) displays the largest and 

most intense ecv structures, as noted in the counterpart experiments [Mexico-data, αaspect=10, 

Pérez-Camacho et al. 2015]. Such swAM(Fluid-B2) response may be correlated with its 

stronger extensional viscosity response over swAM(Fluid-A2) and parent swIM-fluid, 

particularly observed at strain-rates larger than 
1  =1 (see Fig.13).  

 

Linear Spline-fit matching Next, one turns to Fig.16 and fine-tuning of the epd-match, with 

the inclusion of the spline-fit, Lspline, a piecewise linear-function of ( 1D ). This strategy was 

employed earlier to introduce rate dependence on the (
1D )-parameter across a wide range of 

deformation-rates. Success with such a fit, was covered in the background companion paper 

(López-Aguilar et al. 2016a), when producing swIM-data for epd (αaspect=10). There, the 

slopes (a) of the original (option1) spline-fit linear-function ( 1D ), of 
1D aDe b   , covered 

a five-interval option with epd-data ranges (subsets) adopting slope-values: a={0.0, 0.2071,-

0.0065, -0.0190, -0.00143} over rate-ranges of De={{0,3},{3,5},{5,9},{9,14},{14,18}}. 

Under swIM-Lspline, this generates average (
1D )-values per interval and a 5-tuple of {0.0, 

0.2, 0.37, 0.31, 0.22} over the five intervals; additional counterpart (m2)-parameters for 

swAM-Lspline yield the 5-tuple of {1.1, 0.05, -0.1, -0.075, 0.05}. In this manner and over 

each individual rate-range interval, separate functions may be employed (governed by these 

respective rate-dependent parameters), piecing together to form the complete representation 

over the full five-interval rate-region. Clearly, there is some element of choice with swAM-

Lspline in variation of functions and parameters, specifically governing the -

functional for extension; through either D2 or (m2)-power-index parameter. In this first 

instance, (m2)-variation has been taken to offer greater functional influence. 

 

With this option1, five-interval spline-fit linear-function ( 1D ), the ensuing tight-fit generated 

to the experimental-epd is illustrated in Fig.16. One can gather that both swIM and swAM 

five-interval option1 spline-fit solutions match closely across all five-interval rate-ranges and 

data-points, as desired. If anything, slight distinction can be gathered with a modest 

improvement for swAM in the first and last intervals. 

 

Greater disparity between Lspline swIM and swAM five-interval fits can be gathered, by 

slightly varying the interval splits in an option2-fit, which provides for some scope in 

parameter improvement (see Appendix-B for more detailed inspection on this point). 
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7. Conclusions 

 

In this paper, a new continuous-spectrum model (swanINNFM(q)+ or swAM) has been 

presented, based on FENE-CR, White-Metzner, and swanINNFM(q) (or swIM) models and 

those in Debbaut et al 1988. This swAM model assumes functional separability across shear 

and extension, and is functionally rich. For Boger fluids, it is defined on three independent 

sub-functions, drawing upon three time-constants {
1 ,

1D ,
2D } and two power-indices {m1, 

m2}. Such a swAM-model has the attractive benefits that it can predict exactly, the shear 

viscosity and first-normal stress-difference in shear deformation, through its 
sh 1( )    and 

sh 1( )    functionality (see matching to N1-experimental data). As such, this continuous-

spectrum model provides an all-important bridge between experimental material 

characterisation and constitutive theory. In addition, its extensional viscosity, through 

ext D2( )    and 
d D1( )   (or 

ext D1( )   ) functionality can be manipulated to fit any desired 

extensional response (as in thickening, softening, or combinations thereof); with the option of 

in-built finite extensibility. Moreover, this offers the potential to independently vary the 

weighting of purely dissipative (non-recoverable) from mixed-dissipative (recoverable) stress 

component contributions in any one flow-setting, as desired. In contrast to a discrete 

multimode approximation, the continuous spectrum function approach is not only more direct 

and physically representative, but is also more efficient in terms of practical implementation, 

as only a single constitutive stress variable is required (as opposed to multiple discrete stress-

modes). Indeed, the precise functional nature of swAM models, dispenses with the need for 

extraction of discrete multi-modes, and hence avoids this inversion from the original 

continuous primary data. 

