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Modelling Spatially Varying Uncertainty in Composite
Structures using Lamination Parameters

C. Scarth∗ and S. Adhikari†

College of Engineering, Swansea University, Swansea, United Kingdom

An approach is presented for modelling spatially varying uncertainty in the ply orientations of composite

structures. Lamination parameters are used with the aim of reducing the required number of random

variables. Karhunen-Loève Expansion (KLE) is employed to decompose the uncertainty in each ply into a

sum of random variables and spatially dependent functions. An intrusive Polynomial Chaos Expansion is

proposed to approximate the lamination parameters while preserving the separation of the random and spatial

dependency. Closed-form expressions are derived for the expansion coefficients in two case studies; an initial

example in which uncertainty is modelled using random variables, and a second random field example. The

approach is compared against Monte Carlo Simulation results for a variety of layups, as well as closed-form

expressions for the mean and covariance. By summing the polynomial chaos basis functions through the

laminate thickness, the separation of the random and spatial dependency may be preserved at a laminate level,

and the number of random variables reduced for some minimum number of plies. The number of variables

increases nonlinearly with the number of KLE terms, and as such, the approach is only beneficial in low order

expansions using relatively few KLE terms.

Nomenclature

A = in-plane laminate stiffness matrix

âj = coefficient of Polynomial Chaos Expansion

a,b,c = constants used in ‘generic’ statistical expressions

C = covariance function

c = correlation length of random field

B = extension-bending coupling matrix

D = out-of-plane laminate stiffness matrix

D = spatial domain
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E = expectation operator

E11,E22 = longitudinal and transverse Young’s moduli

f,g = functions used in ‘generic’ statistical expressions

G12 = shear modulus

H = random field

Hp = univariate Hermite polynomial of order p

h = laminate thickness

L = length of spatial domain

M = moment resultants

m = number of Karhunen-Loève Expansion terms

N = stress resultants

n = number of plies

P = number of Polynomial Chaos Expansion terms

p = total polynomial order

Qij = reduced lamina stiffnesses

Ui = material invariants

X = response stochastic process

ui = normalised through-thickness coordinate of the upper surface of ith ply

x = vector of spatial coordinates

y = general vector-valued model output

zi = distance from laminate mid-plane to upper surface of ith ply

αj = multi-index with dictates the order of each univariate orthogonal polynomial

Γp = Polynomial Chaos Expansion of order p

ε0 = laminate mid-plane strains

ζj = standard Gaussian random variable

ηj = spatially dependent Karhunen-Loève Expansion terms

θi = ith ply orientation

κ = laminate curvatures

λj = Karhunen-Loève Expansion eigenvalue

ν12 = Poisson’s ratio
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ξA,B,D1−4 = lamination parameters

σ = ply orientation standard deviation

Υi = random variable used to represent uncertainty at a laminate level

φ = standard Gaussian Probability Density Function

ϕj = Karhunen-Loève Expansion eigenfunction

Ψj = jth orthogonal polynomial

ω = random event from space of possible outcomes

I. Introduction

Composite materials are being used to an increasing degree, due to a number of benefits including high

specific strength and stiffness, and anisotropy which may be exploited to tailor structural properties. While

mathematical models can predict behaviour to a high degree of accuracy, in practice all materials and processes are

subject to uncertainty. Composite materials require complicated manufacturing processes involving many constituent

components, and as such uncertainty can be introduced from a number of sources, such as the the volume fractions and

moduli of the fibres,1 fibre misalignment,2 and due to joining and machining techniques.3 Traditionally, uncertainty is

accounted for using safety factors andworst-case design scenarios, however, such approaches can be overly conservative,

and can inhibit the adoption of new technologies and techniques.4

The most commonly used uncertainty quantification technique is Monte Carlo Simulation (MCS), however, this

approach can be computationally expensive as a large number of model runs are required to achieve accurate results.5

It is therefore also common to use more efficient techniques such as Polynomial Chaos Expansion (PCE),6,7 however,

the computational effort required by such techniques is known to increase significantly with the number of random

variables. The analysis is further complicated when the uncertainty is modelled as random fields, due to the need to

discretise these fields. Random fields may be represented using random variables based upon their value at specific

spatial coordinates such as finite element midpoints, or using spatial averaging across each element, however, such

approaches are mesh dependent.8 In spectral techniques such as the Karhunen-Loève Expansion (KLE),6 the space

of possible outcomes under uncertainty is discretised, resulting in a sum of random variables and spatially dependent

functions. In each of the described approaches, modelling random fields can result in a considerable increase in

dimensionality compared with the corresponding random variable problem.

Composite material properties have been modelled extensively using random variables. For example, Monte

Carlo Simulation was used in,9 to model uncertainty in the aeroelastic response of a composite helicopter rotor blade

with uncertainty in the elastic moduli. A second-order perturbation technique was used in,10 to model buckling and
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supersonic flutter of laminated plates with uncertainty in the ply orientations, modulus and density, as well as loading

and geometric parameters. A similar analysis was undertaken by Oh and Librescu11 for the free vibration of cantilever

composite beams. Manan and Cooper12 used Polynomial Chaos Expansion to model flutter of a cantilever plate wing

with uncertainty in the moduli, ply orientations, and thickness. A non-intrusive Polynomial Chaos Expansion was used

by Umesh and Ganguli13 to model the vibration of smart laminated plates controlled using piezoelectric patches, with

uncertainty in the elastic moduli as well as two piezoelectric coefficients. More recently various surrogate models,

such as Kriging,14 RS-HDMR,15 Gram-Schmidt polynomial chaos expansion16 andArtificial Neural Network (ANN),17

have been used in the context of dynamic analysis of composite laminated plates with random parameters.

The application of random field methods to composite material properties was first undertaken by Engelstad and

Reddy,18 who modelled spatially-varying uncertainty in the ply orientations, thickness, and moduli. Random fields

were discretised using a Finite Element mesh, and the First Order Second Moment method used to model deflection of

a spherical shell, and postbuckling of a flat plate. In,19 Karhunen-Loève Expansion was combined with a Rayleigh Ritz

approach to model free vibration of cantilever plates. Taylor series expansions in the elastic moduli, Poisson’s ratio and

density were used to express the stiffness and mass matrices as a linear sum of contributions of from each KLE term,

thereby enabling the spatial dependency to be integrated directly into these matrices. The Spectral Stochastic Finite

Element Method was used in,20 in which KLE is used to represent random fields, Polynomial Chaos Expansion used

to model nodal displacements, and an intrusive formulation obtained for the stiffness and mass matrices. Murugan et

al.21 used a similar approach, in which KLE was used to expand laminate stiffness terms based upon uncertain elastic

moduli, and High Dimensional Model Representations were used to determine vibration frequency in the aeroelastic

analysis of a composite rotor blade. More recently, KLEwas used in conjunction with a non-intrusive polynomial chaos

formulation to model free vibration of composite laminates with spatially varying uncertainty in the ply orientations.22

A Stochastic Finite Element approach based upon Optimal Linear Expansion was proposed in23 for modelling non-

Gaussian distributed uncertainty in the elastic moduli and strength of composite laminates. An alternative approach

for modelling non-Gaussian fields was proposed24 in which Polynomial Chaos Expansion was combined with a series

of nonlinear transformations aimed at matching input marginal distributions at a discrete set of points, and used in the

failure analysis of composite laminates.

