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In this work, we extend the three-dimensional SPH non-colloidal particulate model previously developed for
Newtonian suspending media in [Vézquez-Quesada, Ellero, J. Non-Newt. Fluid Mech., v. 233, pp. 3747, 2016]
to viscoelastic matrices. For the solvent medium, the coarse-grained SPH viscoelastic formulation proposed in
Ref. [Vazquez-Quesada, Ellero, Espanol, Phys. Rev. E, v.79, 056707, 2009] is adopted. Property of this par-
ticular set of equations is that they are entirely derived within the GENERIC formalism (General Equation for
Non-equilibrium Reversible-Irreversible Coupling) and therefore enjoy automatically thermodynamic consis-
tency. The viscoelastic model is derived through a physical specification of a conformation-tensor-dependent
entropy function for the fluid particles. In the simple case of suspended Hookean dumbbells this delivers a
specific SPH discretization of the Oldroyd-B constitutive equation. We validate the suspended particle model
by studying the dynamics of a single and mutually interacting 'noncolloidal’ rigid spheres under shear flow
and in the presence of confinement. Numerical results agree well with available numerical and experimental
data. It is straightforward to extend the particulate model to Brownian conditions and to more complex

viscoelastic solvents.
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I. INTRODUCTION

Understanding the dynamics of rigid particles inter-
acting with complex viscoelastic matrices is important
for the design of a wide range of products, including
pneumatic tires in the automotive industry, gels/creams
in the food/personal care industry as well as for biomed-
ical applications.

Whereas simulation of particles suspended in a simple
Newtonian matrix has often been proposed based on
grid-based techniques - e.g.  finite elements meth-
ods (FEM)!, distributed Lagrange-multiplier-based
(DLM)?3, smoothed profile methods (SPM)?, finite
volumes techniques® - and grid-off approaches - e.g.
Stokesian Dynamics®, Lattice Boltzmann methods”®,
Dissipative Particle Dynamics® 4, Smoothed Particle
Hydrodynamics methods!®:16 much less work has
been devoted to particulate systems interacting with
viscoelastic matrices. In particular, after the seminal
grid-based simulation approaches in Refs.!”!?, novel
arbitrary-Lagrangian-Eulerian ~ (ALE)  formulations
have been proposed by Hulsen and coworkers which
allowed improved calculations on moving domains?’.
Grid-based methods are able to capture accurately the
dynamics of particles in viscoelastic media modelled
by several constitutive equations - e.g Oldroyd-B,
Maxwell, Giesekus, PTT, FENE-like etc. - and have
been successfully applied to study the rotation of
a sphere in a viscoelastic liquid subjected to shear
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flow?!, confinement effects on viscoelasticity-induced

cross-stream particle migration?23, particle-interaction
in a shear flow!'??* and recently particle separation and
sorting in microfludics devices?®. Despite their great
accuracy, these techniques are to date limited to small
systems, i.e. in the order of hundreds of suspended discs
in 2D26 or few dozens of spheres in three-dimensional
calculations®”. In ALE approaches this is, from one
hand, related to the need of frequent costly mesh
generation when grid becomes too distorted during
motion and, on the other one, to the request of local
enrichment for numerical convergence in gaps between
nearly touching particles. This problem makes therefore
difficult to study the rheology of large particulate
samples and/or to explore microstructural quantities
requiring large statistics such as, for example, the radial
distribution function. It should be noticed that recent
unstructured finite volume methods for continuum
viscoelastic flows have been coupled to moving domains
using immersed boundary formulations® allowing parallel

simulations of hundred spheres under dilute conditions?®.

The challenges in reproducing accurately and effi-
ciently the dynamics of viscoelastic suspensions has
driven the simultaneous development of alternative
techniques. For example the Stokesian Dynamics
method which, thanks to the absence of the explicit
solvent calculation, allows for excellent algorithmic
scaling??, but it is typically applied to simple Newtonian
suspending media. To the best of our knowledge,
the only generalization to non-Newtonian media was
proposed in Ref.3 but the model was restricted to linear
viscoelasticity. In the context of Lattice Boltzmann
techniques, a recent hybrid two-dimensional approach



for particulate systems has been proposed in Ref.3!,
where a LB-Giesekus model of the viscoelastic medium
is combined with a solid-fluid interaction described by a
smoothed profile method.

Among coarse-grained techniques for viscoelastic sus-
pensions, it is worth mentioning the so-called responsive
particle dynamics (RaPiD)3?, a particle-based off-lattice
which can efficiently simulate various viscoelastic fluids
ranging from polymeric dispersions to worm-like mis-
cellar solutions. The method has been applied to study
the alignment of particles under shearing®334, but is
restricted to the Brownian regime, i.e. typically for sub-
micron colloidal particles, so extensions to non-colloidal
regime seems hard to obtain.

An alternative approach to describe viscoelastic me-
dia is represented by Smoothed Particle Hydrodynamics
(SPH). The method has been traditionally introduced as
a Lagrangian meshless discretization of viscoelastic par-
tial differential equations, such as corotational Jaumann-
Maxwell?> or Upper-Convected Maxwell models®®.

