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Abstract

The distribution-dependent stochastic differential equations (DDSDEs) describe s-
tochastic systems whose evolution is determined by both the microcosmic site and the
macrocosmic distribution of the particle. The density function associated with a DDS-
DE solves a Landau type nonlinear PDE. Due to the distribution-dependence, some
standard techniques developed for SDEs do not apply. By iterating in distributions,
a strong solution is constructed using SDEs with control. By proving the uniqueness,
the distribution of solutions is identified with a nonlinear semigroup P/ on the space of
probability measures. The exponential contraction as well as Harnack inequalities and
applications are investigated for the nonlinear semigroup P} using coupling by change
of measures. The main results are illustrated by homogeneous Landau equations.

AMS subject Classification: 60J75, 47G20, 60G52.
Keywords: Distribution-dependent SDEs, homogeneous Landau equation, Wasserstein dis-
tance, exponential convergence, Harnack inequality.

1 Introduction

A fundamental application of the Ito6 SDE is to solve Kolmogorov’s problem [13] of deter-
mining Markov processes whose distribution density satisfies the Fokker-Planck-Kolmogorov
equation. Let W, be the d-dimensional Brownian motion on a complete probability space
with nature filtration (Q, {.Z; }1>0,P), and let b : R? — R% 0 : RY — R ® R? be measurable.
Then the distribution density of the solution to the SDE

(1.1) dX,; = b(X,)dt + o(X;)dW,

*Supported in part by NNSFC (11626245, 11431014).



satisfies the parabolic equation

d d
(1.2) 0f =5 3 0000 )R} — oA},
i=1

1,j=1

which describes the time evolution of the probability density function of the velocity of a
particle under the influence of drag forces and random forces. If b and o are “almost” locally
Lipchitzian, then the SDE (1.1) has a unique strong solution up to life time (c.f. [7]). When
o is invertible (i.e. the SDE is non-degenerate), this condition has been largely weakened as
b] + |Vo| € LT (dz) for some p > d, see [26] and references within.

However, in many cases the distribution density satisfies a nonlinear PDE, for instance,
the Landau type equation

(1.3) O.f, = %div{ /R a(-— 2)(fi(2)V s - ftVft(z))dz},

for some reference coefficient @ : R? — R? ® R?. This includes the homogenous Landau
equation where d = 3 and

TR
|z [?

a(x) = |z|* (I — >, r € R?

for some constant v € [—3,1]. When « € [0, 1], the existence, uniqueness, regularity esti-
mates, and exponential convergence have been investigated for good enough initial distribu-
tions, see [5, 6, 4] and references within. To describe the solution of (1.3) using stochastic
processes, consider the following distribution-dependent SDE (DDSDE) for b = diva and o
such that oo™ = a:

(1.4) AX, = (bx Ly,)(X)dt + (0 % Lx,)(X,)AW,

where .Z; denotes the distribution of a random variable &, and

(Fem)(e) = [ Fle=2p(dz)

for a function f and a probability measure u. By Ito’s formula and the integration by parts
formula, the distribution density of X, is a weak solution to (1.3). For the homogenous
Landau equation with v € [0, 1] and initial distribution density fy satisfying

(1.5) fo(@) (fo(x) +e")dz < 0o for some a > 7,
R3

the existence and uniqueness of weak solutions to (1.4) has been proved in [8] by an approx-
imation argument using particle systems. This approximation is known as propagation of
chaos according to Kac [12], see also [9, 10] and references within.

In this paper, we aim to investigate the (pathwise) strong solutions of (1.4) and charac-
terize their distribution properties.



In general, for measurable maps
b:[0,00) x R x Z2(RY) — R% o :[0,00) x R x 2(RY) — R @ RY,
we consider the following DDSDE on R¢:
(1.6) dX; = b( Xy, Zx,) dt + ou( Xy, Lx,) AW,

When more than one probability measures on 2 are concerned, we use Zx, |p instead of Zx,
to emphasize the distribution under probability P. Due to technical reasons, we will restrict
ourselves to the following P/-invariant subspace of & for some 6 € [1, 00):

Py = {,, e?: v )= [ |2'v(dz) < oo},

R4

which is a polish space under the L?-Wasserstein distance

1
7
Wo(p1, p2) == inf (/ |z — y[eﬂ(dx,dy)) , s 2 € Py,
Rd xRd

TEE (p1,12)

where €' (11, o) is the set of all couplings for uy and ps.
The following definition is standard in the literature of SDEs.

Definition 1.1. (1) For any s > 0, a continuous adapted process (X;);>s on R? is called a
(strong) solution of (1.6) from time s, if

t
[ B0 )]+ o )P < 0, £,

S
and P-a.s.,

t t
X, =X, +/ bT(XT,f,?XT)dr%—/ o (X, Lx, )dW,, t > s.

We say that (1.6) has (strong or pathwise) existence and uniqueness, if for any s > 0 and
Zmeasurable random variable X, with E|X,,|*> < oo, the equation from time s has a
unique solution (Xj;);>s. We simply denote X, = X;.

(2) A couple (X, W;)i>s is called a weak solution to (1.6) from time s, if W, is the
d-dimensional Brownian motion with respect to a complete filtration probability space
(Q, {Z}150,P), and X, solves the DDSDE

(17) dXt = bt<Xt7$Xt|]fD)dt -+ Ut(XtJDgXJI@)th’ t Z S.

(3) (1.6) is said to have weak uniqueness in &y, if for any s > 0, any two weak solutions of
the equation from time s with common initial distribution in & are equal in law. Precisely,
if s > 0 and (X, W;)>s with respect to (€, {%}i>0,P) and (stt, Wt)tZs with respect to
(Q, {Z:}150, P) are weak solutions of (1.6), then L, lp = L%, |p implies L% |p = L%

s,8 s,

]f;;.



When (1.6) has strong existence and uniqueness, the solution (X;)¢>o is a Markov process
in the sense that for any s > 0, (X;)>s is determined by solving the equation from time s
with initial state X,;. More precisely, letting { X +(£) }+>s denote the solution of the equation
from time s with initial state X, = £, the existence and uniqueness imply

(1.8) X 0(8) = Xt (X (6)), t>71>5>0,¢ is Z,-measurable with E|¢|? < oco.

However, in general the solution is not strong Markovian since we do not have .Zx_ = Zx, on
the set {7 =t} for a stopping time 7 and ¢t > 0. Moreover, the associated Makov operators
(Pst)e>s given by

Py f(z) = Ef(Xs4(2)), =R fe B(RY)

is not a semigroup, see (1.10) below.

When the DDSDE has Z2y-weak uniqueness (in the classical case it follows from the
pathwise uniqueness according to Yamada-Watanabe), we may define a semigroup (P;):>s
on Py by letting P}, = Lx,, for Ly, = p € Py. Indeed, by (1.8) we have
(1.9) Py, =P,P,, t>r>s>0.

Tt s,r)

To see that (Ps;)i>s is not a semigroup, we write

(Pouf) (1) = /fd 1), € BRY,E>0, € P

Then P, f(x) = (Pstf)(0z), where d, is the Dirac measure at point x. Since (Z%, ,)¢>s solves
a nonlinear equation as indicated in the beginning, the semigroup Py, is nonlinear; i.e.

tu#/ (Pf0z)p(dr), t>52>0

for a non-trivial distribution p. In other words, in general

(Pahi) # 1Posf) = [ Pt 5520
so that
(Pouf)(u / FA(P: ) / AP PE 1) = (P f) (P2 o)

(1.10)
# [ (PP = (PP i), 15520

Although the semigroup P, is nonlinear, we may also investigate the ergodicity in the
time homogeneous case when o, and b, do not depend on ¢. In this case we have Py, = P
for t > s > 0. We call p € % an invariant probability measure of P if Py = p for all
t > 0, and we call the solution ergodic if there exists u € Py such that lim; . Pfv = u
weakly for any v € &. Obviously, the ergodicity implies that P has a uniqueness invariant
probability measure.