 

Here, sharp-cornered axisymmetric contraction-expansion geometries of contraction-ratios of 

αaspect=4 and 10 [Mexico-data, Pérez-Camacho et al. 2015] and 4:1:4 rounded-corner versions 

[MIT-data, Rothstein and McKinley 2001] have been analysed to derive a match to the 

experimental excess pressure drop (epd) data. As such, close quantitative agreement has been 

established between the numerical predictions for the swAM model and the experimental data 

provided by both Pérez-Camacho et al. (2015) and Rothstein and McKinley (2001). Of 

particular merit is the close-fitting reproduction of the experimental data with Lspline-fit 

approximation. Some rheometrical arguments are proposed to explain and relate the influence 

of extensional properties and first-normal stress difference on epd, by studying the solutions 

generated from these swIM and swAM models. The implication from such findings is that if 
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enhanced epd is sought, strong strain-hardening properties are crucial to raise levels of stress 

across the constriction. If anything, weakening of N1Shear (being recoverable) stimulates 

decline in epd. Furthermore, it is shown that the use of a more representative discrete multi-

mode approximation, as opposed to a single-mode Maxwellian approximation, would not 

substantially alter such epd-findings overall. 

 

It is also shown that vortex enhancement can be associated with the counterpart generation of 

strong strain-hardening (larger extensional viscosity). Rich vortex dynamics has been traced 

in the more severe instance of [Mexico-data, aspect=10], covering three flow-rate regimes of 

low, intermediate and high, each offering its distinct phase of vortex behaviour. In this, 

symmetrical salient-corner vortices are seen to give way to co-existence with lip-vortex 

formation, prior to coalescence of the same; and then, the ultimate formation of strong elastic 

corner vortices. The upstream dynamics proves stronger than downstream, and the cycle of 

vortex-patterns occurs earlier upstream through the flow-rate rise. These vortex growth 

features are faithfully reflected in the underlying experimental data [Mexico-data, aspect =10, 

Pérez-Camacho et al. 2015]. This bears out credit to the robust nature of the present 

predictive capability, as exemplified in the many cited earlier references. 

 

Given the solvent-dominated nature (s~0.9, solvent fraction) of the polyacrylamide (PAA)-

corn syrup (CS) Boger fluids studied experimentally in the [Mexico-data], numerical epd-

predictions have already revealed that an averaged uni-modal discrete-spectrum 

approximation (governing both shear and extension) is at least as effective as a multi-modal 

discrete representation (López-Aguilar et al. 2016a). Still, this leaves open the position on 

resolution for the counterpart class of highly-polymeric solute-dominated viscoelastic fluids 

(s~0.1, solvent fraction). This is, of course, beyond the composition of common Boger 

fluids, the focus of our present attention. There, one might suspect that a multi-modal 

discrete-spectrum approximation, or indeed a continuous-spectrum form, may perform rather 

better. 
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Appendix A - The swAM model under viscometric flow  

 

Following Binding (Binding 2013), in original choice of notation, two metric parameters  and 

may be defined, as: 
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Consider first, the following modified White-Metzner model, with vanishing solvent content 

(Maxwellian form): 
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Then, steady simple shear flow, with velocity field (v), can be expressed as: x y zv y, v v 0  k . 

Taking 
2 k  and 0 ,  k and  1N k  can be identified as: 
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  for  0   (A3) 

Hence, one can incorporate exactly the shear viscosity and first normal stress difference in shear 

deformation, through  1   and 1( )   functionalities. 
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In addition, one may consider small amplitude oscillatory shear flow: 

,  0 0  i t

x y zv e y    v ,    v . The dynamic viscosity     and storage modulus  G   are 

easily shown to be given by : 
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 Now, since 
2    and 0  for small amplitude oscillatory shear flow, then (A4) yields:  
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  for  0 .    (A5) 

Hence, both the linear and non-linear rheometrical data are provided for with these two functions 

 1   and 1( )  . In this manner, the dynamic viscosity     and storage modulus  G   are 

related to {  1  , 1( )  } for 0 , whilst shear viscosity and first normal stress difference are 

related to {  1  , 1( )  }for 0 . 

