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Abstract 

The tribological properties of octyl-, dodecyl- or octadecylphosphonic acid coatings on TiO2-

coated galvanized steel substrates have been studied using linear friction testing (LFT) as 

potential lubricants for deep drawing automotive steels. LFT data show that the coatings 

reduce the coefficient of friction by > 65% from 0.31 to < 0.11. Confocal microscopy reveals 

that phosphonate-coated surfaces suffer considerably less wear than uncoated substrates 

during LFT. Water contact angle (WCA), XPS and IR data show that physisorbed 

phosphonates are removed by acetone washing leaving chemisorbed material. Data from a 

month-long ageing study using WCA, XPS and IR data shows that most of the physisorbed 

phosphonates become chemisorbed with time increasing hydrophobicity and tribological 

properties of the surfaces. Most of the changes occur within 14 days of coating and, after 21 

days, no further surface changes were observed. 

 

Keywords: automotive steel, forming, low friction, phosphonic acids. 

 

1. Introduction 
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Deep drawing is a sheet metal forming process used in the automotive industry to produce 

parts for vehicle bodies [1, 2]. During deep drawing, steel sheet is forced over tools to create 

new shapes whilst lubricating oils reduce wear in contact areas by creating a hydrodynamic 

pressure that carries the load [3, 4]. By reducing frictional forces, the oils ensure that the parts 

produced are free from visible signs of wear. However, surface texture is required to hold the 

oil in place during forming [4]. This limits the steel that can be used because smoother 

surfaces, which might be preferable for automotive products, cannot retain sufficient 

lubricant. In addition, drawing oils are also often used in tandem with anti-wear additives that 

are harmful to the environment [5]. 

Functionalization of interfaces with self-assembled monolayers (SAMs) has attracted 

interest in recent years for various uses [6-9] including as lubricants in 

micro/nanoelectromechanical systems [6]. In general, molecules that spontaneously form 

SAMs contain a head group to chemically bind to surface atoms (e.g. a thiol, carboxylate or 

silyl group [8, 9]), a spacer (e.g. a hydro- or fluorocarbon chain) and a terminal group that 

forms the outer surface [6]. Lubricating SAMs are believed to act like molecular springs or 

brushes during tribological contact, where multiple, orientated spacer chains act together to 

lower shear forces at the interface [10-12]. Recently, we have reported the use of carboxylate-

linked SAMs as coatings in sheet metal forming processes as an alternative to oil-based 

lubricants because their mechanism of action not being dependent on the surface topography, 

and also the potential for lower environmental impact of alkyl carboxylate SAMs [13]. By 

comparison, to the best of our knowledge, alkylphosphonic acids of the type RPO(OH)2, 

where R is an alkyl group, have not been studied as lubricant SAMs on steel surfaces. 

However, the phosphonate moiety is known to form three bonds with surface sites on various 

different metal oxides [14-16]. This should result in stronger SAM:substrate interfacial bonds 

but should also influence the orientation of the alkyl chains above the substrate surface. These 

factors should influence the wear performance during the high pressures encountered in 
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automotive deep drawing. At the same time, we have studied pre-coating the galvanized steel 

substrate with TiO2 because this is inert to acid. TiO2 also possesses surface sites that are 

available to chemisorb phosphoric acids [15, 16]. TiO2 can also be easily coated onto a variety 

of substrates using sol-gel methods [17-19] similar to those used to fabricate electron capture 

layers in solar cells [20]. 

In this study, we have studied octyl-, dodecyl-, and octadecylphosphonic acids 

(labelled here as R8-P, R12-P and R18-P, respectively) formed on TiO2-coated galvanized 

steel substrates. We have studied their tribological properties using Linear Friction Testing 

(LFT) and wear resistance using confocal microscopy. These data have been correlated with 

detailed surface characterization using water contact angle (WCA), IR, XPS and thermal 

analysis studies to understand the performance of “as prepared” and aged coatings.  In a 

related study, Roizard et al. have investigated the sliding of ferritic stainless steel against steel 

ball bearings, lubricated with alkylphosphonic acids in an alcoholic solution [21]. Here, they 

ascribed the reduction in friction to be due to the formation of a tribofilm consisting of the 

alkylphosphonic acids. In this paper, we ascribe the reduction in friction to be due to the 

presence of thin films formed from alkylphosphonic acids on the surfaces of metal sheets. 