When b and o are bounded and Lipschitz continuous in (x,v) € R? x W,, the weak
solution of (1.6) has been constructed in [16] by using propagation of chaos. In this paper, we
investigate the existence, uniqueness and distribution properties of the strong solutions. To
explain the difficulty of the study, let us recall some standard techniques developed for (1.1)
with locally bounded coefficients. Firstly, by a truncation argument one reduces an SDE with
locally bounded coefficients to that with bounded coefficients, so that when ¢ is invertible
the existence of weak solutions is ensured by the Girsanov transform and the uniqueness
follows from Zvonkin type argument, see e.g. [26] and references within. Then the SDE has
a unique strong solution according to Yamada-Watanabe’s principle [25]. However, these
techniques do not apply to DDSDESs: since the coefficients depend on the distribution which
is not pathwisely determined, the truncation argument and Yamada-Watanabe’s principle
do not work; since the distribution of solution depends on the reference probability measure,
the Girsanov transform method is invalid for the construction of weak solutions. Moreover,
due to the lack of strong Markovian property, one can not let the marginal processes move
together after the coupling time, so that the classical coupling argument does not apply. To
overcome the difficulty caused by distribution-dependence, we will approximate the DDSDE
(1.6) using classical ones by iterating in distributions, see Lemma 2.3 below. This enables
us to construct the strong solution. However, since the approximating SDEs depend on the
initial distributions, this method does not provide other properties from existing results for
classical SDEs. Fortunately, we are able to develop coupling argument to investigate the Wo-
exponential convergence, Harnack inequality and applications for the associated nonlinear
semigroup.

In Section 2, we investigate the existence, uniqueness and time-space continuity of so-
lutions. In Section 3, we study the Ws-exponential contraction of P, which implies the
exponential ergodicity in the time-homogenous case. In Sections 4 and 5, we use coupling
by change of measures to establish Harnack and shift Harnack inequalities and make ap-
plications. Finally, in Section 6, we apply the main results to specific models including
the homogeneous Landau equation. These results provide pointwise estimates on the dis-
tributions, which are essentially different from existing results on LP-estimates and Sobolev
regularities derived in [5, 6, 4] for the homogeneous Landau equation.

2 Existence, uniqueness and time-space continuity

As already explained in Introduction that the distribution dependence of coefficients may
cause trouble in the study of DDSDEs. To get rid of the distribution dependence, we will
iterate (1.6) in distributions. To prove the convergence of solutions to iterating SDEs, we
make the following assumptions on the continuity, monotonicity and growth of coefficients.

(H1) (Continuity) For every ¢ > 0, b; is continuous on R? x &. Moreover, there exist
increasing K1, K, 2 € C([0,00);(0,00)) such that

||O-t(x7,u) - Gt(yv V)||2 < Ko,l(t)lx - ?/|2 + KO‘,QWH(/JH V)27 t> 07:1773/ S Rd)ﬂ'a Ve l@0-



(H2) (Monotonicity) There exists increasing Ky 1, K2 € C([0,00); (0,00)) such that

2<bt<x7ljl> - bt(y7 V),I - y> S Kb,1<t)’x - y’2 + Kb,Z(t>W9(/’L7 V)’SL’ - y’u
t>0;z,y € R%: pv e Py.

(H3) (Growth) b is bounded on bounded sets in [0, 00) x R% x &, and there exists increasing
K3 € C(]0,00); (0,00)) such that

16:0, )] < Kps(O{1 4+ +p(]-1°)}, = €RLE>0,u€ 2.

2.1 Main results

We first consider the existence, uniqueness and Wy-Lipschitz continuous in initial distribu-
tions.

Theorem 2.1. Assume (H1)-(H3) for some 6 € [1,00) such that K,5 =0 when 6 < 2.

(1) The DDSDE (1.6) has strong/weak existence and uniqueness with initial distributions
in Py. Moreover, for any p >0 and s > 0, E|X, s|P < oo implies

(2.1) E sup | X P <oo, T>t>s>0.
te(s,T)

(2) There exists increasing v : [0,00) — [0,00) such that for any two solutions X, and
Y, of (1.6) with Zx, ,, %y, , € P,

(2.2) E[X,; — Yo |’ < (E|X,, — Yo, |") el ?O% ¢ > 5> 0.

Consequently,

(2.3) lim IP( sup \XST—YST|2€>:O, t>s>0,e>0;
E|Xs,s—Ys,s/?—0 r€(s,t] 7 ’

and

(2.4) Wo(Pr o, Prv)’ < Wa(po, vp)lels O ¢ > 5 >0,

Next, we consider the continuity of X;(z) in ¢, z) € [0,00) x R?, where X;(z) for X, = .
Since assumptions (H1)-(H3) are weaker for larger 0, and 6, € & for any 6 > 1, by
Theorem 2.1 the DDSDE (1.6) has a unique solution X;(x) for X, = z. The next result says
that X is continuous in (¢, z) € [0, 00) x R? provided b has a polynomial growth. Because the
coefficients depend on the distribution of solution, it seems hard to prove the flow property,
for instance to prove that P-a.s. for all ¢ the map X;(+) : R — R? is a diffeormorphism, by
using techniques developed in the classical setting. So, we leave the study to the future.



Theorem 2.2. Assume (H1)-(H3) for some 0 > 1. If there exists p > 1 such that

(2.5) be(z, )] < K(O{1+ |zP+p(|- ")}, t>0,2€R?

holds for some increasing function K : [0,00) — (0,00), then P-a.s. the map
[0,00) x RY > (¢, 2) > X;(x) € R?

1S continuous.

To prove these results, we first approximate (1.6) using classical SDEs by iterating in
distributions.

2.2 An approximation argument using classical SDEs

We fixed s > 0 and .Z,-measurable random variable X, ; on R? with E|X, ;| < co. Let
Xs(?t) = Xs s, Mst =Zx,,, t>s

For any n > 1, let (X( ))t>5 solve the classical SDE

(26)  dx =0,(X, {7 ) dt + o X plT ) AW, X = Xt > s,

1
where ,ugnt ) — gx(’f”'

Lemma 2.3. Assume (H1)-(H3) for some 0 € [1,00).

(1) For every n > 1, the SDE (2.6) has a unique strong solution and

(2.7) E sup |XS(T;)|9 <oo, T>s,n>1.
te(s,T) ’

(2) If either 8 > 2 or o(x, i) does not depend on u, then for any T > 0 there exists to > 0
which is independent on s € [0,T] and X, s, such that

(2.8) E sup X0 - XDWP<emE sup [X)P, se[0,T],n> 1

te(s,s+to] te[s,s+to)

Proof. Without loss of generality, we only prove for s = 0.

