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Highlight 

 A novel particle method is presented for violent wave impact problems 

 Laplacian and gradient operators are computed based on Taylor series expansion 

 Incompressible water and compressible air are simulated in a strongly-coupled way 

 OpenMP parallelization is implemented to significantly improve computational efficiency 

 Experimental studies of three-dimensional water sloshing and sloshing impact with 

entrapped air pocket are conducted on a rotational simulator for validation 

 The natural frequency of an air pocket entrapped by wave impact is derived 

 

Abstract 

A shared-memory parallelization is implemented to the recently developed Consistent Particle Method 

(CPM) for violent wave impact problems. The advantages of this relatively new particle method lie in four 

key aspects: (1) accurate computation of Laplacian and gradient operators based on Taylor series expansion, 

alleviating spurious pressure fluctuation and being able to model two-phase flows characterized by large 

density difference, (2) a thermodynamics-based compressible solver for modelling compressible air that 

eliminates the need of determining artificial sound speed, (3) seamless coupling of the compressible air 

solver and incompressible water solver, and (4) parallelization of the numerical model based on Open Multi-

Processing (OpenMP) and a parallel direct sparse solver (Pardiso) to significantly improve computational 

efficiency. Strong and weak scaling analyses of the parallelized CPM are conducted, showing an efficiency 

speedup of 100 times or more depending on the size of simulated problem. To demonstrate the accuracy of 

the developed numerical model, three numerical examples are studied including the benchmark study of 

wave impact on seawall, and our experimental studies of violent water sloshing under rotational excitations 
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and sloshing impact with entrapped air pocket. CPM is shown to accurately capture highly deformed 

breaking waves and violent wave impact pressure including pressure oscillation induced by air cushion 

effect. 

Keywords: particle method; wave impact; shared-memory; two-phase flow; air compressibility 

1. Introduction 

Modelling of wave impact on structures is of great practical interest in offshore and marine engineering, 

e.g. the design of seawalls against tsunami waves and the design of ocean platform structures against violent 

wave impact. With the rapid advances of computer power, many numerical methods have been developed to 

predict the wave profile and impact forces [1-5]. Most of these studies do not consider the presence of 

entrapped air pockets, or treat the air pockets as incompressible. While incompressibility is a reasonable 

assumption in some water-air flow scenarios, air entrapment or entrainment may be generated in some other 

problems such as violent wave impact on structures [6-8]. The compressibility of entrapped air pockets plays 

an significant role in influencing the pressure peak and impact duration in a wave impact process [9, 10]. 

Therefore, it is necessary to include air compressibility in the simulation of wave impact problems with 

entrapped air pocket. 

The numerical difficulties to model violent wave impact problems with entrapped air pockets include the 

large and discontinuous deformation of fluid, the abrupt discontinuity of fluid properties (density, viscosity 

and compressibility) at the interface between water and air, and the integrated simulation of water and air 

which behave very differently (water incompressible and air compressible). To address these issues, the 

mesh-based methods have been developed such as Finite Difference Method [11, 12] and Finite Volume 

Method [13]. Because meshes are required, these methods may have difficulties to model highly deformed 

waves which involve fragmentation and coalescence. In addition, since these methods normally model the 

real fluid interface as a transition zone whose densities change gradually from the density of one fluid to 

another, they are difficult to reproduce a sharp fluid interface (termed as “dispersion of fluid interface” in the 

literature). 

To better simulate large wave deformation, particle methods have been utilized and are becoming more 

and more popular such as Smoothed Particle Hydrodynamics (SPH) [14-16], Incompressible Smoothed 

Particle Hydrodynamics (ISPH) [17-19] and Moving Particle Semi-implicit (MPS) [4, 20]. For two-phase 

flow simulation, large numerical errors exist in the computation of spatial derivatives (a key step in particle 

method) because of the abrupt density change across fluid interface, which further make the numerical 

simulation very unstable. To address this issue, density or smearing schemes (similar to the transition zone in 

mesh-based methods) are adopted in some particle methods. Although improving numerical stability, these 

schemes produce unphysical dispersion of fluid interface.  

To enhance the computation of gradient and Laplace operators, the Consistent Particle Method (CPM) 

was proposed by using Taylor series expansion to compute the spatial derivatives [21]. This method has 
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explicit mathematical consistency and hence better accuracy compared to the kernel/weighting-based 

derivative computation schemes, particularly when particle distribution is very irregular (inevitable in violent 

situations). CPM was extended by Luo et al. [22] to deal with the abrupt change of fluid properties across 

fluid interface. Without using any smoothing or filtering scheme, the CPM can reproduce a sharp fluid 

interface such as water-air interface involving orders-of-magnitude difference in fluid properties. CPM with 

these two improvements is able to model incompressible free surface flows or two-phase flows characterized 

by large density difference. Moreover, a thermodynamically-consistent compressible solver is developed that 

can be integrated with the developed incompressible solver seamlessly [23]. This leads to a numerical model 

that can simulate incompressible-compressible two-phase flows in the same framework. 

