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Abstract

Let (Xt)t≥0 denote a non-commutative monotone Lévy process. Let ω = (ω(t))t≥0 denote

the corresponding monotone Lévy noise, i.e., formally ω(t) = d
dtXt. A continuous polyno-

mial of ω is an element of the corresponding non-commutative L2-space L2(τ) that has the

form
∑n

i=0〈ω⊗i, f (i)〉, where f (i) ∈ C0(Ri+). We denote by CP the space of all continuous

polynomials of ω. For f (n) ∈ C0(Rn+), the orthogonal polynomial 〈P (n)(ω), f (n)〉 is defined

as the orthogonal projection of the monomial 〈ω⊗n, f (n)〉 onto the subspace of L2(τ) that is

orthogonal to all continuous polynomials of ω of order ≤ n− 1. We denote by OCP the lin-

ear span of the orthogonal polynomials. Each orthogonal polynomial 〈P (n)(ω), f (n)〉 depends

only on the restriction of the function f (n) to the set {(t1, . . . , tn) ∈ Rn+ | t1 ≥ t2 ≥ · · · ≥ tn}.
The orthogonal polynomials allow us to construct a unitary operator J : L2(τ) → F, where

F is an extended monotone Fock space. Thus, we may think of the monotone noise ω as a

distribution of linear operators acting in F. We say that the orthogonal polynomials belong

to the Meixner class if CP = OCP. We prove that each system of orthogonal polynomials

from the Meixner class is characterized by two parameters: λ ∈ R and η ≥ 0. In this case,

the monotone Lévy noise has the representation ω(t) = ∂†t + λ∂†t ∂t + ∂t + η∂†t ∂t∂t. Here, ∂†t
and ∂t are the (formal) creation and annihilation operators at t ∈ R+ acting in F.

Keywords: Monotone independence, monotone Lévy noise, monotone Lévy pro-
cess, Meixner class of orthogonal polynomials.

2010 MSC: 46L53, 60G20, 60G51, 60H40

1 Introduction

The Meixner class of orthogonal polynomials on R was originally derived by Meixner
[28] as the class of all Sheffer sequences of monic polynomials that are orthogonal
with respect to a probability measure on R with infinite support. They include the
Hermite polynomials, the Charlier polynomials, the Laguerre polynomials, the Meixner
polynomials of the first kind, and the Meixner polynomials of the second kind (also
called the Meixner–Polaczek polynomials).
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Let (pn)∞n=0 be a polynomial sequence from the Meixner class. Let us assume that
the measure of orthogonality of these polynomials is centered. Let ∂† and ∂ be linear
operators acting on polynomials on R that satisfy ∂†pn = pn+1 and ∂pn = npn−1 for all
n. Then there exist three parameters, λ ∈ R, η ≥ 0, k > 0, such that

x = ∂† + λ∂†∂ + k∂ + η∂†∂∂. (1)

In this formula, x denotes the operator of multiplication by the variable x, considered
as a linear operator acting on polynomials.

For each Meixner sequence of polynomials, its measure of orthogonality is infinitely
divisible. Thus, the Meixner class is related to Lévy processes.

It appears that the notion of the Meixner class of orthogonal polynomials admits
several generalizations. The first generalization is related to changing the definition
of the operators ∂† and ∂. Recall that, for q ∈ [−1, 1], one defines the q-numbers
[n]q := 1 + q+ q2 + · · ·+ qn−1. Then, the q-Meixner class of orthogonal polynomials on
R is defined as the class of the polynomial sequences (pn)∞n=0 satisfying formula (1) in
which ∂†pn = pn+1 and ∂pn = [n]q pn−1, see [16,17] and the references therein.

Furthermore, it is also possible to generalize the notion of the Meixner class of
orthogonal polynomials to the (classical) infinite dimensional setting, as well as to
some non-commutative settings.

Let us briefly describe the extension to the classical infinite dimensional setting,
see [10, 25, 26] for details and [1, 23, 24, 27, 33, 34] for related topics. Consider the
Gel’fand triple

D ⊂ L2(R+, dt) ⊂ D′.
Here D is the nuclear space of smooth compactly supported functions on R+ := [0,∞)
and D′ is the dual space of D, where the dual pairing between D′ and D is obtained
by continuously extending the inner product in L2(R+, dt). A continuous polynomial
P of ω ∈ D′ is a function P : D′ → R of the form

P (ω) =
n∑
i=0

〈ω⊗i, f (i)〉, ω ∈ D′,

where f (i) ∈ D�i (i.e., f (i) belongs to the ith symmetric tensor power of D) and
〈ω⊗i, f (i)〉 denotes the dual pairing of ω⊗i ∈ D′ �i and f (i) ∈ D�i. We denote by CP
the space of all continuous polynomials of ω.

Let µ be a Lévy white noise measure on D′. Thus, µ is a probability measure on
D′ whose Fourier transform has the Kolmogorov representation∫

D′
ei〈ω,h〉 dµ(ω) = exp

(∫
R+

∫
R
(eish(t) − 1− ish(t))

1

s2
dν(s) dt

)
, h ∈ D. (2)

Here ν is a finite measure on R. We assume that ν has all moments finite. We also
assume, for simplicity, that ν is a probability measure.
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For f (n) ∈ D�n, we define the orthogonal polynomial 〈P (n)(ω), f (n)〉 as the or-
thogonal projection of the monomial 〈ω⊗n, f (n)〉 onto the subspace of L2(D′, µ) that is
orthogonal to all continuous polynomials of ω of order ≤ n − 1. We denote by OCP
the linear span of all orthogonal polynomials.

By using the orthogonal polynomials, one constructs a unitary operator

J : L2(D′, µ)→ F,

where

F = R⊕
∞⊕
n=1

L2
sym(Rn

+,mn)

is an extended symmetric Fock space. Here mn is a Radon measure on Rn
+ (which

depends on the Kolmogorov measure ν in formula (2)) and L2
sym(Rn

+,mn) denotes the
subspace of all symmetric functions from L2(Rn

+,mn). The unitary operator J is given
by

J〈P (n)(·), f (n)〉 = (0, . . . , 0, f (n)︸︷︷︸
nth place

, 0, 0, . . . ) ∈ F.

For h ∈ D, let us preserve the notation 〈ω, h〉 for the operator of multiplication by
〈ω, h〉 in L2(D′, µ). In terms of the unitary operator J , we may also think of 〈ω, h〉 as
a linear operator in F.