(1) We first prove that the SDE (2.6) has a unique strong solution and (2.7) holds. By
(H1), by(z, i) and oy(z, i{”) are continuous in . Then the SDE (2.6) for n = 1 has
a weak solution up to life time (see [16, Theorem 6.1.6] and [11, p.155-163]). Next, by
[t6’s formula it is easy to see that (H2) implies the pathwise uniqueness. According to the
Yamada-Watanabe principle [25], the SDE has a unique solution up to life time. It remains
to prove (2.7). By (H3) and It6’s formula we have

mxﬁﬁ=2wmﬂiu9mwzxﬁ>
+ {2(b(X ,Mg )),Xt(l)> + (o (X nut ||H5}dt

7

(2.9)



By (H1) with y = 0,v = Jy, we have
2
(2.10) low(z, i) lizs < KO+ [ + (] - )7}

for some increasing K : [0,00) — [0,00). Combining this with (H2) and (H3), we may find
increasing H : [0, 00) — (0, 00) such that

max {2(b;(, 1), ), Now(z, 1)|%s}
< max{2(b;(x, 1) — b (0, 1itV), ) + 2|6 (0, )| - ||, (oo (, i) |2
{1+ |22 + 10 - 197}, >0,z € R

Thus, by (2.9), (2.10) and using It6’s formula, there exists a constant ¢;(#) > 0 such that

2

A1+ [XPP)E <00+ X)) (o (X uf™)aw, X(Y)
+a@BO{+ X2+ u0( 93 a

Letting 7 = inf{t > 0: |X | > N}, we conclude from this, (2.10) and the BDG inequality
yield that for some increasing ¥ : [0, c0) — (0, 00),

0 tATN
E sup (1+]X])? < ](9)fi@)Et/m {(1-+|A§1H )? 4+ (- W)%Vl}ds

SE[0,EATN] 0
1

tATN L ,
+ CQ(H)K(t)E(/ {(1 + ’Xs(l)|2)0 e ‘X§1)12)9—§Mgo)(’ _ |€)9V1}ds>
0

tATN 9 1
s%)E/ {4 1XOE)F 00 )3 ds + 5B sup (14 |XO1)7,
0

se [O,t/\TN}

(SIS

Therefore,

[ SIS

E sup (1+|Xs(1)|2)

s€[0,tATN]

t 9 )
<20(t) [ {(1+ X0 E W) fas
0
By Gronwall’s lemma and letting N — oo, we arrive at

E sup (1+ \Xs(l)P)g < <1 +2t0(t) sup (E|X?)%) %w) exp [2t¥(t)] < oo.

s€[0,¢] s€[0,t]

Therefore, (2.7) holds for n = 1.

Now, assume that the assertion holds for n = k for some k£ > 1, we intend to prove it
for n = k + 1. This can be done in the same way by using (X.(Hl),p,.(k),X.(k)) in place of
(X.(l), ,u.(o), X.(O)). So, we omit the proof to save space.

(2) To prove (2.8), for n > 1 we simply denote

é-t(n) _ Xt(n+1) _ ‘th(n)7



l(f ) Ct( t( )7/“1‘5 )) C ( ( )7/*l§ ))7

Below we prove for 1) # > 2 and 2) 6§ < 2 but K, = 0 respectively.
Let 6 > 2. By (H1), (H2) and It0’s formula, there exists increasing Ky : [0, 00) — [0, 00)
such that

110 dgVP < 207 aWL &) + Ko {167 + W, ) Yt
Combining this with (H1) and using the BDG inequality, we may find out increasing func-

tions K7, Ky : [0,00) — (0, 00) such that

E sup [¢]” < 257!
s€0,t]

% oA o |?
sup/ 2(N; AW, €7

s€[0,t]

25—1]( </ {|§(n 2+ Wo(ul™, plm= }ds)
E (n)ZA(n)2d>2 K tE(ne W™, pm-1y0 14
([ 1 PIAwI)as) + rote) [ (BT + Wl )

1 ' n—
B 5 16001+ () [ (IS Wi i)
s€(0,t

Then .
E sup |6 < 2Ka(t) | {BIEI + Wolul?, )}, ¢ 20
0

s€[0,t]

By Gronwall’s lemma, we obtain

E sup [¢M|" < 26Ky (t)e* ™" sup Wy (ul”, p )"
s€[0,t] s€[0,t]

< 2K (1) 2R sup [V ¢ > 0.
s€[0,t]

(2.12)

Taking to > 0 such that 2toKy(tg)e?0®2(0) < ¢! we arrive at

E sup [¢V)° <e'E sup [¢"V)7, n>1.
s€[0,to] s€[0,to]

Since
E sup [¢7]° < 29*1]E{|X0]9+ sup \Xﬁl)]e} < 2E sup |XOVJ%

SE[O,to} SG[O,to] SG[O,to]

we prove (2.8).
Let 6 € [1,2) but K,2 = 0. Then instead of (2.11) we have

g™ 2 < 2(AM AWy, €y + Ko ()| 116 + Wo(u™, ") .



Since 0 < 2, for any € > 0, by Ito’s formula we obtain

(

2
2

n n =2 n n n n
A(=+XP)E < 0e+1XR) 7 { AW, )+ =22 1 LI+ Wo (™, ") bat .

Since (H1) with K,5 = 0 implies |A[|2 < Ka,l(t)\ftn) |2, this and the BDG inequality yield

t :
E sup (e + | X} ”)| )g Kl(t)E</ (e + |X§”)|2)9ds)
0

s€[0,t]

2]
2

t
KO [ {(e+ IXPR)E + (e IXOP) T Wl ) s
0

t
B sup (< + [XOP)E + Kat) [ {(e X)L+ Wl ) s
) 0

for some increasing Ky, K : [0,00) — [0,00). Letting ¢ — 0 and using Gronwall’s inequality,
we prove (2.12), which implies the desired estimate (2.8) as explained above. O

2.3 Proofs of Theorem 2.1 and Theorem 2.2

Proof of Theorem 2.1. Without loss of generality, we only consider the DDSDE (1.6) from
time s = 0.

(1) Since the uniqueness follows from (2.3) which will be proved in the next step, in this
step we only prove the existence and the estimate (2.1).

By Lemma 2.3, there exists an adapted continuous process (X;)icpo, such that

(2.13) lim sup W@( ,,ut) < lim E sup ]X(" X% =0,

=00 4e[0,t0] n=00 e (0,t0)]

where p; is the distribution of X;. Noting that due to (2.6)

t t
X = Xt [ 00 s [ (X e,
0 0

it follows from (2.13), (H1) and (H3) that P-a.s.

t t
&=%+/mammw+/%MMMM@temm
0 0

Therefore, (X¢)efos) is a solution to (1.6), and (2.13) implies Esupc ) [ X4’ < co. Since
to > 0 is independent of X, we conclude that (1.6) has a unique solution (X;):>o with

(2.14) E sup |X,|% < oo, te€(0,00).

s€[0,¢]

It remains to prove (2.1) for E|X(|? < co. As in the proof of (2.7) above, by (H1)-(H3)
and [t6’s formula we have

10



b
2

for some increasing function H : [0, 00) — (0, 00). Then applying It6’s formula to (1+]X;|?)
and repeating step (1) in the proof of Lemma 2.3, we prove (2.1).
(2) By Ito’s formula, (H2) and (H1) with K, = 0 if 6 < 2, we have

dIXt - Yt|2 < 2<Xt -V, {Ut(XtagXt) - Ut(Y%ath)}dWO

(2.15) i )
+ K () {1 X — Vil> + Liooy Wo(Lx,, L3,)° + | Xy — Vi|Wo(ZLx,, L,) bt

By I1to’s formula we obtain

d|X; — Yt|0 <0|X; — Yt|0_2<Xt — Y {ou( Xy, Zx,) — Ut(YLth)}dWO
+ Ko (){ X — Yi|” + Wo(Lx,, L) bt

for some increasing Ks : [0,00) — [0, 00). Noting that Wy(%x,, %, )’ < E|X; — Y;|? < oo,
this implies

t
E|X, - Y|’ <E|X, - Y|’ + 2/ Ky(s)E| X, — Y, |ds.
0

By Gronwall’s lemma, we prove (2.2).
To prove (2.3), let 7. := inf{t > 0: |X; —Y;| > ¢} for e € (0,1). By (2.2) and (2.15),
there exists increasing K : [0,00) — [0, 00) such that