 

2. Experimental 

2.1 Samples and chemicals 

A low carbon, formable strip steel (DX56, Tata Steel) was cut into 50×300 mm strips for LFT 

and wear studies, and into 10×20 mm coupons for characterization (for composition, see S1). 

Prior to testing, surface oil was removed by scrubbing with water and detergent, air-drying, 

and ultra-sonicating in acetone for 5 min. All other chemicals were obtained from Sigma 

Aldrich and used without further purification.  

 

2.2 Surface functionalization and characterization  
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Cleaned substrates were immersed in an isopropanolic solution of Ti(OiPr)4 (10mM) for 30s 

as described previously [13]. After air-drying, the TiO2-coated substrates were immersed in 

100 mM isopropanolic solutions of the alkylphosphonic acids for 30s before air-drying and 

analysis. Selected samples were also acetone rinsed for 5 min.  

For materials characterization, coefficients of friction (µ) were measured using an LFT 

method based on Trzepiecinski et al. [22] using an in-house constructed instrument at Tata 

Steel, IJmuiden at 22-24oC and 30-45% RH as described by Hill et al. [13] (full details are 

given in S2). Confocal micrographs were imaged with a Nanofocus µSurf Mobile at 20x 

magnification using a 2.1x2.1 mm field of view. Data were plotted using Mountains software, 

v. 7.3. Static water contact angles (WCA) were measured using DI water (n = 5, 5µl droplets) 

with a USB 2.0 camera with attached goniometer. Data were fitted using FTA 32 software 

(FTA 32 Europe Ltd). Infrared spectra (650 and 4000cm-1, 4 scans, 4 cm-1 resolution) were 

recorded on a Perkin Elmer 100 Series ATR-FTIR spectrometer. Scanning Electron 

Microscopy (SEM) was carried out on a Hitachi S4800 field emission gun (FEG)-SEM at 

1.0kV and 5µA, and a working distance of 11.5mm. Energy Dispersive X-Ray (EDX) spectra 

were acquired at 15.0kV and 15µA for 100 s on 5 different areas with a Silicon Drift X-Max 

EDX detector and Inca EDX software (Oxford Instr.). X-ray photoelectron spectra (XPS) 

were recorded on an Axis Supra XPS using a monochromated Al Kα source and large area 

slot mode detector (300x800µm analysis area). Data were recorded using a charge neutralizer 

to limit differential charging and binding energies were calibrated to the main hydrocarbon 

peak (BE 284.8 eV). Survey scans were performed using a pass energy of 160eV and high 

resolution spectra were recorded using a 0.1 eV step size and a pass energy of 20 eV. Data 

were fitted using CASA software with Shirley backgrounds. Thermal analysis samples were 

prepared by stirring 300 mg of P25 TiO2 powder (Degussa) in 100 mM isopropanolic solution 

of R12-P at 25 oC for 24 h followed by centrifugation at 2000 rpm for 5 min. The supernatant 

was decanted and the powder dried at 50 oC for 30 min. Thermal gravimetric analysis (TGA) 
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was measured on a Pyris 1 TGA under N2 (20 ml min-1) between 20 and 800 oC, whilst 

heating at 20 oC min-1. 

 

3. Results and Discussion 

3.1 Linear Friction Testing (LFT) and Confocal Microscopy 

LFT measures the coefficient of friction (µ). It is a technique designed to simulate the 

conditions encountered during deep drawing of automotive steels and involves high pressure 

contacts formed between the tools and the substrate. Values for µ of pristine and TiO2-coated 

DX56 substrates vary inconsistently along the sample length (Fig. 1a), which is ascribed to 

varying surface roughness. The samples also show evidence of static friction with spikes in 

the µ between 0 and 5 mm. The mean µ of DX56 is 0.309 ± 0.052 (Fig. 1b) with similar 

values recorded after Ti(OiPr)4 treatment and/or acetone rinsing, suggesting that TiO2 does 

not imbue any lubricity onto the substrate.  