Recently, a novel SPH viscoelastic formulation has

been developed for mesoscopic Brownian regime by in-
corporating additional stochastic terms in the particle
evolutions equations which satisfy exactly 2nd Law of
Thermodynamics and the Fluctuation-Dissipation The-
orem (FDT)3738  Discrete enforcement of FDT is
critical to model complex mesoscopic fluids®® and it
can be nicely obtained by casting the model into the
so-called GENERIC formalism (General Equation for
Non-equilibrium Reversible-Irreversible Coupling)?®. In
the limit where thermal fluctuations can be neglected,
the coarse-grained model reduces to a very specific
‘thermodynamic-consistent” SPH discretization of an
Oldroyd-B constitutive equation. The resulting model
has been successfully validated under transient and com-
plex flows3741:42,
Beside formal aspects of thermodynamic consistency,
SPH in particular - and particle methods in general - are
defined in term of local pairwise interactions and there-
fore enjoy a high-degree of parallelization which make
them suitable to use for HPC computations of large-scale
particle systems. The SPH particle models presented
here are implemented on the Parallel Particle Mesh li-
brary (PPM)*3 a Fortran 90 software layer between the
Message Passing Interface (MPI) and Client Applications
for simulations of physical systems using Particle-Mesh
methods with optimal scaling performance.

In this work, we extend the SPH particulate mod-
els previously developed for Newtonian matrices!® ! to
viscoelastic matrices and validate them by studying the

dynamics of a single and mutually interacting 'noncol-
loidal’ spheres under confined shear flow. The determin-
istic non-Brownian SPH solvent model will be considered
here, whereas its stochastic mesoscopic generalization®”
for a ’colloidal’ particulate system will be presented in a
future work. The scheme of the paper is the following
one: in Sec. II, the SPH viscoelastic suspension model is
presented. Sec. III is devoted to the numerical analysis,
in particular we will consider four validation benchmarks:
(i) bulk particle rotation; (ii) confinement effect on lat-
eral particle migration, (iii) particle-pair interaction un-
der shear flow and (iv) sedimentation of a many-particle
system in a closed cavity. Finally, conclusion and fu-
ture application of the methodology will be outlined in
Sec. IV.

Il.  VISCOELASTIC SUSPENSION MODEL

In this section the details of the suspension model are
presented, separately, for the viscoelastic solvent medium
and for the suspended solid particles.

A. SPH viscoelastic solvent modelling

In this work we consider a coarse-grained fluid-particle

model for a polymer solution originally proposed in
Ref.3738, Every particle is considered as a thermody-
namic sub-system containing a given number of polymer
molecules. The state of the fluid particle is characterized
by a configuration tensor ¢ that describes their underly-
ing molecular elongation and orientation. The specifica-
tion of very simple physical mechanisms inspired by the
dynamics of single polymer molecules allows one, with
the help of the GENERIC formalism, to derive the equa-
tions of motion for a set of fluid particles carrying poly-
mer molecules in suspension which satisfy strictly ther-
modynamics consistency, i.e. 1st-2nd Law of Thermo-
dynamics and FDT. For sake of clarity, in this section
we provide a brief overview of the main discrete evolu-
tion equations (focusing on the deterministic limit) and
discuss their interpretation in the context of constitutive
viscoelastic models.
If we consider a set of fluid particles labelled by Latin
indices 4,5 = 1,..,N, in the most general case, the
GENERIC-derived ordinary differential equations for the
positions, velocities and conformation tensor associated
to each particles read
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where m is the mass of each particle, D is the number of
dimensions of the system, v;; = v; — v; are the relative
particle velocities, W;; = W(rw = |rz rj|) a normalized
smoothing kernel function, W/, = ( )/ 07 |r=r,;
derivative and e;; = r;;/r;; the unlt vector joining
particle ¢ and j. The number density on particle 4
is evaluated as a standard summation d; = Zj Wi,
while the particle pressure P; is computed by using an
equation of state P; = 2 (p; — po), cs being the speed
of sound, p; = md; and pg, respectively, the local and a
reference mass density.

These set of Newton’s equations for the particles can be
interpreted as a specific Smoothed Particle Hydrodynam-
ics (SPH) Lagrangian representation of the general mo-
mentum conservation with an additional evolution equa-
tions for the conformation tensor. In particular, the first
two terms model the effect of the solvent, i.e. first sum-
mation in Eq. (1) represents the pressure gradient term,
the second summation corresponds to the Laplacian of
the velocity field (ns is the solvent dynamic viscosity),
whereas the third contribution can be interpreted as the
divergence of a polymeric stress (we use here the conven-
tion of the sign opposite to the pressure). In the most
general case, the latter reads

Ti:—QdiO'i'Ci (2)

where ) is the polymer relaxation time and o; is a tenso-
rial variable thermodynamically conjugated to c;, defined

o= T (358”) (3)

where T is a constant temperature and S,(c) is the
conformational-dependent entropy function. Expres-
sions (1), (2) and (3) are of general validity as no
assumption has been made yet on the specific force law
of the polymer. Application of GENERIC ensures their
thermodynamic consistency at the discrete level.

