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Abstract. Many human infections with viruses such as human immunodeficiency virus type 1
(HIV–1) are characterized by low numbers of founder viruses for which the random effects and
discrete nature of populations have a strong effect on the dynamics, e.g., extinction versus spread.
It remains to be established whether HIV transmission is a stochastic process on the whole. In
this study, we consider the simplest (so-called, ’consensus’) virus dynamics model and develop a
computational methodology for building an equivalent stochastic model based on Markov Chain
accounting for random interactions between the components. The model is used to study the
evolution of the probability densities for the virus and target cell populations. It predicts the
probability of infection spread as a function of the number of the transmitted viruses. A hybrid
algorithm is suggested to compute efficiently the dynamics in state space domain characterized
by a mix of small and large species densities.

Keywords and phrases: mathematical model, virus infection, stochastic dynamics, Markov
Chain, hybrid modelling
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1. Introduction

Mathematical models are extensively used for studying the dynamics of virus infections in humans [25]. A
vast majority of studies are based on a deterministic descriptions of the virus and immune cell population
dynamics. Reviews of the existing approaches have been published recently [8, 9, 11, 29]. However, the
initial infection with viruses such as human immunodeficiency virus type 1 (HIV–1) is characterized by
low numbers for which the random effects and discrete nature of populations contribute significantly to
the dynamics, e.g., extinction versus spread [24,27].

There has been a substantial effort in the mathematical modelling of HIV infection primarily motivated
by the AIDS epidemic (for reviews we refer to [3, 25, 28, 29]). Mathematical modelling of the virus-host
interaction based on understanding of the underlying biological processes can provide deeper insights
into the kinetic mechanisms of infection dynamics, cf. [1–3, 14, 16]. Most of the models are deterministic
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and deal with continuous variables. This is correct when the numbers of all interacting components:
uninfected cells and infected cells, virions, etc, are large enough. The dynamics of large populations is
described by the chemical Langevin equations, which is a set of stochastic differential equations [40].
In the full thermodynamic limit, i.e. when the species populations and the system volume approach
infinity in a way that species concentrations remain constant, the Langevin equations reduce to the
traditional reaction-rate equations in the form of coupled, first-order, ordinary differential equations.
The hydrodynamic approximation (i.e. dynamical form of the Law of Large Numbers) is the standard
toolkit for studying stochastic systems with a large number of interacting components ( see, e.g., [12]
and the references therein). Virus infections are ideal systems for probing this approach and revealing its
advantages and shortcomings versus stochastic kinetic analysis.

However, it typically occurs at the earlier stage of infection (eclipse phase in HIV) that the initial
numbers of virions and infected cells are small [18]. During initial infection, a complex quasispecies
of viruses has been shown to be restricted through a transmission bottleneck into a single or limited
number of founder viruses that establish a systemic infection [43]. Depending on the route of infection
the transition probability of systemic infection ranges from 0.2 to 0.5 × 10−3 [37]. It was pointed out
that it remains to be determined if HIV transmission is largely a stochastic process. To clarify this type
of questions, the continuous virus dynamics models are inefficient and it is necessary to account for the
discrete nature of the components and the random interaction between them [24,27]. While a deterministic
model predicts a single outcome for a given set of parameter values, a stochastic model would allow one
to examine a spectrum (infinite set) of possible infection outcomes weighed by their likelihoods and
probabilities. For example, if the deterministic models give the standard disease dynamics for any initial
amount of viruses, in reality there is a probability that for small number of initial virions the disease can
fade [22]. The smaller the number of virions, the higher should be this probability.

In this study, we consider the simplest virus dynamics model proposed in [25,28] and build an equivalent
stochastic model based on Markov Chain accounting for random interaction between the components.
The model is studied numerically, and the time-dependent probability densities for every components are
calculated.