Lamination parameter were introduced by Miki,25,26 building upon the work of Tsai et al.,27 with further notable

contributions made by Fukunaga and Sekine.28 Given any composite laminate composed of layers with identical

material properties, the stacking sequence may be represented using a maximum of twelve lamination parameters,

and no more than eight lamination parameters for mid-plane symmetric laminates, with further reductions possible

through additional assumptions. The space of lamination parameters has been shown to be convex,29 and as such they

are commonly used in optimisation26,28, 30 due to this simplified design space. Lamination parameters can, however,

complicate the design process as they are not independent, but interrelated by complex relationships which define
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feasible regions, a comprehensive review of which may be found in.31

In many uncertainty quantification techniques, the computational effort increases with the number of random

variables, and as such it can be computationally expensive to model ply orientation uncertainty in composite laminates

with a large number of plies. Scarth et al.32 used lamination parameters to represent ply orientation uncertainty as

a small, fixed number of random variables regardless of the number of plies, in the uncertainty quantification of the

aeroelastic stability of composite plate wings. To date, the use of lamination parameters to represent uncertainty has

been limited to randomvariablemodels. In this paper, an approach is proposed for using lamination parameters tomodel

random fields, in which the ply orientation uncertainty is defined using Karhunen-Loève Expansion, and the lamination

parameters are approximated using an intrusive Polynomial Chaos Expansion. This approach is advantageous in

that it preserves the separation of the random and spatial terms under the nonlinear transformation which defines the

lamination parameters, while providing physical insight through closed-form expressions.

The paper is structured as follows. The lamination parameters are introduced in section II, Karhunen-Loève

Expansion and Polynomial Chaos Expansion are introduced in section III. In section IV, closed-form expressions are

derived for a PCE of the lamination parameters in a simple Gaussian distributed, random variable case study. These

expressions are compared against closed-form expressions of the mean and variance, and Monte Carlo estimates of the

Probability Density Functions (PDFs). In section V, the approach is extended to random fields, and compared against

Monte Carlo estimates of the marginal distributions and covariance functions of the field.

II. Introduction to Lamination Parameters

A composite laminate composed of n plies, with ith ply orientation denoted θi, is shown in Figure 1 along with

the geometry and coordinate systems used in this paper.

n

2L1

2L2

+

n

Figure 1: Composite laminate geometry and coordinate system.

In classical lamination theory,33 applied in-plane stress resultants N, and out-of-plane moment resultants M, are

related to mid-plane strains ε0, and curvatures κ, by

N

M

 =

A B

B D


ε

0

κ

 (1)
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where A, B, andD are the laminate in-plane, extension-bending coupling, and out-of-plane stiffness matrices respec-

tively. When using the lamination parameters,25,27 these stiffness matrices may be expressed as a linear function of the

lamination parameters, material invariants and laminate thickness, given by



A11

A12

A22

A66

A16

A26



= h



1 ξA1 ξA2 0 0

0 0 −ξA2 1 0

1 −ξA1 ξA2 0 0

0 0 −ξA2 0 1

0 ξA3 /2 ξA4 0 0

0 ξA3 /2 −ξA4 0 0





U1

U2

U3

U4

U5


(2)



B11

B12

B22

B66

B16

B26



=
h2

4



1 ξB1 ξB2 0 0

0 0 −ξB2 0 0

1 −ξB1 ξB2 0 0

0 0 −ξB2 0 0

0 ξB3 /2 ξB4 0 0

0 ξB3 /2 −ξB4 0 0





U1

U2

U3

U4

U5


(3)



D11

D12

D22

D66

D16

D26



=
h3

12



1 ξD1 ξD2 0 0

0 0 −ξD2 1 0

1 −ξD1 ξD2 0 0

0 0 −ξD2 0 1

0 ξD3 /2 ξD4 0 0

0 ξD3 /2 −ξD4 0 0





U1

U2

U3

U4

U5


(4)

where h is the laminate thickness, and the material invariants Ui are defined in terms of the reduced lamina stiffnesses,

Qij , as 

U1

U2

U3

U4

U5


=

1

8



3 2 3 4

4 0 −4 0

1 −2 1 −4

1 −6 1 −4

1 −1 2 4





Q11

Q12

Q22

Q66


(5)
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which are in turn defined as

Q11 = E2
11

/
(E11 − E22ν

2
12) (6)

Q22 = E11E22

/
(E11 − E22ν

2
12) (7)

Q12 = ν12Q22 (8)

Q66 = G12 (9)

where E11, E22, G12 and ν12 are the longitudinal, transverse and shear moduli, and the Poisson’s ratio respectively.

The lamination parameters are defined by the integrals

ξA[1,2,3,4] =
1

2

∫ 1

−1

[
cos(2θ(u)), cos(4θ(u)), sin(2θ(u)), sin(4θ(u))

]
du (10)

ξB[1,2,3,4] =

∫ 1

−1

[
cos(2θ(u)), cos(4θ(u)), sin(2θ(u)), sin(4θ(u))

]
udu (11)

ξD[1,2,3,4] =
3

2

∫ 1

−1

[
cos(2θ(u)), cos(4θ(u)), sin(2θ(u)), sin(4θ(u))

]
u2du (12)

where θ(u) is the distribution of the ply orientations with respect to normalised through-thickness coordinate u = 2z/h.

In practice, the integrals defined in Eqs. (10-12) reduce to finite summations of discrete, ply-level properties. For

the sake of brevity, a ‘general’ lamination parameter ξlk is used throughout this paper, which is defined using such a

discrete sum, as

ξlk =
1

2

n∑
i=1

f(aθi)(u
b
i+1 − ubi ) (13)

where k ∈ {1, 2, 3, 4}, l ∈ {A,B,D}, and

a =


2 if k ∈ {1, 3}

4 if k ∈ {2, 4}
, b =



1 if l = A

2 if l = B

3 if l = D

(14)

and

f(x) =


cos(x) if k ∈ {1, 2}

sin(x) if k ∈ {3, 4}
(15)

where n is the number of plies and ui denotes the normalised through-thickness coordinate of the upper surface of the

ith ply, noting that un+1 denotes the coordinate of the lower surface of the laminate.

A maximum of twelve lamination parameters are required regardless of the number of plies. If the laminate is
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mid-plane symmetric, ξB1−4 are zero and a total of eight parameters are required. If the laminate is balanced, ξA3−4

are eliminated and ξD3−4 are small and commonly ignored, while ξD3−4 may be eliminated entirely by using an anti-

symmetric layup. Furthermore, it is common to restrict the plies to a discrete set of 0◦, ±45◦, and 90◦ orientations, in

which case ξA,B,D4 = 0.

III. Representation of Uncertainty

A. Karhunen-Loève Expansion

A random field,H(x, ω), may be defined as a collection of random variables indexed by continuous spatial parameter

x ∈ D, where spatial domain D is an open set on Rd which defines the geometry of the structure, and ω ∈ Ω is a

set of possible outcomes taken from the sample space Ω. At a given spatial coordinate, x0, H(x0, ω) is a random

variable, whereas for a given outcome, ω0, H(x, ω0) defines a deterministic realisation of the field.8 For practical

applications it is necessary to discretise the field into a finite set of random variables, which is commonly achieved

using Karhunen-Loève Expansion (e.g.6,19–22).