]E|Xt/\7'5 - }/t/\Te |6

tATe

<E|X, - Y| +E K(s)(E|X, — Yy|” + | X, — Y,|")ds
0
t
< {1+ te"WIE|X, — Yy|? +/ K(s){E|Xrr. — Yonr[’}ds, t>0.
0

By Gronwall’s lemma, there exists positive ¢ € C(]0, 00)) such that
e'P(r. < t) SE[Xinr, — Yirr” < 0(OE|Xo — Yol’, t20.
Therefore,

IP’( sup | X, — Y| > g) = P(r. <t) < e P(H)E| Xy — Yol?, te> 0.

s€0,t]

Hence, (2.3) holds. o o )
(3) Let (X;, W;) and (Xy, W;) with respect to (2, {-Z}i>0,P) and (2, {F; }1>0, P) respec-
= %,

tively be two weak solutions such that Zx,|p = L%, [ Then X; solves (1.6) while X;
solves
(216) dXt - bt(Xt7 gxtlﬁn)dt + Ut<Xt; gj{t |I@’)th

To prove that Zx|p = Lxls, let p = Lx,|p and

bi(x) = bi(w, 1), 0u(w) = 0w, ), t>0,x€R™

11



By (H1)-(H3), the SDE
(2.17) AdX; = b(X,)dt + 7,(X,)dW;, Xy = X

has a unique solution for any initial points. According to Yamada-Watanabe, it also has
weak uniqueness. Noting that

dX; = by (Xy)dt + 5,(X,)dWy, Lxole = sl
the weak uniqueness of (2.17) implies
(2.18) Lxlp = Lx|p.
So, (2.17) reduces to
AX; = b(Xy, Ly, |)dt + 00( Xy, Ly, |p)dWs, Xy = Xo.

Since by (1) the DDSDE (2.16) has a unique solution, we obtain X = X. Therefore, the
weak uniqueness follows from (2.18).

Finally, for any pug,vy € Py, take Fy-measurable random variables Xy, Yy such that
Lxy = o, Ly, = vo and Wy(pg, 1) = E| Xy — Y5|°. Since Wy (P} 1o, Prvp)? < E|X; — V3|9,
(2.2) implies (2.4).

[

Proof of Theorem 2.2. Since the assumptions are weaker for larger 6, we may and do assume
that 6 > 2. By Kolmogorov’s modification theorem, it suffices to prove

(2.19) E[Xi(z) = Xs(y)[" < O(s, 2, 9)(Jr —y[ + s =), [t = s+ |z —y[ <1

for some constants m > 0,q > 1 and locally bounded function ® on [0, 00)? x R??. Firstly,
by (2.1) and (2.2), we may find out an increasing function v : [0, 00) — (0, 00) such that

EIX(x) — Xo()* < {E|Xu(x) — Xi(u)"}* x {E|Xi(2) — X,(y)["}*

(2.20) » " ’
<P+ x|+ lyl) s |z —yls, t=0,2,y €R"

Next, by (H3) and (2.5), there exist a constant C' > 0 and an increasing function ¢ : [0, 00) —
(0, 00) such that

E|X,(x) — X,(2)¥ < OE( [ K@+ X0+ E|Xr<x>|p>dr)

N CE( [ R+ 1%, @ +E|Xr<m>|2>dr)
< o)1+ |2*P)(t —s)?, |t —s| < 1,2 € RE

This together with (2.20) implies the desired (2.19) with p =4,¢ =2 > 1. O
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3 Wy-Exponential contraction of P,

We intend to estimate the Wasserstein distance of solutions with different initial distributions
and investigate the exponential ergodicity. For simplicity, we only consider the Wo-distance.
To this end, we use the following condition to replace (H2):

(H2') There exist positive functions Cy, Cy € L}, (dt) such that

loc
2(0(2, 1) = bely, v), & = y) + oz, 1) — o2y, v) | Frs
< O (OWy(p, v)? — Co(t) |z —y?, t>0;2,y € RE: pv € Py,
Theorem 3.1. Assume (H1), (H2") and (H3).

<1> For any po, Vo € ‘-@27

WZ(P*,t:uov P*,tVO)Z < WZ(MO) VO)QefS {01(7”)—02(T)}d1“’ t > 0.

S S

(2) Letby =b and o, = o do not depend on time t such that (H2') holds for some constants
Ci1 and Cy. If Cy > Cy then P, has a unique invariant probability measure p € P
such that

Wo(Pvg, p)* < Wy (v, p)2e™ (=Dt > 0,1 € P,

Proof. (1) Without loss of generality, we only prove for s = 0. Let X; and Y; be two solutions
to (1.6) such that Zx, = po, Ly, = 1p and

(3.1) Wo(po,10)* = E[Xo — Yo|*.
Simply denote pu; = Zx,, v = Ly,,t > 0. By (H2') and It6’s formula we have

d|X, —Y|* < 2<Xt — Y, {ou( X, pe) — 04 (Y, Vt)}th>
+ {CL{t)Wo (g, 17)* — Co(t)| Xy — Yi[? Jdt.

Noting that Wy (ps, vs)? < E| X, — Y;|?, combining this with (3.1) we obtain
t
BJX, Vi < Waluo0)* + | {ICU(s) = Ca(s)BIX, - YiP}ds.
0

This implies the first assertion by Gronwall’s lemma.
(2) Let &y be the Dirac measure at point 0 € R%. Then P}y = Lx,(0). We first prove

(32) Jim W (P; 8o, 1) = 0

for some p € 5. To this end, it suffices to show that {P;dp}i>0 is a Wy-Cauchy family
when t — oo; that is,

(3.3) lim sup Wy (P 0o, P ;00) = 0.

t—00 g>(
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We will prove this using the shift-coupling and the weak uniqueness according to Theorem
2.1(3). More precisely, for any s > 0, it is easy to see that (X; := X 4(0));>0 solves the
DDSDE

dX, = b(Xy, Lx,)dt + o (X, Lx,)dW,, Xo = X,(0)

for the d-dimensional Brownian motion W, := Wirs — Ws. So, by the weak uniqueness we
have

(34) Pt*<Ps*50) = "E/ﬂXt = $Xt+s(0) = P;;Séo, S,t > 0.

Combining this with Theorem 3.1(1) and letting X,;(P*dy) solve (1.6) with Ly, = P*dy, we
obtain

Wa (P, 400, P 60)? = Wa(Lx,(proo): Lxi(0)”
< Wa(P*8y, 6)%e (2Ot — o~ (C=CO X (0)P, s,¢ > 0.