As in the case of developing infection, a small number in some components can occur only at the very
beginning of the virus transmission followed by larger densities of the interacting components. To compute
efficiently the process dynamics, we develop algorithm for hybrid modelling, where the discrete nature
of the components is accounted at the initial stage of the infection only, and the deterministic model
(with random initial conditions) is explored at the later stages. Such hybrid models have been previously
developed for mathematical epidemiology; see, e.g., [31,32,34,35]. The use of the hybrid model essentially
simplifies the analysis of the virus dynamics and calculation of the relevant moments characterizing the
dynamics uncertainty.

In Section 2 we describe a simple deterministic model of HIV infection. The formulation of the stochastic
model is presented in Section 3. In Section 4 the hybrid modelling algorithm is developed. We summarize
the results in Section 5.

2. Deterministic model

2.1. Governing equations

The following basic equations for the virus dynamics have been derived in [25,28]:

ẋ = λ− dx− βxv
ẏ = βxv − ay (2.1)

v̇ = ky − uv

where x and y be the number of uninfected cells and infected cells, respectively; v be the number of free
virus particles (virions). The authors suppose that uninfected cells are produced at a constant rate, λ,
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Figure 1. Left: Dynamics of uninfected cells (blue), infected cells (green), and virions
(red). Dashed lines indicate the correspondent equilibrium values: x∗, y∗, v∗.
Right: Dynamics of the virions number for different initial numbers v0 (is indicated in
the legend).

and die at a rate dx; virions infect uninfected cells at a rate proportional to the product of their numbers,
βxv; infected cells produce free virus at a rate ky; infected cells die at a rate ay; free virus particles are
removed from the system at a rate uv. Apart from an infection-free equilibrium {x = x0, y = 0, v = 0},
where

x0 =
λ

d
, (2.2)

the system has a globally stable equilibrium {x = x∗, y = y∗, v = v∗} where

x∗ =
au

βk
, y∗ =

λ

a
− du

βk
, v∗ =

λκ

au
− d

β
(2.3)

(see, e.g., [19]). We assume that λ
a >

du
βk and λκ

au >
d
β . It is natural to take x0 = λ/d as an initial number

of uninfected cells in the virus dynamics and consider the following initial conditions

x(t0) = λ/d = x0, y(t0) = 0, v(t0) = v0 (2.4)

where t0 is an instant when the infection begins.

2.2. Stages of virus dynamics

An example of numerical solution to initial value problem (2.1)–(2.4) for the case: λ = 105, d = 0.1,
a = 0.5, β = 2 × 10−7, k = 100, u = 5 (the data are taken from [25]) and initial number of the virus
particles v0 = 10 is shown in Figure 1(left). Considering the dimensionless populations in the model,
parameters d, a, β, k, u have dimensions of inverse days and t0 = 0.

As it is seen from the plot, the total virus dynamics can be split into four distinguished stages:
Stage 1 is the initial stage. Details of this stage are better seen in Figures 1(right) and 2. At this stage

the number of virions varies non-monotonically and reaches its minimum. For the data taken from [25]
this stage lasts approximately 0.5 day.

At stage 2 there is an exponential growth of the numbers of virions and infected cells. At stage 2, plots
of y(t) and v(t) are close to straight lines with positive slope (in the logarithmic scale) and, as it is seen
in Figure 1, this stage occupies time interval approximately 0.5—6 day.

65



I. Sazonov, D. Grebennikov, M. Kelbert, G. Bocharov Modelling stochastic and deterministic behaviours

Stage 3 represents a developed disease when the number of virions and infected cells reach its maximum.
Number of uninfected cells varies significantly at this stage. It is seen in Figure 1 that this stage occupies
time interval approximately 6—13 days.

At stage 4 the numbers of cells and virions gradually approach their stationary state {x∗, y∗, v∗}. For
the data taken from [25] and v0 = 1 this stages begins after 13 days from the inserting the infection.

Observe that at stages 1 and 2, the number of uninfected cells varies insignificantly.

2.3. Approximate solution for small initial number of virus particles

Curves of virions dynamics v(t) for different initial numbers of virions are shown in Figure 1(right). The
curves are aligned to reach maximum at the same instant t = 0.