We say that the orthogonal polynomials 〈P (n)(ω), f (n)〉 belong to the Meixner class
if CP = OCP. Each system of orthogonal polynomials from the Meixner class is
characterized by two parameters: λ ∈ R and η ≥ 0. For each choice of such parameters,
we have the following equality for the action of the operator 〈ω, h〉 in F: for each f ∈ D:

〈ω, h〉f⊗n = h� f⊗n + λn(hf)� f⊗(n−1)

+ n

∫
R+

h(u)f(u) du f⊗(n−1) + ηn(n− 1)(hf 2)� f⊗(n−2). (3)

The choice λ = η = 0 gives the infinite dimensional Hermite polynomials with µ being
Gaussian white noise measure; the choice λ 6= 0, η = 0 gives the infinite dimensional
Charlier polynomials with µ being a centered Poisson random measure; the choice
|λ| = 2

√
η, η > 0 gives the infinite dimensional Laguerre polynomials with µ being

the centered gamma random measure; the choice |λ| > 2
√
η, η > 0 gives the infinite

dimensional Meixner polynomials of the first kind with µ being a centered negative bi-
nomial random measure; and the choice |λ| < 2

√
η, η > 0 gives the infinite dimensional

Meixner polynomials of the second kind with µ being the Meixner measure on D′.
Let δt denote the delta function at t. For each t ∈ R+, we formally define operators

∂†t , ∂t on F by
∂†t f

⊗n := δt � f⊗n, ∂tf
⊗n := nf(t)f⊗(n−1).
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(To be more precise, ∂†t is a formal operator, while the operator ∂t is rigorously defined
on a subspace of F.) Then formula (3) can be formally written in the form

ω(t) = ∂†t + λ∂†t∂t + ∂t + η∂†t∂t∂t, (4)

compare with (1). (Note that k = 1 in our case since we chose ν to be a probability
measure.)

In non-commutative probability, monomials 〈ω, h〉 are replaced with non-commutative
operators 〈ω, h〉 (so that ω(t) can be thought of as a non-commutative noise), while
the probability measure µ is replaced by a state on the algebra of polynomials gen-
erated by the monomials 〈ω, h〉. There are several non-commutative generalizations
of independence. The most studied one is free independence, see e.g. [32, 36]. In the
framework of free probability, the Meixner class of orthogonal polynomials of a free
Lévy noise was studied in [11,12]. This study led to a formula similar to (4). For other
studies of the free Meixner-type Lévy processes and the free Meixner polynomials on
R we refer to [2–8,15,18,19,35].

Furthermore, in [14], the notion of a non-commutative Lévy noise was introduced for
the anyon statistics, and in [13], the corresponding Meixner class of non-commutative
orthogonal polynomials was studied. Quite unexpectedly, this class was again fully
described by a formula similar to (4), albeit its meaning was quite different. Note that
the Kolmogorov measures ν of the corresponding anyon noises are the same as in the
case of the classical Meixner noises.

In this paper, we will deal with another important example of non-commutative
independence: the monotone independence. This notion was introduced and studied
by Muraki [29–31], see also [20,21]. The Lévy processes of the monotone independence
were studied in [21,22]. Note that there is also the related notion of the anti-monotone
independence. We will not discuss it in this paper but only mention that, when trivially
modified, all the results of the present paper hold in the anti-monotone case.

The main result of the paper is a characterization of the Meixner class of orthog-
onal polynomials of a monotone Lévy noise. More precisely, let (Xt)t≥0 be a (non-
commutative) monotone Lévy process. Let ω = (ω(t))t≥0 denote the corresponding
monotone Lévy noise, i.e., formally ω(t) = d

dt
Xt. A continuous polynomial of ω is

an element of the corresponding non-commutative L2-space L2(τ) that has the form∑n
i=0〈ω⊗i, f (i)〉, where f (i) ∈ C0(Ri

+). We denote by CP the space of all continuous
polynomials of ω. For f (n) ∈ C0(Rn

+), the orthogonal polynomial 〈P (n)(ω), f (n)〉 is
defined as the orthogonal projection of the monomial 〈ω⊗n, f (n)〉 onto the subspace of
L2(τ) that is orthogonal to all continuous polynomials of ω of order ≤ n−1. We denote
by OCP the linear span of all orthogonal polynomials. Each orthogonal polynomial
〈P (n)(ω), f (n)〉 depends only on the restriction of the function f (n) to the set

Tn := {(t1, . . . , tn) ∈ Rn
+ | t1 ≥ t2 ≥ · · · ≥ tn}. (5)
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The orthogonal polynomials allow us to construct a unitary operator J : L2(τ)→ F,
where F now denotes an extended monotone Fock space:

F = R⊕
∞⊕
n=1

L2(Tn,mn). (6)

Here mn is a Radon measure on Tn, determined by the Kolmogorov measure ν of the
monotone noise ω. By using this operator J , we may think of the monotone noise ω
as a distribution of linear operators acting in F.

We say that the orthogonal polynomials of ω belong to the Meixner class if CP =
OCP. We prove that each system of orthogonal polynomials from the Meixner class is
again characterized by two parameters: λ ∈ R and η ≥ 0. In this case, the monotone
Lévy noise has again representation (4). Here, for a point t ∈ R+, ∂†t and ∂t are the
(formal) creation and annihilation operators at t acting in F. It is worth noting that
the corresponding Kolmogorov measures ν appear to be the same as in the case of free
independence.

Let us mention a drastic difference between the monotone case and all the other
cases mentioned above, see Remark 15 below for details. In the monotone case, it is
possible that a continuous monomial 〈ω⊗n, f (n)〉 is a non-zero element of L2(τ) but
belongs to the space of all continuous polynomials of order ≤ n − 1. A necessary
condition for this is that the restriction of the function f (n) to Tn is equal to zero.

The paper is organized as follows. In Section 2, we briefly recall the notion of
monotone independence, define a monotone Lévy noise and the corresponding non-
commutative L2-space. In Section 3, we formulate the main results. Finally, in Sec-
tion 4, we prove the results.

Among numerous open problems related to the monotone Meixner orthogonal poly-
nomials, let us mention only one: the explicit form of their generating function; compare
with the form of the generating function of the Meixner orthogonal polynomials in the
free setting [12], see also [2, 4, 5, 35].

2 Monotone Lévy noise

Let us first recall the notion of monotone independence, cf. [30]. Let F be a real Hilbert
space and let L(F) denote the space of all continuous linear operators in F . Let Ω ∈ F
be a unit vector, and define a state τ : L(F) → R by τ(A) := (AΩ,Ω)F . Subalgebras
(not necessarily unital) A1,A2, . . . ,Ar of L(F) are called monotonically independent
with respect to τ if, for any i < j > k and A ∈ Ai, B ∈ Aj, C ∈ Ak,

ABC = τ(B)AC,
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and any i1 > · · · > im > j < k1 < · · · < kn, A1 ∈ Ai1 , . . . , Am ∈ Aim , B ∈ Aj,
C1 ∈ Ak1 , . . . , Cn ∈ Akn ,

τ(A1 · · ·AmBC1 · · ·Cn) = τ(A1) · · · τ(Am)τ(B)τ(C1) · · · τ(Cn).

