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The application of a high–order discontinuous Galerkin
time–domain method for the computation of

electromagnetic resonant modes

Mark Dawson, Ruben Sevilla∗, Kenneth Morgan

Zienkiewicz Centre for Computational Engineering, College of Engineering
Swansea University, Swansea, SA1 8EN, Wales, UK

Abstract

This work presents a highly accurate and efficient methodology for the com-

putation of electromagnetic resonant frequencies and their associated modes in

cavities. The proposed technique consists of a high–order discontinuous Galerkin

time–domain solver combined with a signal processing algorithm for extracting

the frequency content. The methodology is capable of incorporating the CAD

boundary representation of the domain. The numerical results demonstrate that

incorporating the exact boundary representation results in a improved conver-

gence rate, a phenomenon that has not been previously reported. Several nu-

merical examples in two and three dimensions show the potential of the proposed

technique for cavities filled with non–dispersive or dispersive media.

Keywords: Maxwell’s equations, resonant modes, high–order, discontinuous

Galerkin, time–domain

1. Introduction

The computation of the resonant frequencies of oscillation and their associ-

ated eigenmodes is of great interest in many areas of science and engineering,

including structural analysis, acoustics and electromagnetics. In the design and
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characterisation of many electromagnetic devices, such as optical fibres, bio-5

logical sensors, add/drop filters or photonic bandgap devices, the accurate and

efficient computation of the resonant frequencies and modes of cavities is re-

quired.

The methodologies used to compute the electromagnetic resonant frequencies

in cavities can be classified into frequency or time–domain solvers according to10

the approach utilised to solve Maxwell’s equations.

Frequency domain solvers assume a time–harmonic variation of the fields and

result in the need to solve a large generalised eigenvalue problem [1, 2]. The

application to complex three dimensional cavities can result in prohibitively ex-

pensive computations due to the large memory requirements or due to the lack15

of a preconditioners suitable for the large sparse linear systems that are encoun-

tered [3, 4, 5]. In addition, the performance of the solver is strongly problem

dependent. For instance, a solver designed for the solution of the eigenvalue

problem arising from an electromagnetic problem with lossless materials can

perform poorly when applied to problems involving loss and/or dispersive ma-20

terials.

An alternative approach involves solving the problem directly in the time–

domain. In this case the transient Maxwell’s equations are solved using a time–

domain solver and the fields are recorded at spatial points to extract the fre-

quency content using signal processing algorithms [6]. This alternative induces25

significantly lower memory requirements compared to frequency domain solvers,

enabling the computation of resonant modes associated with high frequencies

in complex three dimensional cavities.

Among all the possible methodologies to solve the Maxwell’s equations in the

time–domain, the Yee scheme [7] proposed five decades ago remains the predom-30

inant technique in commercial and research software, partially due to its imple-

mentation simplicity and its low operation count for a given number of degrees

of freedom. However, it is well known that this finite difference time–domain

(FDTD) method requires, in its simplest form, the use of structured meshes,

compromising its application to complex devices involving curved geometries.35
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Unstructured mesh methods such as the finite element time–domain method or

the finite volume time–domain method [8] offer greater geometric flexibility but

the linear approximation of curved boundaries, can create non–physical diffrac-

tion effects, especially for high–frequency problems. In addition the low order

approximation of the solution is known to introduce significant dissipation and40

dispersion errors that become sizeable when the waves are to be propagated over

long periods of time. High–order methods have emerged as a promising alterna-

tive to alleviate these issues [9]. High–order finite element techniques enable the

incorporation of an accurate representation of curved geometries [10, 11] and

reduce the levels of numerical dispersion and dissipation [12], a crucial aspect45

when the resonant frequencies are of interest. Among all the possible high–order

methods, the high–order discontinuous Galerkin (DG) time–domain method has

generated significant interest [13, 14, 15, 16, 17].

This work proposes a combination of the high–order DG time–domain method

with a signal processing algorithm for the efficient computation of resonant fre-50

quencies in cavities. The proposed technique is able to compute a broad range of

resonant frequencies and their associated modes with high accuracy. The effect

of the geometric representation of cavities with curved boundaries is studied

using a numerical example and it is found that the isoparametric representa-

tion traditionally used in the DG method can degrade not only the accuracy of55

the computed frequencies but, more importantly, the asymptotic rate of con-

vergence. The simulations include cavities with dispersive materials and three

dimensional examples.

The remainder of the paper is organised as follows. Section 2 recalls the

conservative form of Maxwell’s equations for both non–dispersive and dispersive60

materials modelled using a single–pole Drude model. The DG weak formulation

of the problem is presented in Section 3. Two techniques to perform the spatial

discretisation are presented in Section 4, namely the traditional isoparametric

finite element method and the recently proposed NURBS–enhanced finite ele-

ment method. In Section 5 the technique to compute the resonant frequencies65

and their associated modes from time–domain simulations is described and sev-
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eral numerical examples are presented in Section 6. The examples include two

and three dimensional cavities. Numerical studies confirm the optimal rate of

convergence of the error on the computed resonant frequencies and the influence

of the geometric approximation in the asymptotic rate of convergence is shown.70

Finally, Section 7 summarises the main conclusions of the work that has been

presented.

2. Transient Maxwell’s curl equations in dispersive media

Maxwell’s curl equations in a homogeneous and isotropic lossless medium

can be written as

∂B̃

∂t̃
+∇× Ẽ = 0

∂D̃

∂t̃
−∇× H̃ = 0

with the constitutive equations that state the relation in between the electric and

magnetic flux density vectors and the electric and magnetic intensity vectors,75

namely D̃(Ẽ) and B̃(H̃).