While having some advantages to model highly-deformed free-surface flows and two-phase flows, 

particle methods require significant computational resources [24], because (1) a fine resolution of particles is 

required to accurately capture the large wave deformation and (2) it is still difficult to implement the varying 

spatial discretization schemes [25]. Therefore, it is essential to enhance the computational efficiency of a 

particle method code by parallel computing. 

In this context, CPM with OpenMP parallel computing is presented in this paper. After demonstrating the 

speedup and parallel efficiency of the parallelized code, three wave impact problems are studied: wave 

impact on sea wall, violent three-dimensional (3D) sloshing under rotational excitations, and sloshing impact 

with entrapped air pocket. In addition to comparing with published results, experimental studies are 

conducted for validation purpose. 

2. Governing equations 

The governing equations for viscous Newtonian fluids (both incompressible and compressible) in a two-

fluid system are the Navier-Stokes equations as follows: 

 
1

0
D

D t




   v   (1) 

   
1 1 TD

p
D t


 

          
 

v
v v g   (2) 

where ρ is the density of fluid, v the particle velocity vector, p the fluid pressure, μ the dynamic viscosity of 

fluid and g the acceleration induced by body force. The water and air densities at the standard temperature 

and pressure condition, i.e. 1000 kg/m3 and 1.204 kg/m3, as well as the initial air pressure of 1.013×105 Pa 

are adopted. The real values of dynamic viscosities for water and air, i.e. 10-3 Pa·s and 1.983×10-5 Pa·s 

respectively, are used in the numerical simulations of this study. 
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3. CPM formulations 

3.1.  Two-step semi-implicit solution 

For both incompressible and compressible fluids, the governing equations are solved by a predictor-

corrector scheme [17, 20]. In the predictor step, the temporary particle velocities and positions are computed 

by neglecting the pressure gradient term as follows 

   * ( ) ( ) ( )1 T
k k k

t


 
    

  

 
    

 

v vv v g   (3) 

 
* ( ) *k

t  r r v   (4) 

where 
( 1 ) ( ) ( ) ( ) ( )

, ( , )
k k k k k

t t t t


   v v r , and
( )k

v  and 
( )k

r  are the particle velocity and position at time 

( )
.

k
t  

In the corrector step, a pressure Poisson equation (PPE) can be derived as follows 

 
( 1 ) *

( 1 )

* 2 ( 1 )

1 1
k

k

k
p

t

 

 







  
    

 

 (5) 

For incompressible fluids, the incompressibility condition 
( 1 )

0

k
 


 , where 

0
  is the initial fluid 

density, is imposed on the right-hand side of Equation (5). Within the influence radius re (re = 2.1L0 is 

consistently adopted in this study according to [21], where L0 is the initial particle spacing), the intermediate 

fluid density 
*

  for particle i is computed as [26] 

  
*

i i i j

j

m w r     (6) 

where rij is the distance between the reference particle (i) and neighbor particle (j) based on the intermediate 

particle positions, and mi the mass of particle i (fixed during simulation). In two-dimensional (2D) 

simulations,  i j
w r  is a weighting function defined as follows [27] 
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  (7) 

where 
c

r  is the connection point of the spline and is selected to be 0 .0 2
e

r  such that  i j
w r  has a very large 

but finite value when two particles are very close. Based on the continuity and partition of unity conditions 
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[28], the coefficients 
d

  and σ are computed to be 27.4975 and 3.2×10-4 respectively. In 3D simulations, 

 i j
w r  is defined as follows [29] 
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where 0 .0 2
c e

r r , 7 8 .1 3 3 6
d

   and 4
5 .3 4 1 0


  . Letting the initial density of particle i to be 

0 i
 , mi can 

be evaluated based on the initial particle distribution as: 

  0i i i j

j

m w r    (9) 

For compressible fluids, although a similar approach is used to evaluate fluid density, a slow-slope 

weighting functions whose value at r = 0 is smaller is adopted to allow more compressibility of fluid as 

follows [23] 

  

2 3 4

2

1 6 8 3 , 0

0 ,

e

ij e e e

e

r r r
r r

w r r r r

r r

      
          
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



  (10) 

Another distinct feature in the simulation of compressible flows is that, without the incompressibility 

condition, the fluid density 
( 1 )k




 in Equation (5) should be treated as unknown (more details will be 

presented later). 

Applying the derivate approximation scheme presented in Section 3.2 to the left-hand sides of Equations 

(5) and (21), a system of linear equations with sparse and non-symmetric coefficients can be assembled and 

solved by parallel solvers, to obtain the fluid pressure in the entire computational domain. Using the fluid 

pressure, particle velocities and positions are updated as 

 

( 1 )

( 1 ) *

k

k p
t





  
   

 

v v   (11) 

and 

 
( 1) ( ) ( 1)k k k

t
 

  r r v  (12) 
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where the pressure gradient term is computed by Equation (18). Since acoustic wave is not important in the 

simulation of water wave impact, the Courant–Friedrichs–Lewy (CFL) condition for numerical study 

considers only the fluid particle velocity [30, 31]. Hence, the time step t  is governed by 

 m a x

m a x

0

v t
C

L


   (13) 

where 
m a x

C  is selected to be 0.2, and 
m a x

v  is the maximum particle velocity (of both water and air domains) 

at the previous step of computation. 