Operators A1, . . . , Ar ∈ L(F) are called monotonically independent with respect to τ if
the subalgebras Ai = l. s.(Aki | k ∈ N), i = 1, 2, . . . , r, are monotonically independent.
Here l. s. denotes the linear span.

Let B0(R+) denote the linear space of all measurable bounded functions on R+ with
compact support. We endow B0(R+) with a topology such that a sequence (hn)∞n=1

converges to a function h in B0(R+) if all functions hn vanish outside a compact set in
R+ and supt∈R+

|hn(t)− h(t)| → 0 as n→∞.
Let (〈ω, h〉)h∈B0(R+) be a family of operators from L(F). We assume that the

operators 〈ω, h〉 depend on h linearly, and if hn → h in B0(R+), then 〈ω, hn〉 → 〈ω, h〉
strongly in L(F). We may formally think of ω as an operator-valued distribution.

We will say that ω is a monotone Lévy noise if the following conditions are satisfied.

(i) Let 0 ≤ t0 < t1 < t2 < · · · < tr and let functions h1, h2, . . . , hr ∈ B0(R+) be such
that, for each i = 1, 2, . . . , r, hi = hi χ[ti−1,ti]. (Here χ∆ denotes the indicator
function of a set ∆.) Then the operators 〈ω, h1〉, . . . , 〈ω, hr〉 are monotonically
independent.

(ii) For any h1, . . . , hn ∈ B0(R+) and any u > 0,

τ
(
〈ω, h1〉 · · · 〈ω, hn〉

)
= τ
(
〈ω,Suh1〉 · · · 〈ω,Suhn〉

)
.

Here, for h ∈ B0(R+) and u > 0, we define Suh ∈ B0(R+) by

(Suh)(t) :=

{
0, if 0 ≤ t < u,

h(t− u), if t ≥ u.

If ω is a monotone Lévy noise, we define, for t ≥ 0, Xt := 〈ω, χ[0,t]〉. Then (Xt)t≥0

is a monotone Lévy process, cf. [22, Section 4].
By analogy with [21,22], we will now present an explicit construction of a monotone

Lévy noise. Let ν be a probability measure on R with compact support. For each n ∈ N,
let Tn be defined by (5) and we denote

Sn : =
{

(t1, s1, . . . , tn, sn) ∈ (R+ × R)n | (t1, . . . , tn) ∈ Tn
}
,

F (n) : = L2(Sn, dt1 dν(s1) · · · dtn dν(sn)).

Let also F (0) := R. We define the monotone Fock space by F :=
⊕∞

n=0F (n). The
vector Ω = (1, 0, 0, . . . ) ∈ F will be called the vacuum. As usual, we will identify
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f (n) ∈ F (n) with the corresponding element (0, . . . , 0, f (n)︸︷︷︸
nth place

, 0, . . . ) of F . We define

the vacuum state on L(F) by τ(A) := (AΩ,Ω)F for A ∈ L(F).
Let h ∈ B0(R+). We define a creation operator a+(h), a neutral operator a0(h),

and an annihilation operator a−(h) as bounded linear operators in F that satisfy the
following conditions. For the creation operator, we have a+(h)Ω = h (here h(t, s) :=
h(t)), and for f (n) ∈ F (n), n ∈ N, we have a+(h)f (n) ∈ F (n+1),(

a+(h)f (n)
)
(t1, s1, . . . , tn+1, sn+1) = h(t1)f (n)(t2, s2, . . . , tn+1, sn+1).

For the neutral operator, a0(h)Ω = 0 and for each f (n) ∈ F (n), n ∈ N, we have
a0(h)f (n) ∈ F (n),(

a0(h)f (n)
)
(t1, s1, . . . , tn, sn) = h(t1)s1f

(n)(t1, s1, . . . , tn, sn).

For the annihilation operator, a−(h)Ω = 0 and for f (n) ∈ F (n), a−(h)f (n) ∈ F (n−1) and(
a−(h)f (n)

)
(t1, s1, . . . , tn−1, sn−1) =

∫ ∞
t1

∫
R
h(u)f (n)(u, v, t1, s1, . . . , tn−1, sn−1) dρ(v) du.

As easily seen, the annihilation operator a−(h) is the adjoint of the creation operator
a+(h), while the neutral operator a0(h) is self-adjoint. Thus, for each h ∈ B0(R+), we
define a self-adjoint operator

〈ω, h〉 := a+(h) + a0(h) + a−(h).

Note that τ(〈ω, h〉) = 0. It can be easily checked that ω is a monotone Lévy noise. In
fact, it follows from [22] that we have just described essentially all centered monotone
Lévy noises up to equivalence. (To construct all centered monotone Lévy processes,
one needs to assume that the measure ν is finite rather than probability)

Let A denote the real algebra generated by the operators (〈ω, h〉)h∈B0(R+) and the
identity operator in F . We define an inner product on A by

(P1, P2)L2(τ) := τ(P ∗2P1) = (P1Ω, P2Ω)F , P1, P2 ∈ A.

Let Ã := {P ∈ A | (P, P )L2(τ) = 0}. We define the non-commutative L2-space L2(τ)

as the completion of the quotient space A/Ã with respect to the norm generated by
the scalar product (·, ·)L2(τ). Elements P ∈ A are considered as representatives of the

equivalence classes from A/Ã, and so A becomes a dense subspace of L2(τ).
Note that, for each h ∈ B0(R+),

(〈ω, h〉P1, P2)L2(τ) = (P1, 〈ω, h〉P2)L2(τ), P1, P2 ∈ A.

Hence, A 3 P 7→ 〈ω, h〉P ∈ L2(τ) is a well defined linear operator in L2(τ), i.e.,

〈ω, h〉P = 0 for each P ∈ Ã, see e.g. [9, Ch. 5, Sect. 5, subsec. 2]. Furthermore, we
may extend this operator by continuity to a bounded self-adjoint linear operator in
L2(τ). With an abuse of notation, we will denote this operator of left multiplication
by 〈ω, h〉 in L2(τ) by 〈ω, h〉.
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3 The main results

We will now present the main results of the paper.

Theorem 1. The vacuum vector Ω is cyclic for the operator family
(
〈ω, h〉

)
h∈B0(R+)

,

i.e., the set {PΩ | P ∈ A} is dense in F . Hence, the mapping A 3 P 7→ IP := PΩ ∈ F
extends by continuity to a unitary operator I : L2(τ)→ F .

Note that the operator of left multiplication by 〈ω, h〉 in L2(τ), which we denoted
by 〈ω, h〉, is equal to I−1〈ω, h〉I, in the latter expression the operator 〈ω, h〉 acting in
F .

For any (h1, . . . , hn) ∈ B0(R+)n, the function

(h1 ⊗ · · · ⊗ hn)(t1, . . . , tn) = h(t1) · · ·h(tn)

belongs to B0(Rn
+). As easily seen, we can extend the mapping

B0(R+)n 3 (h1, . . . , hn) 7→ 〈ω, h1〉 · · · 〈ω, hn〉 =: 〈ω⊗n, h1 ⊗ · · · ⊗ hn〉 ∈ L(F)

by linearity and strong continuity to a mapping

B0(Rn
+) 3 f (n) 7→ 〈ω⊗n, f (n)〉 ∈ L(F).