This system of linear hyperbolic equations must be supplemented with ap-

propriate boundary and initial conditions. For the examples considered in this

paper, we assume that the boundary is a perfect electric conductor (PEC), so

the tangential component of the electric field vanishes on the boundary, namely

n× Ẽ = 0. (1)

2.1. Conservative form of the Maxwell’s equations in dispersive media

For a dispersive medium with no magnetic polarisation, the constitutive

relations are

D̃(x̃, t̃) = ε0ε∞Ẽ(x̃, t̃) + P̃ (x̃, t̃) and B̃(x̃, t̃) = µ0H̃(x̃, t̃), (2)
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where ε∞ is the electric permittivity at infinite frequency and P̃ denotes the

electric polarisation vector.

For the single–pole Drude model considered here [18], a mechanical model

is employed to express the motion of charges as a function of the electric field,

resulting in the ordinary differential equation

∂2P̃

∂t̃2
+ γ̃

∂P̃

∂t̃
− ε0w̃2

pẼ = 0, (3)

that relates Ẽ and P̃ , where γ̃ is the electron damping coefficient and w̃p is the80

plasma frequency.

The approach considered here consists of introducing the dipolar current vec-

tor J̃
p

= ∂P̃ /∂t̃ as a new variable, following the so–called auxiliary differential

equation (ADE) method [19, 20]. Alternative techniques for including the dis-

persive behaviour in time–domain simulations include the recursive convolution85

method [21, 22] and the Z–transform method [23].

The transient Maxwell’s curl equations, governing the propagation of elec-

tromagnetic waves in a dispersive lossless single–pole Drude medium with no

magnetic polarisation, can be written in the differential dimensionless conser-

vative form as

∂U

∂t
+
∂F k(U)

∂xk
= S(U) k = 1, . . . , nsd (4)

where nsd denote the number of spatial dimensions and, in three dimensions,

the unknown vector U is given by

U =
(
ε∞E1, ε∞E2, ε∞E3, H1, H2, H3, J

p
1 , J

p
2 , J

p
3

)T
, (5)
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the hyperbolic fluxes F k are defined as

F 1 =
(

0, H3,−H2, 0,−E3, E2, 0, 0, 0
)T

,

F 2 =
(
−H3, 0, H1, E3, 0,−E1, 0, 0, 0

)T
,

F 3 =
(
H2,−H1, 0,−E2, E1, 0, 0, 0, 0

)T
,

and the source term is given by

S =
(
−Jp

1 ,−Jp
2 ,−Jp

3 , 0, 0, 0, ω
2
p E1 − γJp

1 , ω
2
p E2 − γJp

2 , ω
2
p E3 − γJp

3

)T
. (6)

The relation between the original variables (denoted by a tilde) and the

dimensionless variables is

x =
x̃

l
, t =

t̃

l
√
ε0µ0

, E = Ẽ, H =

√
ε0
µ0
H̃, (7)

plus the relation for the two additional parameters introduced by the dispersive

model given by

ωp = l
√
ε0µ0ω̃p, γ = l

√
ε0µ0γ̃, (8)

with l being a characteristic length.

It is worth mentioning that Maxwell’s equations in a non–dispersive medium

can be recovered from the equations in a dispersive Drude media by setting

Jp = 0 and ωp = 0.90

2.2. Linear form of the Maxwell’s equations in dispersive media

Maxwell’s equations, both in non–dispersive and dispersive Drude media,

form a linear hyperbolic system of equations. They can be written in the form

∂U

∂t
+Ak

∂U

∂xk
= AsU k = 1, . . . , nsd (9)
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where, in three dimensions,

Ak =


03 Rk 03

−Rk 03 03

03 03 03

 , As =


03 03 −I3

03 03 03

ωpI3 03 −γI3

 , (10)

with

R1 =


0 0 0

0 0 1

0 −1 0

 , R2 =


0 0 −1

0 0 0

1 0 0

 , R3 =


0 1 0

−1 0 0

0 0 0

 . (11)

3. Discontinuous Galerkin formulation

Let us consider an open bounded domain Ω ⊂ Rnsd with PEC boundary ∂Ω

and assume that Ω is partitioned in nel disjoint elements Ωi, namely

Ω =

nel⋃
i=1

Ωi, Ωi ∩ Ωj = ∅ for i 6= j. (12)

The DG weak formulation of Equation (4) may be expressed over a generic

element Ωe as: find (E,H,Jp) ∈ C([0, T ],V), such that

∫
Ωe

W · ∂U e

∂t
dΩ−

∫
Ωe

∂W

∂xk
·F k(U e)dΩ +

∫
Γe

W ·Fn(U e)dΓ =

∫
Ωe

W ·S(U e)

(13)

for all W ∈ V , where V = H0(curl,Ω)×H(curl,Ω)×L2(Ω), with

H(curl,Ω) = {v ∈ L2(Ω) | ∇ × v ∈ L2(Ω)}, (14)

H0(curl,Ω) = {v ∈H(curl,Ω) | v × n = 0 on ∂Ω} (15)

and L2(Ω) = [L2(Ω)]nsd . Furthermore, in Equation (13), U e denotes the re-

striction of U to the element Ωe, n is the outward unit normal vector to the

boundary Γe of Ωe and Fn = F knk is the normal flux on Γe. As usual in a DG

context, the discontinuous nature of the approximation is accounted for by re-
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placing the physical normal flux at the boundary by a consistent numerical flux,