By comparison, the µ of all the alkylphosphonic acid coatings is consistent between 

different alkyl chain lengths (R8-P to R18-P) whilst also being substantially lower (0.074 to 

0.109) than the DX56 or TiO2-coated DX56 and much more consistent along the sample 

length suggesting far less static friction for these materials. Between the different alkyl chain 

lengths, the µ of the R8-P and R18-P coatings are slightly higher (0.104 ± 0.004 and 0.109 ± 

0.005, respectively) than the R12-P (0.074 ± 0.001), which may reflect the lower surface 

coverage for the R8-P and R18-P molecules (see XPS data).  

Interestingly, there is a slight increase in µ for all phosphonate coatings after acetone 

rinsing with the biggest increase for the R12-P coating where µ increases from 0.074 ± 0.001 

to 0.112 ± 0.011. These changes in µ are consistent with previous reports for alkyl phosphonic 

acid monolayers on copper surfaces [4, 23]. This is ascribed to two main factors. Firstly, prior 

to acetone rinsing, multilayers of physisorbed alkylphosphonic acids act as barrier coatings, 

reducing the frictional force through blocking contact between surface asperities. However, 
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after removal of physisorbed material, the chemisorbed alkylphosphonates then act as 

molecular brushes, and absorb frictional energy through compression of the spacer chains, 

followed by a steric quenching mechanism with neighbouring alkyl chains [24]. Interestingly, 

the data show that the acetone-washed surfaces show similar frictional behaviour, regardless 

of the spacer chain length. In agreement with these data, previous studies have shown that the 

stabilization energy incurred through increasing the number of methylene (CH2) groups in a 

chain saturates between n = 8-10, where n is the number of carbon atoms [23]. Consequently, 

this could mean that the packing densities of the chemisorbed alkylphosphonic acids could be 

similar, and this could be responsible for the similar tribological behaviour. For these coatings 

to affect lubricity, the phosphonate packing densities must be high enough to arrange the alkyl 

chains close enough together so that the combined inter-chain interactions (e.g. van der Waals 

forces) are great enough to influence lubricity. Additionally, the µ or WCA measurements are 

effectively averaged values resulting from much wider length scales (i.e. µm to cm) compared 

to packing densities (i.e. Å to nm). Thus, for the R8-P, R12-P and R18-P molecules, these 

data suggest that the combined influence of packing densities and inter-chain interactions 

averaged out over the much longer lengths scales are sufficiently similar that they result in 

identical tribological behaviour. 

 

3.2 Confocal and Scanning Electron Microscopy 

Fig. 2 shows wear analysis data after single pass LFT measurements using confocal 

microscopy for DX56, TiO2-coated DX56 and an R12-P coated substrate. The data show that 

DX56 and TiO2-coated substrates suffer deep scratches, which are ascribed to galling 

phenomena [25].  We ascribe this galling to the removal of particles from the zinc-rich 

galvanic layer, which forms the outermost surface of uncoated DX56 by stick/slip wear. The 

zinc particles become trapped between the LFT tool and the substrate and friction-derived 

heat adheres the particles to the LFT tool (Fig. 3) and work hardens them as described by van 
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der Linde [25]. Being harder than the underlying galvanized surface, these flakes initiate deep 

scratches in the substrate surface whilst their adhesion to the tool increases its abrasion 

resistance. In contrast, much smaller scratches are observed on the surface of R12-P and R12-

18P coated substrates (Fig. 2c and S21), indicative of reduced galling. Instead, the confocal 

data suggest that, if material is removed from the surface of R12-P or R18-P treated 

substrates, then that material is removed in a more consistent/even manner. To fully illustrate 

this, detailed confocal data and analysis for the uncoated DX56 and the R8-P, R12-P and 

R18-P samples before and after ten LFT passes has been carried out. Fig. 2d shows the cross -

sectional data whilst the complete set of data are shown in S14-S21. As an example, this is 

shown particularly clearly when considering the average surface roughness and cross-

sectional line profile of the R18-P coating before and after LFT testing where Ra drops from 

3.1 µm to 0.42µm after 10 LFT passes (S20 - d, e, g versus S21 - d, e, g). For this sample, the 

confocal data suggest that the surface is smoothed by LFT treatment whereby the action of the 

LFT tool is to abrade the higher peaks on the substrate in an even manner without any galling. 

In line with this, small amounts of zinc from the substrate surface are observed on the LFT 

tool for R18-P (S21f).  