Polymer physics come into play in this model with a
proper definition of S, (c). In the simplest case of a dilute
suspension of Hookean dumbbells, this entropy reads>’

Sp(c) = kB& (tr[1 — c] + Indet ¢) (4)

(

where kp is the Boltzmann constant and N, is the total
number of dumbbells. In Ref.3” we have shown that this
specific choice leads to o; = (c; ' — 1) and the resulting

expression for the polymeric stress is
n
Ti = Tp (c; —1) ()

where we have defined the polymeric viscosity as 7, =
Npd;kgTA. Finally, the last term on the r.h.s. of the
evolution equations (1) for c¢; reduces to

> =

Xdz g; (1 — Ci) (6)
The resulting equations (1) correspond therefore to
a very specific SPH discretization of the classical
Oldroyd-B constitutive model for a dilute suspension of
Hookean dumbbells. As shown in Ref.?”, this particular
set of equations for the particles conserve local and
total linear/angular momentum, energy (in the athermal
case) and they are consistent with the 2nd Law of
Thermodynamics.

Temporal integration of the above SPH equations for
the solvent is performed with a second-order predictor-
corrector scheme. For the weighting function W, the
present work adopts a quintic spline kernel** with cutoff
radius 7.t = 4dx (dz being the mean fluid particle
separation)?®.

-cp =

As mentioned above, the formulation given in Eq. (1)
represents the deterministic continuum limit of a more
general coarse-grained stochastic model obtained in the
framework of GENERIC. It should be beard in mind that
in such a derivation, no reference to a target PDEs (i.e.
Oldroyd-B) is considered. The fact that a SPH discretiza-
tion of an Oldroyd-B equation was finally recovered rep-
resents an ’a posteriori’ proof of the consistency of the ap-
proach, as it is the expected result for Hookean dumbbells
in suspension. Generalization to more complex poly-
meric models, such as finitely extensible nonlinear elastic
springs, with the proper introduction of thermal fluctu-
ations is straightforward38. In particular, coarse-grained
thermodynamic consistent models can be constructed by
physical specification of conformation-tensor-dependent
entropy of the fluid particles appearing in Eq. (4), rather
than by brute force discretization of existing continuum
constitutive equations. For a more detailed discussion on
the formal aspects of SPH and the link to GENERIC the
reader is referred to Ref.37.



FIG. 1. Scheme of the location of the SPH boundary particles
modelling a solid sphere. The depicted resolutions used in this
work are 5,10,15 SPH boundary particles per radius (left-
middle-right) and correspond to a solid sphere described by
approximately 520,4180, 14130 computational elements.

B. Solid particles: fluid-structure interaction

Solid inclusions of arbitrary shape can be modelled us-
ing boundary particles similar to fluid ones, located inside
the solid region?® (Fig. 1). Boundary particles interact
with fluid particles by means of the same SPH forces de-
scribed in Eq. (1). No-slip boundary condition at the
liquid-solid interface is enforced during each interaction
between fluid particle ¢ and boundary particle j by as-
signing an artificial velocity to the boundary particle j,
which satisfy zero interpolation at the interface?*. The
same approach can be also used to model any arbitrary
external wall. Once all the forces acting on every bound-
ary particle j belonging to a solid bead (labelled by Greek
indexes «, 3,..) are calculated, the total force FSP" and
torque TSP exerted by the surrounding fluid modelled
by SPH can be obtained as

FP=>N"F;, TPM"=> (r;-

JEa JE«

Iia) X Ig (7)

where R,, is the center of mass of the solid bead a. When
properly integrated, FSPP and TSP allow to obtain the
new linear velocity V,, angular velocity €2, and position
of the suspended solid bead. Positions of boundary par-
ticles inside « are finally updated according to a rigid

body motion*”.

C. Short-range inter-particle forces

The present SPH model captures accurately the long
range viscoelastic interactions between solid particles. As
discussed in detail in Ref.'®1647 when two solid particles
(e.g. awand ) get very close to each other, the hydrody-
namic interactions (HIs) mediated by the SPH fluid are
poorly represented and need to be corrected.

In Ref.151647 an analytical solution has been consid-
ered for the pairwise short-range HIs obtained in the limit
of small sphere’s separation and superimposed it to the
far-field multi-body SPH HIs. In the case of a Newtonian
fluid, the normal and tangential lubrication forces acting

between the spheres read:*®.

