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Integral Sliding Mode Control: Performance,
Modification and Improvement

Yongping Pan, Member, IEEE, Chenguang Yang, Senior Member, IEEE, Lin Pan, and Haoyong Yu, Member, IEEE

Abstract—Sliding mode control (SMC) is an attractive for non-
linear systems due to its invariance for both parametric and non-
parametric uncertainties. However, the invariance of SMC is not
guaranteed in a reaching phase. Integral SMC (ISMC) eliminates
the reaching phase such that the invariance is achieved in an entire
system response. To reduce chattering in ISMC, it was suggested
that the switching element is smoothed by using a low-pass filter
and an integral sliding variable is modified. This study discusses
several crucial problems regarding the performance, modification,
and improvement of ISMC. Firstly, the modification of the integral
sliding variable is revealed to be unnecessary as it degrades the
performance of a sliding phase; secondly, ISMC is shown to be
a kind of global SMC; thirdly, it is manifested thata high-order
ISMC design with super twisting involves in a stability condition
that may be infeasible in theory; finally, an efficient solution is
suggested to attenuate chattering in ISMC without the degrada-
tion of tracking accuracy and the solution is extended to the case
with uncertain control gain functions. Comprehensive simulation
results have verified the arguments of this study.

Index Terms—Chattering attenuation, disturbance rejection, in-
tegral sliding mode, nonlinear system, uncertainty estimation.

I. INTRODUCTION

SLIDING mode control (SMC) is a variable structure con-
trol technique which applies a switching control law to alter
the plant dynamics such that the plant states slide along a cross-
section termed sliding surface of its normal behavior. SMC has
attracted widespread applications in industrial informatics, e.g.,
see [1]-[9]. An SMC process usually has two phases, namely a
reaching phase and a sliding phase [10]. In the reaching phase,
the plant states are forced to reach a prespecified sliding surface
in finite time. Once the plant states reach the sliding surface, the
closed-loop system is adaptively altered to a sliding mode such
that the plant states slide towards the origin along the sliding
surface. This duration is called the sliding phase. In the sliding
phase, the system response remains invariant for both paramet-
ric and nonparametric uncertainties [11]. However, during the
reaching phase, the invariance of SMC is not guaranteed and
the system response is sensitive to perturbations [12].
Integral SMC (ISMC) eliminates the reaching phase by en-
forcing the sliding mode in an entire system response so that the
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invariance of SMC is ensured from the initial time instant [13].
The imperfect implementation of high-frequency switching in
SMC results in chattering at control responses [14]. To reduce
chattering in ISMC, the switching element is smoothed by using
a low-pass filter based on the equivalent control method, and
an integral sliding variable is modified for facilitating stability
analysis in [13]. The approach of [13] was used to joint position
control of robot manipulators and load pressure control of die-
cushion cylinder drives in [15] and [16], respectively. A more
popular way to attenuate chattering in ISMC is to integrate with
high-order SMC [17]-[23]. In high-order ISMC, the switching
element appears in a time derivative of the sliding variable such
that the actual control law is smoothed by an integral [24].

In this study, several crucial issues regarding the performance
and modification of ISMC are discussed and an efficient solu-
tion is suggested to improve the performance of ISMC. Firstly,
the modification of the integral sliding variable is manifested to
be unnecessary; secondly, ISMC and global SMC (GSMC) are
shown to be closely connected; thirdly, the stability condition of
a high-order ISMC design with super twisting is proven to be
theoretically infeasible; finally, a simple and feasible solution is
suggested to reduce chattering in ISMC without the degradation
of tracking accuracy. Simulations are provided throughout the
study to validate the arguments.

Throughout this paper, R, RT and R™ are the spaces of real
numbers, positive real numbers and real n-vectors, respectively,
||z|| is the Euclidean norm of x, Q.. := {x|||x|| < c} is the ball
of radius ¢, and sgn(z) is the standard signum function, where
c € R, 2 € R,z € R", and n is a natural number. For the sake
of brevity, in the following sections, the arguments of a function
may be omitted while the context is sufficiently explicit.

II. INTEGRAL SLIDING MODE CONTROL

This section presents the ISMC design in [13]. For simplify-
ing illustration, Consider a class of perturbed uncertain affine-
in-control nonlinear systems [18]

{ .’ti:.’Ei+1 (221,2, ,n—l)
in = f(®) + g(@)u+ d(t)

where z(t) = [x1(t), 2(t),- -+, 2,(t)]T € R™is a state vector,
f : R™ — R is a nonlinear drifting function, g : R™ — R is
a control gain function, u(¢) € R is a control input, and d(t)
€ R presents a unknown perturbation caused by nonparametric
uncertainties such as unmodelled dynamics and external distur-
bances. In addition, f and g are separated into

f(®) = fo(x) + Af(x)
g9(x) = go(x) + Ag(x)

)

)
3)
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where fy, go : R™ — R are nominal parts, and Af, Ag : R" —
R are perturbed parts caused by parametric uncertainties such
as inaccurate parameters and parameter variations'. Let 24(t) €
R be a desired output. The following standard assumptions of
SMC are introduced for the subsequent discussions.

Assumption 1: Af are Ag are locally bounded and g # 0,
i.e. there exist some constants f, g, g € R such that |Af| < f,
|Ag| < gand |g| > g,V € Q., C R™ with ¢, € RT. Without
loss of generality, it is assumed that g > 0.