F̃n(U e,U
out), that depends on both the trace of the solution at the element Ωe,

namely U e, and the trace of the solution at the neighbouring element, namely

Uout. A natural choice, for the linear hyperbolic system of interest here, is to

employ a flux splitting technique, which corresponds to an upwind approxima-

tion [24]. The normal flux Fn is decomposed into incoming flux (superscript −)

and outgoing flux (superscript +)

Fn(U e) = F−n(U e) + F+
n(U e) (16)

where the incoming and outgoing fluxes are associated with the negative and

positive eigenvalues of the Jacobian matrix An = ∂Fn

∂U respectively. The nu-

merical flux is then computed as

F̃n(U e,U
out) = F+

n(U e) + F−n(Uout) (17)

Introducing the resulting numerical normal flux into equation (13), the DG

weak formulation for element Ωe can be re–written as

∫
Ωe

W · ∂U e

∂t
dΩ +

∫
Ωe

W · ∂F k(U e)

∂xk
dΩ +

∫
Γe

W ·A−n JU eKdΓ =

∫
Ωe

W ·S(U e)

(18)

where JU eK = U e − Uout denotes the jump in the solution across Γe and the

boundary term, is given by

A−n JUK =
1

2


−n× JHK + n× (n× JEK)

n× JEK + n× (n× JHK)

0nsd×1

 . (19)

At an inter–element boundary, the jump of the solution is computed using

the traces of the solution at the current and neighbouring elements. In contrast,

for a face on the PEC boundary, condition (1) only specifies the tangential com-

ponent of the electric field. As usual in the framework of hyperbolic equations,
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the Rankine–Hugoniot jump conditions must be employed to determine the un-

known conditions. At a PEC boundary, the resulting expression of the boundary

term is

A−n JUK =


n× (n×E)

n×E

0nsd×1

 . (20)

Convergence of the DG method for the system of Maxwell’s equations in a

Drude dispersive medium bounded by a PEC has been recently proved [25].

4. Spatial discretisation95

This section describes two approaches to perform the spatial discretisation of

the weak formulation (18), namely the traditional isoparametric finite element

formulation and the recently proposed NURBS–enhanced finite element method

(NEFEM).

4.1. Isoparametric finite element method100

A nodal interpolation of the solution, U , is defined in a reference element

Ω̂, with local coordinates ξ, as

U(ξ, t) ' Uh(ξ, t) =

nen∑
j=1

Uj(t)Nj(ξ) (21)

where Uj denote the (time–dependent) nodal values, Nj are polynomial shape

functions of order p in ξ and nen is the number of nodes per element. Then,

the isoparametric transformation is used to link the reference element Ω̂ with a

generic mesh element Ωh
e , namely

φ(ξ) =

nen∑
j=1

xjNj(ξ) (22)

where xj are the nodal coordinates of the element Ωh
e and Nj are the same poly-

nomial shape functions of order p used for the interpolation in Equation (21). It
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is important to remark that, for an element with a face or edge on the boundary

of the computational domain, the boundary of the element Ωh
e is a polynomial

approximation of order p of the true boundary [10].105

Introducing the approximate solution (21) into the weak form of equa-

tion (19) and selecting the space of weighting or test functions to be the same

as the space spanned by the approximation functions, the system

nen∑
j=1

MijI
dUj

dt
+

nen∑
j=1

(
Ck

ijAk

)
Uj −

nfn∑
j=1

mijA
−
n JUjK =

nen∑
j=1

MijAsUj (23)

of ordinary differential equations is obtained for every node i of element Ωh
e .

Here, M denotes the elemental mass matrix, Ck the elemental convection matrix

in the xk direction, m is the face mass matrix, I is the identity matrix and nfn

is the number of nodes per face. These matrices are defined by

Mij =

∫
Ωh

e

NiNjdΩ, Ck
ij =

∫
Ωh

e

Ni
∂Nj

∂xk
dΩ and mij =

∫
Γh
e

NiNjdΓ. (24)

Using the isoparametric mapping (22), the integrals over element Ωh
e are

evaluated on a reference element, Ω̂ as

Mij =

∫
Ω̂

NiNj |J |dΩ and Ck
ij =

∫
Ω̂

Ni

(
nsd∑
l=1

J−1
kl

∂Nj

∂ξl

)
|J |dΩ (25)

where J = ∂φ/∂ξ is the Jacobian of the isoparametric transformation. Simi-

larly, the face mass matrix is evaluated as

mij =

∫
Γ̂

NiNj‖Jf‖dΓ (26)

where Jf is the Jacobian of the restriction of the isoparametric mapping to the

element face f .

10



4.2. NURBS–enhanced finite element method (NEFEM)

The isoparametric mapping induces a geometric approximation of curved

boundaries, which can have a non–negligible impact in some applications [10].110

The recently proposed NEFEM completely removes the geometric uncertainty

induced by a polynomial approximation of curved boundaries. In this case,

the CAD boundary representation of the domain given by NURBS curves or

surfaces is considered [26].

In a NEFEM context [26], the approximation is defined directly in the phys-

ical space, with Cartesian coordinates, namely

U(x, t) ' Ũh(x, t) =

nen∑
j=1

Ũj(t)Ñj(x) (27)

where Ũj denote the (time–dependent) nodal values and Ñj are polynomial115

shape functions of order p in x.