Further analysis of multi-pass LFT data (10 LFT passes) for the R12-P coating before 

and after acetone rinsing versus uncoated DX56 (Fig.3 and S13) shows that the µ of the 

uncoated DX56 increases to values > 0.40 after ca. five passes before increasing further to > 

0.50 after 10 LFT passes. Large zinc flakes were observed on the surface of the tools (Fig. 

3bii, S15f), indicative of the extreme galling initiated by the high friction contacts made 

between the substrate and the surface of the tools.  

Comparing the other samples, S13 shows the µ data of all the alkylphosphonates 

remains <0.10 up to 4 LFT passes before the value for R8-P value increases to ca. 0.20. In 

contrast, the µ data of unrinsed R12-P and R18-p coatings remain relatively constant (ca. 

0.05) for all 10 LFT passes (S13). Less zinc is observed on the LFT flat tools for R12-P and 
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R18-P (S19f and S21f, respectively) compared to uncoated DX56 or R8-P (S15f and S17f, 

respectively). This suggests that less of the surface zinc coating had been removed from the 

substrate during LFT.  

Interestingly, we anticipate there being both chemi- and physisorbed R12-P or R18-P 

being present on these respective surfaces. There are two possibilities here; firstly, that 

physisorbed phosphonates coat the surface of the LFT tool as well as the substrate. This 

would extend the influence of these two phosphonate coatings on the LFT data. A second 

possibility is that, for R12-P and R18-P, the physisorbed phosphonates act in a “self-healing” 

manner and, as phosphonate-coated zinc is removed from the surface, this unbound 

phosphonate material is spread across the fresh surface; effectively to imbue fresh lubricity.  

In contrast, the µ of acetone-rinsed R12-P coatings increases after ca. 5 passes from 

ca. 0.07 to 0.12-0.15, suggesting that coating material is removed by the tribological contact. 

After 10 LFT passes, µ is > 0.20, which is closer to the value for single pass LFT on uncoated 

DX56. In explanation of these data, IR data show that the acetone-rinsed samples consist 

predominantly of chemisorbed R12-P; i.e. molecules chemical bound to the outermost surface 

of the galvanized surface. Then, during the LFT measurements, removal of surface zinc 

particles will inevitably also remove any R12-P molecules attached to these. In fact, the data 

suggest that the majority of R12-P has been removed which suggests that the majority of the 

outer surface of zinc has also been removed from this sample causing the increase in friction. 

In support of these assertions, confocal micrographs taken of uncoated DX56 (Fig. 3c) 

reveal that 10 LFT passes leads to delamination of the large amounts of the zinc coating in 

discrete areas. Confocal microscopy of the R12-P substrate (Fig. 3d) after 10 LFT passes 

shows that the surface topography becomes smoother as a result of multiple LFT passes. In 

addition, fewer scratches are observed indicating that less wear to the surface had occurred. In 

contrast, the acetone-rinsed R12-P substrate (Fig. 3e) shows more surface scratches. This 
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suggests less homogeneous LFT behaviour of this surface leading to more severe galling after 

removal of the R12-Pchemisorbed -derivatised zinc surface particles. 

SEM shows new features on the DX56 surface following Ti(OiPr)4 treatment (S5) 

which are ascribed to an inhomogeneous TiO2 coating which contains some agglomerates. 

Variable titanium signals in the EDX spectra (S6b and c) confirm this. The SEM micrographs 

of the phosphonic acid coatings measured using a 1.0 kV accelerating voltage show clear 

evidence of additional surface material (S5c-e). However, the thickness or composition of the 

surface coating appears to vary across the substrate surface as evidenced by lighter and darker 

regions particularly on the R8-P and R12-P samples which suggests differential charging 

from the electron beam is taking place at different places on the surface. The R12-P shows 

very clear deposits of surface material which is consistent with multi-layer deposition because 

a monolayer coverage would not be visible at the resolution possible using SEM. EDX data 

have also been measured for these samples but at a 15.0 kV accelerating voltage. Whilst this 

will more fully excite the surface atoms to enhance the limit of EDX detection, it comes at the 

expense of an increased electron beam penetration depth which can damage surface layers 

and reduce surface sensitivity. Hence, the SEM images look different from the FEG-SEM 

data measured at 1.0 kV accelerating voltage. For the R8-P coating (S6d), whilst peaks for Ti 

at 4.5-5.0 keV do vary across the surface, the P peak at 2.1 keV is present in all EDX spectra. 