Assumption 2: d is globally bounded, such that there exists
a constant d € R to satisfy |d(t)| < d, Vt > 0.

Assumption 3: x&i) exist and are bounded for i = 0 to n.

For clear illustration, the case of Ag = 0 is initially consid-
ered, and the extension to the case of Ag # 0 will be presented
in Sec. VI Let @y(t) := [z4(t), d4(t), - - -, 20" (t)]T. Define
the tracking error e(t) := x(t) — x4(t) = [e1(t), ea(t), - -,
en(t)]T where e (t) := 21 (t) — 24(t). Then, one gets the open-
loop tracking error dynamics

{éiei+1(i]—a2a"'an]‘) (4)

én = [fol@) — 2] + go(@)u + h(z,1)

with b : R® x R* — R a lumped perturbation given by
h(z,t) := Af(x) + d(t). (5)

The conventional sliding variable sy € R is given by sg(e) =
(d/dt + X\)"" ey [28], in which A € R is a design parameter
specifying the performance during the sliding phase?. It follows
from the definitions of e; and e that

so(e) = [A" e (6)

with A := (A=Y (n — )A™=2) ... (n — 1)A]7. Taking the

time derivative of sg in (6) and using (4), one obtains

S0 = [fo(z) + v(z,t)] + go(x)u + h(z,t) (7)

with v(z,t) := [0 AT]e(t) — x&")(t). For the reduced-order
system (7), Choose the following control law

u(t) = uo(t) + uq(t) (8)

where uo(t) € R is a nominal control for (7), and u;(¢) € R
is a discontinuous control for the rejection of h. Letting h = 0
and u = ug in (7) and choosing

up = —lkeso + fo(x) + v(z,1)]/go(x) )
leads to the ideal closed-loop dynamics
S0+ keso =0 (10)

where k. € RT is a control gain parameter.

The following ISMC design follows [13]. A systemical de-
scription of the method of [13] can be found in [14]. According
to the equivalent control method [25, Sec. 2], an integral sliding
variable is designed as follows :

s(t) = so(e) + z(¢) (11)

I'The extension to the case that A f and Ag explicitly depend on time ¢, i.e.
Ag(x,t) and A f(z,t), can be referred to [27, Remark 1].
2The mapping so : R™ > R is also called a switching function [14].

where z(¢) € R is an integral term given by

_ 880

€

] - 12
T [[fo(fv) ~ ] +go<x>uo} ”
with &; := [eq, €3, ,e,]T and 2(0) = —s¢(e(0)) implying

5(0) = 0. Applying the expressions of sg in (6), ug in (9) and v
under (7) to (12), one obtains

€

= —[AT 1] [kcs() 0 AT]8:| = kcso.

Thus, the integral sliding variable s in (11) becomes?

t
s(t) = so(e(t)) — so(e(0)) + kc/ so(e(r))dr. (13)
0
Taking the time derivative of s in (13) and using (7) yields
5= [fo(x) + v(z,t)] + go(x)u + h(x,t) + kcso.

Applying (8) with (9) to the above result, one obtains

$ = go(x)ur + h(x,t). (14)
Now, choose the discontinuous control
uy = —asgn(s), a > (f +d+n)/go- (15)

in which 7 € R is a constant specifying the converging rate of
s. Substituting (15) into (14), one obtains

s$ = s(h(z,t) — go(x)asgn(s))
< sh(z,t) = (f +d+n)ls|
< (I, t)] = f —d—n)ls|.

Applying (5) with Assumptions 1 and 2 to the above result, one
gets a standard reaching law

s8 < —nls|,Vx € Q., (16)

implying s(¢) — 0 in finite time. The setting s(0) = 0 removes
the reaching time resulting in s(¢) = 0, V¢t > 0. Once the plant
states are confined to the sliding manifold s = 0, the equivalent
control .4 is obtained by setting § = 0 in (14) as follows:

Uleq = _h(m’ t)/QO(w)'

Applying u = ug + U1eq With ug in (9) and w4 in (17) to (7),
one gets a motion equation in the sliding mode identical to the
ideal dynamics (10) so that s; — 0 exponentially implying e —
0 exponentially. Therefore, the nominal control u achieves the
ideal dynamics (10) as if the perturbation h in (7) does not exist.
Let h(t) € R be an estimate of / given by

7)

h = —go(x)u;. (18)

To illustrate the performance of the above ISMC, consider a

simplified model of underwater vehicles [28, Sec. 7]

(fl = X2
{ b = —casza|/m + (1/m)u + d(t) (19)

where 1 (m) is the vehicle position, u (N) is the control force,
m (kg) is the vehicle mass, and c is a drag coefficient. Note that

3 A so-called total SMC of [29] is exactly the same as the ISMC of [13] where
they share the same sliding variable s given by (13).
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m and c are not exactly known in practice. For simulations, let
z(0) = [—1,0]%, m = mqg, c = co + 0.2sin(|z2|t) and d(t) =
3sin(7t), where my = 3 and ¢g = 1.2 are nominal values of
m and c, respectively. The desired trajectory is comprised of an
acceleration #g =2 m/s? att € [0,2) s, a velocity 4 = 4 m/s at
t €[2,4)s, and an acceleration &4 = —2 m/s? at ¢ € [4, 6) s [28,
Sec. 7]. To construct the ISMC in (8), set fo = 1.2x3|2z2|/3, go
= 1/3 and k. = 5 for ug in (9), A = 5 and so(e(0)) = [, 1]e(0)
= —5for s in (13), and o = 13 for uq in (15).