Supposing that the randomfield is characterised by a symmetric and positive-definite covariance function,C(x,x′),

it may be represented by spectral decomposition, and expressed as a generalised Fourier series as

H(x, ω) = H0(x) +

∞∑
j=1

√
λjζj(ω)ϕj(x) (16)

where the ζj(ω) form a set of uncorrelated random variables and (•)0 is used to denote the deterministic value of (•)

throughout this paper. If H(x, ω) is a Gaussian random field, ζj are independent Gaussian random variables. The

constants λj and functions ϕj(x) correspond to the eigenvalues and eigenfunctions of the integral

∫
D
C(x,x′)ϕj(x)dx = λjϕj(x

′) ∀ j = 1, 2, . . . (17)

The eigenvalues may be sorted into a decreasing series converging upon zero, and as such it is possible to truncate

the expansion after the mth term to obtain a finite-dimensional approximation of the field. The KLE separates the

randomness from the spatial dependency, and as such enables the spatial functions to be integrated directly into system

matrices in subsequent analysis.

In this paper, a random field with exponentially decaying covariance function is assumed, which is defined as

C(x,x′) = e−‖x−x
′‖/c (18)

where c is the correlation length, a measure of the typical length-scale of variations. A small correlation length results in
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a field which varies substantially over small distances, tending to white noise as c approaches zero. Conversely, a large

correlation length results in a field which does not vary significantly over the spatial domain, tending towards a random

variable as c approaches infinity. Modelling a random field with small correlation length typically requires a greater

number of KLE terms, consequentially increasing the dimensionality of the problem. For an exponential covariance

function, a closed-form solution of the eigenvalue problem in Eq. (17) may be found in.6 Using this expression,

example realisations of a one-dimensional random field are shown for different correlation lengths in Figure 2.

0 0.25 0.5 0.75 1
-3

-2

-1

0

1

2

3

x

H
(x

,w
)

Baseline Value

Field Realisation

(a) c = 2L (8 terms)

0 0.25 0.5 0.75 1
-3

-2

-1

0

1

2

3

x

H
(x
,w
)

(b) c = L/2 (20 terms)

0 0.25 0.5 0.75 1
-3

-2

-1

0

1

2

3

x

H
(x
,w
)

(c) c = L/20 (130 terms)

Figure 2: Example random field realisations obtained using Karhunen-Loève Expansion

B. Polynomial Chaos Expansion

Polynomial Chaos Expansion is commonly used to propagate parametric uncertainty through mathematical models

(e.g.12,20, 22, 32). In this approach, a second-order stochastic process, X(ω), is represented as a series of orthogonal

polynomials in a set of basic random variables, expressed as6,7

X(ω) = a0Γ0 +

∞∑
i1=1

ai1Γ1(ζi1(ω)) +

∞∑
i1=1

i1∑
i2=1

ai1i2Γ2(ζi1(ω), ζi2(ω))

+

∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3Γ3(ζi1(ω), ζi2(ω), ζi3(ω)) + · · · (19)

where ai1,...,ip are deterministic coefficients, and Γp(ζi1 , . . . , ζip) is the polynomial chaos of order p in multivariate

random variable ζ = {ζi1 , . . . , ζip}. If ζ is composed of independent, standard Gaussian variables, the Γp terms are

given by the Hermite polynomials, which are defined as

Hp(ζi1 , . . . , ζip) = (−1)p
∂e−

1
2ζ
T ζ

∂ζi1 , . . . , ∂ζip
e

1
2ζ
T ζ (20)

If the random variables are non-Gaussian, the polynomial chaos may be formed of a different set of orthogonal

polynomials depending on the input distribution and its support. For example, Legendre polynomials may be used for
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uniformly distributed inputs, or Laguerre polynomials for gamma distributed variables.7 For notational convenience,

Eq. (19) is often more concisely written as

X(ω) =

∞∑
j=0

âjΨj(ζ(ω)) (21)

where there is a one-to-one correspondence between Γp(ζi1 , . . . , ζip) and Ψj(ζ), as well as ai1,...,ip and âj . The

polynomials, Ψj(ω)∞j=1, form a complete orthogonal basis with respect to ζ, and can therefore guarantee exponential

convergence with increasing polynomial order, as well as possessing the following useful properties

Ψ0 = 1 (22)

E[Ψj(ω)] = 0 (23)

E[Ψj(ω)Ψk(ω)] = δjkE[Ψj(ω)2] (24)

where δjk is the Kronecker delta, defined as

δjk =


1 if j = k

0 otherwise

(25)

and E[ζ] denotes the expectation operator, which is evaluated as

∫
S

ζf(ζ)dζ (26)

where S is the support of random variable ζ, defined in Rn, where n is the dimension of the random variable.

In practice, Eq. (21) is truncated to P terms, which introduces an error. The unknown coefficients may be

determined by minimising this error in a mean-square sense, which is equivalent to setting the residual as orthogonal

to the basis polynomials. Supposing the expansion represents random vector y, this condition may be expressed as

E

[(
y −

P−1∑
j=0

âjΨj(ω)

)
Ψk(ω)

]
= 0, ∀ k = 0, . . . , P − 1 (27)

Due to the orthogonality of polynomials, Eq. (27) is simplified, and the vector-valued coefficients are given by

âj =
E[y(ω)Ψj(ω)]

E[Ψj(ω)2]
(28)

In an intrusive Polynomial Chaos Expansion, closed form expressions are sought for the numerator of Eq. (28). The

denominator is a normalising coefficient, the calculation of which is trivial. Realisations of y may be simulated using
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the basis functions, Ψj(ω), and the mean vector and covariance matrix may be determined as

E[y(ω)] = â0 (29)

cov[y(ω),y(ω)] =

P−1∑
j=1

E[Ψj(ω)2]âjâ
T
j (30)

In this paper, the outlined approach is used to approximate the distributions of all twelve lamination parameters,

grouped together as a vector, ξ = {ξA1 , . . . , ξD4 }T . In the subsequent sections, two cases are presented in which the

ply orientations are modelled as Gaussian random variables, and random fields respectively.

IV. Uncertainty Modelling Using Random Variables

A. Intrusive Expansion for the Lamination Parameters

In this section, closed-form expressions are derived for the coefficients of an intrusive Polynomial Chaos Expansion for

the lamination parameters. These coefficients are twelve-dimensional vectors with a component corresponding to each

lamination parameter. For the sake of brevity, full derivations are included only for the first component of each vector,

which corresponds to ξA1 , before general expressions are presented for the ‘general’ lamination parameter introduced

in Section II.