2.3.1. Limiting solution

Observe that apart from the initial dynamics all the curves are close to each other and can be approxi-
mated by the limiting solution depicted by the black line in Figure 1(right). To calculate this solution,
vlim(t), we should take the initial amount of virions to be infinitesimal, then the infection peak will be
reached in infinitely large time. Therefore to describe the limiting solution, it is natural to reference the
time from the infection peak instant as it is done in Figure 1(right) i.e. vlim(0) = maxt v

lim(t), and, hence,
we have to tend the infection beginning instant, t0, to −∞. Thus the limiting solution can be obtained
by solving the initial value problem (2.1),(2.4) in the following limit:

v0 → +0, t0 → −∞, v(0)→ max . (2.5)

The limiting solution is independent of initial condition. It can be easily computed numerically, and can
be used in building the hybrid stochastic model (see Section 4).

As it is seen in Figure 1(right), the limiting solution has growing asymptotic behaviour for large negative
time. Its growing rate is computed below (see Eq. (2.7)). For the real solutions, it is an intermediate
asymptotic behavior corresponding to stage 2.

The limiting solution satisfying (2.5) is similar to limiting solution introduced for epidemic models
and called in [33] the Small Initial Contagion (SIC) approximation. It also has an exponential asymptotic
behaviour for t→ −∞. In the SIR epidemic model, the limiting solution can approximate all the stages of
epidemic dynamics provided the initial number of infective species is small enough. In the virus dynamics,
the limiting solution approximates the real solution only at stages 2,3,4. Stage 1 requires a separate
consideration which is presented below.

2.3.2. Initial stage dynamics

The initial stage dynamics can be studied if we set x(t) = const = x0: as we mention above at stages 1
and 2 the relative change in the number of uninfected cells is much smaller compared to virus and infected
cell populations (see Figure 1). In contrast to the limiting solution, it is convenient to reference the time
from the infection beginning, i.e. to set t0 = 0. Substituting x = x0 into (2.1) and solving the equations
for initial conditions y(0) = 0, v(0) = v0 by the Laplace transform method we obtain the following
approximation of the virus dynamics at stage 1:

v(t) =
v0

2ρ

[
(a− u+ ρ) eλ1t + (u− a+ ρ)eλ2t

]
y(t) =

v0βx0

ρ

[
eλ1t − eλ2t

] (2.6)

where ρ =
√

(a− u)2 + 4kβx0, λ1,2 = 1
2 (−a− u± ρ). Since λ1 > 0 and λ2 < 0, then for t → +∞

solutions (2.6) grow exponentially:

v(t) ≈ v0

2ρ
(a− u+ ρ) eλ1t, y(t) ≈ v0βx0

ρ
eλ1t. (2.7)
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Figure 2. Initial virus dynamics (stage 1 and beginning of stage 2) for parameters
indicated in [25] in the linear (left) and logarithmic (right) scales. Red: v(t)/v0, green:
y(t)/v0, dark read and green dashed: limiting solution aligned with v(t)/v0.

For any sufficiently small initial number of virus particles (v0 � x0) the initial dynamics looks very
similar. The number of virions slightly decreases then starts to increase tending to almost the same
exponentially growing curve.

For the parameter values indicated in [25] we have

v(t)/v0 = 0.275 e2.256t + 0.725 e−7.756t

y(t)/v0 = 0.0200
(
e2.256t − e−7.756t

)
.

Thus the virus dynamics can be approximated by a combination of the initial solution (2.6) and the
limiting solution. The limiting solution is independent of the initial condition, the same is true for v(t)/v0

and y(t)/v0 at the initial stage, i.e. the plots of the both solutions have universal shapes. The solutions
are matched at stage 2 (cf Eq. (2.7)). Only the transition time from the initial stage solution to the
limiting solution depends on the initial number of virions as it is seen in Figure 1(right).

3. Stochastic model

3.1. Markov chain formulation

Now we account for the discrete nature of the populations and random interaction between different
species.