This implies (3.3) provided

(3.5) sup E|X,(0)]* < oo.

s>0
By (H2') and (H3) for constant C; < Cy and Ko, it is easy to see that
2(b(x, ), @) + llo (@, wllirs < Co = (Co = e)|z* + (Cr +e)ul] - )
holds for some constant Cy > 0 and ¢ := % > (. By Ito’s formula and Gronwall’s lemma,

this implies
E|X,(0)> < Coe™ (@272t ¢ >,

Therefore, (3.5) holds.
Moreover, by (2.4) and (3.2) we have

tlim Wy (P, PXPfoy) =0, s>0.
—00
Combining this with (3.2) and (3.4), we obtain
WQ(PS*/L, [,L) S thm WQ(PS*P:(SO, Pt*é()) = thm WQ(Ptj_séOy Pt*(S()) = 0.
—00 —00

Then g is an invariant probability measure. Therefore, by Theorem 3.1(1) with Cy > (1,
for any vy € 5 we have

WQ(ID:VW ,u)2 = WQ(Pt*V07 Pt*lu)z S e_(CQ_CI)tWQ(Vm ,u)27 t Z 07

so that the proof is finished. n
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4 Harnack inequality and applications

In this section, we investigate the dimension-free Harnack inequality in the sense of [20] and
the log-Harnack inequality introduced in [15, 22] for the DDSDE (1.6), see [21] and references
within for general results on these type Harnack inequalities and applications. To establish
Harnack inequalities for DDSDEs using coupling by change of measures, we need to assume
that the noise part is distribution-free; that is, we consider the following special version of

(1.6):
(4.1) AX, = b(Xy, L, )dt + 04(X,) AW,
Then
(P)) = [ FAF o) = BF(Xip)). £ € BRI, 2 0,0 € 72,

where X; (1) solves (4.1) with initial distribution p.
To make the study easy to follow, we first introduce the main steps in establishing
Harnack inequalities using coupling by change of measures summarized in [21, §1.1].

(S1) Let (X¢)¢>o solve (4.1) with Ly, = uo. By the uniqueness we have p; := Pfuy = Zx,,
and the equation (4.1) reduces to

(42) dXt = bt(Xt, /llt)dt —+ O't<Xt)th.

(S2) Construct a process (Y;):e[o,r] such that for a weighted probability measure Q := Ry P,
(4.3) Xr=Yr Q-as., and %, |qg = Prvo =: vr.
Obviously, (S1) and (S2) implies

(44)  (Prf)(mo) = E[f(X7)] and (Prf)(v) = Eolf(Yr)] = E[Rr f(Xr)], f € By(R?).

Combining this with (4.4) Young’s inequality (see [1, Lemma 2.4]), we obtain the log-Harnack
inequality:

(Prlog f)(v0) < E[Rrlog Rr] + log E[f (Xr)]

= log(Prf)(uo) + E[Rrlog Ry, f € B (RY);
while using Holder’s inequality we prove the Harnack inequality with power p > 1:
(4.6) (Prf(v0))” = (E[Rr f(Xr)])" < (ER; )" (Prf") (o), | € By (RY).

To construct Y; in (S2), we will need the following assumption.

(4.5)

(A) oy(z) is invertible and locally Lipschitzian in = which is locally uniformly in ¢ > 0,
and there exist increasing functions kg, k1, k2, A : [0,00) — (0,00) such that for any
te€[0,T),z,y € R and p,v € P, we have

A7) oyl AW 180, ) + lloe(@)]1” < mo()(X + 2l + u(] - %),

2(be(, 1) = bely, v), 2 — y) + llow(@) — oe(y) s
< m1(t)] = yl* + ra(t) | — y[Wa(p, v).

Obviously, (A) implies assumptions (H1)-(H3) in Theorem 2.1.

(4.8)

15



4.1 Main results
For any pg € P2 and r > 0, let B(uo,r) = {v € Po: Wy(uo,v) < r}. Let

]

), 0<s<t.
Under assumption (A), we have the following result for the log-Harnack inequality and
regularity estimates on F;.
Theorem 4.1. Assume (A) and lett > s > 0.
(1) For any po,vo € Pa,
(49)  (Pylog f)(vo) < log(Pyof) (o) + 65, DWalpio, )2, f € B (RY),
Consequently,

(4.10) (VP fIP <26(s, ) Pouf> — (Psi f)*}, [ € By(RY).

(2) For any different pg, vy € Py, and any f € B (RY),

|(Poief)(10) = (Parf)(v0)?
(4_11) WQ(MO? VO)Q
< 2¢(s, t) sup {(Ps,th)(y) — (Ps7tf)2(y)}.

v€B(uo, W2 (to0,0))

Consequently,

15 ih0 — Piyvollvar :=2 sup  [(P5p0)(A) — (Pyy10)(A)]
(4_12) A€ B,(RY)

< V20(s, 1) Wa(po, vo).
Next, when ||o¢||o is locally bounded in ¢, we have the following result on Harnack

inequality with power p > 1 and applications.

Theorem 4.2. Assume (A) and that for some increasing v : [0, 00) — (0, 00),

(4.13) {oux) = o)} (x —y)| < (Dl —yl, ¢ >0.

Let
p(t) = (L4 4X)y(t)% T(t) = ko(t)2A(t)* T2 O+2r2(t)

Then for any o, vy € Py and Fo-measurable random variables Xo, Yy with Lx, = o, Ly, =
o,

<HﬁwmoﬂaAﬂw@mp{ VT ()W (a0, o) }

(Vb + D2(y/p — 1) = 16A(1)>7(1)?]
(4.14) x [ Ee 2)‘(15)251 (t)|XO - Y()|2 (\/13+1)[2(£££111)6A(t)27(t)2]
(VP — 1)2(1 — e~ @2
t>s>0,p>p(t), fe By (RY.

I
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In particular, for any x,y € R4, t > s >0 and p > p(t),

\/13|55 - 3/|2(F(t) - ej:[l—i)j )(2t ])
(VP +D2(y/p — 1)2 = 16A()2y (1) ]

Below we present some consequences of the above Harnack inequalities.

(415) (Ps,tf)p(x) S (Ps,tfp>(y) eXp

Corollary 4.3. Assume (A) and lett > s > 0.

(1) For any o, vo € Pa, P g and P}y are equivalent and the Radon-Nykodim derivative
satisfies the entropy estimate

Ps
(416) /d {log dP*t Yo }dP*tVO < ¢(S t)WQ(,u(), l/o) .
R st

Consequently, in the situation of Theorem 3.1(2),

dP} v,
/{1g }dP*o<¢<o 1)e @DV, (1, 0)?, ¢ > 1.
Rd df)>k

(2) If (4.13) holds, then for anyt > s >0 and p > p(t),

dP*tl/o d P*
/ dpP; 1o ( tVO)

< exp { () Wy (g0, o) }
a (1+p~2)[2(y/p — 1) — 16A(1)2y(t)?]
(vp—1)2

x | Eexp 20?1 (1) Xo — Yo (149~ ) [2(y/F—1)2—16A(6)2+(6)2]
(Vb — (1 — e 0]

for Fo-measurable random variables Xo, Yy with Lx, = po, Ly, = o.

(4.17)

Proof. According to the proof of [21, Theorem 1.4.1], when o and vy are Dirac measures,
these results follow from (4.9) and (4.15) respectively. In general, the proof is completely
similar. Precisely, for a (P, uo)-null set A and n > 1, we apply (4.9) to f :=nls + 1, so
that

(P*tyo)(A) log(n+1) = (P;t log f)(v0) < o(s,t)Wa(uo, o), n > 1.

Letting n — oo we obtain (P},14)(A) = 0, so that P}, is absolutely continuous with

respect to P uo. By the symmetry, P; o is also absolutely continuous with respect to

P;,v5. Moreover, (4.16) follows from (4.9) by taking f = tyo , while (4.17) follows from
(4.14) by taking f = (F222)0. O
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4.2 Proof of Theorem 4.1
Without loss of generality, we only prove for s = 0. As in [23, §2], for fixed T > 0, let

1
(4.18) 6= (1 _ e’€1(T)(t—T)>7 te0,1].