Introducing the approximate solution (27) into the weak form of equa-

tion (19) and selecting the space of weighting or test functions to be the same

as the space spanned by the approximation functions, the system of ordinary

differential equations

nen∑
j=1

M̃ijI
dŨj

dt
+

nen∑
j=1

(
C̃k

ijAk

)
Ũj −

nen∑
j=1

m̃ijA
−
n JŨjK =

nen∑
j=1

M̃ijAsŨj (28)

is obtained for every node i of element Ωe, where the elemental matrices are

given by

M̃ij =

∫
Ωe

ÑiÑjdΩ, C̃k
ij =

∫
Ωe

Ñi
∂Ñj

∂xk
dΩ and m̃ij =

∫
Γe

ÑiÑjdΓ. (29)

The main differences between NEFEM and isoparametric elements are

• NEFEM ensures that the geometry is exactly represented, irrespective

of the mesh used, whereas in isoparametric FEM the mesh introduces a

geometric approximation. The integrals in Equation (29) are defined over120
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Ωe and Γe whereas integrals in Equation (24) are defined over Ωh
e and Γh

e .

• Isoparametric elements define the approximation in a reference element,

with local coordinates (ξ), whereas NEFEM defines the approximation

directly in the physical space, with Cartesian coordinates (x) [27, 11].

Therefore NEFEM ensures the reproducibility of polynomials in the phys-125

ical space whereas this is not guaranteed for isoparametric FEM. This

difference induces the different notation used for the approximation in

Equations (21) and (27). This change also implies that the summation

in Equation (28) corresponding to the face integral contains all element

nodes, rather than only the face nodes as in the isoparametric approach130

described in Equation (23).

• The numerical integration in the isoparametric FEM is performed over a

reference element. NEFEM uses specifically designed numerical quadra-

tures that account for the exact boundary representation given by a CAD

model [28].135

Remark 1. Super-parametric finite elements are an alternative to improve the

geometric representation of isoparametric elements [29]. This approach consists

of using a higher polynomial representation for the geometry of the computa-

tional domain, viz. Equation (21), than for the functional approximation, viz

Equation (22). This approach has not been considered in the present work be-140

cause the implementation effort required and the computational cost is similar

to NEFEM but its accuracy is always lower due to the use of a polynomial

representation of the boundary of the computational domain. A comparison of

isoparametric, super-parametric and NEFEM elements can be found in [30].

4.3. Computational aspects145

The implementation considered in this work employs the optimal interpola-

tion points proposed in [31] and the technique proposed in [13] for constructing

high–order polynomial basis function. The quadratures employed to integrate
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the terms of the weak form correspond to the integration rules recently proposed

in [32]. The number of integration points is selected so that exact integration is150

achieved for polynomials of order less than or equal to 2p+ 1.

The meshes used in this work are designed to maximise the number of el-

ements where an affine mapping can be established between the physical and

reference elements. As shown in [33], the cost of a high–order DG method can

be reduced by a factor of 100 by using a quadrature–free implementation [34].

For instance, the mass matrix can be computed once in the reference element

and, for each element, the computation of an elemental mass matrix reduces to

a multiplication of a scalar by the matrix of the reference element, namely

Mij = |J |
∫

Ω̂

NiNjdΩ = |J |M̂ij , (30)

thus avoiding the loop over integration points in each time step.

High–order curvilinear meshes for the isoparametric FEM are obtained us-

ing the solid mechanics analogy proposed in [35, 36], whereas the meshes for

NEFEM are generated using the technique recently proposed in [37]. For curved155

elements, it is not possible to precompute the mass matrix in the reference el-

ement and scale it with the Jacobian for each physical element. Due to the

extremely low number of curved elements present in practical applications, it is

possible to precompute the mass matrix for each curved element.

5. Computation of resonant frequencies and modes160

The proposed strategy to compute the resonant frequencies and their asso-

ciated modes in a cavity consist of two stages.

5.1. Computation of resonant frequencies

Resonant frequencies of a cavity are computed using a time–domain solver by

integrating the Maxwell’s equations in time using an initial condition or current

source designed to excite the frequencies within a desired interval. The use of

localised pulses designed to excite a broad range of frequencies is commonly

13



used [38, 18, 39], although, it is possible to exclude unwanted frequencies by

carefully exciting the fields [40]. In all the numerical examples considered here,

the initial condition corresponds to

U1(x, 0) = U2(x, 0) = 0, ∀x ∈ Ω, U3(x, 0) =

1 if x = {xm}nmonm=1,

0 otherwise

(31)

where xm, for m = 1, . . . , nmon, denote the nmon monitor points.

The solution is then advanced using a time marching algorithm and the165

electromagnetic fields are recorded at one or several points. In this work an ex-

plicit fourth order Runge–Kutta scheme is employed for advancing the solution

in time. When combined with the spatial DG discretisation described in the

previous section, this results in an efficient and low–storage approach because

the resulting mass matrix is block diagonal [33]. Figure 1(a) shows the initial170

condition used for the computation of the resonant frequencies in a rectangular

cavity, where the red circle denotes the monitor point xm used to record the

signal. The field at t = 0.09ps is also depicted in Figure 1(b).

(a) t = 0ps (b) t = 0.09ps

Figure 1: Simulation of a rectangular PEC cavity showing (a) the initial condition and monitor
point and (b) the field at t = 0.09ps.

At the end of the time–domain simulation, a signal processing algorithm is

applied to the recorded fields to compute the resonant frequencies. The most175

popular choice is the fast Fourier transform (FFT) but other alternatives such as

the filter diagonalisation method (FDM [41]) are available. In this work we use

the FFT as the main interest is to study the performance of the proposed spatial
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discretisation techniques. Figure 2 shows the time–domain signal recorded at

the monitor point shown in Figure 1(a) and the frequency spectrum after the180

FFT is applied.