Furthermore, we may think of 〈ω⊗n, f (n)〉 as the element of L2(τ) defined by
I−1〈ω⊗n, f (n)〉Ω.

We will call 〈ω⊗n, f (n)〉 a monomial of ω of order n. Sums of such operators and
(real) constants form the space P of polynomials of ω. Since A ⊂ P, P is dense in
L2(τ).

It is now standard to introduce orthogonal polynomials. Indeed, we denote by P(n)

the linear space of all polynomials of ω of order ≤ n. Let P(n) denote the closure of
P(n) in L2(τ), and let S(n) := P(n) 	P(n−1). We thus get L2(τ) =

⊕∞
n=0 S(n).

Let f (n) ∈ B0(Rn
+). We denote the orthogonal projection of the monomial 〈ω⊗n, f (n)〉

onto S(n) by 〈P (n)(ω), f (n)〉. We define the subspace OP of L2(τ) as the linear span
of the identity operator and the orthogonal polynomials 〈P (n)(ω), f (n)〉 with f (n) ∈
B0(Rn

+) (the space of orthogonal polynomials of ω). One can easily check that OP is
dense in L2(τ).

Our next aim is to calculate the L2(τ)-norm of 〈P (n)(ω), f (n)〉 for f (n) ∈ B0(Rn
+).

Let (pk)
∞
k=0 denote the system of monic orthogonal polynomials in L2(R, ν). (If the

support of ν is finite and consists of N points, we set pk := 0 for k ≥ N .) Hence,
(pk)

∞
k=0 satisfy the recursion formula

spk(s) = pk+1(s) + bkpk(s) + akpk−1(s), k ∈ N0, (7)
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with p−1(s) := 0, ak > 0, and bk ∈ R. (If the support of ν has N points, ak = 0 for
k ≥ N .) We define

ck :=

∫
R
pk−1(s)2 ν(ds) = a0a1 · · · ak−1, k ∈ N,

where a0 := 1. Note that c1 = 1 and ck = 0 for k ≥ 2 if and only if the measure ν is
concentrated at one point.

We denote by M the set of all multi-indices of the form (l1, . . . , li) ∈ Ni
0, i ∈ N. Fix

any n ∈ N. For each (l1, . . . , li) ∈M , l1 + · · ·+ li + i = n, we denote

T (l1,...,li) :=
{

(t1, . . . , tn) ∈ Rn
+ | t1 = t2 = · · · = tl1+1 >

> tl1+2 = tl1+3 = · · · = tl1+l2+2 > · · · > tl1+l2+···+li−1+i = tl1+l2+···+li−1+i+1 = · · · = tn
}
.

The sets T (l1,...,li) with (l1, . . . , li) ∈M , l1 + · · ·+ li + i = n, form a set partition of Tn.
Consider the bijection

T (l1,...,li) 3 (t1, . . . , tn) 7→ (tl1+1, tl1+l2+2, tl1+l2+l3+3, . . . , tn) ∈ T̃i, (8)

where T̃i := {(t1, . . . , ti) ∈ Ri
+ | t1 > t2 > · · · > ti}. Note that the set Ti \ T̃i

is of null Lebesgue measure. We denote by m(l1,...,li) the pre-image of the measure
cl1 · · · clidt1 · · · dti on Ti under the mapping (8). We then extend m(l1,...,li) by zero to
the whole space Tn. We define a measure mn on Tn by

mn :=
∑

(l1,...,li)∈M, l1+···+li+i=n

m(l1,...,li).

Theorem 2. For any f (n), g(n) ∈ B0(Rn
+), n ∈ N, we have(

〈P (n)(ω), f (n)〉, 〈P (n)(ω), g(n)〉
)
L2(τ)

= (f (n), g(n))L2(Tn,mn).

We define a Hilbert space F by (6). We will preserve the notation Ω for the vacuum
vector (1, 0, 0, . . . ) ∈ F.

Note that the space L2(Tn, dt1 · · · dtn) can be identified with the subspace
L2(T (0,...,0),mn) of L2(Tn,mn). Hence, the space F contains the subspace

R⊕
∞⊕
n=1

L2(Tn, dt1 · · · dtn),

which is a monotone Fock space. So it is natural to call F an extended monotone Fock
space.

Note that Theorem 2 implies, in particular, that 〈P (n)(ω), f (n)〉 ∈ L2(τ) is com-
pletely determined by the restriction of the function f (n) ∈ B0(Rn

+) to Tn, i.e., by
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f (n) ∈ B0(Tn). Note, however, that such a statement does not hold, in general, for the
monomials 〈ω⊗n, f (n)〉 in L2(τ).

Clearly, the set B0(Tn) is dense in L2(Tn,mn). Hence, by Theorem 2, the mapping

J (n)〈P (n)(ω), f (n)〉 := f (n) ∈ L2(Tn,mn) (9)

can be extended by continuity to a unitary operator J (n) : S(n) → L2(Tn,mn). We can
now define a unitary operator J : L2(τ)→ F whose restriction to each S(n) is equal to
J (n). (Here J (0) is the identity operator in R.) Note that we get the following diagram
of the unitary operators:

F I←− L2(τ)
J−→ F. (10)

Again with an abuse of notations, we will denote by 〈ω, h〉 the operator J〈ω, h〉J−1

in F.

Theorem 3. For each h ∈ B0(R+), consider 〈ω, h〉 as a continuous linear operator
acting in F. Then

〈ω, h〉 = A+(h) +B0(h) +B−(h).

Here, A+(h) is a creation operator: A+(h)Ω = h and for f (n) ∈ L2(Tn,mn), A+(h)f (n) ∈
L2(Tn+1mn+1), (

A+(h)f (n)
)
(t1, . . . , tn+1) = h(t1)f (n)(t2, . . . , tn+1),

B0(h) is a neutral operator: B0(h)Ω = 0, for each f (n) ∈ L2(Tn,mn) we have B0(h)f (n) ∈
L2(Tn,mn) and for each (l1, . . . , li) ∈M , l1 + · · ·+ li+ i = n and (t1, . . . , tn) ∈ T (l1,...,li),(

B0(h)f (n)
)
(t1, . . . , tn) = bl1h(t1)f (n)(t1, . . . , tn),

and B−(h) is an annihilation operator: B−(h)Ω = 0, for f (1) ∈ L2(T1,m1) = L2(R+, dt)

B−(h)f (1) =

∫
R+

h(u)f (1)(u) duΩ,

and for n ≥ 2 and f (n) ∈ L2(T n,mn), we have B−(h)f (n) ∈ L2(Tn−1,mn−1), and for
each (l1, . . . , li) ∈M , l1 + · · ·+ li + i = n− 1 and (t1, . . . , tn−1) ∈ T (l1,...,li),(

B−(h)f (n)
)
(t1, . . . , tn−1)

=

∫ ∞
t1

h(u)f (n)(u, t1, . . . , tn−1) du+ al1+1h(t1)f (n)(t1, t1, t2, . . . , tn−1).