The ply orientations are assumed to be Gaussian distributed random variables. For use in a Polynomial Chaos

Expansion, it is necessary to define these ply orientations as a function of standard Gaussian variables with zero mean

and unit variance, which may be expressed as

θi(ω) = θi0 + σζi(ω) (31)

where θi0 is the deterministic orientation of the ith ply, ζi(ω) is a standard Gaussian random variable, and σ is the

standard deviation of the ply orientations. The intrusive expansion requires that closed-form expressions are obtained

for the expectation in the numerator of Eq. (28). Using Eq. (13) this expectation may be written for ξA1 as

E[ξA1 (ω)Ψj(ω)] =
1

2

∫ ∞
−∞
· · ·
∫ ∞
−∞

( n∑
i=1

cos(2θi(ω))(ui+1 − ui)
)

Ψj(ω)φ(ζ)dζ1, . . . ,dζn (32)

where φ(ζ) is the multivariate Gaussian PDF and n is the number of plies. The Ψj(ω) terms are multivariate

polynomials in ζ, which may be expanded as the product of n univariate Hermite polynomials Hp(ζj) using

Ψj(ω) =

n∏
i=1

Hαij (ζi(ω)) (33)
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where αij is an element of a multi-index which governs the order of the ith univariate polynomial in the jth basis

function. This multi-index is defined as

αj = {α1j , . . . , αnj}, where αij ∈ {0, 1, . . . , p}, subject to
n∑
i=1

αij ≤ p (34)

where p is the maximum total order of the polynomials. Expanding the basis polynomials and exploiting the indepen-

dence of the random variables, Eq. (32) may be expanded as

E[ξA1 (ω)Ψj(ω)] =
1

2

n∑
i=1

(ui+1 − ui)
∫ ∞
−∞

Hαij (ζi) cos(2θi(ω))φ(ζi)dζi

n∏
k=1,k 6=i

∫ ∞
−∞

Hαkj (ζk)φ(ζk)dζk (35)

Using Eq. (23), it can be seen that Eq. (35) is zero in all cases in which more than one of the αij terms is greater than

zero, and is otherwise given by

E[ξA1 (ω)Ψj(ω)] =


1
2

∑n
i=1(ui+1 − ui)

∫∞
−∞ cos(2θi(ω))φ(ζi)dζi if αij = 0 ∀ i

1
2 (ui+1 − ui)

∫∞
−∞Hαij (ζi) cos(2θi(ω))φ(ζi)dζi otherwise

(36)

The cases in which multiple of the αij are greater than zero, correspond to polynomials which capture the effects

of the interaction between uncertainty in different ply orientations. The above observation indicates that due to the

orthogonality of the polynomials, these interactions are all zero. Similar properties are exhibited by all orthogonal

polynomials in theAskey scheme, and as such, this observation is also true for non-Gaussian distributed ply orientations.

It is therefore possible to express the PCE as a weighted sum of univariate orthogonal polynomials, summed over all

of the plies of the laminate. As such, the number of random variables scales linearly with the number of plies.

Substituting Eq. (31) into the first case of Eq. (36), along with the definition of the Gaussian distribution, the first

term of the expansion may be evaluated as

E[ξA1 (ω)Ψ0(ω)] =
1

2
√

2π

n∑
i=1

(ui+1 − ui)
∫ ∞
−∞

cos(2θi0 + 2σζi)e
− 1

2 ζ
2
i dζi

=
1

2
√

2π

n∑
i=1

(ui+1 − ui)
∫ ∞
−∞

(
cos(2θi0) cos(2σζi)− sin(2θi0) sin(2σζi)

)
e−

1
2 ζ

2
i dζi

=
1

2
e−2σ

2
n∑
i=1

(ui+1 − ui) cos(2θi0) = e−2σ
2

ξ1
A
0 (37)

The sin(2σζi) term originates from the application of the compound angle formula to Eq. (31), and is eliminated

from the integral due to symmetry. The first expansion coefficient is therefore given by the deterministic lamination

parameter value, denoted ξ1A0 , scaled by a factor which decreases exponentially with the ply orientation variance.

A similar process is used to determine the remaining coefficients of the expansion, which are given by the second
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case of Eq. (36). The compound angle formulae is applied as above, and due to symmetry the cos(2σζj) and sin(2σζj)

terms are eliminated for the coefficients corresponding to odd and even polynomials respectively. The coefficients

therefore have different values for odd and even j, which can be shown to be given by

E[ξA1 (ω)Hj(ζi(ω))] =
1

2
√

2π
(ui+1 − ui)

∫ ∞
−∞

(
cos(2θi0) cos(2σζi)− sin(2θi0) sin(2σζi)

)
e−

ζ2i
2 Hj(ζi)dζi

=


−(ui+1 − ui) sin(2θi0)σ(−4σ2)

j−1
2 e−2σ

2

if j is odd

1
2 (ui+1 − ui) cos(2θi0)(−4σ2)

j
2 e−2σ

2

if j is even

(38)

It is also necessary to determine the normalising factor given by the denominator of Eq. (28). For univariate Hermite

polynomials, it can be shown that this factor is given by

E[Hj(ζi(ω))2] = j! (39)

The complete Polynomial Chaos Expansion is therefore given by

ξA1 (ω) ≈ e−2σ
2

(
ξ1
A
0 −

1

2

b p+1
2 c∑
j=1

2σ(−4σ2)j−1

(2j − 1)!

n∑
i=1

(ui+1 − ui) sin(2θi0)H2j−1(ζi(ω))

+
1

2

b p2 c∑
j=1

(−4σ2)j

(2j)!

n∑
i=1

(ui+1 − ui) cos(2θi0)H2j(ζi(ω))

)
(40)

where b•c denotes the floor operator, which rounds down to the nearest integer. Noting that the PCE described in

Section B is used to represent a twelve-dimensional vector of lamination parameters, the above analysis can be repeated

to obtain the component of this vector corresponding to ‘general’ lamination parameter, ξlk, as

ξlk(ω) ≈ e− 1
2a

2σ2

(
ξk
l
0 +

1

2

b p+1
2 c∑
j=1

aσ(−a2σ2)j−1

(2j − 1)!

n∑
i=1

(ubi+1 − ubi )g(aθi0)H2j−1(ζi(ω))

+
1

2

b p2 c∑
j=1

(−a2σ2)j

(2j)!

n∑
i=1

(ubi+1 − ubi )f(aθi0)H2j(ζi(ω))

)
(41)

where a, b, f , k and l are as defined in relation to Eq. (13), and

g(x) =


− sin(x) if k ∈ {1, 2}

cos(x) if k ∈ {3, 4}
(42)

The basis functionsHj(ζi(ω)) are shared between all components of the vector, andmay be used to simulate realisations

of the lamination parameters. By using the proposed approach, a set of n ply orientations are instead represented using
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a set of n × p random variables. The number of variables is by definition greater than or equal to the number of ply

orientations, and as such, this formulation is not a useful representation of the uncertainty.

B. Statistical Properties of the Lamination Parameters

1. Overview

In the following sections, numerical results are obtained using the expansions derived in the previous section, and are

compared against results for the lamination parameters themselves. Exact closed-form expressions are derived for the

mean and variance, and are compared against polynomial chaos approximations. Emulated PDFs are subsequently

compared against Monte Carlo Simulation results for lamination parameters corresponding to various layups. To

the knowledge of the authors, there is very little experimental data available for the statistical properties of the ply

orientations, which depend not only upon the material, but also the manufacturing process. As such, throughout this

paper, numerical results are obtained for a range of standard deviations of 1◦, 2.5◦, and 5◦, in order to investigate

changes in behaviour with different assumptions. The large value of 5◦ is chosen to highlight errors when modelling

larger deviations in ply orientations.

2. Exact Closed-Form Expressions

In this section, closed form expressions are derived for the mean, variance, and covariance of the lamination parameters.