3.2. Derivative computation based on Taylor series expansion 

Taylor series expansion for a smooth function f(x) in the vicinity of a reference particle (x0, y0) can be 

expressed as 

 2 2 3

0 , 0 , 0 , 0 , 0 , 0

1 1
( , ) ( )

2 2
x y x x x y y y

f x y f h f k f h f h k f k f O r         (14) 

where 
0 0

,h x x k y y    , 
0 0 0

( , )f f x y , 
, 0x

f  is the first order derivative of function f with respect to x at 

(x0, y0) and 
, 0xy

f  the second-order derivative of function f with respect to x and y at (x0, y0). Writing Equation 

(14) for each of the neighbor particles, the following equation system can be obtained 

      0D  A f f   (15) 

where  A  is a function of relative particle positions (i.e. h and k),  f  a  combination of the variable 

differences between the reference particle and its neighbor particles (i.e. f – f0), and  D f  a vector including 

all the derivatives in Equation (14). Solving Equation (15) by a weighted-least-square approach, the first- 

and second-order derivatives can be directly obtained as [21] 

      
2 2 2 ' '

1 2 3 4 5 1
0 .5 0 .5

i

j j j j j j j j i j j i

j i j i

p
w a h a k a h a h k a k p p C p p

x  


          
   

    (16) 

and 

      
2

2 2 2

1 2 3 4 5 32
0 .5 0 .5

i

j j j j j j j j i j j i

j i j i

p
w c h c k c h c h k c k p p C p p

x  


          

  
    (17) 

where wj is the weighting function used in the weighted-least-square scheme to solve an over-determined 

equation system, pi and pj the pressures on particles i and j respectively, and a and c the coefficients 

generated by the weighted-least-square scheme (refer to Equation (21) in [21]). Computing derivatives using 

Taylor series expansion, this scheme has been demonstrated to model single-phase flows with good accuracy 

[21, 27]. It is noted that the weighting function in CPM formulations (i.e. wj) comes from the weighted-least-

square solving scheme and is essentially different from the kernel function in SPH and ISPH and the 

weighting function in MPS. 
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In the simulation of two-phase flows characterized by large density difference, the scheme presented in 

the previous section produces non-negligible errors at fluid interface because of the abrupt change of fluid 

density and hence fluid pressure [22]. Applying the generalized finite difference scheme to the normalized 

pressure gradient term (i.e. /p  ), which is of the same order of magnitude in two fluids of a general 

dynamic problem, the formulation to compute the gradient and Laplacian operators with abrupt density 

discontinuity has been derived by Luo et al. [22]  

  1

1 1

0 .5 ( )
j j i

j i i ji

p
C p p

x  

  
   

     

   (18) 

and 

  3

1 1

0 .5 ( )
j j i

j i i ji

p
C p p

x x  

    
    

        

   (19) 

The coefficients 
1 j

C  and 
3 j

C  are the same as those in Equations (16) and (17). Letting 
i j

  , 

Equations (18) and (19) recover to Equations (16) and (17) for single fluid domain far away from fluid 

interface. Hence, the above reformulation is general which can simulate both single- and multi-phase flows. 

The accuracy of the enhanced derivative computation scheme has been demonstrated by Luo et al. [22]. 

Particularly, it enables the accurate simulation of sharp fluid interface (e.g. water and air whose density 

difference is about three orders of magnitude) because no density smoothing or smearing scheme is used. 

3.3. Compressible solver based on thermodynamics 

For compressible flows, 
( 1 )k




 in Equation (5) is unknown and hence a closure condition is needed to 

solve the PPE. The polytropic gas law is selected to be the closure relation as follows 

 c o n s ta n t
p




   (20) 

where γ is the ratio of specific heats at constant pressure and constant volume. The theoretical value of γ for 

air is about 1.4. It has been conceptually explained (more than 98% of air being diatomic molecules) and 

numerically demonstrated that γ = 1.4 can model the entrapped air pocket in water wave impact problems 

with good accuracy [23]. Incorporating the closure condition of Equation (20) to Equation (5), the PPE 

accounting for fluid compressibility can be obtained as [23] 

 

*

( 1) ( 1 )0 0 0

* 2 * 2 * 2 *

0

1 1 1 1 1k ka a i a

i i

i i a i i

p p
t p t t

   

     

 
  

       
   

  (21) 

Equation (21) does not require the input of speed of sound (
s

c ), which is dependent on the composition 

and temperature of a fluid. The implication of not using sound speed directly in the formulation is subtle but 

important. To simulate compressible flow, a commonly used equation of state involves sound speed which is 

given by 
s

c p     where p and ρ are the fluid pressure and density respectively. When modelling 
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violent water-air flows, this approach has some limitations because s
c  is dependent on the temperature of 

fluid (Wemmenhove 2008). Therefore, it is difficult to determine (or update) the correct value of sound 

speed in different scenarios (e.g. during and immediately after wave impact in a wave impact problem). In 

contrast, the polytropic formulation adopted in our method does not require the sound speed explicitly as an 

input but yet is able to account for the change in sound speed due to, for example, change of temperature. 