Simulations are carried out in MATLAB software, where the
solver is set to be fixed-step ode 4, the step size is set to be 0.1
ms, and the other settings are kept at their defaults. Simulation
trajectories are given in Fig. 1, where the state vector  exactly
tracks the desired output x4 under a control input v with serious
chattering after a short transient process, the estimate h does not
follows the perturbation h, the sliding variable s keeps very near
to 0 from ¢ = 0, but its time derivative s exhibits chattering with
low amplitudes due to imperfect switches caused by the digital
simulation with a sampling time.

Remark 1: The system (1) under the ISMC law v = ug + w3
in (8) with ug in (9), u1 in (15) and s in (13) obtains exponential
convergence of the tracking error e to 0, in which the reaching
phase is eliminated resulting in the invariance throughout an en-
tire system response. However, the above ISMC design includes
two major limitations: /) Chattering of the conventional SMC
is inherited resulting in difficulty for practical applications; 2)
the estimation of the perturbation i by hin (18) is not realizable
due to the intrinsic discontinuity of u.

Remark 2: Like most existing SMC results, we assume that
the state vector @ in the system (1) is fully measurable. If only
x1 is measurable, x5 to x,, can be exactly estimated by sliding
mode observers (SMOs). For instance, the following SMO can
be applied to the system (19) [10, Sec. 1.6]:

{ 5151_ = —Psgn(z1)

20
Tdy = (22, u) — T2 — Bsgn(z1) 20)

in which (&2, 1) := —coZa|Z2|/m + (1/mg)u is the nominal
part of the system (19), ; € R and 22 € R denote estimates
of x1 and x5, respectively, z; := &1 — x is an estimation error,
B € RT is a switching gain, and 7 € R™ is a filtering constant.
Control results under the SMO (20) with 8 =4.5 and 7 = 0.01
are depicted in Fig. 2. It is shown that the SMO (20) provides
a favorable estimation of z and the tracking accuracy of the
SMO-based ISMC is just slightly degraded compared with that
of the original ISMC. Please refer to [10] for more about SMOs
as they are out of the scopes of the current discussion.

III. INTEGRAL SLIDING SURFACE MODIFICATION

To attenuate chattering in the ISMC design of Sec. II, it was
suggested in [14, Sec. 7] the discontinuous control u; given by
(15) is low-pass filtered by a first-order linear filter

:ualav (t) = —Ulav (t) + up (t) (21)
with 114, (0) = 0, where w14, (t) € R is an averaging counter-
part of u;(t), and 1 € (0, 1) is a filtering constant that should
be small enough to avoid disturbing the slow component of the

- o N
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o W o ©O O O U

x tracks x4

I I I I 1

4 No estirhation

h estiamte h

U

=N
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[=]

Control input 1
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~

o
N
T

1

High accuracy\ 533»2333383
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o
‘ i
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Fig. 1. Simulation trajectories by the original ISMC in Sec. II. (a) Control and
estimation performances. (b) Evaluations of s and s.
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Fig. 2. A performance of the SMO-based ISMC in Sec. II.

switching action in u; equal to the equivalent control %14 given
by (17). Then, choose a new control law

u(t) = uo(t) + w1 (t) (22)
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where the nominal control ug is presented in (9). The principle . fg | ' |
of the above design is that the actual effect of the discontinuous 2 10k -
u is equal to the average of the control action, i.e. the equiva- § 5 T
lent control w4, and the equivalent value of u; is equal to the = 0F===
averaged control w4, measured by the low-pass filter with wu; 2 ‘
as its input in (21) (i.e. U1eq = U1ao) [14, Sec. 7.4]. T3
To answer questions “How can the sliding mode be generated % 0¥
by the smoothed control u1,,7” and “Does u14, still cancel out %
the perturbation h”, it was suggested that the integral term z in ™~ 4 ‘ ‘ ‘ ‘ ‘
(11) is redesigned as follows [14, Sec. 7]: 31 00 ‘ ‘ ‘ ' '
_ E-50 1
880 e] R=
=—— (n) (23) 3 L J
de |[fo(z) —x4"] + go(x)u — gowa £0
with z2(0) = —so(e(0)). Applying the expressions of u in (22), O'SOO p 5 3 4 s 5
50 in (6), ug in (9) and v under (7) to (23), one gets ﬁ(z;e (s)
zZ= kCSO + gO(w>(u1 - ulav)~ 04

Applying the foregoing expression to (11), one obtains a modi-
fied integral sliding variable

t
s(t) = / lkeso + g0 (@) (w1 — uran))dr
0
+ s0(e(t)) — so(e(0)).
Taking the time derivative of s in (24) and using (7) yields

5 =[fo(x) +v(z,t)] + go(x)u + h(x, 1)
+ keso + go(x) (U1 — U1ay)-

(24)

Applying (22) with (9) to the above equality, one obtains (14)
with s being given by (24).