Let v, = Py and let Y, be %#y-measurable with %5, = 1. Consider the SDE
1

(4.19) ay, = {bt(Yt, )+ g oYX (X - K;)}dt + oy (Y,)AW,.
t

By (A) and sup,cpoq (] - [?) < 0o due to Theorem 2.1, this SDE has a unique solution

(Yi)tepr). Let
T, =T Ninf{t € [0,T) : | X¢| + |Y3| > n}, n>1.

We have 7, 1T as n 1 co. To verify step (S2), we first prove that

N § T SE SR

is a uniformly integrable martingale for s € [0, T].

Lemma 4.4. Assume (A). Let Xo, Yy be two Fy-measurable random variables such that
Lxy = o, Ly, = Vo and

(421) E‘XO - }/0‘2 = WZ(MO) V0)2.
Then (Rs)scpor) is a uniformly integrable martingale with

(4.22) sup E[R;log R;] < ¢(0, T)Ws(po, v)*.

te[0,7)

Proof. By (A), for any n > 1 the process (Rsr, )scjo,r) is a uniformly integrable continuous
martingale. Since 7,, T T as n 1 0o, by the martingale convergence theorem, it suffices to
prove

(4.23) sup  E[Rinr, log Rinr ] < ¢(0, TYWy (o, 19)*.
tel0,T),n>1

We fix t € (0,7) and n > 1. By Girsnaov’s theorem,

~ 1
Wy =W, — é—aS(Xs)*l(Y; — X)), s€0,tAT,]

is a d-dimensional Brownian motion under the weighted probability Q;,, := R, [P. Refor-
mulating (4.2) and (4.19) as

X, —
dXs - {bs(Xsaus) - g

dY; = b,(Ys, vs)ds + US(YS)dWS, s €[0,t AT,

Y, 3
}ds + 05 (Xs)dWs,
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by (A) and It6’s formula under probability Q,,, we obtain

2’Xs _YS‘2

A, = Vil < {m(5) 1 Xs = Yol o mals) X = Vol Wy ) = =

}ds + dM,

for s € [0,t A 7,,] and some Q; ,-martingale M. Then
d’Xs - YS|2 <dMs i K (5)2W2(N87V8>2

(4.24) o 2

XS_}/:S2 1
_| £2 | {2_’f1<5)§s+§;_§}d57 s €[0,t ATyl

By (4.18) and the monotonicity of k1, we have

ds

2~ a5+ €~ 5 22— (D) +E — 5 = o

K14++/K2+4K2 .
Moreover, since (4.8) implies (H2) for K; = %1%2 < K1 + Ko, it follows from Theorem
2.1 that
Wa(p1s, ve) < Wa(pag, vo)est 2} s € [0, 7],

Substituting these into (4.24) and using (4.21), we arrive at

tATn Xs o }/S 2
EQt,n/ | | ds
0

52
2 tATh
(4.25) < — +Eg,, / Ko (8) 2 Wa (s, vs)?ds
o “Jo
2
S |i€— + TKQ(T)Q eXp[QT(KZ1<T) + KZQ(T))]:| Wg(lu,o, Vo)z.
0
Writing
tATh 1 B 1 tATn ; Xs -1 }/; _ Xs 2
log Ry, :/ —<US(XS)’1(Y:9 — Xs),dW5> + 5/ o5 (Xs) 22 ) ds,
0 S 0 s

by |lo; ] < A(t) due to (4.7), & = m}T)(l — e~(MT) due to (4.18), and using (4.25), we
arrive at

1 AT g (X ) 7N Ys — X))
E[Rirr, log Ripr,| = §EQt,n/ lo2(X.) 22 ) ds < ¢(0, T)Wa(pu0, v0)*.
0 s

Therefore, (4.23) holds since ¢ € (0,7) and n > 1 are arbitrary. O

Proof of Theorem 4.1. (1) By Lemma 4.4 and the Girsanov theorem, dQ := RydP is a
probability measure such that

(4.26) W, =W, — / Ut(Xt)_lg(Yt — Xt)dt, s€[0,7]
0 t
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is a d-dimensional Brownian motion. Then (4.19) reduces to
(4.27) AY; = bi(Yi, vy) + o, (Yy)dW.
Consider the DDSDE

dX; = bi( Xy, L p)dt + 0o (X)) AW, Xy = Yo

By the weak uniqueness we have Z% [ = Py = 1, for t € [0,7]. Combining this with
(4.27) and the strong uniqueness, we conclude that X; = V; for t € [0,7]. In particular,
Ly, = vr as required in (S2). Therefore, (4.5) and Lemma 4.4 lead to

(Prlog f)(n) < log(Prf) (o) + ¢(0, T)Wa(po, v)*.
In particular,
Prlog f(z) < (log Prf)(y) + ¢(0, T)|x — yl*, .,y € RY, f € By(RY).

According to [2, Proposition 2.3], this implies (4.10).

(2) Let Wy(puo, ) > 0. We first assume that 1 is absolutely continuous with respect
to the Lebesgue measure. In this case, by [18, Theorem 10.4.1] (see [14] when 1 is also
absolutely continuous), there exists a measurable map F : RY — R? such that =(x) =
x + F(x) maps o into vp; that is, vy = g o 271, Let

Eo(w) =a+sF(x), pus=pooZ;" s€l0,1].
Then it is easy to see that
WQ(Uswut) = ’t - S|W2(M07 V0)> s,t € [Oa 1]'

Now, for any n > 1 and 0 <7 < n — 1, we have

1
W2(ﬂi/nvﬂ(i+l)/n) =&p = EW2(HJ0-V0)-

For any f € %,(R%) and ¢ > 0, when n is large enough such that ce,f + 1 > 0, the
log-Harnack inequality implies

(4.28)  Prlog(cenf +1)(pijn) < log(cenPrf + 1)(pgis1ym) +e26(0,T), 0<i<n—1.

By Taylor’s expansion, there exists a constant ¢(f) > 0 depending on || f||o such that

|Prios(eeas + o) — esn(Prf)s) + 2 (P )| < 22,
‘10g(05nPTf + 1) (pit1)/n) — cen(Prf) (1) /m) + <C€2n) (Prf)*(pgsym)| < %

Substituting these into (4.28), we obtain
\(Prf)(pasnym) — (Prf) (i)
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60.T)z ,  2())

< PP i) = (PrlP o) + 52 s, 0Sisn— 1,
Therefore,
n—1
(Prf) (o) = (Prf) (o)l <Y [(Prf)(saym) = (Prf) (i)
i=0
— T)W
< 3P s) — (Pri ()] + 2O )
=0
Noting that ¢, = %Wg(ﬂo, 1), by letting n — oo, we obtain
|(Prf)(po) — (Prf) ()] c 2 ¢(0,7)
W2(:u07 VO) S 2 I/GB(ILLOS;;[]IQ)(,LLO Vo) ‘(PTf )( ) (PTf ’ + C '

)
Minimizing the upper bound in ¢ > 0, we prove (4.11). Since

(Prv)(A) = {(Prv)(A)}* <

(4.12) follows from (4.11) with f = 14.