Furthermore, this compressible solver uses the predictor-corrector scheme to solve the governing equations 

for incompressible liquid and compressible gas. The difference is that the compressible solver for gas treats 

the fluid density in PPE in an implicit way. This enables a simultaneous simulation of two-phase flows in the 

same solution framework for incompressible and compressible fluids (e.g. wave impact problems with 

entrapped air pocket). In the following section, three wave impact examples will be studied using the 

developed numerical method. 

3.4. Wall boundary conditions 

The wall boundaries in this study are modelled by the fixed particle approach, i.e. one layer of particles 

placed on the physical wall position and two more layers of dummy particles outside the wall to facilitate the 

influence domain (
0

2 .1
e

r L ) of wall particles. The positions of wall and dummy particles corresponding to 

the moving walls are updated in accordance with the wall motion. The pressures on dummy particles are 

related to the pressure of the nearest wall particles by the hydrostatic relationship, satisfying the Neumann 

boundary condition p     n g n , where n is the outward unit vector on the solid boundary. 

4. Enhancement of computational efficiency 

4.1. Parallel direct sparse solver 

In previous CPM studies, the sequential generalized minimal residual (GMRES) method was used to 

solve the pressure equation, costing 80% or more of the total computational time. Hence this is the main part 

for the enhancement of computational efficiency. The coefficient matrix of the PPE generated by CPM is 

sparse and non-symmetric. There are several suitable function solvers in the literature including the multi-

frontal massively parallel solver (MUMPS) [32] and the parallel direct sparse solver (Pardiso) [33]. Among 

these two solvers, the Pardiso has been shown by other researchers to be faster and require less memory [34, 

35], and is hence selected in this study (solid box in Figure 2). This solver utilizes the OpenMP directives for 

parallelization based shared memory multiprocessing systems. With the LU factorization (where “LU” 

stands for “lower and upper triangular matrices”) as the mathematical basis, Pardiso contains three key steps, 

i.e. reordering, factorization and back substitution. The factorization is the most time-consuming step and is 

speeded up by an efficient parallel sparse LU factorization scheme [36]. Note that in solving the pressure 

equations by Pardiso, which takes up most of the computational time, the only variable (at every particle) is 

pressure and the system size does not change. The CPM code is written in Fortran and all variables are stored 
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as array elements. The code is compiled and run using the 64-bit model of Intel Parallel Studio XE 2013 and 

a workstation with one Intel Xeon CPU E5-2680 v4 @ 2.40 GHz (14 cores, 28 threads). 

The performance of Pardiso with one thread (without parallelism) is tested first. The execution time of 

GMRES and Pardiso solvers in seven task sizes (T1 to T7) are compared in Table 1, in which Np is the total 

number of fluid and wall particles, tSG and tSP1 are the times for solving the sparse equation system (PPE) by 

GMRES and Pardiso with one thread, respectively. The task size Tj (j =1, 2, …, 7) is defined as the ratio of 

Np for Tj to Np for T1. As the equation system size increases from T1 to T7 (by 64 times), the PPE solver time 

by GMRES ( 1 .7 8

p
N ) increases much more rapidly than that of Pardiso with one thread ( 0 .9 5

p
N ). 

Specifically, tSG is slightly larger than tSP1 in T1, but tSG / tSP1 increases to more than 33 in T7. It means that the 

Pardiso (even using only one thread) is much more efficient than the sequential GMRES in solving large 

equation systems. 

The Pardiso solver can be accelerated by using multiple threads as shown in Table 2, in which tSPi is the 

function solver time by Pardiso with i threads and tOSi the time for all other subroutines of CPM with i 

threads. Speedup is the ratio of the serial runtime to the time taken by the parallel code for the same work. 

Figure 3a shows that the speedup can reach more than 4 times (for the studied tasks) with larger systems 

having higher speedup. The speedup is effective when the number of used threads is less than 1/3 of the 

number of available threads, and the increase in speedup is less effective with further increase in the number 

of used threads. Particularly when the number of used threads is more than 2/3 of total threads, the 

computational efficiency decreases due to a relatively high overhead for data communication from the shared 

memory to the threads used. Figure 3b shows the strong scaling efficiency (ratio of speedup to the number of 

threads) of Pardiso. For big task size (i.e. larger equation system), the parallel efficiency is relatively high 

because the overhead for data communication is a small portion compared to the effort in solving the 

equation system. 