Moreover, one may attempt to match  1   and  1   functions, as characterized in small 

amplitude oscillatory shear flow and steady shear flow, by appealing to the wider experimental data 

available. This has been made possible with one (MIT-)fluid here, from the linear viscoelastic data 

supplied in Rothstein & McKinley 2001. Note the same cannot be said for Mexico fluid-data, since 

there only information on steady shear-flow N1 data were available. Fig. 17 provides clarity on how 

well the present model reflects the properties of the MIT-fluid. Accordingly, good agreement can be 

established between MIT-data (G’, G’’, ƞ, ψ1 measurement) and model predictions, with slight model 

parameter adjustment (eg. Fluid-A1(m1=0, J=1) switch to Fluid-A1+(m1=0.2, J=10-2)), see the 

corresponding material properties in Fig. 11. Then, Fluid-A1 predictions provided above on epd-

matching in complex flow, are barely affected by these minor parameter adjustments composing 

Fluid-A1+, see Fig. 12. One notes practically, that using Fluid-A1+ parameters does imply significant 

increase in computational overhead through each flowrate steady-state solution. Yet, this impact can 

be compensated through a continuation approach at each flowrate, by first seeking a Fluid-A1 solution 

and extracting a Fluid-A1+ solution from there. 

 

Furthermore under generalized extensional deformation,  1 2 1 2,  x y zv x    v y,    v z        , 

then one extracts corresponding stress distributions of: 
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  (A6) 

with respective implied stress tensor component notation, 11 , 22 , and 33 . Then, this form may be 

manipulated, through 
2
 and 

2
, to give appropriate uniaxial, biaxial and planar extensional 

viscosities. If 
2
 decreases sufficiently rapidly, and 

2
 is bounded, then the extensional viscosities are 

bounded. This motivates separability and independence of functional control over extensional 

viscosity and first-normal stress-differences. Under uniaxial extensional flow

41
2 1 22 33; 18 ; 0
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This also applies under planar extensional flow when: 
4
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   
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     (A8) 

Unfortunately, computation with 2A  proved spectacularly intractable in complex flow, due to its 

fourth power dependency on strain-rate under extension. As noted above, and following Eq.(7) 

beyond ideal deformation setting, a generalised shear-rate ( ) and extension-rate ( ) may be 

defined on the basis of the deformation-rate second invariant (I2) and third invariant (I3); from which 

Binding parameters  and  , may be implied as appropriate. 

 

Appendix B - Spline-fit matching2 

Greater detail on Lspline matching with these five-interval fits can be gathered by slightly varying the 

interval splits. This empowers parameter improvement and some insight as to disparity between swIM 

and swAM Lspline-fits. To demonstrated this, a second five-interval fit is employed, with rate-ranges 

of De={{0,2},{2,4},{4,7},{7,12},{12,17}} and spline-slopes of a={0.0, 0.1031, 0.0582,-0.0123,-

0.0161}. Under swIM-Lspline2, the corresponding average ( 1D )-5-tuple remains the same as for 

option1-fit; whilst for swAM-Lspline2, the only other change is to the additional counterpart (m2)-5-

tuple, which now becomes {0.2, -0.25, -0.6, -0.075, 0.075}. 