If the discontinuous control u; in (15) with s being given by
(24) is applied to (14), the reaching law (16) is obtained and the
equivalent control w4 is the same as (17) in Sec. II. Combining
(17) with U1¢q = U140, ONE gets

Ulgv = _h(xv t)/go(ﬂ?) (25)
such that the estimate of & is given by
h = —g0(®)u1a0- (26)

However, due to the intrinsic discontinuity of u; in (15), the
ideal result s = 0, V¢ > 0 is impossible to be obtained from
(14) in practice. Without s = 0, (17) is not obtainable such that
(25) is also not obtainable, which implies the exact estimation
of h by hin (26) is not realizable. Even if one has § = 0, Vt >
0, setting $ = 0 in (24) yields the sliding mode dynamics

50 + keso + go(®) (w1 — U1aw) =0 27

which implies sy converges to a neighborhood of 0 subject to
go, 1 and k.. Therefore, the tracking error e only converges to
a compact set €2, subject to go, , k. and A, where the size of
., is not necessarily small since high-frequency switches in
1 may result in a large discrepancy between %1 and 14, €ven
if the filtering constant x4 in (21) is small.

To illustrate the modified ISMC in this section, consider the

same illustrative example with the same settings as that in Sec.
II. The construction of the control law follows the steps in Sec.

IT except the filtering constant x4 in (21) is set as 0.1. Simulation
trajectories are shown in Fig. 3, where the state vector « follows

o
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NN
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Chattering with high amplitudes‘/7

I
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0 1 2 3 4 5 6
time (s)

(®)

Fig. 3. Simulation trajectories by the modified ISMC in Sec. III. (a) Control
and estimation performances. (b) Evaluations of s and $.

its desired signal 4 under a smooth control input . However,
although the sliding variable s still keeps near to 0 from ¢ = 0,
its time derivative s demonstrates serious chattering resulting in
a large phase lag in the estimation of h even the setting of ;1 =
0.01 is sufficiently small. These results are consistent with the
results of [14, Fig. 8.18]. Further decreasing p is not suggested
as it may introduce serious chattering at u.

Remark 3: For the system (1) driven by the modified ISMC
law © = ug + U1y in (22) with ug in (9), uq in (15), w14, in (21)
and s in (24), the performance of the reaching phase is identical
to (16) by the original ISMC in Sec. II. Yet, the exact estimation
of h in (5) is not realizable, and the performance of the sliding
phase is degraded resulting in a compromise among chattering,
tracking accuracy, and robustness, which are not consistent with
the claim “The concept of integral sliding mode can also be
extended to construct a new type of perturbation estimator that
solves the chattering problem without loss of robustness and
control accuracy.” in [14, Sec. 7].

IV. GLOBAL SLIDING MODE CONTROL

GSMC originated in [12] also aims to eliminate the reaching
phase such that the sliding mode invariably exists and the invari-
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ance is guaranteed in an entire system response. In the GSMC,
the integral term z of the sliding variable s in (11) is designed
to satisfy the following conditions [30]: i) z(0) = —so(e(0)) ;
ii) z(t) — 0 as t — oo; iii) 2(t) exists and is bounded. In the
ISMC, if z is chosen as follows:

2= —kcz, 2(0) = —s0(e(0)) (28)
then the sliding variable s becomes
s(t) = so(e(t)) — so(e(0))e ™" (29)

which satisfies all the aforementioned conditions such that the
resultant SMC belongs to a kind of GSMC.
Taking the time derivative of s in (29) and using (7) yields

$ = [fo(x) + vz, )] + go(x)u + h(z, 1) — k2. (30)

The control law is chosen as u = ug + w1 in (8) with the nomi-
nal control ug in (9) and the discontinuous control u; in (15).
Applying ug in (9) to (30), one gets

$ = —kes+ go(x)ug + h(x, t). 31

Applying u; in (15) to (31), one gets
s$ = —kes® + s(h(z,t) — go(x)asgn(s))
s+ (b ) — F —d = n)ls]).

Noting (5) with Assumptions 1 and 2, the above result leads to
an exponential reaching law [31]

55 < —kes? —n|s|,Vx € Q, (32)

which is different form the standard reaching law (16). Combin-
ing (32) with s(0) = 0, one obtains s(t) = 0, V¢ > 0. Setting s
= 01in (29), one obtains

so(e(t)) = so(e(0))e ™"

which is exactly the solution of the ideal dynamics (10). There-
fore, the performance of the GSMC at the sliding mode is the
same as that of the ISMC in Sec. II.

Remark 4: The system (1) driven by the GSMC law u = u
+ wuq in (8) with ug in (9), uq in (15) and s in (29) guarantees
exponential convergence of the tracking error e to 0 during the
reaching phase, which is the same as the result by the original
ISMC in Sec. II. However, due to the exponential reaching law
(32), the GSMC provides extra robustness against unanticipated
perturbations compared with the ISMC in Sec. II [31].

(33)

V. HIGH-ORDER INTEGRAL SLIDING MODE CONTROL

A more popular way of chattering attenuation in ISMC is to
integrate with high-order SMC [10, Sec. 4]. Existing high-order
ISMC methods require the information of z,, except the method
of [23] with super twisting, where the perturbation h does not
depend on the state vector « in [23]. It is worth noting that ,, is
usually not accessible for measurement so that the requirement
on &, is not desirable in practice. The Lyapunov stability of the
high-order SMC with super-twisting was established in [33]. In
this section, it is demonstrated that the high-order ISMC with
super-twisting [23] leads to a stability condition that is usually
infeasible in theory if h depends on x.

Recall the reduced-order system (7) driven by the control law
u = ug + up in (8) with ug in (9). The following additional
assumptions are required to proceed the control design.