For the sake of brevity, full derivations are only included for the variance of ξA1 , and covariance of ξA1 with ξA2 . In each

case the ply orientations are assumed to be Gaussian distributed, as expressed in Eq. (31).

As the expectation of a sum is equal to the sum of expectations, it is trivial to show that the mean of general

lamination parameter ξlk, is given by

E[ξlk(ω)] =
1

2
e−

1
2a

2σ2
n∑
i=1

(ubi+1 − ubi )f(aθi0) = e−
1
2a

2σ2

ξk
l
0 (43)

which is identical to the first term of the Polynomial Chaos Expansion in Eq. (41). By using the well-known Bienaymé

formula, the variance of a sum may be expanded as the sum of variances, and the variance of ξA1 expanded as

Var[ξA1 (ω)] = Var

[
1

2

n∑
i=1

(ui+1 − ui) cos(2θi0 + 2σζi(ω))

]

=
1

4

n∑
i=1

(ui+1 − ui)2
(
E
[

cos2(2θi0 + 2σζi(ω))
]
− E

[
cos(2θi0 + 2σζi(ω))

]2) (44)

Using the fact that cos2(2θ) = 1
2 (1 + cos(4θ)), and exploiting the trends in expectation noted in Eq. (43), the
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expectations in Eq. (44) may be evaluated to give the variance as

Var[ξA1 (ω)] =
1

8

n∑
i=1

(ui+1 − ui)2
(
1− e−4σ

2

− cos(4θi0)e−4σ
2

+ cos(4θi0)e−8σ
2)

(45)

A similar approach may be used to determine the covariance between ξA1 and ξA2 , which is first expressed as

cov[ξA1 (ω), ξA2 (ω)] =
1

4

n∑
i=1

(ui+1 − ui)2
(
E
[

cos(2θi0 + 2σζi(ω)) cos(4θi0 + 4σζi(ω))
]

−E
[

cos(2θi0 + 2σζi(ω))
]
E
[

cos(4θi0 + 4σζi(ω))
])

(46)

and using the fact that cos(2θ) cos(4θ) = cos(6θ + 2θ), as well as the previously noted trends in expectation, the

covariance is evaluated as

cov[ξA1 (ω), ξA2 (ω)] =
e−2σ

2

8

n∑
i=1

(ui+1 − ui)2(cos(2θi0)(1− e−8σ
2

) + cos(6θi0)(e−16σ
2

− e−8σ
2

)) (47)

In a similar fashion, a general covariance term may be obtained as

cov[ξl1k1(ω), ξl2k2(ω)] =
1

8
e−

1
2 (a2−a1)

2σ2(
1− e−a1a2σ

2)
×

n∑
i=1

(
ub1i+1 − u

b1
i

)(
ub2i+1 − u

b2
i

)(
f
(
(a2 − a1)θi0

)
+ (−1)cf

(
(a2 + a1)θi0

)
e−a1a2σ

2
)

(48)

where a1, a2, b1 and b2 are defined as in Eq. (14) using the values of k1, k2, l1 and l2 respectively, and

c =


0 if k1 ∈ {3, 4} and k2 ∈ {3, 4}

1 otherwise

(49)

and f(x) is redefined as

f(x) =


sin(x) if k1 ∈ {1, 2} and k2 ∈ {3, 4}, or k1 ∈ {3, 4} and k2 ∈ {1, 2}

cos(x) otherwise

(50)

The above closed-form expressions section are now used to investigate trends with varying ply orientation, θ, in

a number of parameterised layups. Assuming a ply orientation standard deviation of 2.5◦. Trends in the mean and

standard deviation of the out-of-plane lamination parameters of a single ply laminate, [θ], a two-ply anti-symmetric

laminate [θ,−θ], and a four-ply symmetric laminate [θ,−θ]S are shown in Figures 3 and 4 respectively.

The mean trends in Figure 3 simply follow deterministic trends in the lamination parameters, weighted by a
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Figure 3: Trends in the out-of-plane lamination parameter mean with varying ply orientation

factor which decreases exponentially with the ply orientation variance. The plots for ξD1 and ξD2 are identical for all

parameterisations demonstrating that the mean is not affected by the number of plies. As in a deterministic laminate,

the mean of ξD3 and ξD4 which govern bend-twist coupling, reduces with the number of plies in a balanced laminate

such as the [θ,−θ]S example, and is zero for the anti-symmetric laminate.

The plots in Figure 4 follow weighted curves of 1− cos(4θ), 1− cos(8θ), 1 + cos(4θ) and 1 + cos(8θ), for ξD1−4

respectively. For all values of θ, the standard deviation decreases with an increasing number of plies due an averaging

effect in which uncertainty in the different plies cancel each other out. The standard deviation varies considerably with

the layup, and plots such as those in Fig 4 may be used to gain insight into how to tailor composite laminates to be less

sensitive to uncertainty. For example, the bending stiffnessD11 is maximised by 0◦ plies with ξD1 = 1, which can also

be seen to minimise the variability in ξD1 . The torsional stiffness, D66, is maximised by ±45◦ plies with ξD2 = −1,

which also minimises variability in ξD2 , however, this also maximises the variability in ξD1 and therefore the bending

stiffness. Bend-twist coupling, which is governed by ξD3−4, is often undesirable, however, minimising ξD3 by using 0◦

and 90◦ plies results in maximising the variability in this parameter. It should also be noted that standard deviations

of ξD3−4 for the anti-symmetric example follow the same trends as the other laminates, despite the fact that bend-twist

coupling is eliminated in a deterministic analysis of such laminates.
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Figure 4: Trends in the out-of-plane lamination parameter standard deviation with varying ply orientation

3. Polynomial Chaos Expansion Approximations

In the previous section, a closed-form expression was derived for a general lamination parameter covariance term. In

this section, example PCE approximations of the lamination parameter variance and covariance are derived and used

to investigate the convergence of the expansion with increasing order.

The Polynomial Chaos Expansion approximation of the variance of ξA1 may be obtained using Eq. (30). By

squaring each of the expansion coefficients and using the double angle formulae, along with the result of Eq. (39), the

alternating series of sin and cos terms in Eq. (40) simplifies to a series of cos terms, to give the variance as

Var[ξA1 (ω)] ≈ e−4σ
2

8

p∑
j=1

(4σ2)j

(j!)

n∑
i=1

(ui+1 − ui)2(1 + (−1)j cos(4θi0)) (51)

Noting that the Taylor series definition of the exponential function is given by

ex =

∞∑
i=0

xi

i!
(52)
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as the order of the Polynomial Chaos Expansion tends to infinity, Eq. (51) converges to

Var[ξA1 ](ω) =
e−4σ

2

8

n∑
i=1

(ui+1 − ui)2(e4σ
2

− 1 + (e−4σ
2

− 1) cos 4θi0) (53)

which can be seen through basic algebra to be identical to Eq. (45), and as such the Polynomial Chaos approximation

of the variance converges towards the true value with increasing expansion order.