 

Then, considering the data represented in Fig.18, both (swIM, Lspline) and (swAM, Lspline, m1=0, 

m2≠0) share the same shear-viscosity (constant) and first normal stress-difference (N1). Nevertheless, 

the (swAM, Lspline, m1=0, m2≠0)-epd-data is observed to lie somewhat closer to the experimental data 

in the intermediate rate-range of 4≤De≤8, as compared to the (swIM, Lspline) fit. In this instance, the 

(m2≠0) parameter selection stimulates relatively larger extensional viscosity, and consequently larger 

epd–response. 
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Furthermore, the consequence of N1Shear-weakening with (m1≠0), is also represented in Fig.17. This is 

achieved with fluids (swAM, Lspline, m1=0.2, m2≠0) and (swAM, Lspline, m1=0.2, m2=0), both with a 

( ) spectrum-function. Here, and at any given De with (swAM, Lspline) fluids, those instances 

with N1Shear-weakening (m1≠0), clearly display a decrease in epd over those devoid of such influence; 

and of these, forms with (m2≠0), provide epd–enhancement over those without (m2=0). 
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Captions 

Table 1. Non-dimensionalised modal parameters for swanINNFM(q) (swIM) 

Table 2: swanINNFM(q)+ (swAM) parameters, Fluids A-F  

Figure 1. a) Uniaxial extensional viscosity and b) N1Shear against dimensionless def.-rate; 

swIM model, SM & MM variants; {s, L}={0.9, 5.0} 

 

Figure 2. epd against De; swIM model, SM & MM variants; aspect=4, {s, L}={0.9, 5.0}; 

symbols: experimental-data (Mexico, Pérez-Camacho et al. 2015); lines: numerical-

predictions 

 

Figure 3. First normal stress difference (N1), Oldroyd-B, , J, FENE-CR, and f(αJm) models, 

{s, L}={0.9, 5.0} 

 

Figure 4. Extensional viscosity, Oldroyd-B, swIM and swAM (Fluid-A, Fluid-B, Fluid-C) 

models, {s, L}={0.9,  5.0} 

 

Figure 5. a) Extensional viscosity and b) first normal stress difference, Oldroyd-B, swIM and 

swAM (Fluids-D, Fluid-E) models, {s, L}={0.9,  5.0} 

 

Figure 6. a) Extensional viscosity and b) first normal stress difference, Oldroyd-B, swIM and 

swAM (Fluid-F) models; {s, L}={0.9, 5.0} 

 

Figure 7. epd against De; swAM(Fluid-A, Fluid-C) vs swIM (SM & MM variants)  model; 

aspect=4, {s, L}={0.9, 5.0}; symbols: experimental-data (Mexico, Pérez-Camacho et al. 

2015), lines: numerical-predictions  

 

Figure 8. a) Extensional viscosity and b) first normal stress difference, Oldroyd-B, swIM and 

swAM (Fluids-E-E3) models, {s, L}={0.9, 5.0}, Fluids-E3 (L=7) 

 

Figure 9. epd against De; aspect=4, {s, L}={0.9, 5.0}; symbols: experimental-data (Mexico, Pérez-

Camacho et al. 2015), lines: numerical-predictions;  

a) swAM(Fluid-D, Fluid-E) vs swIM (SM & MM variants) model; 

b) swAM(Fluids-E, E1, E2, E3) vs swIM (SM & MM variants) model; Fluids-E3 (L=7) 

 

Figure 10. epd against De; swAM(Fluid-F) vs swIM (SM & MM variants) model; aspect=4, 

{s, L}={0.9, 5.0}; symbols: experimental-data (Mexico, Pérez-Camacho et al. 2015), lines: 

numerical-predictions 

 

Figure 11. a) Extensional viscosity, b) first normal stress difference, Oldroyd-B, swIM and 

swAM (Fluid-A1, Fluid-A1+,  Fluid-B1) models, {s, L}={0.9, 5.0}, 4:1:4 rounded 

 

Figure 12. epd against De; swAM(Fluid-A1, Fluid-B1) vs swIM  model, {s, L}={0.9, 5.0}; 

full symbols represent oscillatory flow condition, 4:1:4 rounded, numerical-predictions vs 

experimental-data (MIT, Rothstein & McKinley 2001)  
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Figure 13. Extensional viscosity, Oldroyd-B, swIM and swAM (Fluid-A2, Fluid-B2) models, 