Let C0(Rn
+) denote the space of all continuous functions on Rn

+ with compact sup-
port. Obviously, C0(Rn

+) ⊂ B0(Rn
+). If a polynomial P = f (0) +

∑n
i=1〈ω⊗i, f (i)〉 ∈ P

is such that f (i) ∈ C0(Rn
+) for all i = 1, . . . , n, we call P a a continuous polynomial of
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ω. We denote by CP the space of all continuous polynomials of ω, and by CP(n) the
space of all continuous polynomials of ω of order ≤ n. It follows immediately from the
proof of Theorem 1 that CP(n) is dense in P(n). Hence, CP is dense in L2(τ).

Further we define the subspace OCP of L2(τ) as the linear span of the identity
operator and the orthogonal polynomials 〈P (n)(ω), f (n)〉 with f (n) ∈ C0(Tn) (the space
of orthogonal polynomials with continuous coefficients). Clearly, OCP is dense in L2(τ).

Thus, we have constructed the subspaces CP and OCP of L2(τ). We will say that
the orthogonal polynomials of monotone Lévy noise ω belong to the Meixner class if
CP = OCP.

Theorem 4. The orthogonal polynomials of monotone Lévy noise ω belong to the
Meixner class if and only if there exist λ ∈ R and η ≥ 0 such that, in formula (7),
bk = λ for all k ∈ N0 and ak = η for all k ∈ N. In the latter case, for each h ∈ B0(R+),
the operator 〈ω, h〉 in F has the following representation:

〈ω, h〉 = A+(h) + λA0(h) + A−1 (h) + ηA−2 (h). (11)

Here, A+(h) is the creation operator defined in Theorem 3, A0(h) is a neutral operator:
A0(h)Ω = 0, and for f (n) ∈ L2(Tn,mn), A0(h)f (n) ∈ L2(Tn,mn),(

A0(h)f (n)
)
(t1, . . . , tn) = h(t1)f (n)(t1, . . . , tn),

A−1 (h) is an annihilation operator of the first kind: A−1 (h)Ω = 0 and for f (n) ∈
L2(Tn,mn), A−1 (h)f (n) ∈ L2(Tn−1,mn−1) (for n = 1 the latter space being R),(

A−1 (h)f (n)
)
(t1, . . . , tn−1) =

∫ ∞
t1

h(u)f (n)(u, t1, . . . , tn−1) du,

and A−2 (h) is an annihilation operator of the second kind: A−2 (h) = 0 on R⊕L2(R+, dt),
and for each f (n) ∈ L2(Tn,mn), n ≥ 2, A−2 (h) ∈ L2(Tn−1,mn−1),(

A−2 (h)f (n)
)
(t1, . . . , tn−1) = h(t1)f (n)(t1, t1, t2, t3, . . . , tn−1).

Following [29], for functions f (m) : Tm → R and g(n) : Tn → R, we define their
monotone tensor product f (m) B g(n) as the function from Tm+n to R given by(

f (m) B g(n)
)
(t1, . . . , tm+n) := f (m)(t1, . . . , tm)g(n)(tm+1, . . . , tm+n).

This operation is obviously associative.

Corollary 5. Consider the system of orthogonal polynomials from the Mexiner class
that corresponds to parameters λ ∈ R and η ≥ 0. Then, for each h, h1, h2 ∈ C0(R+),

〈P (1)(ω), h〉 = 〈ω, h〉, 〈P (2)(ω), h1Bh2〉 = 〈ω⊗2, h1⊗h2〉−λ〈ω, h1h2〉−
∫
R+

h1(u)h2(u) du,
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and for n ≥ 2 and h1, . . . , hn ∈ C0(R+), the following recursion formula holds:

〈P (n)(ω), h1 B · · ·B hn〉 = 〈ω, h1〉〈P (n−1)(ω), h2 B · · ·B hn〉
− λ〈P (n−1)(ω), (h1h2) B h3 B · · ·B hn〉 − 〈P (n−2)(ω), I(h1, h2, h3) B h4 B · · ·B hn〉
− η〈P (n−2)(ω), (h1h2h3) B h4 B · · ·B hn〉,

where the mapping I : C0(R+)3 → C0(R+) is given by(
I(h1, h2, h3)

)
(t) :=

∫ ∞
t

h1(u)h2(u) du h3(t). (12)

Let us now show that formula (11) admits a formal interpretation as in formula (4).
For each t ∈ R+, we set formally

∂†t := A+(δt), ∂t := A−1 (δt),

so that, for each h ∈ B0(R+),

A+(h) =

∫
R+

h(t)∂†t dt, A−1 (h) =

∫
R+

h(t)∂t dt.

Thus, for f (n) ∈ L2(Tn,mn),(
∂†t f

(n)
)
(t1, . . . , tn+1) =

(
δt B f (n)

)
(t1, . . . , tn+1)

= χ[t2,∞)(t)δt(t1)f (n)(t2, . . . , tn+1)

and (
∂tf

(n)
)
(t1, . . . , tn−1) = χ[t1,∞)(t)f

(n)(t, t1, t2, . . . , tn−1).

We then calculate, for h ∈ B0(R+) and (t1, . . . , tn) ∈ Tn,(∫
R+

dt h(t)∂†t∂tf
(n)

)
(t1, . . . , tn) =

∫
R+

dt h(t)
(
∂†t∂tf

(n)
)
(t1, . . . , tn)

=

∫
R+

dt h(t)χ[t2,∞)(t)δt(t1)
(
∂tf

(n)
)
(t2, . . . , tn)

=

∫
R+

dt h(t)χ2
[t2,∞)(t)δt(t1)f (n)(t, t2, . . . , tn)

=

∫ ∞
t2

dt h(t)δt(t1)f (n)(t, t2, . . . , tn)

= h(t1)f (n)(t1, t2, . . . , tn),

since t1 ≥ t2. Thus, ∫
R+

dt h(t)∂†t∂t = A0(h).
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Analogously, it can be shown that∫
R+

dt h(t)∂†t∂t∂t = A−2 (h).

Thus, we can formally write formula (11) in the form

〈ω, h〉 =

∫
R+

h(t)
(
∂†t + λ∂†t∂t + ∂t + η∂†t∂t∂t

)
dt. (13)

If we also formally write

〈ω, h〉 =

∫
R+

ω(t)h(t) dt, (14)

then formulas (13) and (14) imply (4).

4 Proofs

Some parts of the proofs below take their ideas from the case of the free Meixner
orthogonal polynomials [11]. For the reader’s convenience, we will still present self-
contained proofs of the results from Section 3.