FUP" (5 < %) = fas(5)Vap - €apeas
lub,
Fos t(s < 5¢) = Gap(5)Vas - (1 — €aseap) (8)

where eq,3 = Rop/Rap is the vector joining the centers
of mass of solid particles a and 3, V3 is their relative ve-
locity and s = Rap — (o + ag) is the distance in the gap
between sphere-sphere surfaces and a, and ag are the
sphere’s radii. Normal/tangential lubrication is switched
only at small separation distances s7, s! which depend
on the particle resolution dx. Full details about the lu-
brication scheme as well as the expression for the scalar
functions fas(s) and gap(s) are given in Ref.1>1647 An
accurate semi-implicit splitting scheme*® for the time in-
tegration of the short-range lubrication forces presented
in Ref.!® is used. The novel strategy avoids a costly full
matrix inversion by generating a series of small linear
systems which can be solved analytically, reducing dras-
tically the CPU time to simulate dense systems.

A discussion on this choice of short-range interparticle
lubrication is in order. In Ref.!>16:47 it was shown that
this contribution captures accurately the effect of the
“unresolved” squeezing flow in the gap s between two
approaching particles when s < a. In the situation
considered in this work, the suspending medium is
non-Newtonian, i.e. viscoelastic, and mathematically
speaking, the incorporation of Newtonian lubrication
would be inconsistent with the far-field hydrodynamic
interactions. To solve this problem, some authors adopt
the approach of grid refinement in the gap between
approaching suspended spheres'®29:26:27  This bypasses
the problem of introducing a “model” for short-range
interactions as the fluid should be “everywhere resolved”
according to the given constitutive equations. We should
point out that this approach, although being mathemat-
ically consistent, might not be fully compliant with the
underlying physics of the fluid. In fact, validity of the
any continuum model relies on assumption of sufficient
regularity of the fields describing the fluid. This is
generally obtained by requiring the existence of a scale
separation®, i.e. at least O(10), between the typical size
of the microscopic constituents (atoms, molecules etc.)
and the physical size of the 'minimal’ portion of fluid
(grid cell, volume etc.) used in the discretization of the
PDEs . Now, whereas for simple fluids such as water,
this condition is manifestly satisfied down to extremely
small scales (size of a water molecule is ~ 0.2nm)
and justifies the application of Stokes equations (and
relative lubrication solution) to nanometer scales, the
same is not necessarily true for high molecular weight
polymeric fluids such the Boger matrices targeted here.
In Boger liquids®' the matrix is typically formed from
highly-viscous Newtonian fluids, such as corn-syrup
or glycerine/water mixtures (to match bead density),
in which a very small amount (0.03 % or smaller) of
polyacryliacid (PAA) at high molecular weight (5 x 10°
g/mol) is dissolved. According to manufacturer, PAA



molecules are characterized by a typical gyration radius
(under no flow condition) R, ~ 100nm, whereas at
very high shear rates a coil-stretch transition might
occur, leading to physical size exceeding pum. It is
clear that any continuum description for these fluids is
questionable on scale smaller than, say, few microns at
best. In the case of non-colloidal spheres with typical
radius ~ 40pum, for example, this would lead to a failure
of continuum hypothesis on scales of the order of 10%
of the particle radius. So, although it is mathematically
correct to search for a numerically converged-solution of
the PDEs, it might be questionable to push its validity in
the very narrow gaps occurring between nearly touching
particles.

In this work, we consider the short-range interparticle
lubrication model based on the Stokes expression with
Oldroyd-B viscosity, therefore in this approximation we
merge a far-field viscoelastic description of HIs with
a short-range Newtonian behaviour. Appropriateness
of this approximation can be assessed a posteriori by
exploring the particle dynamics under different flow
conditions, which is what we do in Sec. 3.

Finally, beside short-range lubrication forces, an ad-
ditional repulsive force acting between solid particles is
introduced to mimic particle’s surface roughness or other
short-range interactions (e.g. electrostatic) which pre-
vents artificial overlap'®1%47. It is customary to use for

this force the expression®?°3.
Te T8
Fg =P eap (9)

where 77! determines the interaction range and F™P its
magnitude. Typically values for nearly hard-spheres are
771 = 0.00la — 0.05a and F*P = 2.115 (see Ref.!%).
Larger values of 77! describe soft spheres with finite re-
pulsion range.

I1l. NUMERICAL RESULTS

In this section we present results of the simulation of
the suspension model for rigid particles under shear and
in presence of confinement. We present first validation
tests of the model for a single particle under rotation in
a shear flow (Sec. IITA), particle migration under con-
fined conditions (Sec. IIIB), two-particles interaction in
a shear flow (Sec. III C) and sedimentation of a many-
particle system in a closed cavity (Sec. IIID).

A. Rotating sphere in a viscoelastic medium

In order to validate the model, the case of a freely
rotating non-Brownian, buoyancy-free sphere in a con-
stant shear rate flow is considered first. A sphere of ra-
dius @ = 1 is confined symmetrically between two planar
walls moving at velocities £V, generating a shear rate
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FIG. 2. Angular rotation of a sphere in a viscoelastic medium
undergoing shear flow. Comparison of the simulations with
literature.

4 = 2V/L, with L being the gap between the plates. Pe-
riodic boundary conditions are imposed in the remaining
directions.