In a similar analysis, Polynomial Chaos Expansion may be used to approximate the covariance of ξA1 and ξA2 as

cov[ξA1 (ω), ξA2 (ω)] ≈ e−10σ
2

4

( b p+1
2 c∑
j=1

(8σ)2j−1

((2j − 1)!)2

n∑
i=1

(ui+1 − ui)2 sin(2θi0) sin(4θi0)E[H2j−1(ω)2]

+

b p2 c∑
j=1

(8σ)2j

((2j)!)2

n∑
i=1

(ui+1 − ui)2 cos(2θi0) cos(4θi0)E[H2j(ω)2]

)

=
e−10σ

2

8

p∑
j=1

(8σ)j

j!

n∑
i=1

(ui+1 − ui)2(cos(2θi0) + (−1)j cos(6θi0)) (54)

As in the previous example, using the Taylor series definition of the exponential function, it is possible to show that

this expression converges to that expressed in Eq. (47) as the expansion order tends to infinity.

In order to further investigate the convergence of the PCE, Figure 5 shows estimates of the standard deviation of the

out-of-plane lamination parameters of a [0, 90,±45]S laminate with increasing expansion order, alongside the natural

log of the error relative to the closed-form solution from Eq. (48).
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Figure 5: Convergence of out-of-plane lamination parameter standard deviation for a [0, 90,±45]S laminate, with
different values of ply orientation standard deviation

A good agreement is achieved between the Polynomial Chaos and closed-form expressions of the standard deviation

for relatively low expansion order, with the relative error decreasing on an exponential scale for increasing order. An

accurate approximation is achieved for ξD3−4 using a 1st order expansion, which suggests that these parameters are

approximately Gaussian, whereas a 2nd order expansion is required for ξD1−2. From Eq. (41), it can be seen that the
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1st order coefficients of the PCE for ξD2 are factored by sin(4θi0), which are zero for orientations of 0◦, ±45◦, and

90◦. It is therefore possible to reduce the number of parameters by making restrictions to the layup, as is the case for a

deterministic analysis. It is for this reason that a minimum 2nd order expansion is required to model this parameters,

and for the stepped convergence in error which is especially notable for ξD2 . It can also be noted that the relative error

is higher for the examples with a larger ply orientation standard deviation, and as such, higher order expansions may

be required to model such behaviour.

4. Simulation of the Lamination Parameters

In this section, the proposed approach is used to estimate lamination parameter PDFs, which are compared with

results of a Monte Carlo Simulation. PDFs for the out-of-plane lamination parameters of a [0, 90,±45]S laminate

are shown in Figure 6, assuming a ply orientation standard deviation of 2.5◦. In order to compare the PDFs of the

in-plane, extension-bending coupling, and out-of-plane lamination parameters, a similar exercise is undertaken for

the PDFs of ξA2 , ξB2 and ξD2 of a [0]8 laminate in Figure 7, assuming a ply orientation standard deviation of 5◦ so

as to investigate convergence with a larger magnitude of uncertainty. Additionally, scatter plots of different sets of

out-of-plane lamination parameters are shown in Figure 8 for the 4th order PCE of a [02, 902]S laminate, in order to

investigate the ability to model correlated behaviour.

The results in Figure 6 reflect observations made in the previous section in relation to the [0, 90,±45]S laminate,

in that the PDFs of ξD3−4 are approximately Gaussian, and as such, a 1st order expansion is sufficient to model these

parameters. The convergence with increasing order is most evident for ξD1 , in which a substantial improvement is

achieved in using a 2nd order in favour of a 1st order expansion. In general, a 2nd order expansion is adequate to

model all of the behaviour in this example. As discussed previously, some of the expansion coefficients are zero due a

dependency on sin(4θi0), and as such, plots corresponding to these coefficients are omitted from Figure 6.

Odd-valued expansions are omitted from Figure 7, as these depend upon sin(2θi0) which is zero for 0◦ plies. As

in the previous case, a 2nd order expansion provides a reasonable agreement with the Monte Carlo results, however,

a small improvement is achieved by using a 4th order expansion. This higher required order may be attributed to

the higher standard deviation used for the ply orientations. The requirement of a 4th order expansion for the highest

accuracy may also be attributed to the fact that the 3rd order coefficients are zero, however, this result also means

that the 4th order expansion only requires two sets of coefficients. As such, it is difficult to make general statements

regarding the required expansion order and number of expansion coefficients, as these depend upon the layup.

Finally, from Figure 8 it can be seen that the out-of-plane lamination parameters of the [02, 902]S laminate are

highly correlated, and that this correlation is non-Gaussian. The 4th order Polynomial Chaos Expansion used in the

example can be seen to give a good description of this correlation.
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Figure 6: Convergence of out-of-plane lamination parameter PDFs for a [0, 90,±45]S laminate
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Figure 7: Convergence of in-plane, coupling, and out-of-plane lamination parameter PDFs for a [0]8 laminate

V. Uncertainty Modelling Using Random Fields

A. Intrusive Expansion for Spatially Varying Lamination Parameters

Closed-form expressions are derived for the coefficients of a Polynomial Chaos Expansion for the lamination parameters,

in which the ply orientations are modelled as Gaussian random fields. The analysis follows the approach taken in the

random variable case study, with the ply orientations initially defined using a Karhunen-Loève Expansion. It should be
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Figure 8: Comparison of scatter plots for the out-of-plane lamination parameters of a [02, 902]S laminate

noted that such an approach is only valid for Gaussian random fields. To extend the approach to non-Gaussian fields, it

would be necessary to undertake a nonlinear transformation in order to target the non-Gaussian marginal distributions

and covariance function.23,24, 34, 35

Using a Karhunen-Loève Expansion, the definition of the ply orientations in Eq. (31) may be rewritten as

θi(ω,x) = θi0 + σ

m∑
j=1

√
λjϕj(x)ζij(ω) = θi0 + σ

m∑
j=1

ηj(x)ζij(ω) (55)

where λj , ζj(ω), and ϕj(x) are as defined in Eq. (16), and ηj(x) is introduced to group together the non-random

parts of each KLE term for the sake of conciseness. The lamination parameters are approximated as a sum of basis

polynomials, Ψq(ω) inm× n random variables, which are expressed as

Ψq(ω) =

n∏
i=1

m∏
j=1

Hαijq (ζij(ω)) (56)

where multi-index αijq is modified from Eq. (34) to dictate the order of the polynomial corresponding to the jth KLE

term in the ith ply, in the qth basis function.

Expansion coefficients for ξA1 may once again by derived by setting the residuals as orthogonal to the basis functions

in line with the numerator of Eq. (28), which may be expressed as

E[ξA1 (ω,x)Ψq(ω)] =
1

2

n∑
i=1

(ui+1 − ui)E
[

cos(2θi(ω,x))

n∏
j=1

Hαijq (ζij(ω))

] n∏
k=1
k 6=i

m∏
j=1

E[Hαkjq (ζkj(ω))] (57)

As in the random variable case study, this expectation is zero in all cases in which αijq is greater than zero for multiple

values of i, and the coefficients which model the interaction between different plies are all zero. In all other cases the
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expectation is given by

E[ξA1 (ω,x)Ψq(ω)] =


1
2

∑n
i=1(ui+1 − ui)E[cos(2θi(ω,x))] if αijq = 0 ∀ i, j

1
2 (ui+1 − ui)E

[
cos(2θi(ω,x))

∏m
j=1Hαijq (ζij(ω))

]
for i s.t.