By comparison, whilst the R12-P EDX data show a similar, slight variance in the Ti peaks 

from weak signals to no observable Ti peaks, the P peak varies from below the detection limit 

to off scale indicating some areas with multi-layer coverage and other areas with little or no 

R12-P coating. Finally, the R18-P sample is more similar to the R8-P coating in that the Ti 

peaks vary from weak to below the detection limit. However, there is a more consistent if 

lower P signal across the sample suggesting a more consistent coverage but with a lower 

loading than R8-P or R12-P. 
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3.3 Infrared (IR) spectroscopy 

No bands are observed in the ATR-IR spectra (650-4000 cm-1) of DX56 or TiO2 coated DX56 

substrates. Bands would be anticipated for TiO2 but these are outside the scan range of the 

ZnSe ATR crystal. After deposition of the alkylphosphonic acids, the IR spectra show bands 

coincident with the neat alkylphosphonic acids suggesting that the coatings were largely 

composed of physisorbed R8-P, R12-P and R18-P (spectra and full assignments according to 

[4, 23, 26] are in S7).   

Using R12-P as a model, samples were aged under ambient conditions in air.  After 3 

days, the υ P=O band at 1230 cm-1 disappears and a new broad peak is observed at ca. 1080 

cm-1 which is ascribed to O-P-O asymmetric stretching (Fig. 4). This suggests that 

phosphonates linked either through bidentate bonding to the surface and/or physisorbed 

material becomes chemisorbed to surface sites in tridentate coordination mode. This bonding 

mode is in line with previous studies [4, 22]. After 7 days, the O-P-O asymmetric stretch 

narrows and shifts to ca. 1070 cm-1. In addition, a weak band appears at ca. 1154 cm-1, which 

is ascribed to a symmetric stretch of chemisorbed R12-P. No further changes in the IR spectra 

of the R12-P samples is observed after 14 days or 21 days of ageing including acetone-

washed samples. This suggests that all the phosphonates have re-ordered themselves into 

chemisorbed, tridentate coordination, which is resistant to solvent rinsing, in line with 

previously reported data [4]. By comparison, unaged samples show no phosphonate bands 

after acetone washing in line with the removal of physisorbed material. 

 

3.4 X-ray Photoelectron Spectroscopy (XPS) and Thermogravimetric analysis (TGA) 

The XP data of uncoated DX56 are in agreement with previous reports showing Zn 2p1/2 and 

2p3/2 peaks (1021.2 and 1044.0 eV), an Al 2p peak (73.9 eV) and a broad O 1s peak for 

surface oxide at 531.70 eV [27-29] (S8). Following the Ti(OiPr)4 treatment, Ti 2p1/2 and 2p3/2 
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peaks are observed (458.0 and 463.7 eV) in agreement with previous studies [30-32] 

suggesting that TiO2 forms on the surface (S9).  

After deposition of the alkylphosphonic acids, P 2s and P 2p peaks are observed at 

190.8 and 132.8 eV [4, 33] (S10, S11). Atomic concentrations show that the coated surfaces 

are carbonaceous with only weak Zn peaks (e.g. 1.6 ± 0.3%, zero and 0.2 ± 0.1% Zn for R8-

P, R12-P and R18-P, respectively). Since it is known that the mean free path escape depths 

for typical photoelectron kinetic energies (10-1000eV) are 1-10 nm [34], this suggests 

multiple layers of alkylphosphonic acids are present. However, the observation of Ti 2p peaks 

in all the phosphonate-coated samples suggests that the phosphonates may deposit in thicker 

layers on Zn-rich areas; i.e. areas not covered by TiO2.  

More intense Zn and Ti peaks are then observed for acetone rinsed R12-P and R18-P 

coatings in line with removal of physisorbed alkylphosphonic acids. In line with this, weaker 

P 2s and 2p peaks are also observed. By comparison, the R8-P coating shows similar atomic 

concentrations of Zn and Ti (1.6 ± 0.3% and 1.2 ± 0.3%, respectively) before and after rinsing 

whilst the P signal drops from 6.7 ± 0.2% to 5.9%. This suggests that there may be areas of 

surface not coated by R8-P and also that acetone removes less physisorbed R8-P from the 

surface compared to R12-P or R18-P. 