The viscoelastic parameter 5 = 1,/ (with 7, = 1, +1s5)
characterizes the amount of liquid elasticity, being zero
for a Newtonian fluid and one for a purely elastic fluid,
i.e. Upper-Convected Maxwell model. We consider here
two different values: 8 = 0.385 and 0.9. Simulations have
been performed by maintaining a constant solvent viscos-
ity n, = 15.55 and adjusting 7, in order to achieve the
desired 3 value. To characterize the elasticity regime the
Deborah number is used, which is defined as De = A\,
with A being the characteristic elastic time of the fluid.
The size of the simulation box is L, = L, = L, = 10a
chosen to minimize periodicity and confinement effects.
Box size effects have been assessed by running simula-
tions at the largest De with L, x L, x L, = 20ax10ax20a
without producing deviations in the results. To check nu-
merical convergence, two resolutions are considered first,
namely res= 5 SPH particles (see sketch Fig. 1) and
res= 10 SPH particles per solid particle radius. This
corresponds, respectively, to a total number of simulated
SPH particles N = 150,000 and N = 1, 100, 000, whereas
the numbers of SPH boundary particles per solid bead
are approximately 520 and 4,180. In one case we have
performed the simulation at even higher resolution, i.e.
res= 15, to check the convergence. This last case corre-
sponds to a total number of N & 3,600,000 SPH parti-
cles with approximately 14,130 SPH boundary particles
per solid bead.

The total viscosity is, respectively 7, = 25.28
(8 = 0.385) and n; = 155.55 (8 = 0.9). The imposed
shear rate is varied in the range ¥ = 0.018 — 0.355,
producing a maximum particle Reynolds number
Re = pa?y/m; = 0.014 < 1. Speed of sound
is chosen ¢, = 140, leading to a Mach number
Ma = V/e¢s = 0.013 <« 1, therefore an approximately



incompressible inertia-less flow is modelled.

Before starting the simulation, the square lattice defin-
ing the initial positions of the SPH fluid particles has
been randomized to avoid spurious fluctuations. The
simulations are compared against the numerical and
theoretical results from literature. In particular, results
of simulation done with an Oldroyd-B fluid from Snijkers
et al in®* as well as with a Maxwell fluid by D’Avino et
al?! are considered as reference.

Comparison is reported in figure 2, where numeri-
cal convergence and overall good agreement is obtained
with SPH up to De = 2. The solid particle rotates in
the shearing plane with a rate w dependent on the ap-
plied shear rate, delivering the classical result w = /2
in the Newtonian limit (De — 0) and a reduction of
the rotation rate with increasing elasticity, in agree-
ment with simulations?™®* and experimental results with
Boger liquids®®. The present results show also that 5 SPH
boundary particles per radius is a sufficient resolution to
capture accurately the dynamics of a single sphere un-
dergoing a shear flow in the regime of De investigated.

B. Lateral particle migration

As a second validation test, we check the dynamics
of a particle undergoing a shear flow in presence of pla-
nar confinement. Upper/lower plates are translated with
constant velocities £V generating a shear flow 4 = 0.5.
As in the previous case § = n,/m: = 0.9 and the Reynolds
and Mach numbers are small, i.e. Re = 0.003 <« 1
and Ma ~ 0.04 < 1. Size of simulation box is now
L, = 20a,L, = 10a,L, = 10a, with blockage ratio
L./a = 10. Modelling the solid spheres with res=>5
boundary particles corresponds to N = 300,000 to-
tal SPH computational elements, whereas res=10 cor-
responds to N = 2,200,000. When initially located on
the middle plane (as in the previous case), the particle
just rotates. However, when displaced from the symme-
try plane, lateral migration along the gradient direction
occurs. The first evidence of cross-streamline migration
in planar shear flow was given in Ref.%%, whereas recent
simulations???? and experiments with Boger liquids®7 in-
dicate that fluid viscoelasticity drives particles towards
the closest wall, as opposed to the common phenomenon
of lateral inertia-driven migration towards middle plane
predicted in Newtonian fluids®®.

As discussed in Ref.’” in the viscoelastic case, it is
the presence of confinement that leads to an asymmetric
shear rate distribution around the particle (when placed
off the midgap) resulting in a normal stress imbalance
responsible for the net migration force.

In the Fig. 3 particle migration at De = 1 is shown for
different initial positions. Results compare well with pre-
vious numerical simulations at same Deborah number, 3
and blockage ratio reported in Ref.?%. Lateral migration

(z- Zcenter) /a

1 @7 o o o Qo Q Q Q 2 2
0
0 50 100 150 200 250 300
yt

FIG. 3. Lateral migration. Particle position vs time for De =
1: res=5 (blue line), res=10 (red line). Results of°” have been
also reported (o).