Assumption 4: A f and Ag are continuously differentiable.

Assumption 5: dis globally bounded, i.e. there is a constant
dg € RT such that |d(t)| < dg, ¥Vt > 0.

The discontinuous control u in (8) of Sec. II is replaced by
a super-twisting algorithm [23]

{ (—ksy/]s[sgn(s)

= —asgn( )

with 9(0) = 0, ks = 1.5v/hq and @ = 1.1hg, where s is given
by (13), ¥ € R is an auxiliary variable, and hq € RT is a upper
bound of h that satisfies |h(x,t)| < hq, Y& € ., . Applying
(34) to (14) yields the closed-loop dynamics

{ s = —ks+/|s[segn(s) + 9 + h(z,t) ’

¥ = —asgn(s) (33)

It follows from [23] that (35) achieves s(t) = 0, V¢t > 0 and
9(t) = —h(x(t), ) after a finite time. Thus, the tracking error e
exponentially converges to 0 and the estimate hi=—9 exactly
follows the perturbation / after a finite time.

The intention of introducing Assumptions 4 and 5 is to ensure
the existence of the upper bound h,. Yet, hy still may not exist
under the additional two assumptions. To clarify this claim, the
time derivative of h given by (5) is derived as follows:

BIN &1

M) = o | (@) + g+ dn)] 4O
with &1 := [xq, 73, - ,7,]T. Thus, one gets
Wz, t) = fo(@) + fo(2)[f(2) + g(z)u + d(t)] + d(t).

PN

with fo(x) == 307 920, and fi(x) = Z2L. Applying

u = ug + u1 in (8) to the above result leads to

h(w,t) =fa(z) + fo(x)(f(2) + g(x)uo + d(t))
+d(t) + fo(x)g(z)ur < ha.

Intuitionally, it follows from (36) that hq is hard to be deter-
mined as u; depends on hq via ks and « in (34) so that a large
hg also leads to a large amplitude at the left side of “<” in (36).
The detailed analysis is given as follows.

Noting Assumptions 1 and 4, let ¢, := maxzeq, {|fa(x)|}
€RT, ¢y :=maxgeq,, {|fo(x)]} €eRT and ¢, = Inauxmegcz
{lgo(x)ug|} € R*. Applying the above definitions to (36) and
noting Assumptions 1, 2 and 5 and g(z) = go(x), one gets

(36)

M, t) < ca +co(f +d+ cuy) +da + folx)go(x)us.

Applying k, = 1.5v/hg and o = 1.1hy to (34), one gets
t
go(x)u; = —1.5 i_zd\s\sgn(s) - 1.17Ld/ sgn(s(7))dr.
0
Combining with the above two results, one obtains

h(x,t) < o+ co(f+d+ ) + da

¢
+ 1.5¢p1/ hals| — 1.1Bdfb(w)/ sgn(s(7))dr
0
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. . . 20 :
where the upper bound at the right size of “<” is not conserva- s15- |
tive as it is the frequent case that upper bounds are positive. 210k —z |
The above inequality implies the selection of hy has to satisfy £ 5+ T
. Z 0 Vo= ==
— -5 L I I I 1
hd(l + 1.1fb(a:)/ Sgn(s(T))dT) 8 | | ‘ ‘ ‘ :
0 ; 3 «— Exact estimation —_h
> co +ep(f+d+cuy) + da+ 1.5¢p\/ hals|- LE 0
3 .3
As all items at the right side of the above inequality are positive, =
a necessary condition for the existence of hy is =100 T T T T T
t 5 50 .
fb(:c)/ sgn(s(r))dr > —1/1.1 Gy =
0 = )
Q
which is very stringent since it requires the left of “<” always -50 0 ] : 3 p 5 5
being not less than —1/1.1. At an extreme case that (37) is sat- time (s)
. . t P
isfied, let ¢y := mingeq, {1 + L.1fy(x) [, sgn(s(r))dr} € @
RY, ¢g := maxgeq, {1.5cp\/[s]} € R and ¢j, :=cq + e (f 04

+d+ Cuo) + dg. Then, one obtains

(Vha)® = (cg/cr)Vha > en/cy

Completing the square at the left side of the above inequality,
one gets its equivalent expression

(Vha — ¢g/(2¢1))? > en/es + ¢2/(2¢s)?

which is also equivalent to

a2 [\fenfes + &/ Gen? + gl Gep)]

where the right side of “>" is usually extremely larger than (f
+ d), the upper bound of h(z,t) for the ISMC in Sec. II.

To illustrate the high-order ISMC with super-twisting in this
section, consider the same illustrative example with the same
settings as that in Sec. II. The construction of the control law
follows the steps in Sec. II except the upper bound h in (34) is
set as 20. Simulation trajectories are depicted in Fig. 4. Despite
the limitations discussed in [26], the super-twisting high-order
ISMC with the larger switching gain « achieves high tracking
and estimation accuracy under a smooth control input u, which
is not consistent with the above analysis. The chattering at $ is
similar to that of the original ISMC in Sec. II.

Remark 5: For the system (1) under the super-twisting high-
order ISMC law u = ug + w1 in (8) with ug in (9), u; in (34)
and s in (13), exponential convergence of the tracking error e
and an exact estimation of the perturbation & are shown under
the stability condition (37) with (38) that is usually infeasible
in theory. However, the superior tracking and estimation per-
formances shown in Fig. 4 differ from the theoretical analysis,
which implies the selection of the gains ks and « in (34) may
be improper and further studies based on advanced high-order
SMC techniques such as [32] is still desirable.