Let X,Y, V ∈ Z+ be non-negative integer numbers of uninfected, infected cells and virus particles,
respectively. Then we assume that their dynamics obeys the following continuous time Markov chain
(MC)

Process # Event Rate Description

1 X → X + 1 λ Uninfected cell birth

2 X → X − 1 dX Uninfected cell death

3 X → X − 1, Y → Y + 1 βXV Cell infection

4 Y → Y − 1 aY Infected cell death

5 V → V + 1 kY Virus particle birth

6 V → V − 1 uV Virus particle death

(3.1)
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The initial conditions for MC (3.1) are

X(0) = X0, Y (0) = 0, V (0) = V0 ∈ Z+ (3.2)

where X0 is a random integer number having the Poisson distribution with the rate x0 = λ/d, as it will
be shown in Section 3.2.

The PDF for time-dependent number X(t) is calculated in Section 3.2 by considering the pre-infected
dynamics and it asymptotic behaviour for large time.

3.2. Uninfected target cell random dynamics

In the absence of virus the random dynamics of the target cells is described by the simplified MC

Process # Event Rate Description

1 X → X + 1 λ Uninfected cell birth

2 X → X − 1 dX Uninfected cell death

(3.3)

subjected to the initial condition
X(0) = X̄ ∈ Z+. (3.4)

Let Pm(t), m ∈ Z, be a probability that the number of uninfected cells equals X(t) = m and let
Pm ≡ 0 if m < 0. Then Kolmogorov’s/Master equation takes the form

Ṗm = λPm−1 − λPm + d(m+ 1)Pm+1 − dmPm (3.5)

with the initial condition Pm(0) = δmX̄ where δij is Kroneker’s delta.
Introduce the probability generation function (PGF):

g(t, z) =

∞∑
m=0

zmPm(t). (3.6)

At time zero this function equals
g(0, z) = zX̄ . (3.7)

Multiplying the both sides of (3.5) by zm and summing from 0 to infinity after some manipulations
we obtain the following first order PDE for g(t, z):

∂g

∂t
= (1− z)

(
d
∂g

∂z
− λg

)
(3.8)

with initial condition (3.7). If we apply the Laplace transform with respect to time to Eq. (3.8) with
account for (3.7) we obtain a first order ODE with separable variables which can be easily integrated.
After applying the inverse Laplace transform to the result of integration of the ODE, we obtain the
solution to initial value problem (3.8)–(3.7):

g(t, z) =
[
1 + (z − 1)e−dt

]X̄
exp

{
λ

d
(z − 1)

(
1− e−dt

)}
When t→∞, it tends to

g(+∞, z) = exp

{
λ

d
(z − 1)

}
that is a PGF for the Poisson distribution with the rate x0 = λ/d.

P (X = n) =
xn0
n!
e−x0 . (3.9)

Its mean and variance are both equal to x0. It can be approximated by a normal distribution for x0 � 1.
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3.3. Fluid dynamic limit type analysis

In the case of developed infection, when the populations of all species tend to be large, the stochastic
dynamics described by MC (3.1) being properly scaled tends (in probability) to a deterministic dynamics
described by (2.1)–(2.4). This limiting transition is called fluid dynamics limit [10] or mean field limit [5],
and Theorem 3.1 provides the formal mathematical framework.

Theorem 3.1. Consider the Markov chain {X(t), Y (t), V (t)} defined in Table 1 and subjected to initial

conditions (3.2). The scaled MC
{
X̂(t), Ŷ (t), V̂ (t)

}
X̂(t) = Λ−1X(t), Ŷ (t) = Λ−1Y (t), V̂ (t) = Λ−1V (t)

obtained by scaling the transition rates β → Λβ, and scaling of initial conditions as:

X̂(0) = ΛX(0), Ŷ (0) = ΛY (0), V̂ (0) = ΛV (0)

converges in distribution as Λ → ∞ to the deterministic functions {x(t), y(t), v(t)} satisfying (2.1) sub-
jected to initial conditions (2.4).

Sketch of the proof is given in Appendix A.

3.4. Direct numerical simulation

Analytical analysis based on Kolmogorov’s/Master equation and PDE for probability generating function,
analogous to that described in Section 3.2, results in a non-linear PDE that cannot be solved in a closed
form. Therefore we will study the virus dynamics described by MC (3.1) numerically.