To further investigate phosphonate loading on TiO2 surfaces, R12-P was first sorbed 

onto Degussa P25 powder and then analysed by TGA. The data show a mass loss of 5.6% for 

R12-P, which drops to 4.6% after acetone rinsing (S12) compared to 0.5% mass loss for a 

control sample of untreated P25. This confirms that R12-P material is removed by acetone 

washing in line with the IR and XPS data. 

The effect of ageing on the R12-P coating has also been studied (Fig. 5). Thus, for “as 

prepared” samples, no Zn 3s peak is observed and only the P 2p peak is seen (Fig. 5a). 

However, when this sample is immediately washed with acetone, the ratio of the areas of the 

P 2p peak to Zn 3s peaks is 3.1 to 1.0. However, after 10 days ageing, this ratio after acetone 
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rinsing increased to 14.7 to 1.0. This confirms that the amount of surface chemisorbed R12-P 

increases by more than three-fold after 10 days ageing relative to that immediately after 

deposition.  

 

3.5 Water contact angle (WCA) measurements 

Following cleaning, the WCA of the DX56 steel substrate was measured to be 54 ± 5o (Fig. 

6). Within experimental error, this did not change after TiO2 coating. In addition, acetone 

rinsing either the uncoated or TiO2-coated DX56 substrate did not change the WCA data. 

Functionalizing TiO2-coated DX56 substrates with R8-P or R18-P generated more 

hydrophobic surfaces (112 ± 7o and 91± 7o, respectively). Whilst the WCA of R8-P did not 

change on acetone rinsing, the R18-P coating became more hydrophobic after acetone rinsing 

(110 ± 4o). By comparison, the WCA of the R12-P coating is slightly more hydrophilic (47± 

5o) than the uncoated or TiO2 coated DX56 substrate but this value increases to 114 ± 7o after 

acetone rinsing. The absence of any Zn 3s peak in the “as deposited sample (Fig. 5a) suggests 

that more than a monolayer of R12-P is initially deposited. Because, in a multi-layer surface 

there are no surface sites available for the phosphonate linker groups, some will orient 

themselves away from the surface. The charged nature of these groups will inevitably reduce 

surface tension with the water droplet, which will reduce the WCA. However, acetone rinsing 

will remove excess, physisorbed R12-P or R18-P leaving an outer surface dominated by alkyl 

groups from chemisorbed phosphonates resulting in a more coherently hydrophobic surface. 

Such increases in WCAs after acetone rinsing are similar to those observed for 

alkylphosphonic acids on copper [4] and aluminium [35], carboxylic acids on mica [36], and 

alkylthiols on gold [37]. 

The wettability of aged R12-P coated substrates has also been investigated. From an 

initial value of 47± 5o, the WCA increased to 84 ± 10o (after 3 days), to 96 ± 11o (after 7 days) 

and to 103 ± 4o after 21d. The changing WCA suggests surface rearrangement of the 
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alkylphosphonates with time, which increases hydrophobicity. These observations are in line 

with the IR data that show a predominant change from physisorbed phosphonic acids to 

chemisorbed phosphonate esters. Driving these changes is the thermal energy present at 

ambient conditions (kT being ca. 2.5 kJ mol-1 at 25oC), which allows physisorbed material to 

diffuse across the surface to chemisorb to vacant surface sites. After 21 days ageing, within 

experimental error, the WCA did not vary after acetone rinsing. This suggests that whatever 

physisorbed material is present has had sufficient time to chemisorb and fill any vacant sites. 

Thus, whatever physisorbed material is removed by acetone washing leaves behind a surface 

with a homogeneous array of alkyl groups oriented perpendicular to the surface.  

To test how wear might affect WCA, a sample of DX56 was cleaned and the WCA 

found to be 64.0° ± 11.5°. After R12P had been deposited on this substrate, the WCA dropped 

to  50.8° ± 5.6° in line with other data for unaged samples. This surface was then polished 

using an Al2O3/water slurry abrasive to simulate wear and water the WCA of the surface 

changed to 68.1° ± 4.8°. This is similar to the WCA of uncoated DX56 substrate and is in line 

with the removal of physisorbed R12P by abrasion. 