0

0.06 0.12 0.18 0.24 0.30 0.36 0.42 0.48 0.54 0.60

Time [ps]

-0.05

0.05

A
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e

U
U
U

(a) Time–domain signal

0 16.67 33.33 50.00 66.67 83.33
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(b) Spectrum

Figure 2: Simulation of a rectangular PEC cavity showing (a) the amplitude of the fields and
(b) the spectrum obtained after applying the FFT.

The choice of the monitor point/s significantly influences the final spectrum

obtained. For instance, if a monitor point coincides with a symmetry point of

a particular mode, the frequency associated to this mode will not be extracted

when applying the signal processing algorithm to the recorded signal. This effect185

can be utilised to avoid exciting undesired modes [42].

Finally, it is worth mentioning that filters are commonly applied to the

recorded fields to reduce spectral leakage effects induced by the finite length of
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a signal. For the examples considered in this work, a Blackman filter is applied

prior to extracting the frequency content [43].190

5.2. Computation of resonant modes

After the resonant frequencies are computed, the associated resonant modes

are obtained by performing a discrete Fourier transform (DFT) for each fre-

quency of interest and at each point in space, namely

Ûj(fk) =

nT−1∑
n=0

Uj(tn) exp(−2πItnfk), j = 1, · · · , nnode, (32)

where nT is the total number of time steps, I =
√
−1, fk are the computed

resonant frequencies, tn = n∆t, ∆t is the time step, nnode is the total number

of mesh nodes and Ûj(fk) is the complex amplitude of the mode associated to

frequency fk at node j of the mesh.195

One alternative to obtain the complex amplitude of the resonant modes

would involve recording the signal during the time domain simulation at all

nodes of the computational mesh. After the resonant frequencies are obtained,

folllowing the procedure described in Section 5.1, a direct application of Equa-

tion (32) provides the complex amplitude of each mode at all the nodes of the200

mesh. The main drawback of this approach is the large memory required to

store all the components of the electric and magnetic fields at all points of the

mesh and for each instant of the time–domain simulation.

To reduce the required memory, a second alternative, considered in this work,

consists of performing a second run of the time–domain solver after the resonant205

frequencies are obtained. In the second run, the DFT given by Equation (32), is

performed on the fly, during the time marching process. The extra memory of a

built-in DFT is negligible as it only requires a vector, of dimension equal to the

total number of mesh nodes for each component of the electric and magnetic

field, to be stored. Furthermore, the extra computational cost of the built-210

in DFT is also negligible as it only requires performing a multiplication of a

vector, containing the values of the electromagnetic fields, by a scalar, given by
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the exponential in Equation (32), and accumulating the result in a vector.

6. Numerical examples

This section presents a number of numerical examples to validate the im-215

plementation of the proposed technique for both non–dispersive and dispersive

materials. A comparison of the performance of low and high–order elements is

presented as well as the effect of the geometric representation of cavities with

curved boundaries on the accuracy and convergence properties of the proposed

methodology.220

In all the examples a fourth order explicit time marching scheme is consid-

ered. As the main focus here is to study the error due to the spatial discreti-

sation, the time step is selected to be small enough to ensure that the error

induced by the time marching algorithm is lower than the spatial error. Simi-

larly, the final time is selected to be large enough to ensure the error of the FFT225

is lower than the spatial error.

In practice, the maximum time step is given by ∆t = d1/(2fM )e, where

fM is the maximum frequency of interest and d·e denotes the ceiling function,

because for a discrete signal it is necessary to have at least two sampling points

per period. The final time of the time–domain simulation, T , is selected in230

practice as T = 1/(∆f), where ∆f is the length of the interval between two

consecutive frequencies obtained from the FFT.

6.1. Rectangular non–dispersive cavity

The first example involves the computation of the resonant frequencies and

associated modes on a rectangular PEC cavity of dimension 2L × L where235

L =20µm filled with air. The objective is to show the optimal convergence

of the proposed approach for approximating the resonant frequencies and com-

pare the performance of high and low–order approximations.

The resonant frequencies are computed using a series of structured quadri-

lateral meshes with 4×2, 8×4, 16×8, 32×16 and 64×32 elements. Figure 3240
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shows the evolution of the relative error on two computed resonant frequencies

as a function of the element size for a degree of approximation p ranging from

1 up to 3. In this figure, and in subsequent examples, fi denotes the computed
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Figure 3: Rectangular non–dispersive cavity: h-convergence of the relative error for two
resonant frequencies.

i-th resonant frequency and the frequencies are assumed ordered from lowest to

highest, i.e. fi < fj if i < j. The error in the computed frequency fi is evalu-245

ated as εi = (|fi − f?i |)/f?i , where f?i is the known exact value of the resonant

frequency [44].

In all the examples, the theoretical 2p + 2 rate of convergence [12] is ap-

proximately obtained, confirming the optimality of the proposed approach for

computing the resonant frequencies of a non–dispersive cavity. It can be ob-250

served that, for a given mesh and degree of approximation, the error increases

as the frequency increases, illustrating the challenge in approximating higher

frequencies.