Consider a Poisson process with the constant rate ν. Let the previous event occurs at instant t0.
Probability that a new event occurs before the time t ≥ t0 can be estimated as

P (t|t0, ν) = 1− e−ν(t−t0). (3.10)

This gives a clue to model this process using a random number generator which generates a random
number r uniformly distributed in the segment [0,1]. To find time of the next event tr we equate the l.h.s.
of the (3.10) to r and solve the equation with respect to t. This gives

tr = t0 +
1

ν
ln

1

1− r
. (3.11)

For variable rate Eq. (3.10) should be modified

P (t|t0, ν) = 1− exp{−
∫ t

t0

ν(t′) dt′}. (3.12)

Equation for evaluation of the next event time tr becomes more complicated.

In the case of Markovian process, the rate ν(t) is a piecewise constant function. This is because the
rate of any process in the MC depends on the number of species: it remains constant in between the
events and then ‘jumps’ to the next value when a next event occurs. So it is possible to evaluate the next
event time tr. Let the value of integral in (3.12) be known

∫ t1
t0
ν(t) dt = J and for t > t1 the rate remains

constant ν(t > t1) = ν1 then

tr = t1 +
1

ν1

(
ln

1

1− r
− J

)
. (3.13)

that simplifies computation of tr.
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To describe the numerical algorithm modelling MC (3.1) we introduce the state vector X =
[X1, X2, X3]T ≡ [X,Y, V ]T and matrix of events:

M =

+1 −1 −1 0 0 0
0 0 +1 −1 0 0
0 0 0 0 +1 −1

 (3.14)

If an nth process occurs at a certain instant, then the nth column of matrix M should be added to the
state vector X.

Also we introduce a vector of event rates for all the processes ν = [ν1, . . . , ν6], a vector of expected
event time for all the processes t = [t1, . . . , t6], a vector of integrals J = [J1, . . . , J6] and a vector of
generated random numbers r = [r1, . . . , r6] uniformly distributed on [0, 1].

Algorithm 3.2. The numerical algorithm modelling stochastic virus dynamics.

1. Set the final time of the process tf and set current time t = 0;
2. Initialize: X(0) = [X0, 0, V0] and set J = [0, . . . , 0];
3. Compute the rate vector ν using (3.1);
4. Generate vector of random numbers r;

5. Compute the expected times of next event in all the processes: tn =
1

νn
ln

1

1− rn
, n = 1, . . . , 6;

6. Find process p with the minimal expected time: tp = min{t1, . . . , t6};
7. Update the state vector Xm ← Xm +Mmp, m = 1, 2, 3.
8. Update the J vector: Jn ← Jn + νn(tp − t), n = 1, . . . , 6, n 6= p and set Jp = 0;
9. Update the rate vector ν using (3.1);

10. Update the expected times: tn = tp +
1

νn

(
ln

1

1− rn
− Jn

)
, n = 1, . . . , 6, n 6= p;

11. Generate a random number rp ∈ [0, 1];

12. Update the next event time of the pth process: tp ← tp +
1

νp
ln

1

1− rp
;

13. Set current time t = tp and store the current state and time
14. If t < tf go to 6 otherwise terminate the computation.

The proposed algorithm is similar to Gillespie’s “First Reaction” algorithm [13].

3.5. Full stochastic numerical simulations results

Algorithm 3.2 for the direct numerical simulations of MC (3.1) has been implemented in the C language
with the use of the PCG library [26] for random number generator. The script calling the program in
loop to obtain 10k non-degenerate realizations (in which there is no extinction of disease) for various V0

is written in bash. It utilizes the GNU parallel tool [38] to parallelize executions of different realizations
on a maximum available number of threads. Typical CPU time to execute a single realization is about
260 s, i.e., 4 min 20 s.

An example of numerical simulation is presented in Figure 3(left). One can see that the stochastic
behaviour is very typical for the earlier stage of the infection.