{, L}={0.9, 5.0} 

 

Figure 14. epd against De; swAM(Fluid-A2, Fluid-B2) vs swIM model, aspect=10, {s, 

L}={0.9, 5.0}; symbols: experimental-data (Mexico, Pérez-Camacho et al. 2015), lines: 

numerical-predictions 

 

Figure 15. Streamlines against De; swAM (Fluid-A2, Fluid-B2) vs swIM D1=0.3; aspect=10, 

{s, L}={0.9, 5.0} 

 

Figure 16. epd against De; swAM vs swIM model, original five-interval fit, aspect=10, {s, 

L}={0.9, 5.0}; symbols: experimental-data (Mexico, Pérez-Camacho et al. 2015), lines: 

numerical-predictions 

 

Figure 17. a, c )  1   and b, d)  1   functions in small amplitude oscillatory shear flow 

and steady shear flow,  model-predictions vs experimental-data (MIT, Rothstein & McKinley 

2001) 

 

Figure 18. epd against De; swAM vs swIM model, second five-interval fit, aspect=10, {s, 

L}={0.9, 5.0}; symbols: experimental-data (Mexico, Pérez-Camacho et al. 2015), lines: 

numerical-predictions  

 

 

 

 

Table of acronyms and abbreviations: 

 

swIM    swanINNFM(q) , a discrete spectrum function approach 

swAM swanINNFM(q)+ , a continuous spectrum function 

approach 

 SM single-mode  

MM    multi-mode 

epd    excess pressure-drop 

scv    salient-corner vortex 

ecv    elastic-corner vortex 

lv     lip-vortex  
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Table 1. Non-dimensionalised modal parameters for swanINNFM(q) (swIM) 

Mode (Mex-

fluid) 
 i 1i (Shear) Di (Extension) 

1 0.03 1 0.5 

2 0.04 1.5 0.7 

3 0.03 1.9 0.9 

Single-mode 

(Maxwellian, 

Mex-fluid) 

0.1 1 (0.174s) 0.7 

Single-mode 

(Maxwellian, 

MIT-fluid) 

0.1 1 (0.146s) 0.14 

 

 

 

 

 

 

 

 

 

 

Fluids m1 m2 λD1 λD2 βs 

A 0 0.5 0.7 0.7 0.9 

B 0 -0.5 0.7 0.7 0.9 

C 0 -1.0 0.7 0.7 0.9 

D 0.2 1.0 0.7 0.7 0.9 

E 0.2 -1.0 0.7 0.7 0.9 

F 0.3 -0.3 0.7 √3λ1 0.9  

Table 2. swanINNFM(q)+ (swAM) parameters, Fluids A-F  
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a) 

Figure 1. a) Uniaxial extensional viscosity and b) N1Shear against dimensionless def.-rate;  

swIM model, SM & MM variants; {s, L}={0.9, 5.0} 
 

 

b) 
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Figure 2. epd against De; swIM model, SM & MM variants; aspect=4, {s, L}={0.9, 5.0}; 

symbols: experimental-data (Mexico, Pérez-Camacho et al. 2015); lines: numerical-predictions 
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Figure 4. Extensional viscosity, Oldroyd-B, swIM, and swAM (Fluid-A, Fluid-B, 

Fluid-C) models, {s, L}={0.9,  5.0} 
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Figure 3. First normal stress difference (N1), Oldroyd-B, , J, FENE-CR,  

and f(αJm) models, {s, L}={0.9, 5.0} 
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Figure 5. a) Extensional viscosity and b) first normal stress difference, Oldroyd-B, swIM 

and swAM (Fluids-D, Fluid-E) models, {s, L}={0.9,  5.0} 

b) 

Fluid-E 

Fluid-D 

a) 