∑m
j=1 αijq > 0

(58)

It should be noted that this expression differs from that in Eq. (36), in that there are interactions between the different

KLE terms within each ply. Uncertainty in the different plies is represented using an identical set of polynomials, and

as such, the i may be dropped in the subscript of multi-index α.

Starting with the second case of Eq. (58), the expectation may be expanded by exploiting the independence of the

random variables, and using the compound angle formulae to obtain

E[ξA1 (ω,x)Ψq(ω)] =
1

2
(ui+1 − ui)

×
(

E
[

cos
(
2ση1(x)ζi1(ω)

)
Hα1q (ζi1(ω))

]
E

[
cos

(
2θi0 + 2σ

m∑
j=2

ηj(x)ζij(ω)

) m∏
j=2

Hαjq (ζij(ω))

]

−E
[

sin
(
2ση1(x)ζi1(ω)

)
Hα1q

(ζi1(ω))
]
E

[
sin

(
2θi0 + 2σ

m∑
j=2

ηj(x)ζij(ω)

) m∏
j=2

Hαjq (ζij(ω))

])
(59)

In Eq. (59), the first KLE term is separated into its own univariate expectation. Noting that ζ1j(ω) is a standardGaussian

variable, the expectation of the sin(2ση1(x)ζi1(ω)) term is zero due to symmetry for even order polynomials, whereas

the cos(2ση1(x)ζi1(ω)) term is zero for odd order polynomials. As such, it is always possible to discard one of the

terms resulting from the compound angle formulae. This process may be repeated to simplify the resulting expression

as the product of the expectation of different univariate Hermite polynomials governed by Hαjq , factored by the

corresponding sin or cos term. These expectations are given by

E
[

sin
(
2σηj(x)ζij(ω)

)
Hαjq (ζij(ω))

]
=


2σ(−4σ2)

αjq−1

2 ηj(x)αjqe−2σ
2ηj(x)

2

if αjq is odd

0 if αjq is even

(60)

and

E
[

cos
(
2σηj(x)ζij(ω)

)
Hαjq (ζij(ω))

]
=


0 if αjq is odd

(−4σ2)
αjq
2 ηj(x)αjqe−2σ

2ηj(x)
2

if αjq is even

(61)

The first case of Eq. (58), corresponding to the first expansion coefficient α̂0, is a specific example of Eq. (59) with
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αj0 = 0∀ j, summed over every ply of the laminate. This coefficient is therefore given by

E[ξA1 (ω,x)Ψ0(ω)] =
1

2

n∑
i=1

(ui+1 − ui) cos(2θi0)

m∏
j=1

E
[

cos(2σηj(x)ζij(ω))
]

= ξ1
A
0 e
−2σ2 ∑m

j=1 ηj(x)
2

(62)

which is simply the expression given in Eq. (37) for the random variable case study, with additional factors due to the

contribution of the KLE eigenvalues and eigenfunctions to the variance of the approximated random field.

To complete the expansion, expressions are required for the normalising coefficients given by the denominator of

Eq. (28). Noting that it is necessary to account for the interactions between the different KLE terms, and using the

result from Eq. (39), the normalising coefficients can be shown to be given by

E

[ m∏
j=1

Hαjq (ζij(ω))2
]

=

m∏
j=1

αjq! (63)

The Polynomial Chaos Expansion for ξA1 (ω,x) can therefore be expressed as

ξA1 (ω,x) ≈ e−2σ
2 ∑m

j=1 ηj(x)
2

×

(
ξ1
A
0 −

1

2

∑
αq∈α
|αq| is odd

2σ(−4σ2)
|αq|−1

2

(
m∏
j=1

ηj(x)αjq

αjq!

)
n∑
i=1

(ui+1 − ui) sin(2θi0)

m∏
j=1

Hαjq (ζij(ω))

+
1

2

∑
αq∈α
|αq| is even

(−4σ2)
|αq|

2

(
m∏
j=1

ηj(x)αjq

αjq!

)
n∑
i=1

(ui+1 − ui) cos(2θi0)

m∏
j=1

Hαjq (ζij(ω))

)
(64)

where |αk| =
∑m
j=1 αjk. Following the same process, the Polynomial Chaos Expansion for general lamination

parameter ξlk(ω) may be derived as

ξlk(ω,x) ≈ e−
1
2a

2σ2 ∑m
j=1 ηj(x)

2

×

(
ξk
l
0 +

1

2

∑
αq∈α
|αq| is odd

aσ(−a2σ2)
|αq|−1

2

(
m∏
j=1

ηj(x)αjq

αjq!

)
n∑
i=1

(ubi+1 − ubi )g(aθi0)

m∏
j=1

Hαjq (ζij(ω))

+
1

2

∑
αq∈α
|αq| is even

(−a2σ2)
|αq|

2

(
m∏
j=1

ηj(x)αjq

αjq!

)
n∑
i=1

(ubi+1 − ubi )f(aθi0)

m∏
j=1

Hαjq (ζij(ω))

)
(65)

where a, b, f , g, k, and l are as defined in relations to Eq. (41). It can be seen that Eqs. (64-65) take a similar form to

Eqs. (40-41), with the addition of extra terms to capture the effects of the KLE eigenvalues and eigenfunctions upon

the ply orientation variance, and the interaction between the different KLE terms within each ply.

Realisations of the lamination parameters may be simulated using the basis functions, Ψq(ω), however, the number

of basis functions is by definition larger than the number of plies. It can be seen from Eq. (65), that the spatial
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dependency is outside of the sum over the laminate thickness. It is possible to preserve the separation of the spatial

and random terms while simulating the lamination parameters at the laminate level, using an expansion of the form

ξlk(ω,x) ≈ e−
1
2a

2σ2 ∑m
j=1 ηj(x)

2

(
ξk
l
0 +

NRV∑
q=1

hq(x)Υq(ω)

)
(66)

where

Υq(ω) =


∑n
i=1(ubi+1 − ubi )g(aθi0)

∏m
j=1Hαjq (ζij(ω)) if |αq| is odd∑n

i=1(ubi+1 − ubi )f(aθi0)
∏m
j=1Hαjq (ζij(ω)) if |αq| is even

(67)

whereNRV is the number of random variables, and hq(x) is used to group together all parts of the expansion coefficients

in Eq. (65) which lie outside of the through thickness sum.

B. Number of Random Variables

The overall aim of the proposed approach is to reduce the number of random variables compared with that required

to directly model uncertainty in the ply orientations. For random variable ply orientations, the lamination parameters

may be simulated directly using commonly used techniques such as Monte Carlo Simulation.32 In the most general

case, the maximum number of random variables is therefore twelve. As such, a laminate must have at least twelve plies

for there to be an advantage in general.

For random fields, it is not possible to directly simulate the lamination parameters, which are highly non-Gaussian.

The proposed combination of Karhunen-Loève Expansion and Polynomial Chaos Expansion enables the lamination

parameters to be simulated using the Υq(ω) terms given by Eq. (67), however, the number of random variables depends

upon the number of KLE terms used to model the ply orientation uncertainty, and the order of the polynomial Chaos.

The number of random variables required to simulate random fields in all twelve lamination parameters is given by

NRV = 12

(
(m+ p)!

m!p!
− 1

)
(68)

Using Eq. (68), the required number of random variables is shown in Table 2 for various orders of polynomial chaos

and numbers of KLE terms. If the uncertainty is modelled directly using the ply orientations, the number of random

variables is simply the number of plies multiplied by the number of KLE terms. As in the random variable case, a

laminate must have a minimum number of plies before there is a benefit to using lamination parameters. This minimum

number of plies, nmin, is also shown in Table 2, given by NRV/NKLE.