Note that in contrast to the deterministic case, the infection dynamics can instinct in some realizations,
i.e., it can reach the state V = 0, Y = 0 at a certain time after which the virus dynamics is terminated.
As usual this occurs at a small time when values V, Y are still not too large. We refer to such realizations
as degenerate ones. A realization in which numbers of virions and infected cells can reach their peak
values is a non-degenerate realization and corresponds to a developed infection disease. The probability
for infection to develop strongly depends on the initial number of virions V0. The numerical simulations
enables computation of the probability to develop infection depending on initial number of virus particles
V0. The plot is shown in Figure 3(right). From the plot it is seen that for V0 ≈ 20 the probability of
extinction is around 0.5.
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Figure 3. Left: Examples of non-degenerated realizations obtained by the MC direct
numerical simulation (solid curves). Dashed lines indicate the deterministic solution of
virus dynamics.
Right: Probabilities of infection development (non-degenerate cases) for different initial
number of viruses V0. Blue points represent the calculations obtained from full stochastic
model (3.1) simulations, green points – simplified model (4.2) simulations.

The time-dependent sample means and sample STDs for ensemble of non-degenerate realizations are
plotted, respectively, in Figures 4 and 5 for various initial number of viruses V0. The Figure 4 shows the
differences between the stochastic and deterministic solutions. One can see that the smaller number of
the initial virions—the more is discrepancy between the deterministic and the mean stochastic dynamics,
i.e., averaged over non-degenerate realizations.

The time dependence of the standard deviation (STD) is shown in Figure 5. Plots of STD time
dependence have peculiar, two-hump shapes with a local minimum between the humps. The hump maxima
and the STD in general are reduced in magnitude with the increasing number of initial virions. This
confirms the importance to model the viral dynamics with the stochastic approach as in reality the initial
number of virions is small down to a single virion [18,37,43].

Smoothed histograms for the number of viruses V at different stages of infection are shown in Figure 6.
Stage 3 corresponds to the time of mean viral load peak tmax : V (tmax)→ max, stage 2 and stage 4 are
4 days before and after tmax, respectively. The histograms are normalized in such the way that they
approximate PDF of the process: they should tend to the real PDF when the number of realizations
tends to infinity.

In fact, the distribution of MC (3.1) is discrete and three-dimensional. We are dealing here with the
smoothed PDF over wide enough intervals and also integrated over variables X and Y . One can see that
for small initial number of virions, the PDFs are very wide, this fact indicates the necessity to consider
random dynamics of infection in those cases. Also observe that PDF shapes are far from being Gaussian,
but become narrower and close to Gaussian with the growth of initial virions for stages 2 and 4. As for
the maximal infection load at stage 3, the PDF shapes have an steep decay after the maximum and do
not tend to Gaussian with increase of V0.
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Figure 4. Means of 10k infection development realizations of the MC numerical sim-
ulations of virus (red), uninfected (blue) and infected (green) target cells are shown by
solid curves. Results of the deterministic dynamics are plotted by dashed lines.

4. The hybrid stochastic model

Plots in Figure 3(left) show that the relatively large random fluctuations are apparent at the initial phase
only (stage 1 and beginning of stage 2). In subsequent stages the curves are rather smooth, the numbers
of all dynamic participants are large (several orders), and the fluid dynamics limit works rather well. The
randomness in realizations at the latest stages is determined by the stochasticity at the early stages. This
gives rise to an idea to split dynamics into two main stages or phases. These two phases in hybrid model
should not be confused with four stages of the deterministic dynamics described in Section 2.2.

At the initial phase when the numbers of virions and infected cells are small and, hence, the stochasticity
of interaction between species should be taken into account. However at this phase, the number of infected
cells varies little and can be regarded as constant. This fact enables us to simplify the earlier phase model
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Figure 5. STDs of populations numbers for 10k infection development realizations of
MC numerical simulations. Colors: blue – uninfected cells, green – infected cells, red –
viruses.