Let the time to complete a work unit (Np particles in this study) using 1 thread be t1 and the time to 

complete n work units (n×Np particles) using n threads be tn. The weak scaling in terms of normalized 

computational time (tn/t1) for Pardiso is shown in Figure 4. Ideally, the weak scaling is a horizontal straight 

line, meaning that the time to complete one work unit by one thread is the same as that to complete n work 

units by n threads. Due to communication overhead mainly, however, the normalized computational time 

increases as the task size increases. The slope of the weak-scaling curve for Pardiso is larger, implying a 

higher communication overhead than the other subroutines of CPM (which will be elaborated in Section 

4.2). This is further demonstrated in Table 2 that the speedup of other subroutines of CPM (4.96 times) is 

slightly better than that of Pardiso (4.26 times). 

4.2. Parallelization of all other CPM subroutines 

While the PPE solver time is significantly reduced by using the direct sparse solver, the computational 

time for all other subroutines of the CPM code is comparable to or even more than (see tOS1 in Table 2) the 
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PPE solver time if not parallelized. To achieve the overall computational efficiency, it is necessary to parallel 

all other subroutines of CPM (shown in dashed boxes in Figure 2). The same instructions are performed in 

the subroutines for computing intermediate fluid velocity and position, searching for neighbor particles (by 

the link-list approach [37]) and computing intermediate density, computing the gradient and Laplacian 

operators, and updating fluid velocities and positions. The OpenMP directive “!$omp parallel do” is used to 

concurrently execute the repeating instructions (for all particles) on multithreads, thereby achieving the 

thread parallelism. Since the computational time for each loop is theoretically the same (in a single 

subroutine), static schedule is adopted without specifying the optional parameter chunk (distributing loops 

equally to available threads), which gives the least overhead incurred by the handling and distributing of 

different loops and hence achieves the best performance. 

The speedup of other CPM subroutines (i.e. other than the function solver) is 4 to 5 times for the studied 

tasks with larger systems being accelerated slightly more as shown in Figure 5a. Similar to the function 

solver, the increase in speedup of other CPM subroutines is not significant after the number of used threads 

exceeds 2/3 of total threads due to communication overhead. As presented in Figure 5b, the strong scaling 

efficiency of all other CPM subroutines (~25%) is slightly better than that of Pardiso (~20%), although the 

overall trends are very similar. The weak scaling efficiency in terms of the normalized computational time 

(tn/t1) for other CPM subroutines is shown as the solid curve in Figure 4. The gentler slope compared to that 

of the dashed curve for function solver means that the communication overhead is lower for these 

subroutines and hence a higher efficiency enhancement. This is consistent with the strong scaling analysis 

and the data presented in Table 2. 

The parallel direct sparse solver and OpenMP parallelization of other CPM subroutines lead to a shared-

memory parallel version of CPM. Figure 6 shows the overall efficiency speedup of the parallelized CPM 

code compared to the original sequential CPM code with GMRES. Particularly, the overall efficiency 

enhancement of T7 in this study is about 104 times. Of significant importance is that the efficiency 

enhancement varies almost linearly with the size of the computational system. The linear time O(Np) is 

certainly an advantageous feature for the parallelized CPM to simulate large-scale 3D problems. 

5. Numerical examples 

5.1. Wave impact on sea wall 

Prediction of wave forces on sea wall is of great practical significance but very difficult because wave 

breaking strongly affects the wave characteristics near the structure [38]. CPM is used to study this problem 

by comparing with the experimental and SPH results in Didier et al. [38]. The dimensions of the problem are 

shown in Figure 7. The wave maker motion is governed by ( ) s in
b

x t A t  , where 
b

A  is 0.05048 m and   

is 2 / 1 .3 . In CPM simulation, an initial particle spacing of 0.005 m (56,224 particles in total) is adopted 

with a fixed time step of 0.001 s (satisfying Courant’s condition). 
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Figure 8 shows the wave motion at typical time instants. The wave maker generates a wave propagating 

towards right and impacting on the sea wall. A large wave impact occurs at around t = 5.86 s (see Figure 8). 

The wave runs up along the wall (t = 6.06 s), turns over and falls back under gravity. The falling-back wave 

flows towards left (t = 6.26 s) and interacts with the next coming wave, generating a plunging wave (t = 6.8 

s). It is then followed by the next wave impact. Specifically, the wave elevations at wave gauges G1 and G2 

(2.643 m and 3.943 m from the initial position of the wave maker respectively) are presented in Figure 9. 

SPH slightly under predicts the wave elevation, whereas CPM reproduces the wave elevation peaks in better 

agreement with the experimental results. This is because CPM can accurately compute spatial derivatives 

and hence has less numerical dissipation. Figure 10 presents the wave impact pressures on the sea wall. As 

can been seen, the pressures at P1 and P2 predicted by SPH have large peaks, which, however, are not shown 

in the experimental results. And SPH slightly under predicts the pressure at P3. In contrast, CPM accurately 

reproduces the real pressure peaks (essential in engineering design) and are in good agreement with the 

experimental results by Didier et al. [38]. 