(38)

VI. A SUGGESTED CHATTERING REDUCTION SCHEME

To resolve the chattering problem, we suggest to utilize the
filtering solution in Sec. III without the integral sliding variable
modification in (23), i.e. we use the control law

u(t) = uo(t) + wiay(t) (39)

o
N
T
1

High accuracy\ ¢= jggi o
1 4. e~

e
N
T
L

Sliding variable s
o

oo
NN

o
N
T

1

Time derivative §
o

X:3.422

0.2 Chattering similar to Fig. 1(b)/ Lk b
0.4 | | | | |
0 1 2 3 4 5 6
time (s)
(b)

Fig. 4. Simulation trajectories by the super-twisting high-order ISMC in Sec.
V. (a) Control and estimation performances. (b) Evaluations of s and $.

where the nominal control ug is given by (9), and the averaged
control u 4, is generated by (21) with the discontinuous control
w1 in (15) as its input. The sliding variable s is given by (29),
corresponding to the suggested GSMC design. This suggestion
is well supported by the equivalent control principle [14, Sec.
7.4]: The equivalent value of u; is equal to w14, as long as the
filtering bandwidth of (18) covers the frequency spectrum of the
perturbation /. Substituting (39) with (9) to (30), one gets

$ = —kes + go(@)uran + h(x,t) (40)

which differs from (31). Noting the continuity of w1, and s(t)
=0, Vt > 0, the ideal result § = 0, V¢ > 0 is possible from (40)
in practice. Setting $ = s = 0 in (40) yields [14, Sec. 7]

—h(z,t)/go().

Hence, if the filtering constant x4 in (21) is chosen to be small
enough so that the filtering bandwidth of (21) covers the fre-
quency spectrum of /, h in (26) provides an exact estimation of
haccording to (41). In Sec. 2, itis unreasonable to let u; = ;4
as uj includes high-frequency contents that may not present in
U1eq. Instead, it is more reasonable to have w14, = U1¢q as high
frequency contents are filtered out in u;,. Consequently, it is

(41)

Uleq = Ulav =
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reasonable to expect 114, performs similarly to u; with respect
to tracking accuracy under reduced chattering.

In the above discussions, we assume Ag(x) = 0 for clear
presentation. Now, the suggested GSMC design is extended to
the case with Ag(x) # 0. Let Ag(x) # 0 in (1) such that the
reduced-order system (7) becomes

S0 =[fo(x) + v(x, t)] + Af(x) + d(t)

+ [g0(z) + Ag(z)]u. 42)
Applying the control law (8) with (9) to (42), one gets
S0 = —keso + g(x) (h(x, t) + uq) (43)
where the perturbation h is redefined by
h(z,t) .= [Af(x) + Ag(x)up + d(t)]/g(x).  (44)
Taking the time derivative of s in (29) along (43) yields
§=—kes+ g(x)(h(z,t) + u1). 45)
Choose the discontinuous control
up = —asgn(s), a > (f+guo+d+n)/g  (46)

with %o := maxgzcq,. {uo}. Applying (46) to (45) yields

55 = —kes® + sg(x)(h(z,t) — asgn(s))
< —kes® + g(@) (|h(z, )] — (F + gtio +d +n)/g)|s|.

Noting (44) and Assumptions 1 and 2, one obtains the exponen-
tial reaching law (32). Following the same derivations as the
case with Ag(x) = 0, one gets e — 0 exponentially. To tackle
the chattering problem, the GSMC law is chosen as (39), where
ug is given by (9), w14, is generated by (21) with u in (46) as
its input, and s is given by (29). Then, one gets

$=—kes+ g(x)(h(x,t) + u140) 47)
so that an exact estimation of & in (44) is obtained by
iL = —Ulqv (48)

as in the case of Ag(x) = 0. Note that to handle the uncertainty
Ag(x) in the control gain function g(x), the switching gain «
in (46) is designed to be much larger than that of the case with
an exactly known g(x) in (15).

To illustrate the suggested GSMC under the case of Ag(x) =
0, consider the same illustrative example with the same settings
as that in Sec. II. The construction of the control law follows
the steps in Sec. II except the filtering constant w in (21) is set
to be 0.1, 10 times’ larger than that of the modified ISMC in
Sec. III, since a too small x is not necessary in the suggested
GSMC design. Simulation trajectories by the suggested GSMC
are depicted in Fig. 5, where an exact estimation of A in (5) by
hin (26) is achieved without any phase lag, an exact tracking of
x4 by « is obtained under a smooth control input u without the
trade-off between chattering reductino and tracking accuracy,
and the chattering at $ is reduced to be much lighter than that by
the super-twisting high-order ISMC in Fig. 4. A tracking error
comparison of different ISMC designs is presented in Fig. 6,
where the original ISMC in Sec. II exhibits chattering due to the
intrinsic discontinuity of the control input «, the modified ISMC
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=
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Fig. 5. Control trajectories by the suggested GSMC with Ag(x) = 0. (a)

Control and estimation performances. (b) Evaluations of s and s.

in Sec. III gets the worst tracking accuracy due to the imperfect
estimation of A [see Fig. 3(a)] and the degraded performance of
the sliding phase [see (27)], and the suggested GSMC achieves
the highest tracking accuracy without chattering.