is small near the middle plane (where the configuration
is just weakly asymmetric), being enhanced towards the
walls. Convergence of the results is checked for all trajec-
tories. Whereas the bulk trajectories shows minor cumu-
lative differences for a resolution change, the two upper
trajectories fastly approaching the wall (i.e. lateral ini-
tial position (z—z.)/a = 3,2.3) deserve some discussion..
It is clear that the two-resolution dynamics still converge
numerically for particle trajectories far from the wall and
agree well with previous results?3. However, for the up-
per blue trajectory when the particle gets close to the
walls, i.e. for (z — z.)/a > 3.5 disagreement arises. This
case corresponds to a typical wall/sphere-surface separa-
tion s &~ 0.5a¢ which at low resolution considered (res=5,
blue line) is ~ 2.5dz, with dz being the mean SPH par-
ticle spacing. Due to the fixed low resolution used in this
case, it is not surprising that viscoelastic wall-induced
interactions mediated by the liquid are not accurately
captured for gaps in the order of few SPH particle spac-
ing. By increasing the resolution (res=10, red line), con-
vergence of the particle trajectory is achieved to smaller
wall-distances and agreement with results of Ref.?3 re-
established.
It should be noted that the deviations shown in Fig. 3
(closest wall trajectory) correspond to an erroneous cu-
mulative near-wall lateral displacements smaller than
0.5a (at res=5) and 0.1a (at res=10) for overall longi-
tudinal displacements of the sphere in the flow direction
of order of 40L, =~ 800a, so the relative displacement er-
ror is very small.
Some snapshots of the lateral particle migration and cor-
responding trace of conformation tensor Tr(c) are de-
picted in Fig. 4. This scalar field corresponds to the
local state of polymer elongation, being equal to 3 under
equilibrium isotropic conditions.

It should be noted that in our simulations - even at
the largest resolution (red line Fig. 3) - the near-wall



FIG. 4. De =

Viscoelasticity-induced lateral migration.
1. Trajectory corresponding to initial lateral position (z —
zc)/a = 2.3. 2D-projection of the Tr(c) is taken in the mid-

dle shearing plane. Snapshots correspond to strains 4t =
8.6,60.0,128.6,162.8,194.3,237.1.

lateral migration is slightly over-estimated compared to
the results reported in Ref.??. As discussed above, this
can be related to a resolution effect in the gap, where a
small number of SPH particles results in under-estimated
bead-wall Hls.  Another possible explanation is that
in Ref.?? a slightly shear-thinning Giesekus model was
used with mobility parameter av = 0.2; it is known that
normal stress-difference are smaller for a Giesekus com-
pared to an Oldroyd-B fluid, so if lateral migration is
generated by an imbalance on normal stresses around
the particles, bigger asymmetries and resulting enhanced
migration might be expected here. This is also consis-
tent with the recent two-dimensional simulations of Choi
et al.2? where a sensitivity analysis of the particle lateral
migration as a function of the mobility parameter « in
the Giesekus model was made. It was shown by the au-
thors that by increasing «, the radial migration becomes
slower. Since the Oldroyd-B model is recovered from the
Giesekus model in the limit o — 0, the previous results
of Ref.? explain qualitatively the slightly increased mi-
gration reported here.

C. Two-particles trajectories in a shear flow

In this section, the trajectories of two solid spheres ap-
proaching each other under uniform shear flow (Fig. 5,
top) are investigated. The Newtonian case delivers pass-
ing trajectories with fore-aft symmetry which have been
already discussed in Ref.'6, where excellent agreement
compared with the analytical solutions of Batchelor®
was found. We report here the analogous situation for a
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FIG. 5. Top: sketch of the simulations of two particles ro-
tating and approaching each other in a uniform shear flow.
Bottom: particle trajectories at De = 0.5.

viscoelastic Oldroyd-B matrix. Both spheres have identi-
cal radii @ = 1 and simulation box size is L, = 20a, L, =
10a, L, = 20a. A fluid with 8 = 0.5 is considered for a
Deborah number De = 0.5, comparable to that used in
Ref.1%24, As in the previous section the choice of viscos-
ity, density, shear rate and speed of sound - which are
taken respectively as n, = 31.11, p = 1, ¥ = 0.5 and
¢ = 70 - ensures that the Reynolds and Mach numbers
are much smaller than 1.

Results are presented in Fig. 5(bottom), where parti-
cles interact only "hydrodynamically’, i.e. no repulsion
is considered ( F"P = 0). Whereas for inertia-less New-
tonian liquid (with hydrodynamic interparticle interac-
tions only, i.e. no repulsion) the dynamics is perfectly
reversible due to the time-invariance of the Stokes equa-
tions, viscoelasticity (with associated elastic memory) in-
troduces a break-down of symmetry, so irreversibility and
fore-aft asymmetries in the trajectories are expected.

In particular, a number of numerical studies with
Oldroyd-B models show that the particles approach each
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FIG. 6. Passing trajectory corresponding to an initial
lateral separation Z = (z1 — 22)/2a = 0.7, De = 0.5,
B = 0.5. 2D-projection of the Tr(c) is taken in the mid-
dle shearing plane. Snapshots correspond to strains 4t =
4.86,6.0,6.86,8.0,9.14, 11.14.

other along curvilinear paths (as in the Newtonian case)
but, for close encounters, whereas at low De they separate
(passing motion), for increasing Deborah number they
start rotating permanently as a rigid dumbbell (tum-
bling motion)!??4. Remarkably, no tumbling motion has
ever been observed in experiments with Boger liquids®?.
Moreover, experiments report asymmetric and strongly
radially shifted trajectory (departing them) when shear-
thinning polymer matrices are considered, whereas only
minor inward shift (approaching them) is observed for
constant viscosity Boger fluids. The latter situation is
closer to the Oldroyd-B constitutive models considered
in this work.