Figure 6. Smoothed normalized histograms for the number of virions at stage 2 (left),
stage 3 (middle), stage 4 (right) for different initial number of viruses V0. The histograms
are calculated for ensemble of 10k infection development realizations.

by excluding the uninfected cells dynamics from the total process. The number of all species becomes
large enough to switch the total process to a deterministic behaviour somewhere in the middle of the
stage 2. This is a main idea of hybrid model in which the stochastic and deterministic phases are separated
and can be matched at any instant t = t∗ taken from the interval in which two following conditions are
satisfied simultaneously

X ≈ x0, Y, V � 1. (4.1)

These conditions can be satisfied in the middle of the stage 2 provided the initial number of virions is much
smaller than the number of virions taking place near the maximum infection load: V0 � V (t = tmax).
The later condition is the condition of the Small Initial Contagion (SIC) approximation introduced in
[33] for epidemic modelling. Note that the term hybrid model [31, 32] is referred to stochastic processes
whereas the SIC approximation [33–35] can be applied to a deterministic process as well to simplify its
computation and analysis (see Section 2.3).

The hybrid model has been developed first for epidemic modelling [31,32,34,35] but one can see that
it can be also applicable for the viral dynamics simulation. In this simulation, the stochastic phase can
be modelled by Markov chain which is simplified compared with the full model (3.1). In the deterministic
phase of the hybrid model, the deterministic equations (2.1) should be integrated many times with the
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random initial conditions defined by the stochastic phase. In the framework of the SIC approximation,
the once computed limiting solution can be used for all the realizations, e.g., [34].

Thus, in the framework of the hybrid model we are keeping the number of uninfected cells equal to
x0 = λ/d. Introducing parameter β′ = βx0 we can write down the following approximate MC which
contains only four processes

Process # Event Rate Description

1 Y → Y + 1 β′V Cell infection

2 Y → Y − 1 aY Infected cell death

3 V → V + 1 kY Virus particle birth

4 V → V − 1 uV Virus particle death

(4.2)

MC (4.2) has been implemented in the same way as MC (3.1). The computation of the stochastic process
(4.2) is performed until the time t∗ which was selected to be 4 days before the expected averaged peak of
the infection process: t∗ = tmax−4, i.e. in the middle of stage 2. At this time numbers of species reach the
values V ∼ 104, Y ∼ 103, i.e. they are large enough for application of the deterministic model. After that
time, the deterministic ODE (2.1) with the initial condition v(t∗) = V (t∗), y(t∗) = Y (t∗), x(t∗) = x0 are
integrated for the total time of realization which is 20 days. This is true for non-degenerate realizations.
In some realizations which are degenerate, the values V (t) = 0, Y (t) = 0 can be reached before time t∗
and the stochastic process is terminated.

The CPU time of a single realization in the framework of the hybrid model is about 5 s, i.e., 50 fold
faster than the CPU time for the full model (see Section 3.4). This is mainly because the dynamics of
uninfected cells is disregarded. The number of uninfected cells is very large: 107–108 and interactions
between cells are very frequent, therefore an average time interval between the events is much shorter
than in the hybrid model. At the same time relatively small fluctuations of X weakly effect the dynamics
of V and Y .

The probability to the infection process to develop versus the number of initial virions computed in
by the hybrid model is shown in Figure 3(right). Observe a very small discrepancy between the values
obtained by the full and hybrid models.

In Figure 7, the computed smoothed normalized histograms are presented for the virion numbers in
stage 2 (left) and stage 4 (right), i.e., before and after the infection peak. The curves with the darker color
indicate the histograms for the full model, curves with the same but lighter color indicate the histograms
for the hybrid model. The plots show that the discrepancy of the histograms is reasonably small except
in the case V0 = 1. This case needs explanation and further study.

5. Conclusion

The dynamics of infectious diseases in humans is subject to many random effects resulting from stochastic
fluctuations in biochemical and cellular processes underlying the infection of target cells, within-the-
cell replication and effect of the immune responses. The potential of the stochastic models has been
appreciated in recent studies based on single scale models formulated with SDEs [21], discrete stochastic
models [24,27], genetic algorithms [4] as well as multi-scale hybrid models [6, 7, 23,30].