In general, for any g € &5, we take a sequence {,u(()")}nzl C Py converging to g in
W, and having densities with respect to the Lebesgue measure. Then ,ugn) converges to i

weakly. By (4.10), this implies
hm( stf(uo )—( Py f (1),
lim sup {(Poif*)(v) = (Poif)* ()}

n—oo n
Z veB(ui™ Wa(u§" o))

= sup {( s,tfg)(’/) - (Ps,tf)2(y)}'

veB(po,Wa(po,v0))

(
i, Ac BRY,ve 2,

Therefore, by (4.11) with ,ué") replacing 1o which we just proved, and letting n — oo, we
finish the proof. O

4.3 Proof of Theorem 4.2
Again, we only prove for s = 0. By (4.13), for any r > 0 we have

rT(T)Wa (g0, v0)* Eq [er g 7‘)‘55:5‘ ds]
AT)?

x| -

_ 2T\X0—YO\2+4rftA‘rn (Xs—Ys,{0s5(Xs)—0cs(Ys)}dWs)

<Egle @ 0 & ]

I QT‘XO*YO‘ ( Ar j‘tATn (Xs—Ys,{os(Xs)—0s(Ys)}dWs)

(4.29) <Egle E

7)

i 2r|X07Y0\2 o2 [tATn {os(Xs)— US(YS)} (Xs—Ys)|2 ds
S EQ € €0 \/EQ <e f €3 ‘ﬁo)
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where we have used the inequality Eq(eM|Fy) < /Eq(e2Mt|.Z,) for a continuous Q-

martingale M;. When r < 32% T T by Jensen’s inequality

2 v 2 16ry(T)?
SQTQW(T tATh | Xs—Ys]| ds r tATh | Xs—Ys]| ds
\/EQG ) f € EQ € 0 € y

so that (4.29) implies

1
r A Xa=Yal? g D (T)Wa(pg.v0)® 4rrg ()| Xo—Yg|? 1\ 275320(T)2
EQ |:e 0 &2 :| < e A(M)2(1-16r~(T)2) EQ [e 1—e—r1(T)T ] )

Letting n 1 oo and ¢ 1 T, and noting that Q|z, = P|#, since Ry = 1, we obtain

T Xs—Ysl® g4 T (T)Wo (pg.v0)? 4rs1 (T)| Xg—Yp|? m
EQ [e 0 €2 ] SeA(T)Q(l—lﬁr'y(T)Q) (E[e 1—e—m1 (DT ]) ,
(4.30)
ifo<r<-—— .
R PR
On the other hand lettlng M, = [ & (0s(X)7HY; = X,), dW), ¢ € [0, T, by (4.20) we

have Ry = eMr+3¢ . So,

P 1 (M)p

ER: = EqRy = Eer 1 26-1

1

MNTP [T IX =Y T\
< (moo [ [ o] )T

. . . MT)2 1 : : _ _AN1)?
Since p > p(T) implies oD S 3z this and (4.30) with r = s/ vield
N
/BT (T)Wo (pg,v0)> 2’\(T)2“1(T)|3(0 vpl? (VD {2(vP—1)2—16A(T)2~(T)2}
IER” PoT < o (VD {2(/p- D2 —16M(T)%(T)?} Ege (vi-1*(—e 1 (1T )

Substituting into (4.6), we finish the proof.

5 Shift Harnack inequality and applications

In this section we establish the shift Harnack inequality and integration by parts formula
introduced in [24]. Since the study for the multiplicative noise case is very complicated, here
we only consider the additive noise for which the DDSDE (1.6) reduces to

(51) dXt = bt(Xt, gxt)dt + Utth-
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Theorem 5.1. Let o : [0,00) = RIQR? and b : [0,00) x R? x Py — R are measurable such
that oy is invertible with ||o|| + |lo; || locally bounded in t > 0, and by(-, j1;) is differentiable
with

T
/ HVbt(alut)Hgodt < 00, T> Onu € C([OaT]v 322)
0

(1) Foranyp > 1,t > s> 0,10 € Py,v € R? and f € B, (RY),

(Parf) (110) <(Pur (v + -))(j10)
- {mw Sl 12+ (r - s>uvm<-,P;Tuo>uoo}2dr]
P 2(p— 1)(/p+ 1)t — 5)2 |

Moreover, for any f € %, (R?),
|U|2 ! —12 2
(Pra1og f) (o) < log(Poaf (04 (o) 55—z [ Nl I (L) Vb ) )
(2) For anyt > s >0, f € CYRY) and F,-measurable random variable X, ¢ with py =
Lx,. € P,
f(Xs,t)

¢
P / (r — S)<0;1V1}br(', P o) (Xsr), dWr>] . veRY

B(V./)(X.) = E|
Proof. Without loss of generality, we only prove for s = 0 and ¢t = T for some fixed time
T > 0. Denote py = Pfuy = Zx,,t > 0. Then (5.1) becomes
(5.2) dX; = b( Xy, po)dt + 0, dWy,  Lx, = 1o
Let Y, = Xy + £, t € [0, T]. Then
AY; = by(Yi, ) dt 4 0, dWy, Ly, = o, t € [0, 7],

where
B t
Wt = Wt +/ §sds,
0

£ = 0;1{% 0u(Xe ) = (X0 + ’%’,Mt) L

Let Ry = exp|— ff(&, dW;) — %fOT |&s]2ds]. By the Girsanov theorem we obtain

(Prf)(pto) = E[Rrf (Yr)] = E[Rr [(Xr + )] < (Prf?(v+ )7 (o) (ERFT) 7 .
This proves (1) since similarly to (4.31), we have

VP
_p_ _1 T 2
ER} " =EqR}" < (Eqetr i % 141 4) 77

23



< oxp | PYRIP o o IP{L+ IV, P oo}
N 2(p — 1)2(\/p + 1)T?

To prove (2), we let X; = X, + <& for ¢ € (0,1) and t € [0,7]. Using ev replace v, the
above argument implies

(Prf)(po) = E[Rf(Xr +ev)], €€ (0,1),

where
T 1 [T
RS 1= exp [— [ gamy -3 [ |§§|2ds],
0
- _1[€v etv
& =0y I{T + b (X, 1) — by (Xt T ,Mt>}
Therefore,
1
0= hm IE[RTf(XT +ev) — f(X7)]
~ B[V (xn) - 2| 1 / {0 b B ) (X, 03
Then the proof is finished. O

As applications of Theorem 5.1, we have the following estimates on the density of Py,.

Corollary 5.2. In the situation of Theorem 5.1, for any t > s > 0 and pg € s,
(P o) (dr) = pii(z)da for some density function pl satisfying the following estimates:

/ 1V log o4 (2) P (z)da

(5.3) (1v2eby R 2 PAL)
s{—gjfg—/kr—@ngwvm@pgmmmm} Y
/d {pg%(ﬁ)}’? tdx

(5.4) o * L
< (VPSP + (= 9)lIVhs( Plio) [ oAy om0
- dn(p —1)(y/p + D(t — ) IS

| eistaton prita)aa
(5.5)

f|w*n{r+v—swV@< Pz 1) [l }2dr
32 g( (Bt 1)t — 5)? )
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Proof. According to [24, Theorem 2.4, Theorem 2.5], the desired assertions follow from
Theorem 5.1 . Indeed, by [24, Theorem 2.4], the integration by parts formula in Theorem
5.1(2) implies the existence of density p}$ and

/ |V log () "ol () dar = E[V log pl3 [P (Xo) = E[E(N|X,) [ < EINJP,

where
1

t—s

N =

/ (r = $){07 Vb, (-, PY o) (X )}V

Then estimate (5.3) follows. Moreover, it is easy to see that the proof of [24, Theorem
2.5] also applies to P},uo in place of P(x,-), so that estimates (5.4) and (5.5) follow from
Theorem 5.1(1).