To validate the superiority of the suggested GSMC, consider
the same illustrative example with the same settings as that in
Sec. I except the amplitude of the external disturbance d in (1)
is increased from 3 to 5 after ¢ = 2 s. The suggested ISMC is
obtained by applying s given by (13) to replace s given by (29)
in the suggested GSMC. A tracking error comparison between
the suggested ISMC and GSMC designs is presented in Fig. 7,
where the exact estimation of h in (5) by h in (26) loses after
t = 2 s for both the controllers due to the unanticipated large
d, and the suggested GSMC exhibits better robustness against
d reflected by higher tracking accuracy after ¢t =2 s.

To illustrate the suggested GSMC under the case of Ag(x) #
0, consider the same illustrative example with the same settings
as Sec. IT except m = myg + 1.5sin(|z2|t) implying Af(x) =
(1.2 + 0.2sin(|z2|t)x2|22|/ (3 + L.5sin(|za|t) — 1.2x2|x2|/3
and Ag(x) = 1/(3 + 1.5sin(|z2|t) — 1/3. The construction of
the control law is the same as that of the case with Ag(x) =0
except the switching gain « is increased from 13 to 19. With the
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Fig. 7. A tracking error comparison of suggested control designs.

definitions of A in (44), ug in (9), and v under (7), one gets that
the piecewise continuity of 24 results in two piecewise points
of hin (44) at t = 2 and 4 s. Simulation trajectories of this
case depicted in Fig. 8 are very similar to those in Fig. 5 except
light oscillations exist in h and § near t = 2 and 4 s due to the
piecewise points of h att =2 and 4 s.

Remark 6: The suggested ISMC/GSMC design significantly
alleviates the compromise among chattering, tracking accuracy,
and robustness in SMC. Compared with the high-order ISMC in
Sec. V, the distinctive feature of the suggested design is that the
perturbation h given by (5)/(44) is exactly estimated by a much
simpler control scheme. One major deficiency of the suggested
design is that the setting of the filtering constant p in (21) is
subject to the frequency spectrum of 4 such that chattering may
not be well attenuated when p needs to be very small. Note that
the transient occurs if 2(0) # 0 as %14,(0) = 01in (21).

VII. CONCLUSIONS

This study has discussed several crucial problems in ISMC,
where conclusions are drawn as follows:
1) The modification of the integral sliding variable degrades
the performance of the sliding mode;
2) ISMC belongs to a kind of GSMC;
3) The super-twisting high-order ISMC usually results in a
stability condition that is infeasible in theory.

The low-pass filtering solution without the modification of the
integral sliding variable is suggested for chattering attenuation
in ISMC. Comprehensive simulations have validated the argu-
ments of study and have demonstrated a superior performance
of the suggested ISMC design in terms of chattering attenuation,
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Fig. 8. Simulation trajectories by the suggested GSMC under Ag(x) # 0. (a)
Control and estimation performances. (b) Evaluations of s and s.

trajectory tracking, and disturbance estimation. The application
of the suggested ISMC to handle perturbations in complicate
learning control [34] would be interesting for further study.

REFERENCES

[1] A. Sabanovic, “Variable structure systems with sliding modes in motion
control - A Survey,” IEEE Trans. Ind. Inf., vol. 7, pp. 212-223, May 2011.

[2] A. Hace and M. Franc, “FPGA implementation of sliding-mode-control
algorithm for scaled bilateral teleoperation,” IEEE Trans. Ind. Inf., vol. 9,
no. 3, pp. 1291-1300, Aug. 2013.

[3] F.F. M. El-Sousy, “Adaptive dynamic sliding-mode control system using
recurrent RBFN for high-performance induction motor servo drive,” [EEE
Trans. Ind. Inf., vol. 9, pp. 1922-1936, Nov. 2013.

[4] J. R. Dominguez, A. Navarrete, M. A. Meza, A. G. Loukianov, and J.
Canedo, “Digital sliding-mode sensorless control for surface-mounted
PMSM,” IEEE Trans. Ind. Inf., vol. 10, no. 1, pp. 137-151, Feb. 2014.

[5] P. Ignaciuk, “Nonlinear inventory control with discrete sliding modes in
systems with uncertain delay” IEEE Trans. Ind. Inf., vol. 10, no. 1, pp.
559-568, Feb. 2014.

[6] Q.S. Xu, “Digital sliding-mode control of piezoelectric micropositioning

system based on input-putput model,” IEEE Trans. Ind. Electron., vol. 61,

pp. 5517-5526, Oct. 2014.

J. Yang, J. Y. Su, S. H. Li, and X. H. Yu, “High-order mismatched dis-

turbance compensation for motion control systems via a continuous dyn-

amic sliding-mode approach,” IEEE Trans. Ind. Inf., vol. 10, pp. 604—-614,

Feb. 2014.

[7

—

1551-3203 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2017.2761389, IEEE

Transactions on Industrial Informatics

PAN et al.: INTEGRAL SLIDING MODE CONTROL: PERFORMANCE, MODIFICATION AND IMPROVEMENT 9
[8] C.C. Chen, S. S. D. Xu, and Y. W. Liang, “Study of nonlinear integral [21] P. M. Tiwari, S. Janardhanan, and M. un Nabi, “Rigid spacecraft attitude
sliding mode fault-tolerant control,” IEEE/ASME Trans. Mechatron., vol. control using adaptive integral second order sliding mode,” Aerosp. Sci.