The kinetics of the virus and immune responses is characterized by a large variation in scale, i.e., from
few species to millions of virions and cells, respectively. In order to correctly model the corresponding
evolution, computational algorithms which take into account the transition of the system from noise-
dominated behaviour to a deterministic dynamics need to be developed. In our study we implemented
a Markov chain approach to generalize a deterministic set of equations, representing a basic model
of HIV infection, to a stochastic discrete populations model. The convergence in distribution of the
stochastic model realizations to the solution of the deterministic model has been proved. We explored the
computational aspects of the stochastic behaviour of virus infection spread across the population of target
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Figure 7. Smoothed normalized histograms of number of virions at stage 2 (left) and
stage 4 (right) for different initial number of viruses V0, calculated using full (3.1) and
simplified (4.2) stochastic models. The histograms are calculated for ensemble of 10k in-
fection development realizations. The curves with the darker color indicate the histograms
for the full model, curves with the same but lighter color indicate the histograms for the
hybrid model.

cells under the well-mixing assumption. To deal efficiently with the description of population dynamics
in state space domain characterized by a mix of small and large species densities, we have developed a
hybrid modelling method and identified the criteria for switching between stochastic to semi-deterministic
and finally to deterministic types of modelling.

It has been shown that random effects result in a time-dependent distribution of the virus population
size that can be described by a PDF. The PDF becomes more narrow with an increase in the dose
of infection reflecting the transition to a deterministic mode of behaviour. The model under study has
been used to quantify the dependence of the probability of the systemic infection development versus
extinction of the virus. HIV infection is considered to result from the transmission of a single viral
variant [18]. Understanding of the stochastic and selective forces that restrict transmission and may
be targets for prevention strategies, requires further development of stochastic models that account for
multiple bottlenecks, scales and compartments in order to quantify the probability of fateful decision
between extinction and systemic spread of the virus upon transmission.

In are future work we are going to investigate stochastic models with delay between the cell contami-
nation and free virion release [15]. Then we will have to model the dynamics by Markov processes with
continuous state spaces instead of Markov chains with countable state spaces.
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A. Proof of Theorem 3.1

The proof of Theorem 3.1 follows closely that of Theorem 2.1, Chapter 11 in [12]. Consider a Markov

process X̃n(t) ∈ Z3 with the transition rates q
(n)
m,m+m′ = nνm′

(
1
nm
)
. Here vectors m,m′ ∈ Z3 take six

possible values corresponding the columns of matrix (3.14). Functions νm′ are defined in Table (3.1).
Then process X̃n(t) admits the following representation

X̃n(t) = X̃n(0) +
∑
m′

m′ Pom′

(
n

∫ t

0

1

n
X̃n(s) ds

)
(A.1)

where Pom′ are six independent Poisson processes of rate 1. Setting F (m) =
∑
m′ m′νm′(m) we obtain

for the process Xn(t) = 1
nX̃n(t) the following representation

Xn(t) = Xn(0) +
1

n

∑
m′

m′ P̃om′

(
n

∫ t

0

νm′(Xn(s)) ds
)

+

∫ t

0

F (Xn(s)) ds (A.2)

where P̃om′(t) = Pom′(t)− t is a compensated Poisson process. Using the Euclidean norm |.| define

εn(t) = sup
u≤t

∣∣∣Xm(u)−Xn(0)−
∫ u

0

F
(
Xn(s)

)
ds
∣∣∣. (A.3)

Now write ODEs (2.1) in the integral from

x(t) = x(0) +

∫ t

0

F (x(s)) ds

and assume without loss of generality the Lipshitz condition in a neighbourhood of {x(s), s ≤ t} for a
fixed t ≥ 0: |F (m1)− F (m2)| ≤ C|m1 −m2|. Then (A.2) implies

|Xn(t)− x(t)| ≤ |Xn(0)− x(0)|+ εn(t) + C

∫ t

0

|Xn(s)− x(s)|ds. (A.4)

Hence by Gronwall’s inequality

|Xn(t)− x(t)| ≤ |Xn(0)− x(0)|+ εn(t)eCt. (A.5)

It remains to note that |εn(t)| → 0 in probability by the Law of Large Numbers. �
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