The results also illustrate the benefit of using high–order approximations. In

the second mesh, the use of a cubic approximation of the solution offers a result255

almost four orders more accurate than using a linear approximation and two

orders of magnitude more accurate than using a quadratic approximation. In the

two cases presented in Figure 3, the use of a cubic approximation in the second

mesh and a linear approximation in the finest mesh provide similar accuracy.
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This implies that the computation with p=3 provides the same accuracy as the260

computation with p=1 by reducing the number of degrees of freedom by a factor

of almost 20. It is worth mentioning that the required use of finer meshes with

linear elements induces a significantly higher computational cost due to the use

of an explicit time marching scheme.

In this numerical example, with a coarse mesh of 8×4 elements and a cubic265

degree of approximation, it is possible to capture resonant frequencies up to

22.49 THz with an error below 10−4 and resonant frequencies up to 35.98 THz

with an error below 10−3.

After computing the resonant frequencies, the associated modes can be ex-

tracted by performing a discrete Fourier transform as described in Section 5.270

Figure 4 shows the second component of the electric field for the four modes

associated to the frequencies f3, f4, f6 and f9.

(a) f3 ≈ 8.38 THz (b) f4 ≈ 10.60 THz (c) f6 ≈ 13.51 THz (d) f9 ≈ 16.76 THz

Figure 4: Rectangular non–dispersive cavity: component E2 of four resonant modes.

To further illustrate the potential of the proposed approach, Figure 5 shows

the first electric and magnetic component of the electromagnetic field corre-

sponding to a high frequency mode, with associated resonant frequency of275

f26 ≈ 31.80 THz. The computation has been performed on a very coarse mesh

with only 8 elements and using a degree of approximation p=4 and the the

relative error of the computed modes measured in the L2(Ω) norm is 0.0135.

6.2. Effect of the geometric representation for cavities with curved boundaries

The second example considers the computation of the resonant frequencies280

and associated modes in a PEC disk resonator of radius 1µm filled with air,

for which an analytical solution is known [44]. The objective is to study the

effect of the geometric approximation of curved boundaries on the accuracy
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(a) E1 (b) H1

Figure 5: Rectangular non–dispersive cavity: two components of a high frequency resonant
mode corresponding to the resonant frequency f26 ≈ 31.80 THz.

and convergence properties of isoparametric finite elements and NEFEM. In

addition, the benefit of using high–order curved elements in this context is285

quantified by comparing the computational time required to obtain the same

accuracy.

The resonator is discretised using a series of unstructured triangular meshes

with 4, 16, 64, 256, and 1,024 elements and with different orders of approx-

imation. Figure 6(a) shows the evolution of the error in the first resonant290

frequency, f1 ≈ 57.59 THz, as a function of the element size for linear (p = 1)

and quadratic elements (p = 2) and by using standard isoparametric finite el-

ements and NEFEM. The results show that the geometric approximation of
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Figure 6: Disk resonator: h-convergence and p-convergence of the error for the first resonant
frequency f1 ≈ 57.59 THz.

curved boundaries introduced by standard finite elements induces not only a
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significant loss of accuracy but, more importantly, a loss of the optimal rate of295

convergence. For example, in the fourth mesh, with 256 elements and using a

linear approximation of the solution, the error in resonant frequency with NE-

FEM is more than two orders of magnitude lower than the error obtained using

standard finite elements. For isoparametric finite element a rate of convergence

2p is observed whereas for NEFEM the optimal rate of convergence, 2p + 2, is300

observed. The order 2p corresponds to the rate of convergence of the geometric

error, understood as the area between the true boundary and the approximation

with polynomials of order p induced by an isoparametric approach.

Figure 6(b) shows a p-refinement study. A coarse mesh, with only four ele-

ments, is considered and the degree of approximation is increased from p=1 to305

p=4. The evolution of the error in the first resonant frequency, as a function

of the square root of the number of degrees of freedom, is represented for both

isoparametric finite elements and NEFEM. The comparison shows important

differences for low order approximations (i.e, p=1,2) whereas for higher order

approximations (i.e, p ≥3), a similar error is obtained. These results indicate310

that, in the presence of curved boundaries, an accurate geometric approxima-

tion is required to compute the resonant frequencies. If an accurate geometric

description is employed, the error in the computed frequency is controlled by the

numerical dispersion of the scheme (of order 2p+2) rather than being controlled

by the geometric error (of order 2p).315

Figure 7 shows the third component of the electric field for twelve modes.

The modes are extracted by performing a discrete Fourier transform as described

in Section 5. All the modes are computed using a single time–domain run on

a mesh with only 1,024 elements and using a degree of approximation p=5

(i.e, 46,080 degrees of freedom). The error in the highest computed resonant320

frequency (f20 ≈ 310.50 THz) is less than 0.3%, illustrating the potential of

the proposed approach for computing resonant frequencies and the associated

modes over a broad frequency band.

Next, the performance of both low and high–order approximations is stud-

ied. Figure 8 shows the evolution in the error of the first computed resonant325
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(a) f1 ≈ 57.37 THz (b) f2 ≈ 91.41 THz (c) f3 ≈ 122.52 THz (d) f14 ≈ 263.97 THz

(e) f4 ≈ 131.69 THz (f) f6 ≈ 167.37 THz (g) f5 ≈ 152.21 THz (h) f19 ≈ 294.36 THz

(i) f17 ≈ 281.31 THz (j) f13 ≈ 242.71 THz (k) f7 ≈ 181.03 THz (l) f20 ≈ 310.50 THz

Figure 7: Disk resonator: component H3 of twelve resonant modes.

frequency as a function of the number of degrees of freedom (ndof) and the CPU

time for low and high–order approximations. In both cases NEFEM is consid-

ered in order to avoid the error introduced by the polynomial approximation of

curved boundaries inherent to standard isoparametric finite elements.