Below, for open intervals ∆1,∆2 ⊂ R+, we write ∆1 > ∆2 if for any t1 ∈ ∆1 and
t2 ∈ ∆2, we have t1 > t2. This particularly implies that ∆1 ∩∆2 = ∅.

In the lemma below, c. l. s. stands for the closed linear span.

Lemma 6. For n ∈ N, we define closed subspaces X (n), Y(n), and Z(n) of F by

X (n) := c. l. s.
{

Ω, 〈ω, h1〉 · · · 〈ω, hi〉Ω | h1, . . . , hi ∈ B0(R+), i ∈ {1, . . . , n}
}
,

Y(n) := c. l. s.
{

Ω, (χ∆1 ⊗ sl1) B · · ·B (χ∆i
⊗ sli) | (l1, . . . , li) ∈M,

l1 + · · ·+ li + i ≤ n, ∆1, . . . ,∆i ⊂ R+ are open intervals, ∆1 > ∆2 > · · · > ∆i

}
,

Z(n) := l. s.
{

Ω, f (i)(t1, . . . , ti)ql1(s1) · · · qli(si) | (l1, . . . , li) ∈M, l1 + · · ·+ li + i ≤ n,

f (i) ∈ L2(Ti, dt1 · · · dti), each qlj is a polynomial on R of order lj
}
.

Then X (n) = Y(n) = Z(n).

Proof. By definition, Y(n) ⊂ Z(n). Since the Lebesgue measure is non-atomic, it can
be easily shown that

Y(n) = l. s.
{

Ω, f (i)(t1, . . . , ti)s
l1
1 · · · s

li
i | (l1, . . . , li) ∈M, l1 + · · ·+ li + i ≤ n,

f (i) ∈ L2(Ti, dt1 · · · dti)
}
.

Hence, Y(n) = Z(n). Using the definition of the operator 〈ω, h〉 in F , one can easily
show by induction on n that X (n) ⊂ Z(n). Thus, to prove the lemma, it suffices to
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prove the inclusion Y(n) ⊂ X (n). We prove this by induction on n. The statement is
obviously true for n = 1. Assume that it is true for up to n, and let us prove it for
n+ 1. Let (l1, . . . , li) ∈M , l1 + · · ·+ li + i = n+ 1. If l1 = 0, we get (using the obvious
notations):

χ∆1 B (χ∆2 ⊗ sl2) B · · ·B (χ∆i
⊗ sli) = a+(χ∆1)(χ∆2 ⊗ sl2) B · · ·B (χ∆i

⊗ sli)
= 〈ω, χ∆1〉(χ∆2 ⊗ sl2) B · · ·B (χ∆i

⊗ sli) ∈ X (n+1). (15)

If l1 ≥ 1,

(χ∆1 ⊗ sl1) B · · ·B (χ∆i
⊗ sli)

= a0(χ∆1)(χ∆1 ⊗ sl1−1) B (χ∆2 ⊗ sl2) B · · ·B (χ∆i
⊗ sli)

= 〈ω, χ∆1〉(χ∆1 ⊗ sl1−1) B (χ∆2 ⊗ sl2) B · · ·B (χ∆i
⊗ sli)

−
(
a+(χ∆1) + a−(χ∆1)

)
(χ∆1 ⊗ sl1−1) B (χ∆2 ⊗ sl2) B · · ·B (χ∆i

⊗ sli). (16)

We get

a+(χ∆1)(χ∆1 ⊗ sl1−1) B (χ∆2 ⊗ sl2) B · · ·B (χ∆i
⊗ sli)

= χ∆1 B (χ∆1 ⊗ sl1−1) B (χ∆2 ⊗ sl2) B · · ·B (χ∆i
⊗ sli). (17)

It follows from (15) by approximation that the vector on the right hand side of (17)
belongs to X (n+1). Furthermore,

a−(χ∆1)(χ∆1 ⊗ sl1−1) B (χ∆2 ⊗ sl2) B · · ·B (χ∆i
⊗ sli)

=

∫
R
vl1−1 dν(v)(g ⊗ sl2) B (χ∆3 ⊗ sl3) B · · ·B (χ∆i

⊗ sli), (18)

where

g(t) := χ∆2(t)

∫
∆1∩(t,∞)

du = χ∆2(t)

∫
∆1

du,

since ∆2 > ∆1. Hence, the vector on the right hand side of (18) belongs to X (n−1).
Therefore, the vector on the right nand side of (16) belongs to X (n+1).

Proof of Theorem 1. Since the probability measure ν on R has compact support, the
set of polynomials on R is dense in L2(R, ν). Therefore, the set

⋃∞
n=1Z(n) is dense in F .

Hence, by Lemma 6, the set
⋃∞
n=1X (n) is dense in F , which implies the theorem.

Lemma 7. For (l1, . . . , li) ∈M, let Hl1,...,li denote the following subspace of F :

Hl1,...,li =
{
f (i)(t1, . . . , ti)pl1(s1) · · · pli(si) | f (i) ∈ L2(Ti, dt1 · · · dti)

}
.

Then
F = F (0) ⊕

⊕
(l1,...,li)∈M

Hl1,...,li . (19)
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Proof. The statement that the subspaces Hl1,...,li are orthogonal to each other follows
from the definition of the scalar product in F and the fact that the polynomials (pk)

∞
k=0

are orthogonal in L2(R, ν). Since the polynomials are dense in L2(R, ν), the statement
follows.

We denote H(0) := F (0), and for n ∈ N we denote

H(n) :=
⊕

(l1,...,li)∈M
l1+···+li+i=n

Hl1,...,li . (20)

Using Lemma 7, we get

F =
∞⊕
n=0

H(n). (21)

Lemma 8. For each n ∈ N0, we have I
(
OP(n)

)
= H(n).

Proof. In view of (21), the statement of the lemma is equivalent to the statement

I
(
P(n)

)
=

n⊕
i=0

H(i). (22)

By (20) and Lemma 6,

n⊕
i=0

H(i) = F (0) ⊕
⊕

(l1,...,li)∈M
l1+···+li+i≤n

Hl1,...,li = Z(n) = X (n),

which implies (22).

For each h ∈ B0(R+), we will now represent the neutral operator a0(h) as a sum of
three operators. To this end, we define bounded linear operators a0+(h), a00(h), and
a0−(h) in F by

a0+(h)Ω = a00(h)Ω = a0−(h)Ω = 0

and for any (l1, . . . , li) ∈M and f (i) ∈ L2(Ti, dt1 · · · dti),

a0+(h)f (i)(t1, . . . , ti)pl1(s1) · · · pli(si) = h(t1)f (i)(t1, . . . , ti)pl1+1(s1)pl2(s2) · · · pli(si),
a00(h)f (i)(t1, . . . , ti)pl1(s1) · · · pli(si) = h(t1)f (i)(t1, . . . , ti)bl1pl1(s1) · · · pli(si),
a0−(h)f (i)(t1, . . . , ti)pl1(s1) · · · pli(si) = h(t1)f (i)(t1, . . . , ti)al1pl1−1(s1)pl2(s2) · · · pli(si).