We have checked that for two particles initially placed
far apart (z1 = ba, x2 = 15a), Newtonian trajectories
are passing symmetric for each initial lateral separation.

In the viscoelastic case, at large initial interparticle
lateral separations, trajectories do still show passing
characteristics with no visible asymmetry (Fig. 5 bot-
tom: black line). However, for initial lateral separations

3.5

FIG. 7. Tumbling trajectory corresponding to an initial
lateral separation Z = (z1 — 22)/2a = 0.575, De = 0.5,
B = 0.5. 2D-projection of the Tr(c) is taken in the mid-
dle shearing plane. Snapshots correspond to strains 4t =
5.91,7.91,11.34,16.77,34.77,40.2.

Z = (z1 — 22)/2a < 0.8 (red line) trajectories start to ex-
hibit a mild inward shift, forcing post-colliding particles
towards the middle plane and reducing Z further, i.e.
a clustering tendency. This is in qualitative agreement
with previous two-dimensional simulations with the
Oldroyd-B model'®. In that work the authors report
tumbling for an initial lateral coordinate (following the
definition of this work), Z = 0.064/0.24 ~ 0.26. In order
to explore a possible limiting tumbling behaviour we
have launched a set of simulations with smaller initial
lateral displacements. Size of the simulation box is cho-
sen sufficiently large to avoid periodicity effects. From
Fig. 5 (bottom) it is clear that for Z =~ 0.6 (blue line)
the trajectory undergoes a significant inward shift but
no tumbling is observed yet. Z needs to decrease down
to = 0.57 (purple line) to lead to a kissing-tumbling
dynamics (see limiting closed trajectory).

In order to explore the nature of the asymmetric
passing and tumbling dynamics, we show next the trace
of the polymer conformation tensor c at different stages.



2D projections of the full 3D fields are considered along
the middle sharing plane intersecting the particle’s
centres. Fig. 6 corresponds to a passing dynamics for
initial Z = 0.7 (green trajectory in Fig. 5). Dark areas
in the grey scale plot correspond to large values of Tr(c)
and pronounced elongational flows. The three snapshots
top/bottom correspond to times symmetrically taken
before/after the “contact” defined as the configuration
with minimal inter-particle distance (corresponding to
the particles aligned along the vertical axis). Asymme-
try in the Tr(c) is visible which leads to the fore-aft
asymmetric trajectory shown in Fig. (5) and inward
shift.

Fig. 7 shows the evolution of Tr(c) for the tumbling dy-
namics corresponding to an initial lateral displacement
Z = 0.575 (purple trajectory in Fig. 5). Similar to the 2D
results presented in Ref.!”, the particles tumble around
each other (snapshots 2,3), then separate temporarily
(4) before recoiling and tumbling again (5,6). Note also
the similarity in the distribution of the trace of the
conformation tensor at different stages of the process
(2D projection Fig. 7) compared with Ref.!® where the
Oldroyd-B equation was fully resolved in the interstial
gap between two particles. The present results justify
also the use of the lubrication model described in Sec.II
C.

It should be remarked that this permanent rotational
phenomenon was not observed in recent simulations of
particle interacting under a “confined” situation20:24,
where instead a transition between passing/tumbling
and returning motion was observed. It should be
pointed out that in those works strong confinement
was considered (L, = 10a), whereas in the present
study a very weak confinement was chosen (L, = 20a)
to minimize long-range particle-wall interactions and
reproduce an approximate bulk behaviour.

Note that in experiments®! no tumbling is observed
down to z =~ 0.175 which is inconsistent with the results
reported here and in Ref.'. In order to see tumbling,
possibly smaller initial lateral separation Z might need
to be considered in experiments.

Another possibility is the breakdown of viscoelastic hy-
drodynamic interactions at very small interparticle dis-
tance (e.g. due to particle surface’s roughness or other
non-hydrodynamic repulsion forces).

In order to explore this effect, we study next the influence
of the repulsion force (9) on the trajectories of two par-
ticles interacting in a shear flow, in particular we change
the magnitude parameter (F*°P) and the range parameter
(7). To this end, the trajectory with an initial lateral dis-
placement Z = 0.8 (red line in Fig. 5) is considered. Re-
sults have been drawn in Fig. 8. Different values of 7 have
been taken for two different values of F*°P: F™P = 2.115
(top) and F™P = 21.15 (bottom). It is clear that the
repulsion force reduces significantly the inward shift ob-
served in the trajectories and it is even able to reverse
it (from inward-shift to outward shift) for values of F*°P
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FIG. 8. Trajectories of two particles approaching each other
in a uniform shear flow at De = 0.5 with the repulsion force
(9). Different values of T are taken for F"™°? = 2.115 (top) and
F™P = 21.15 (bottom).

sufficently large (see F™P = 21.15 case). Repulsion has
a counter-effect with respect to viscoelasticity, inducing
radial departure of post-colloiding particles. It might be
therefore expected that balance between the two effects
can be obtained under a specific choice of parameters. As
a matter of fact, one should notice the green line (Fig. 5
top) where a ’quasi-sysmmetric’ trajectory is obtained
for 7 =1.