 

4. Conclusions 

Our data show that phosphonic acids with alkyl chain lengths ranging from octyl to octadecyl 

(R8-P, R12-P and R18-P) rapidly deposit from solution onto TiO2-coated galvanized steel 

substrates as chemi- and physisorbed species. The as-deposited R8-P, R12-P and R18-P 

coatings lower substrate coefficients of friction (µ) and so increase lubricity relative to 

uncoated DX56 substrate. Whilst acetone washing removes physisorbed phosphonates and 

increases µ, leaving unwashed substrates to age under ambient conditions results in surface 

reorganization whereby IR and XPS data show that material becomes chemisorbed which 

increases WCA and lowers the µ. These data show that the surface loading and bonding of the 

phosphonates both influence lubricity. Furthermore, the negative correlation between WCA 
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and µ (i.e. more hydrophobic surfaces display lower coefficients of friction) is in line with a 

model that frictional forces are dissipated by the combined steric action of the phosphonate 

alkyl chains orientating themselves away from the substrate surface. Finally, confocal 

microscopy also confirms considerably less wear on phosphonate-coated samples making this 

approach a promising candidate for inducing inherent lubricity in sheet metal forming 

processes like deep drawing.  
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List of Figures 

Fig. 1 (a) Coefficients of friction (µ) versus distance for DX56 (red), TiO2-coated DX56 

(grey) and acetone-rinsed R8-P (yellow), R12-P (purple) and R18-P (blue) and (b) mean µ 

data showing errors.  Lighter shading denotes as deposited and darker shading denotes 

acetone-rinsed data. 

Fig. 2 Confocal micrographs of DX56 (a) before LFT and (b) after LFT and (c) R12-P 

coating after LFT and (d) surface topography line profiles of DX56 (i) before and (ii) after 10 

LFT passes; R8-P (iii) before and (iv) after 10 LFT passes; R12-P (v) before and (vi) after 10 

LFT passes and R18-P (vii) before and (viii) after 10 LFT passes 

Fig. 3 (a) Multi-pass LFT of uncoated DX56 (red), R12-P coated DX56 (blue) and acetone-

rinsed R12-P (green) after one, five, and ten LFT passes, (b) images of LFT flat tools (i) 

before and (ii) after ten passes of LFT with uncoated DX56 showing zinc flake at I, and (iii) 

after contact with R12-P coated DX56 after ten passes of LFT, and confocal micrographs 

after 10 LFT passes of (c) uncoated DX56, (d) R12-P and (e) acetone-rinsed R12-P. 

Fig. 4 IR spectra of the R12-P coating (a) after deposition and then aged for (b) 3d or (c) 7d. 

● υ C-H, ♣ δ CH2sciss., ▼ υ P=O, † υ P-O, γ δ O-H, β υ P-C, α δ CH2 rock. 
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Fig. 5 High resolution XPS spectra of the Zn 3s and P 2p binding energy regions on R12-P 

coated DX56 (a) as deposited, (b) acetone-rinsed immediately after R12-P deposition and (c) 

after 10d ageing prior to acetone rinsing.  

Fig. 6 (a) mean WCA data for the DX56, TiO2-coated DX56, R8-P, R12-P and R18-P (light 

shading = as deposited, dark shading = acetone rinsed) and WCA images for R12-P (b) as 

deposited, (c) after 3d and (d) after 21d. 
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HIGHLIGHTS  
 
Study of the tribological properties and ageing of alkyphosphonic acid films on 

galvanized steel 

 
Donald Hill, Peter J. Holliman, James McGettrick, Marco Appelman, Pranesh Chatterjee, 
Trystan M. Watson and David Worsley 
  

• the first report of tribological testing of alkylphosphonate coatings on automotive steel  
• the first example of tribological and chemical properties changing with sample age 

• detailed tribological and characterisation studies of the difference between physisorbed and 
chemisorbed coatings  

• detailed tribological testing of self-assembled coatings using multiple-pass linear friction 
testing 

• studies of the link between tribological performance and water contact angle as a means to 
accelerate tribological screening  

 
 