Figure 8(a) shows a comparison of low and high-order approximations in330

terms of the memory requirements (i.e. number of degrees of freedom) to ob-

tain a desired accuracy. For the h-refinement strategy linear approximation

is considered in successively refined meshes whereas the p-refinement strategy

consist on increasing the degree of approximation from p = 1 to p = 4 in the

same coarse mesh. As expected, high–order elements significantly outperform335
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Figure 8: Disk resonator: Comparison of h and p refinement in terms of(a) the number of
degrees of freedom (ndof) and(b) the CPU time for the computation of the first resonant
frequency f1 ≈ 57.59 THz.

low–order elements, due to the exponential rate of convergence of a p-refinement

strategy compared to the algebraic rate of an h-refinement strategy when the

solution is smooth. In this example, for an error in the first resonant frequency

of 10−4, the number of degrees of freedom required using NEFEM with linear

approximation is 1,149, whereas the same accuracy can be obtained using ap-340

proximately 204 degrees of freedom with p = 3 on a coarser mesh. For higher

accuracy, namely an error in the first resonant frequency of 2.5× 10−7, the use

of high–order methods is even more advantageous. NEFEM with linear approx-

imation requires 18,432 degrees of freedom, whereas the same accuracy can be

obtained using only 360 degrees of freedom with p = 4 on a coarser mesh.345

The reduction in number of degrees of freedom introduced by a high–order

functional approximation has been consistently observed in many examples and

it is a crucial factor in the growing interest in high–order methods not only

within the computational electromagnetics and but also within the computa-

tional fluid dynamics community [45, 46]. In some cases this reduction is not350

necessarily expected to translate in a lower computational cost due to the extra

computational cost per element induced by a high–order approximation. Fig-

ure 8(b) shows the comparison of low and high–order approximations in terms

of the normalised CPU time (i.e, CPU time of the current simulation divided
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by the CPU time of the simulation with linear elements in the coarsest mesh)355

on a logarithmic scale. The results demonstrate that high–order methods are

not only competitive in terms of memory requirements (as discussed from the

results in Figure 8(a)), but more importantly, in terms of the computing time.

In this example, an error in the first resonant frequency of 10−4 is achieved using

high–order elements 5.5 times faster than using linear elements. For higher ac-360

curacy, namely an error in the first resonant frequency of 2.5×10−7, high–order

elements are 88 times faster than linear elements.

It is worth noting that the speed up factor of high–order elements compared

to low–order elements is similar, or even higher, than the factor by which the

number of degrees of freedom is reduced, clearly illustrating the potential and365

performance of high–order elements for the computation of resonant frequen-

cies in cavities. It is also worth mentioning that the superiority of high–order

approximations in other electromagnetic problems where the error of the elec-

tromagnetic fields is of interest has been previously reported in [33].

6.3. Dispersive cavity370

First, the implementation of the DG method for a lossless single–pole Drude

medium with no magnetic polarisation is validated for a square cavity filled

with a dispersive material with non–dimensional constants ωp = 0.7933 and

γ = 0.076 and with a PEC boundary. A volumetric source term is considered

so that the analytical solution is given by

E = sin(πt)


− cos(πx1) sin(πx2)

sin(πx1) cos(πx2)

2 sin(πx1) sin(πx2)

 H = cos(πt)


− sin(πx1) cos(πx2)

cos(πx1) sin(πx2)

− cos(πx1) cos(πx2)

 .

(33)

The computations are performed on a series of structured triangular meshes

with 2, 8, 32, 126, 556 and 2,310 elements and for a degree of approximation

ranging from p=1 to p=4. Initial and boundary conditions corresponding to the

analytical solution are considered. The final time corresponds to T=3 and the
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time step is small enough to ensure that the error due to the time integration375

is lower than the error introduced by the functional approximation.

Figure 9 shows the L2(Ω) norm of the error of two components of the elec-

tromagnetic field, namely E1 and H3, as a function of the characteristic element

size h. In all cases, the expected optimal rate of convergence (i.e, p+1) is ob-

served.
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Figure 9: Rectangular dispersive cavity: h-convergence of the L2(Ω) norm of the error of two
components of the electromagnetic field as a function of the characteristic element size h for
different degrees of approximation (p).

380

The next example considers a rectangular cavity of dimension 2L× L, with

L =20µm made of the same dispersive material as the previous example and with

a PEC boundary. This example is used to test the convergence properties of the

proposed technique for the computation of resonant frequencies in a dispersive

medium. The analytical resonant frequencies can be numerically computed by385

computing the roots of the function as described in [44]. Figure 10 shows the

evolution of the error of two computed resonant frequencies as a function of the

element size for linear and quadratic elements. In all the examples, the expected

2p+ 2 rate of convergence is approximately obtained, confirming the optimality

of the proposed approach for computing the resonant frequencies of cavities filled390

with dispersive materials. As in previous examples, it can be observed that, for

a given mesh and degree of approximation, the error increases as the frequency

25



-1.5 -1 -0.5 0
-7

-6

-5

-4

-3

-2

-1

7.9

1

6.3

1

3.9

1

log10(h)

lo
g 1

0
(F

re
q
u
en

cy
E

rr
or

)

(a) f6 ≈ 13.64 THz
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Figure 10: Rectangular dispersive cavity: h-convergence of the error for two resonant frequen-
cies.

increases, illustrating the challenge in approximating higher frequencies.