21, no. 2, pp. 1160-1168, Apr. 2016. Technol., vol. 42, pp. 50-57, Apr. 2015.

[9] S. Biricik and H. Komurcugil, “Optimized sliding node control to maxi- [22] M. Taleb, F. Plestan, and B. Bououlid, “An adaptive solution for robust
mize existence region for single-phase dynamic voltage restorers,” IEEE control based on integral high-order sliding mode concept,” Int. J. Robust
Trans. Ind. Inf., vol. 12, pp. 1486-1497, Aug. 2016. Nonlinear Control, vol. 25, pp. 1201-1213, May 2015.

[10] Y. Shtessel, C. Edwards, L. Fridman, and A. Levant, Sliding Mode Control ~ [23] A. Chalanga, S. Kamal, and B. Bandyopadhyay, “A new algorithm for
and Observation. New York, NY, USA: Springer, 2014. continuous sliding mode control with implementation to industrial emulat-

[11] J.Y. Hung, W. Gao, and J. C. Hung, “Variable structure control: A survey,” or setup,” IEEE-ASME Trans. Mech., vol. 20, no. 5, pp. 2194-2204, Oct.
IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 2-22, Feb. 1993. 2015.

[12] Y. S. Lu and J. S. Chen, “Design of a global sliding-mode controller for ~ [24] A. Levant, “Higher-order sliding modes, differentiation and output-feed-
a motor drive with bounded control,” Int. J. Control, vol. 62, no. 5, pp. back control,” Int. J. Control, vol. 76, no. 9, pp. 924-941, 2003.
1001-1019, Nov. 1995. [25] V. Utkin, Sliding Modes in Control and Optimization. Berlin, Germany:

[13] V. Utkin and J. Shi, “Integral sliding mode in systems operating under un- Springer, 1992.
certainty conditions,” in Proc. IEEE Conf. Decision Control, Kobe, Japan,  [26] V. Utkin, “Discussion aspects of high-order sliding mode control,” [EEE
1996, pp. 4591-4596. Trans. Autom. Control, vol. 61, no. 3, pp. 829-833, Mar. 2016.

[14] V. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electro-Mech-  [27] B. Xian, D. M. Dawson, M. S. de Queiroz, and J. Chen, “A continuous
anical Systems, 2nd ed. Boca Raton, FL, USA: CRC Press, 2009. asymptotic tracking control strategy for uncertain nonlinear systems,”

[15] J. Shi, H. Liu, and N. Bajcinca, “Robust control of robotic manipulators IEEE Trans. Autom. Control, vol. 49, no. 7, pp. 1206—1211, Jul. 2004.
based on integral sliding mode,” Int. J. Control, vol. 81, no. 10, pp. 1537—  [28] J.-J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs,
1548, Oct. 2008. NJ, USA: Prentice Hall, 1991.

[16] J. Komsta, N. van Oijen, and P. Antoszkiewicz, “Integral sliding mode  [29] R.J. Wai, “Adaptive sliding-mode control for induction servomotor drive,”
compensator for load pressure control of diecushion cylinder drive,” Con- IEE Proc. Electr. Power Appl., vol. 147, no. 6, pp. 553-562, Nov. 2000.
trol Eng. Prac., vol. 21, no. 5, pp. 708-718, May. 2013. [30] H. S. Choi, Y. H. Park, Y. S. Cho, and M. H. Lee, “Global sliding-mode

[17] M. Das and C. Mahanta, “Optimal second order sliding mode control for control - Improved design for a brushless DC motor,” IEEE Control Syst.
nonlinear uncertain systems,” ISA Trans., vol. 53, no. 4, pp. 1191-1198, Mag., vol. 21, no. 3, pp. 27-35, Jun. 2001.

Jul. 2014. [31] W.B. Gao and J. C. Hung, “Variable structure control of nonlinear syste-

[18] A.Ferrara and G. P. Incremona, “Design of an integral suboptimal second- ms: A new approach,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 45—
order sliding mode controller for the robust motion control of robot 55, Feb. 1993.
manipulators,” IEEE Trans. Control Syst. Tech., vol. 23, no. 6, pp. 2316~  [32] 1. Castillo, L. Fridman, and J. A. Moreno, “Super-twisting algorithm in
2325, Nov. 2015. presence of time and state dependent perturbations,” Int. J. Control, to be

[19] H. Rios, S. Kamal, L. M. Fridman, and A. Zolghadri, “Fault tolerant con- published.
trol allocation via continuous integral sliding-modes: A HOSM-observer  [33] R. Seeber and M. Horn, “Stability proof for a well-established super-twi-
approach,” Automatica, vol. 51, pp. 318-325, Jan. 2015. sting parameter setting,” Automatica, vol. 84, pp. 241-243, Oct 2017.

[20] P. R. Kumar, A. Chalanga, and B. Bandyopadhyay, “Smooth integral sl-  [34] Y. P. Pan and H. Y. Yu, “Composite learning from adaptive dynamic

1551-3203 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

iding mode controller for the position control of Stewart platform,” ISA
Trans., vol. 58, pp. 543-51, Sep. 2015.

surface control,” IEEE Trans. Autom. Control, vol. 61, no. 9, pp. 2603-
2609, Sep. 2016.