D. Many-particles sedimentation

In order to demonstrate the capability of the present
model, in this section we present the result of a sedimen-
tation of many interacting spheres in a closed box un-
der quiescient initial conditions. The length of the box is
L, xLyxL,=16ax16a x 64a and it is bounded by solid
walls in every direction. The gravity force acts in the
z—direction and is modelled by applying an external con-
stant force on the solid particles, leading to an effective



sedimentation force [, = 161. Initially 5% = 125 spheres
are located on a grid at the top part of the box. Resolu-
tion was taken res=>5 (see Fig.1) and N = 2,048,000 SPH
particles. Solvent mass density was p = 1, solvent vis-
cosity ns = 5.20, total viscosity 7 = 8.46, in such a way
that 8 = n,/n: = 0.385. Relaxation time was A\ = 0.94
and the speed of sound was ¢; = 50. The correspond-
ing dimensionless numbers were Re = paV/n, = 0.5,
Ma = V/cg = 0.0846 and De = AV/(L,/2) = 0.5 where
V = 4.3 was the average limiting particle sedimentation
velocity.

With relation to the interparticle repulsion (Eq. (9)), dif-
ferent parameters of the force have been considered to
check the deviations in the dynamics. Change of 7 in the
range [20—1000] produces minor changes in the dynamics
of the sedimenting particles which behave as nearly-hard
spheres. To obtain a markedly changed dynamic behav-
ior, in Fig. 9 we have considered two simulations with
the same F™P = 100.0 and, respectively 7 = 20.0, 1.0.
For 7 = 20.0 (nearly hard-sphere model: Fig. 9-top), the
particles precipitate quickly creating a "highway’ in the
middle of the channel, where other particles are dragged
in (see frames corresponding to t = 31,52). The sedimen-
tation progresses quite rapidly with all particles settled
at time ¢ = 94.

On opposite, with 7 = 1.0 (long-range repulsion: Fig. 9-
bottom), particles maintain a nearly uniform distribution
(see frames ¢ = 31 — 73) and the resulting sedimentation
process is significantly reduced, with most of the parti-
cles still settling at ¢ = 94. The computational time for
these simulations was approximately 40 hrs on 42 Intel
X5650 2.67GHz processors at the HPC Wales Cluster.

IV. CONCLUSIONS

In this work we extend the SPH model for the three-

dimensional simulation of rigid spherical particles sus-
pended in a viscoelastic matrix. As a fluid model, the
coarse-grained SPH viscoelastic formulation proposed in
Ref.?" is used. Property of this particular set of equations
is that they are entirely derived within the GENERIC
formalism® and therefore enjoy automatically thermo-
dynamic consistency. Moreover, the viscoelastic model is
derived without reference to a target set of PDEs, but
through a microscopic specification of a conformation-
tensor-dependent entropy of the fluid particles. In the
case of suspended Hookean dumbbells this delivers a par-
ticle dynamics which can be interpreted as a specific dis-
cretization of the Oldroyd-B constitutive equation.
The deterministic particle model is validated by studying
the rotation, migration and dynamics of a single and mu-
tually interacting 'noncolloidal’ spheres under confined
shear flows. Results are compared against existing nu-
merical data and discussed in terms of available experi-
mental results. Numerical convergence and accuracy of
the results as well as influence of interparticle repulsion
are discussed in detail.
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FIG. 9. Sedimentation of particles in a closed cavity at
De = 0.5. Interparticle repulsion paramater was F™P = 100,
whereas 7 = 20 (top: nearly-hard spheres) and 7 = 1.0 (bot-
tom: long-range repulsive spheres).



Further possibilities to be explored in the future are the
following: (1) modelling ’colloidal’ interacting particles
in viscoelastic matrices; this can be done straightfor-
wardly in the model presented in37, by simply switch-
ing on the interparticle stochastic terms responsible of
Brownian diffusion. The discrete model satisfies ex-
actly the 2nd Law of Thermodynamics and Fluctuation-
Dissipation Theorem in virtue of the link to GENERIC.
(2) Modelling of more complex viscoelastic fluids could
be also explored in the future. This can be done by meso-
scopic calculation of the conformation-tensor dependent
entropy function for specific dumbbell models, and in-
tegrating it into the GENERIC machinery, rather than
by brute force top-down SPH discretization of existing
continuum models. (3) Finally, we plan to extend the
current simulations to a many-particle system in order
to study the bulk rheology of complex suspensions.
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