5.2. Water sloshing under rotational excitation 

For further validation, CPM is then used to model violent sloshing in a closed tank subjected to roll and 

pitch excitations on a rotational motion simulator as shown in Figure 11. The same rotational simulator as 

that in Luo et al. [29] is used. The way to measure the rotational angles of the rotational platform is 

schematically shown in Figure 12. The equation of the plane (plate) can be written as 

 1a x b y cz    (22) 

The two displacement transducers (DT1 and DT2) are vertically installed at point 1 (x1, y1) and point 2 (x2, 

y2). The values of (x1, y1) and (x2, y2) are fixed and can be measured in the beginning of the experiment. The 

vertical positions of these two points, i.e. z1 and z2, are measured by the displacement transducers. 

Substituting (x1, y1, z1) and (x2, y2, z2) into the plane equation, two equations can be obtained. The third 

equation is that the distance from the pivot point (point O) of the rotational simulator to its projection point 

on the platform (point 3) is a constant value. With the three equations, the plane equation of the platform and 

hence the rotation angles along roll and pitch directions can be uniquely determined at every time step. The 

measured platform rotations are used as excitation input of numerical simulations. 

The experimental set-up including the prismatic tank is the same as that used in Luo et al. [29] but with a 

different focus of study (3D swirling wave) in this paper. Based on our parametric studies, the filling depth 

of d/H = 0.3 generates large sloshing pressure and is adopted as the case study in this section. Estimated by 

linear wave theory, the fundamental natural frequencies for the sloshing system in the roll and pitch 

directions are 5.598 rad/s and 7.471 rad/s respectively. Dynamic pressures at P1 and P2 are measured by 

gauge pressure sensors (WIKA S10) and the sloshing wave motions are captured by a video camera. 

Unlike in the study by Luo et al. [29], the present work focuses on the phenomenon of 3D swirling wave. 

According to Faltinsen et al. [39] and our preliminary studies, a relatively regular swirling wave can be 
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generated by setting the frequencies of roll and pitch excitations to be the same value that is between the 

lowest natural frequencies of sloshing in the roll and pitch directions. Therefore, the excitation frequencies of 

roll and pitch rotations are both selected to be 5.969 rad/s. The measured pitch and roll angles are as shown 

in Figure 14. In the numerical simulation, an initial particle spacing of 0.008 m (99,789 particles in total) and 

a fixed time step of 0.0005 s are adopted. 

The wave profiles at different time instants are presented in Figure 15. CPM accurately captures the 

highly deformed sloshing waves involving fluid fragmentation and coalescence. From t = 0.7s to 2.275s, a 

swirling wave is generated in the tank, the reason of which is the superposition of the wave components in 

the length and breadth directions of the tank. The swirling wave hits one corner of the tank at t = 1.625s and 

breaks at t = 2.275s. As the sloshing wave further develops, the breaking wave impinges on the side wall and 

the ceiling of the tank. The splashing water droplets fall back and impact on the main water body. Although 

breaking wave occurs, the sloshing wave behaves like a swirling wave in general and approaches the steady 

state after 3 seconds. 

The violent waves generate large impact forces on the tank wall, as presented in Figure 16, which shows the 

sloshing pressures at P1 and P2 (indicated in Figure 13). CPM solutions are in fairly good agreement with 

experimental results both in amplitude and time phase. Of particular importance, the pressure peaks are 

successfully captured by CPM. The relative difference between the CPM and experimental results of the 

largest pressure peak is less than 2%. It also can be seen that the sloshing pressure near the tank corner (P2) is 

generally larger than that in the middle (P1). The practical implication of this phenomenon is that the 

structure components near the tank corner are more likely to be damaged and hence should be designed with 

a higher requirement.Sloshing impact with entrapped air pocket 

In the previous two examples, although fluid motion is very violent, there is no entrapped air pocket for 

which accurate modelling of air compressibility is important. To study wave impact scenario with entrapped 

air pocket, a sloshing experiment is conducted in the same container with two connected tanks as that in Luo 

et al. [23]. Different than using the translational shake table in Luo et al. [23], the present experiment is 

conducted on the rotational simulator as presented in the previous section (Figure 17). In fact, sloshing due 

to rotational excitation is more severe than sloshing due to translational excitation. The dimension of the 

container is shown in Figure 18. Air pressure at the middle of the top wall of the right tank, i.e. PA1 in Figure 

18, is measured by an absolute pressure sensor. Water pressures at 60 mm from the bottom on the right wall 

of the right tank (PW1) and 30 mm from the bottom on the left wall of the left tank (PW3) are measured by 

gauge pressure sensors. 

Based on some preliminary studies, the filling depth is adopted to be 0.18 m (initial dL and dR in Figure 

18) to have significant effect of the entrapped air pocket. The excitation frequency of 0.92ω0 (= 3.6493 rad/s) 

is found to generate a relatively large variation of air pressure in the right tank, where ω0 is the reference 

frequency which is the natural frequency of water in the left tank only (ignoring the right tank) with water 
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depth (dL) and length (LL) based on linear wave theory. In numerical simulation, an initial particle distance of 

0.005 m (11,124 particles in total) and fixed time step 0.0005 s are adopted to achieve a good tradeoff 

between accuracy and efficiency. 