In view of (7), we therefore get

a0(h) = a0+(h) + a00(h) + a0−(h). (23)
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Lemma 9. For any h1, . . . , hn ∈ B0(R+), we have

I〈P (n)(ω), h1 ⊗ · · · ⊗ hn〉 = (a+(h1) + a+0(h1)) · · · (a+(hn−1) + a+0(hn−1))a+(hn)Ω.

Proof. Recall that 〈P (n)(ω), h1 ⊗ · · · ⊗ hn〉 is the orthogonal projection in L2(τ) of the
monomial 〈ω⊗n, h1 ⊗ · · · ⊗ hn〉 = 〈ω, h1〉 · · · 〈ω, hn〉 onto OP(n). Hence, by Lemma 8,
I〈P (n)(ω), h1⊗· · ·⊗hn〉, is the orthogonal projection in F of the vector 〈ω, h1〉 · · · 〈ω, hn〉Ω
onto H(n). By (23), for each h ∈ B0(R+),

〈ω, h〉 = a+(h) + a0+(h) + a00(h) + a0−(h) + a−(h). (24)

From here the statement easily follows.

Lemma 10. For any h1, . . . , hn ∈ B0(R+), we have

I〈P (n)(ω), h1 ⊗ · · · ⊗ hn〉 =
∑

(l1,...,li)∈M
l1+···+li+i=n

(
(h1 · · ·hl1+1)⊗ pl1

)
B
(
(hl1+2 · · ·hl1+l2+2)⊗ pl2

)
B · · ·B

(
(hl1+l2+···+li−1+i · · ·hn)⊗ pli

)
.

Proof. By Lemma 9,

I〈P (n)(ω), h1 ⊗ · · · ⊗ hn〉 =
∑

(l1,...,li)∈M
l1+···+li+i=n

a0+(h1) · · · a0+(hl1)a
+(hl1+1)

× a0+(hl1+2) · · · a0+(hl1+l2+1)a+(hl1+l2+2) · · · a0+(hl1+l2+···+li−1+i) · · · a0+(hn−1)a+(hn)Ω.

From here the statement follows.

Proof of Theorem 2. It suffices to show that, for any h1, . . . , hn ∈ B0(R+),

‖〈P (n)(ω), h1 ⊗ · · · ⊗ hn〉‖2
L2(τ) = ‖h1 B · · ·B hn‖2

L2(Tn,mn),

or equivalently

‖I〈P (n)(ω), h1 ⊗ · · · ⊗ hn〉‖2
F = ‖h1 B · · ·B hn‖2

L2(Tn,mn).

But the latter formula follows immediately from Lemma 10 and the construction of
the measure mn.

Recall the diagram (10). We define a unitary operator U : F → F by U := JI−1.
We will now present en explicit form of the action of U . To this end, we recall the
orthogonal decomposition (19) of F .
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Corollary 11. Let (l1, . . . , li) ∈M and let f (i) ∈ L2(Ti, dt1 · · · dti). Denote

F (t1, s1, . . . , ti, si) = f (i)(t1, . . . , ti)pl1(s1) · · · pli(si) ∈ Hl1,...,li .

Let n = l1 + · · ·+ li + i. Define a function f (n) : Tn → R by

f (n)(t1, . . . , t1︸ ︷︷ ︸
l1 + 1 times

, t2, . . . , t2︸ ︷︷ ︸
l2 + 1 times

, . . . , ti, . . . , ti︸ ︷︷ ︸
li + 1 times

) := f (i)(t1, . . . , ti) if t1 > t2 > · · · > ti ≥ 0,

and f (n)(t1, . . . , tn) = 0 otherwise. Then UF = f (n). Furthermore, UΩ = Ω.

Proof. The statement UΩ = Ω is trivial. To prove that UF = f (n), it is sufficient to
consider the case where f (i) ∈ B0(Ti). Then, the function f (n) defined in Corollary 11
belongs to B0(Tn). It follows from Lemma 10 by approximation that

I〈P (n)(ω), f (n)〉 = f (i)(t1, . . . , ti)pl1(s1)pl2(s2) · · · pli(si) = F.

Thus, I−1F = 〈P (n)(ω), f (n)〉. Hence, by (9), UF = JI−1F = f (n).

Proof of Theorem 3. Recall formula (24). Denote, for h ∈ B0(R+),

α+(h) := a+(h) + a0+(h), α0(h) := a00(h), α−(h) := a0−(h) + a−(h),

so that
〈ω, h〉 = α+(h) + α0(h) + α−(h).

Recall formula (20). It is easy to see that α+(h) maps H(n) into H(n+1), α0(h) maps
H(n) into itself, and α−(h) maps H(n) into H(n−1). Furthermore, by using Corollary 11,
one easily shows that

Uα+(h)U−1 = A+(h), Uα0(h)U−1 = B0(h), Uα−(h)U−1 = B−(h).

Lemma 12. Assume that, in formula (7), bk = λ for all k ∈ N0 and some λ ∈ R and
ak = η for all k ∈ N for some η ≥ 0. Then formula (11) holds.

Proof. Immediate from Theorem 3.

For n ∈ N and i = 0, 1, . . . , n, consider a continuous linear operator Ri,n : B0(Rn
+)→

B0(Ri
+). (For i = 0, we set B0(Ri

+) := R.) Then we define a mapping 1 ⊗ Ri,n :
B0(Rn+1

+ )→ B0(Ri+1
+ ) by(

1⊗Ri,nf
(n+1)

)
(t1, . . . , tn+1) =

(
Ri,nf

(n+1)(t1, ·)
)
(t2, . . . , tn+1).

As easily seen, the mapping 1⊗Ri,n is continuous and linear.
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We define mappings Dn−1,n : B0(Rn
+) → B0(Rn−1

+ ), Dn−2,n : B0(Rn
+) → B0(Rn−2

+ ),
and In−2,n : B0(Rn

+)→ B0(Rn−2
+ ) by(

Dn−1,nf
(n)
(
t1, . . . , tn−1) : = f (n)(t1, t1, t2, . . . , tn−1),(

Dn−2,nf
(n)
(
t1, . . . , tn−2) : = f (n)(t1, t1, t1, t2, . . . , tn−2),(

In−2,nf
(n)
)
(t1, . . . , tn−2) : =

∫ ∞
t1

f (n)(u, u, t1, t2, . . . , tn−2) du.

(For n = 2, I0,2f
(2) :=

∫
R+
f (2)(u, u) du.)