Supposing five KLE terms were used to model uncertainty in each ply in conjunction with a 2nd order Polynomial

Chaos Expansion. From Table 2 it can be seen that the lamination parameters may be simulated using 240 random

variables. This is equivalent to modelling uncertainty in 48 ply orientations, using 5 × 48 KLE terms. As such, the
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KLE Terms
Order

2 3 4 5
NRV nmin NRV nmin NRV nmin NRV nmin

2 60 30 108 54 168 84 240 120
5 240 48 660 132 1,500 300 3,012 603
10 780 78 3,420 342 12,000 1,200 36,024 3,603
25 4,200 168 39,300 1,572 285,000 11,400 1,710,060 68,403

Table 2: Number of variables required to model field, and minimum number of plies for which a benefit is achieved

number of random variables may be reduced for any laminate with more than 48 plies. For example, the number of

random variables could be reduced by 10 for a laminate with 50 plies.

The number of variables can be seen to scale highly unfavourably with the number of terms used in the KLE.

As such, it is suggested that the proposed approach is unlikely to achieve any benefits for greater than a 2nd order

expansion. Additionally, the approach would achieve greatest benefits modelling uncertainty in a large number of ply

orientations, as random fields with a high correlation length such that relatively few KLE terms are required. For a

larger number of KLE terms, it is possible that a spatial discretisation would be more efficient, as it may be possible to

achieve a sufficiently fine mesh in with fewer random variables.

C. Comparison with Monte Carlo Simulation

In this section, the expression derived in the previous sections are compared against Monte Carlo Simulation of the

out-of-plane lamination parameters of a [02, 902]S laminate. A ply orientation standard deviation of 5◦ is used in order

to highlight limitations in modelling a relatively large magnitude of uncertainty, and a correlation length of L/2 is used

along with 20 KLE terms, which corresponds to the scenario in Figure 2b). Example realisations of one-dimensional

random fields obtained using a 2nd order Polynomial Chaos Expansion are compared with Monte Carlo results based

upon the same Karhunen-Loève Expansion in Figure 9. Assuming the random field is stationary, estimates of the

marginal distributions are shown in Figure 10, based upon an ensemble average taken across 1000 points in the spatial

domain, and estimates of the covariance function based upon 10,000 field realisations are shown in Figure 11. In these

plots the Monte Carlo results are obtained using a spatial discretisation of the random field, rather than KLE.

From Figure 9 it can be seen that the 2nd order expansion achieves a good match with Monte Carlo results, with

some small discrepancies in the realisations of ξD2 and ξD4 , which may be attributed to the fact that in these lamination

parameters the ply orientation uncertainty is multiplied by a factor of 4 rather than 2. The marginal distributions

in Figure 10 show that the distributions of ξD3−4 are approximately Gaussian, which is reflected by the fact that the

example realisations fall either side of the deterministic values. The marginals of ξD1−2 are highly skewed, and as

such the realisations tend to lie below the deterministic value for these lamination parameters. In line with these

observations, a 1st order expansion is sufficient to accurately model ξD3−4, whereas a 2nd order expansion is necessary
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Figure 9: Random field realisations for the out-of-plane lamination parameters of a [02, 902]S laminate

to model the non-Gaussian behaviour in ξD1−2. In this case, a minimum 2nd order expansion is required, as the odd

coefficients are zero due to their dependency upon sin(2θi0) and sin(4θi0) in Eq. (65). The same observation may be

made about the even coefficients of ξD3−4. For this reason, the required number of random variables may be fewer than

that shown in Eq. (68) if restrictions are placed upon the layup.

As in the example realisations, some error may be noted in the marginal PDFs for the 2nd order expansion of ξD2

and ξD4 . Although a slight reduction in error may be achieved by using higher order expansions, it can be noted from

Table 2 that the number of random variables increases substantially with the order of the polynomials. It is therefore

suggested that a 2nd order expansion is used as a reasonable compromise between accuracy and efficiency.

From Figure 11, it can be seen that very little improvement in the covariance function occurs with increasing

polynomial order, despite the evident errors in the approximation. These errors may be attributed to the truncation

of the Karhunen-Loève Expansion, and as such, larger errors may be noted for small differences in x, which require

additional KLE terms. The KLE also results in a smooth approximation of the covariance function at |x − x′| = 0,

where the actual covariance function is non-smooth.
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Figure 10: Marginal PDFs for the out-of-plane lamination parameters of a [02, 902]S laminate

VI. Conclusions

Amethod for modelling spatially varying uncertainty in composite ply orientations has been presented. Karhunen-

Loève Expansion is used to decompose the random fields, and an intrusive Polynomial Chaos Expansion is derived for

the lamination parameters. The aim of the proposed approach was to represent the uncertainty using a reduced number

of random variables, while ensuring the separation of the random and spatial dependency of the random field at a

laminate level. Closed-form expressions for the expansion have been derived in two case studies; an initial example in

which the uncertainty defined using random variables, and a second in which the uncertainty is defined using random

fields. The proposed approach is a ‘bottom-up’ method for defining laminate properties based upon uncertain ply-level

properties. Such an approach enables laminate-level properties to be modelled, while preserving the separation of

random and spatial dependency achieved using a KLE defined at the laminate level.

The number of random variables required by the Polynomial Chaos Expansion was by definition found to be greater

than or equal to the number of plies. In the random field example, it was noted that the spatially dependent terms may be

separated from the through-thickness sum, and the field simulated more efficiently using the summed random variables.

The number of random variables was found to scale nonlinearly with the number of KLE terms and polynomial order,

27 of 30

American Institute of Aeronautics and Astronautics



0 0.25 0.5 0.75 1

|x - x'|

0

0.2

0.4

0.6

0.8

1

C
  
  
(x

 -
 x

')
x 1

A

MCS
1st Order PCE

2nd Order PCE
3rd Order PCE
4th Order PCE

10.750.50.250

|x - x'|

0

0.2

0.4

0.6

0.8

1

C
  

  
(x

 -
 x

')
x 2

A

0 0.25 0.5 0.75 1

|x - x'|

0

0.2

0.4

0.6

0.8

1

C
  
  
(x

 -
 x

')
x 3

A

0 0.25 0.5 0.75 1

|x - x'|

0

0.2

0.4

0.6

0.8

1

C
  

  
(x

 -
 x

')
x 4

A

Figure 11: Correlation functions for the out-of-plane lamination parameters of a [02, 902]S laminate

and as such, there is a minimum number of plies for which the proposed approach is beneficial over directly modelling

the ply orientation uncertainty. The approach is therefore only beneficial in low order expansions, for laminates with a

large number of plies.

It was found that the error in the expansion reduced exponentially with increasing polynomial order, with the

polynomial chaos approximation converging to exact closed-form expressions for the covariance for infinite polynomial

order. A minimum 2nd order expansion was typically sufficient to achieve a good agreement with benchmark Monte

Carlo results, and given the unfavourable scaling with polynomial order, this is considered a reasonable compromise

between accuracy and efficiency.
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