The effect of the dispersive material on the computed spectrum can be ob-

served in Figure 11 by comparing the spectrum for both the non–dispersive395

cavity and the dispersive cavity using, in both cases, a mesh with 128 elements

and a degree of approximation p=2. The results reveal a shift of all the fre-
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Figure 11: Rectangular cavity: Comparison of the computed spectra for non–dispersive and
dispersive cavities.

quencies. The shift is more sizeable for low frequencies than for the higher

frequencies. It can also be observed that the amplitude of the signal in the

dispersive cavity is lower than the signal recorded in the cavity filled with a400

non–dispersive material.

26



In this numerical example, with a coarse mesh of 8×4 elements and a cubic

degree of approximation, it is possible to capture resonant frequencies up to

22.49 THz with an error below 10−4 and resonant frequencies up to 31.48 THz

with an error below 10−3.405

6.4. Three dimensional cavity

The final example considers a three dimensional PEC cavity of dimension

L × L × L, where L=2µm filled with a non–dispersive material, for which an

analytical solution is known [44]. The objective is to validate the implementation

and illustrate the potential of the proposed approach in three dimensions.410

The frequencies are computed using a series of structured hexahedral meshes

with 2×2×2, 4×4×4, 8×8×8 and 16×16×16 elements and different degrees of

approximation. Although the use of tetrahedral meshes is preferred for geomet-

rically complex cavities, the use of hexahedral elements significantly reduces the

cost of the time–domain solver due to the reduced number of interior faces com-415

pared to a tetrahedral mesh. The performance of different elements was studied

in detail in [33], where it was concluded that, for domains that can be meshed

with regular hexahedral elements, the accuracy level obtained with tetrahedral

elements can be achieved using between 10 to 15 times less computational time

using hexahedral elements.420

Figure 12 shows the evolution of the error in two computed resonant frequen-

cies as a function of the element size for a degree of approximation p ranging

from 1 up to 3. The results demonstrate the optimal convergence properties

of the proposed approach for computing the resonant frequencies in three di-

mensional cavities and illustrate, once more, the challenge of computing high425

resonant frequencies.

It is important to remark that the reduction in terms of number of degrees of

freedom is more significant here than for the two dimensional problems discussed

before. For instance, in order to obtain a relative error in the frequency f9

below 10−5, cubic elements employ a mesh with 64 elements (i.e, 24,576 degrees430

of freedom), quadratic elements require a mesh with 512 elements (i.e, 82,944
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(a) f4 ≈ 167.59 THz
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Figure 12: Three dimensional cavity: h-convergence of the error for two resonant frequencies.

degrees of freedom) and linear elements require a further level of mesh refinement

resulting in a mesh with 32,768 elements (i.e, 1,572,864 degrees of freedom). This

means that cubic elements are able to perform a similar accuracy compared to

linear elements by using 64 times less degrees of freedom.435

In this numerical example, with a coarse mesh of 8×8×8 elements and a

cubic degree of approximation, it is possible to capture resonant frequencies up

to 509.66 THz with an error below 10−4 and resonant frequencies up to 749.50

THz with an error below 10−3.

The resonant modes are again computed using another time–domain simu-440

lation as described in Section 5. Figure 13 shows the three components of the

electric field for the resonant mode associated to the lowest frequency, f1 ≈
105.99 THz.

To further illustrate the potential of the proposed methodology, Figure 14

shows the intensity of the electric and magnetic fields in four resonant modes,445

namely those associated with the resonant frequencies f4 ≈ 167.59 THz, f6 ≈
211.99 THz, f35 ≈ 491.47 THz and f36 ≈ 502.77 THz.

All modes are computed on a mesh with only 64 hexahedral elements and

using a degree of approximation p = 3. The relative error in the four resonant

frequencies associated to the modes represented in Figure 14, ranges from 167.59450

THz to 502.77 THz is below 10−5.
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(a) E1 (b) E2 (c) E3

Figure 13: Three dimensional cavity: three components of the electric field for the first
resonant mode with frequency f1 ≈ 105.99 THz.

(a)E, f4≈167.6 THz (b)E, f6≈212.0 THz (c)E, f35≈491.5 THz (d)E, f36≈502.8 THz

(e)H, f4≈167.6 THz (f)H, f6≈212.0 THz (g)H, f35≈491.5 THz (h)H, f36≈502.8 THz

Figure 14: Three dimensional cavity: intensity of the electric (top) and magnetic (bottom)
fields for four resonant modes.

7. Concluding remarks

The use of a high–order accurate DG solver for the computation of electro-

magnetic resonant frequencies and the associated modes in cavities has been

described. The method is capable of incorporating the dispersive character455
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of frequency dependent materials using a single–pole Drude model. A unique

capability of the proposed technique is the ability to incorporate the CAD rep-

resentation of the boundary of the computational domain.

The optimal rate of convergence of the error of the computed frequencies

has been numerically verified using two and three dimensional examples, in-460

volving cavities with curved boundaries and dispersive materials. The results

show that the use of coarse meshes enables the efficient computation of the

resonant frequencies and the coupling with an explicit time marching algorithm

results in extremely low storage requirements, especially when compared to stan-

dard frequency domain methods. The results demonstrate that the traditional465

isoparametric finite element method does not achieve the optimal rate of con-

vergence when cavities with curved boundaries are considered. This is shown to

be related to the geometric approximation of curved boundaries. The NURBS–

enhanced finite element method, which incorporates the exact description of the

boundary, exhibits the expected optimal rate of convergence.470
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