Fluid-E 

Fluid-D 
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Figure 6. a) Extensional viscosity and b) first normal stress difference, Oldroyd-B, swIM and 

swAM (Fluid-F) models; {s, L}={0.9, 5.0} 

Fluid-F 

Fluid-F 

b) 

a) 
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Figure 7. epd against De; swAM(Fluid-A, Fluid-C) vs swIM (SM & MM variants)  model; aspect=4, {s,L}={0.9, 5.0}; 

symbols: experimental-data (Mexico, Pérez-Camacho et al. 2015), lines: numerical-predictions 
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Figure 8. a) Extensional viscosity and b) first normal stress difference, Oldroyd-B, swIM 

and swAM (Fluids-E-E3) models, {s, L}={0.9, 5.0}, Fluids-E3 (L=7) 

a) 

b) 
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Figure 9. epd against De; aspect=4, {s, L}={0.9, 5.0}; symbols: experimental-data (Mexico, Pérez-

Camacho et al. 2015), lines: numerical-predictions;  

a) swAM(Fluid-D, Fluid-E) vs swIM (SM & MM variants) model; 

b) swAM(Fluids-E, E1, E2, E3) vs swIM (SM & MM variants) model; Fluids-E3 (L=7) 

 

b) 

a) 
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Fluid-F 

Figure 10. epd against De; swAM(Fluid-F) vs swIM (SM & MM variants) model; aspect=4, 

{s, L}={0.9, 5.0}; symbols: experimental-data (Mexico, Pérez-Camacho et al. 2015); lines: 

numerical-predictions 
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Figure 11. a) Extensional viscosity, b) first normal stress difference, Oldroyd-B, swIM and 

swAM (Fluid-A1, Fluid-A1+, Fluid-B1) models, {s, L}={0.9, 5.0}, 4:1:4 rounded 

Figure 12. epd against De; swAM(Fluid-A1, Fluid-B1) vs swIM  model, {s, L}={0.9, 5.0}; 

full symbols represent oscillatory flow condition, 4:1:4 rounded, numerical-predictions vs 

experimental-data (MIT, Rothstein & McKinley 2001) 

 

MIT-data 

a) b) 
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Figure 13. Extensional viscosity, Oldroyd-B, swIM and swAM (Fluid-A2, Fluid-B2) models, 

{, L}={0.9, 5.0} 

Figure 14. epd against De; swAM(Fluid-A2, Fluid-B2) vs swIM model, aspect=10, {s, L}={0.9, 5.0}; 

symbols: experimental-data (Mexico, Pérez-Camacho et al. 2015), lines: numerical-predictions 
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
aspect

=10 

Figure 15. Streamlines against De; swAM (Fluid-A2, Fluid-B2) vs swIM D1=0.3; aspect=10, {s, L}={0.9, 5.0}  
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Figure 16. epd against De; swAM vs swIM model, original five-interval fit, aspect=10, {s, L}={0.9, 5.0}; 

symbols: experimental-data (Mexico, Pérez-Camacho et al. 2015), lines: numerical-predictions 

 

I. De≤3,              λD1=0.0,    m2=1.1 

II. 3≤De≤5,         λD1=0.20, m2=0.05 

III. 5≤De≤9,        λD1=0.37, m2=-0.1 

IV. 9≤De≤14,     λD1=0.31, m2=-0.075 

V. 14≤De≤18,    λD1=0.22, m2=0.05 
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Figure 17. a, c )  1  and b, d)
 

 1   functions in small amplitude oscillatory shear 

flow and steady shear flow,  model-predictions vs experimental-data (MIT, Rothstein 

& McKinley 2001) 
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Figure 18. epd against De; swAM vs swIM model, second five-interval fit, aspect=10, {s, L}={0.9, 5.0}; 

symbols: experimental-data (Mexico, Pérez-Camacho et al. 2015), lines: numerical-predictions 

 

 

I. De≤2,              λD=0.0,      m2=0.2 

II. 2≤De≤4,         λD=0.20,   m2=-0.25 

III. 4≤De≤7,        λD=0.37,   m2=-0.6 

IV. 7≤De≤12,     λD=0.31,   m2=-0.075 

V. 12≤De≤17.5, λD=0.22,  m2=0.075 
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