The numerical and experimental wave profiles at five time instants are compared in Figure 19, which 

shows generally good agreement. Since filling level is low, wave moves like a bore which develops over 

time (see snapshots at t = 2.00 s and 2.88 s in Figure 19). At t = 3.12 s, the sloshing wave severely impacts 

on the right wall of the left tank, applying a large force to the connecting channel. The force pushes the water 

in the connecting channel towards the right and compresses the enclosed air pocket in the right tank. As 

expected, a large peak of air pressure appears in the right tank, which is measured in the experiment and 

predicted well by CPM (Figure 20a). As water in the left tank runs up along the right wall (t = 3.20 s in 

Figure 19), the compression force continues to apply to the enclosed air pocket. This is why the large 

pressure in the air pocket lasts for some time as shown in Figure 20a. At t = 3.68 s, the run-up water falls 

back to the main water body in the left tank and begins to move towards the left. At this stage, the pressure in 

the air pocket is smaller than the atmospheric pressure. The air pressure oscillation also influences the water 

pressure near the air pocket (see water pressure at Pw1 in Figure 20b). 

It is noted that both the experimental and CPM results of air pressure in the air pocket show vibration and 

they are in good agreement. The pressure vibration in the air pocket is further investigated through a power 

spectral analysis using the Fast Fourier Transform (FFT). It is interesting to note that there is only one peak 

value, i.e. 6.120 Hz, in the frequency-power curve. This means that the air pressure vibrates with one 

distinctive frequency. To verify that this pressure vibration is real and not spurious due to the numerical 

algorithm, the natural frequency of the air tube (under compression of water) is derived. Following 

Ramkema [40] who addressed the problem of wave impact on coastal structures, the air-pocket-water system 

is represented by a mass-spring system as shown in Figure 1, in which the spring represents the air pocket 

compressibility and the mass is the water effectively contributing to the impinging force on the air pocket. 

The upper bound of the effective water mass is the water in the connecting channel and the right tank, while 

the lower bound is the upper bound excluding the water in the rectangular region at the right bottom corner 

of the container (the region within the dash-dot line in Figure 1). Since water at the right bottom corner (dark 

shaded region in Figure 1) is almost stationary relative to the tank (the right bottom corner of the container is 

theoretically a stagnation point), the effective mass of the present problem (light shaded region in Figure 1) 

can be approximated to be water in the connecting channel and the right tank excluding the right bottom 

corner. 

Assuming the water level in the right tank to be horizontal and giving it a small perturbation z, the force 

(per unit width) applied on the effective water mass is as follows 
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where 
0a

p
 
is the initial air pressure in the right tank, LR the length of the right tank and Ha0 the initial height 

of the air tube. Ignoring the friction forces from the tank walls, the dynamic equation for the effective water 

mass is as follows 
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where Mw is the effective water mass (per unit width). Then the natural frequency of the dynamic system can 

be obtained as 
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Equation (25) is similar to that derived by Cuomo et al. [41] who analytically studied wave impingement 

entrapping an air pocket against vertical wall. Substituting the upper and lower bounds of Mw into Equation 

(25), the lower and upper bounds of the natural frequency of the entrapped air pocket can be obtained to be 

5.668 Hz and 6.507 Hz, whereas the natural frequency corresponding to the adopted value of Mw is 6.296 

Hz. Compared to the observed frequency of pressure vibration (i.e. 6.120 Hz) in the experimental result, the 

relative differences are only 7.3 %, 6.3 % and 2.8 %, respectively, for the lower and upper bounds and the 

adopted value of Mw. Therefore, the study on the natural frequency of the air pocket substantiates that the 

pressure oscillations observed in the experiment and CPM simulation are real and due to the natural vibration 

of the entrapped air pocket (air cushion effect). 

6. Conclusions 

In this paper, the novel CPM is presented with several features: (1) Accurate computation of first- and 

second-order derivatives in a way consistent with Taylor series expansion even in two-phase cases with 

abrupt density change to about 1000; (2) A thermodynamically-consistent compressible solver by employing 

the polytropic gas law; (3) Seamless integration of the incompressible and compressible solvers such that 

wave impact problems with entrapped air pocket can be simulated in a simultaneous way; and (4) shared-

memory parallelization of the code to achieve significant speedup of computational efficiency. 

The parallelization includes two parts: a parallel direct sparse solver – Pardiso (based on OpenMP) to 

solve the PPE and the parallelization of CPM subroutines by OpenMP directives. Through serial 

computations (using only one thread) of seven different tasks, Pardiso is shown to be 33 times (or more for 
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larger systems) faster than the sequential GMRES which was previously used in CPM. Strong and weak 

scaling analyses are conducted. The speedups of Pardiso function solver and other CPM subroutines reach 

4.5 and 5 times respectively (with larger systems being accelerated slightly more) on a workstation equipped 

with a 14-core CPU. The parallel efficiencies of Pardiso and other CPM subroutines are about 20 % and 25 

% respectively when the maximum speedup is achieved. The weak scaling of computational time shows that 

the communication overhead in the function solver is slightly more than that in the other CPM subroutines 

which involve near-neighbor communication. Compared to the original serial code with GMRES, the 

parallel CPM achieves 100 times or more efficiency speedup. The efficiency enhancement varies almost 

linearly with the size of the computational system. 