Let λ ∈ R and η ≥ 0 be fixed. For n ∈ N and i ∈ N0, i ≤ n, we define continuous
linear operators Ri,n : B0(Rn

+)→ B0(Ri
+) by the following recursion formulas:

R1,1 = 1, R0,1 = 0,

R2,2 = 1, R1,2 = −λD1,2, R0,2 = −I0,2,

Ri,n = 1⊗Ri−1,n−1 − λRi,n−1Dn−1,n −Ri,n−2In−2,n − ηRi,n−2Dn−2,n, n ≥ 2. (25)

(In the above formula, we assume that Ri,n = 0 if i > n.) Note hat Rn,n = 1 for all
n ∈ N.

For each f (n) ∈ B0(Rn
+), we define

〈R(n)(ω), f (n)〉 :=
n∑
i=0

〈ω⊗i, Ri,nf
(n)〉. (26)

Lemma 13. Assume that the condition of Lemma 12 is satisfied. Then, for each
f (n) ∈ B0(Rn

+),

〈R(n)(ω), f (n)〉 = 〈P (n)(ω), f (n)〉, (27)

the equality in L2(τ).

Remark 14. Since 〈P (n)(ω), f (n)〉 depends only on the restriction of the function f (n) to
Tn, formula (27) means that the element of L2(τ) given by formula (26) also depends
only on the restriction of the function f (n) to Tn. However, this statement is not
true about each individual term of the sum on the right hand side of (26). Take, for
example, the term corresponding to i = n, i.e., 〈ω⊗n, f (n)〉. As easily seen, for n ≥ 4,
this monomial does depend on the values of the function f (n) outside Tn.

Remark 15. It follows from Lemma 13 and formula (26) that, for each f (n) ∈ B0(Rn
+)

〈ω⊗n, f (n)〉 = 〈P (n)(ω), f (n)〉 −
n−1∑
i=0

〈ω⊗i, Ri,nf
(i)〉.

Assume that f (n) = 0 mn-a.e. on Tn. Then 〈P (n)(ω), f (n)〉 = 0, so that

〈ω⊗n, f (n)〉 = −
n−1∑
i=0

〈ω⊗i, Ri,nf
(i)〉 ∈ P(n−1).
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Note that the above monomial 〈ω⊗n, f (n)〉 is not necessarily equal to 0 as an element
of L2(τ).

Proof of Lemma 13. As easily seen, it suffices to prove formula (27) in the case where
f (n) = h1⊗· · ·⊗hn for some h1, . . . , hn ∈ B0(R+). In this case, formula (27) is obviously
true for n = 1, 2. Furthermore, it follows from the definition of 〈R(n)(ω), f (n)〉 that the
following recursion relation holds, for n ≥ 3,

〈R(n)(ω), h1 ⊗ · · · ⊗ hn〉 = 〈ω, h1〉〈P (n−1)(ω), h2 ⊗ · · · ⊗ hn〉
− λ〈R(n−1)(ω), (h1h2)⊗ h3 ⊗ · · · ⊗ hn〉 − 〈R(n−2)(ω), I3,1(h1, h2, h3)⊗ h4 ⊗ · · · ⊗ hn〉
− η〈R(n−2)(ω), (h1h2h3)⊗ h4 ⊗ · · · ⊗ hn〉, (28)

where the mapping I : B0(R+)3 → B0(R+) is given by formula (12). From here and
Lemma 12 the statement follows by induction on n.

Lemma 16. Assume that the condition of Lemma 12 is satisfied. Then CP = OCP,
i.e., the corresponding orthogonal polynomials belong to the Meixner class.

Proof. For each n ∈ N, we consider the topology on C0(Rn
+) that is induced by the

topology on B0(R+). Thus, a sequence (hn)∞n=1 converges to a function h in C0(R+) if
all functions hn vanish outside a compact set in R+ and supt∈R+

|hn(t)− h(t)| → 0 as
n→∞. For n = 0, we will also set C0(Rn

+) := R.
Let n ∈ N and i = 0, 1, . . . , n. If Ri,n : C0(Rn

+) → C0(Ri
+) is a continuous linear

operator, then so is the mapping 1 ⊗ Ri,n : C0(Rn+1
+ ) → C0(Ri+1

+ ). Hence, we eas-
ily conclude that the (restrictions of the) operators Ri,n defined by formula (25) are
continuous linear operators acting from C0(Rn

+) to C0(Ri
+), respectively. Therefore,

by (26), for each f (n) ∈ C0(Rn
+), 〈R(n)(ω), f (n)〉 ∈ CP. Now, Lemma 13 implies that

〈P (n)(ω), f (n)〉 ∈ CP.
Let g(n) ∈ C0(Tn). Choose any f (n) ∈ C0(Rn

+) such that the restriction of f (n) to
Tn is equal to g(n). Then, by the proved above

〈P (n)(ω), g(n)〉 = 〈P (n)(ω), f (n)〉 ∈ CP,

hence OCP ⊂ CP.
Let us now prove the inverse inclusion. Since Rn,n = 1 for each n, it easily follows

from (26) and Lemma 13 by induction on n that, for each f (n) ∈ C0(Rn
+),

〈ω⊗n, f (n)〉 =
n∑
i=0

〈P (i)(ω), Li,nf
(n)〉,

where Li,n : C0(Rn
+) → C0(Ri

+) are continuous linear operators. Let g(i) ∈ C0(Ti)
denote the restriction of the function Li,nf

(n) to Ti. Then

〈ω⊗n, f (n)〉 =
n∑
i=0

〈P (i)(ω), g(i)〉.
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Hence, CP ⊂ OCP.

Proof of Theorem 4. By Lemmas 12 and 16, it remains to prove that, if CP = OCP,
then the condition of Lemma 12 is satisfied.

So we assume CP = OCP. Let f (n) ∈ C0(Tn). Then 〈P (n)(ω), f (n)〉 ∈ CP. Since
CP is an algebra under multiplication of two continuous polynomials, we conclude
that, for each h ∈ C0(R+), 〈ω, h〉〈P (n)(ω), f (n)〉 ∈ OCP. Hence, by Theorem 3, there
exist continuous functions g(n) ∈ C0(Tn) and g(n−1) ∈ C0(Tn−1) such that

B−(h)f (n) = g(n−1) mn−1-a.e. (29)

B0(h)f (n) = g(n) mn-a.e. (30)

If ak = 0 for all k ∈ N, we set η = 0 and λ = b0, and the condition of Lemma 12 is
satisfied. So, we only have to consider the case where a1 > 0. Set η = a1. Using the
construction of the measure mn, the definition of the operator B−(h) and formula (29),
we get by induction on k that ak = η for all k ∈ N. But this also implies that ck > 0
for all k ∈ N. Now set λ = b0. Using the definition of B0(h) and (30), we deduce from
(30) by induction on k that bk = λ for all k ∈ N0.

Proof of Corollary 5. Immediate from Lemma 13 and formula (28).
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process, Ukrainian Math. J. 55 (2003) 853–858.
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