Three numerical examples are studied to demonstrate the accuracy of CPM. The first case is concerned 

with wave impact on seawall, which is an important problem in coastal engineering. The highly nonlinear 

plunging wave is successfully reproduced and the predicted wave elevation and impact pressure are in good 

agreement with published experimental results. The second example is the violent sloshing under rotational 

excitations. The complicated 3D sloshing waves (e.g. swirling wave) are accurately captured and the violent 

impact pressures are in good agreement with our experimental results. 

Finally, the sloshing impact with entrapped air pocket is experimentally studied in a container with two 

connected tanks under rotational excitation. CPM solutions including wave profiles, wave impact pressures 

and particularly the pressure vibration in the air pocket agree well with the experimental results. The natural 

frequency derived for the entrapped air pocket is close to the vibration frequencies of both the experimental 

and numerical air pocket pressure. The significant pressure oscillation in an entrapped air pocket during a 

violent wave impact process is thus caused by natural vibration of the compressible air pocket and is 

accurately modelled by CPM. 
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Figure 1. Schematic view of water impact on an air pocket (not to scale) 

 

 

Water

Effective water

LR

Ha0

z

Air

p0

Mw



19 

 

 

Figure 2. Flow chart of parallel Consistent Particle Method: solid box is function solver (Pardiso); dashed 

boxes are all other CPM subroutines parallelized by OpenMP directives 
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Figure 3. Speedup and strong scaling efficiency of parallel direct sparse solver – Pardiso 
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Figure 4. Normalized computational time for parallel direct sparse solver (black square) and all other 

subroutines of CPM (red circle) 
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Figure 5. Speedup and strong scaling efficiency of all other CPM subroutines (i.e. other than function solver) 

parallelized by OpenMP 

 

Figure 6. Overall speedup of computational efficiency with task size 
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Figure 7. Schematic view of wave impact on sea wall (Unit: m)  
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Figure 8. Snapshots of wave motion at typical time instants 

  

Figure 9. Wave elevation at G1 and G2: experimental and SPH results by Didier et al. [38] and CPM result 

  

 

Figure 10. Pressure at P1, P2 and P3: experimental and SPH results by Didier et al. [38] and CPM result 
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Figure 11. Water sloshing on rotational simulator 

 

 

Figure 12. Schematic view of how to measure the rotational angles of a rotational platform 

 

Figure 13. Geometric dimensions of water tank used in sloshing experiment 
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Figure 14. Water sloshing under rotational excitation: roll and pitch angles 

 

  

  

  

  

Figure 15. Water sloshing under rotational excitation: wave profiles at typical time instants 

t = 0.7 s t = 1.05 s 

t = 1.625 s t = 2.275 s 

t = 2.45 s t = 2.675 s 

t = 2.85 s t = 3.45 s 



25 

 

 

Figure 16. Comparison of pressure histories at P1 and P2 

 

 

 

Figure 17. Water-air sloshing in a connected container under rotational excitation 
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Figure 18. Geometric dimensions of the connected container used in experiment (Unit: mm) 
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Figure 19. Wave profiles of sloshing with closed air pocket under rotational excitation: experimental result 

and CPM simulation 
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Figure 20. Simulated air pressure at Point PA1 and water pressures at Point PW1 and PW3 in comparison with 

experimental results 

 

Table 1. Execution times of sequential GMRES and 1-thread Pardiso 

Task 

No. 

Task 

size 

Np 

(103) 

Function solver using 1 thread 

tSG (s) tSP1 (s) tSG / tSP1 

T1 1 25.6 4.26 2.24 1.90 

T2 2 51.2 12.49 5.16 2.42 

T3 4 102.4 39.83 11.63 3.43 

T4 8 204.8 134.10 25.57 5.24 

T5 16 409.6 477.80 53.40 8.95 

t = 3.68 s 
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T6 32 819.2 1802.32 106.51 16.92 

T7 64 1638.4 7153.56 214.33 33.38 

Table 2. Execution times of Pardiso function solver and all other subroutines with different thread numbers 

Task 

No. 

Pardiso function solver All other subroutines 

tSP1 (s) tSP16 (s) tSP1 / tSP16 tOS1 (s) tOS16 (s) tOS1 / tOS16 

T1 2.24 0.81 2.76 1.58 0.43 3.68 

T2 5.16 1.59 3.24 3.06 0.78 3.93 

T3 11.63 3.02 3.85 6.14 1.44 4.26 

T4 25.57 5.89 4.34 11.84 2.77 4.27 

T5 53.40 12.27 4.35 23.09 4.81 4.80 

T6 106.51 24.94 4.27 46.74 9.73 4.81 

T7 214.33 50.35 4.26 95.72 19.28 4.96 

 