[

6 DDSDEs for homogeneous Landau equation

We consider the homogeneous Landau equation with 7 € [0,1] on R3 (see e.g. [19]):

6.1)  afi= —mv< =yl (1 - 0_ﬁQ%;;_w>{ﬂQDVﬂ——ﬂvﬂﬁﬁ}m>-
Let a(z) = |z|"(Jz|*] — z ® x) and

) 0 T3
(6.2) bo(x) == diva(z) = =2|z["z, oo(z) := |z|? —(:)El zg 0

Then oo = a. Take

blaon) = W)= =2 [ o = (o = (o)
(6.3) Re
oz, p) = oz, p) == /Rd ooz — 2)u(dz).

Then the density of .Zy, for the DDSDE (1.6) is a weak solution to (6.1). In this section we
consider (1.6) for this specific choice of b and o.

6.1 The case with Maxwell molecules: v =0

When v = 0, both by and og in (6.2) are Lipschitz continuous. Below we consider a more
general model. For two Lipschitz continuous maps

bo: RT -5 R?Y oy :RY - RI@RY,
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let

b (x, 1) = /]Rd bo(x —az)u(dz), o(z,p) = /Rd oo(x —az)u(dz), acR,z€RY uc P,
For fixed «, f € R, consider the DDSDE

(6.4) dX, = b*(X,, Zx,)dt + o7 (X, Lx,)dW,.

Theorem 6.1. Let a,3 € R, By := |[|[Vbo|lew < 00 and Co := supj,_1 sera | Vooo(2)||7rg <
o0o. Moreover, let Ky € R such that

<b0(3’)) - bo(y)vx - y> < K0|ZL' - y|27 T,y € Rd'

(1) For any Fo-measurable Xo with E|Xo|> < oo, the equation (6.4) has a unique solution
and supt€[07T]E\Xt|2 < oo for all T > 0. Moreover, X,(z) is jointly continuous in
(t,z) € [0,00) x RZ

(2) For any fio, Vo € t9227
Wg(Pt*ﬂo, Pt*VO)Q < WQ(,LL(), VO)2e(2Ko+Co(1+\,3|)2+2\a|30)t’ t>0.

If, in particular, 2Ky+Co(1+|8])*+2]a| < 0, then P} has a unique invariant probability
measure.

(3) If B =0 and oy is invertible with X := oy |lsc < 00, then assertions in Theorem 4.1,
Theorem 4.2 and Corollary 4.3 hold for

2K, + C
Pls.t) = )\2<1 (20K:r+c(?)(t 7+ (- 8)\04\62“5)(21{0*00*2"1')).
J— e— —S

(4) If og is constant and invertible, then assertions in Theorem 5.1 and Corollary 5.2 hold
for o, = 09.

Proof. Since by and oy are Lipschitz continuous, it is easy to see that (H1)-(H3) and (2.5)
hold for (b, 0;) = (b*,0”) for all t > 0. Then the first assertion follows from Theorems 2.1
and 2.2.

To prove the second assertion using Theorem 3.1(2), we observe that for any = € € (u, v).

<ba(xnu> - ba(ya l/)vx - y)

— /d ((bo(x —az) — by — az),x —y) + (bo(y — az) — bo(y — az’), x — y>>7r(dz, dz’)
R
< Kolo — i + Bolal o ~ gl [ |2 = #In(dz,d2).
Rd

Then

2Ko|lz — y|* + 2|a| BoW, (u, v) |z — v

2<ba<x?ﬂ) - ba(ya V),.T - y> S
< (2K + |a|Bo) |z — y|* + || BoWa (1, v)*.

(6.5)
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Similarly,
2
lo? (@, 1) = o7 (y, ) las < Co{lz =yl + [BIW (1, 1) }
< Co(L+ Bz — yI* + Co(IB] + B*)Wa(p, v)*.
Combining this with (6.5) we obtain

200 (2, 1) = (g, v), 2 — y) + l|lo” (2, ) — 0" (y, 1) |5
< {2Ko + |a|Bo + Co(1 +[8)Ha — yl* + {lalBo + Col B(1 + [ B)) }Wa(u, v)*.

Then the second assertion follows from Theorem 3.1(2).
Finally, by (6.5) and ||oo(z) — 0o(¥)||%s < Colz — y|* we have

200w, 1) = b*(y,v), 2 — ) + lloo(x) — o0 (y) s < (2Ko + Co)lz —y|* + 2|allz — y[Wa(p, v).

Then assumption (A) holds for A(t) = A\, k1(t) = 2Ky + Cp and ka(t) = 2|a|. Therefore,
assertions (3) and (4) follow from Theorem 4.1, Theorem 4.2, Corollary 4.3, Theorem 5.1
and Corollary 5.2. O

Coming back to the DDSDE for the homogeneous Landau equation with Maxwell molecules,
i.e. (6.4) for by and ¢ in (6.2), Theorem 6.1 applies with By = Cp = 2 and Ky = —2, so
that we have the following result.

Corollary 6.2. Let by and oo be in (6.2) and let o, € R. For any Fy-measurable X
with B| Xo|* < oo, the equation (6.4) has a unique solution and sup,co 1 E|X,|* < oo for all
T > 0. Moreover, X,(z) is jointly continuous in (t,x) € [0,00) x R Moreover, for any
to, Vo € P,

WQ(Pt*:uoa Pt*VO)Z < WZ(MO) VO)Ze{ZL(‘a'HBDJFZBziQ}t7 [ O?MO) Vo € f@?'
When 2(|la| + 18]) + 5% < 1, P} has a unique invariant probability measure p and

Wo (P, p)? < e 20-2al=281-8yy, () 102 > 0,1y € Py,

When 8 = a = 1 which corresponds to the homogeneous Landau equation with Maxwell
molecules,
(6.6) Wo (B o, Pg)? < Wa(po, vo)*e®™, >0, o, o € Pa.

Remark 6.1. Let N(z, A) denote the normal distribution on R? with mean z € R? and
covariance A, and let a = [ = 1 in Corollary 6.2 for the homogeneous Landau equation
with Maxwell molecules. According to [3, Theorem 1.1] (see also [6]), there exists a constant
p > 0 such that if

[ labuotaz) + [ leplin(e) g < .
Rd Rd

where [ig is the fourier transform of g, then

||Pt*:u0 - N(ZD7702[)||’UG/F < Cle_CQta t 2 0
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holds for some constants c¢;,co > 0 depending on pg, where zy := fRS zpo(dr) and 432 =
Jga |2 — 20| 1o (da). See [4] for exponential convergence in the case that € (0, 1]. Therefore,
P} is not ergodic since the limit distribution varies in the initial one. This fits the inequality
(6.6) where the upper bound does not go to 0 as t — co. However, it seems that the sharp
upper bound in (6.6) should be bounded in t.

6.2 The case with hard potentials: v € [0, 1]

When v € [0, 1], the weak existence and uniqueness have been proved in [8]. To prove the
same assertion for strong solutions, we first present a result for the equivalence of the weak
existence/uniqueness and the strong existence/uniqueness.

Theorem 6.3. Let 0 > 1. Assume that for any p € C([0,00) — Py) the SDE
(67) dXt = bt(Xt, /,Lt>dt + O't(Xt, ,Mt)th

has strong existence and uniqueness for Xo with £Lx, = po. Then for initial distribution
to € Py, the DDSDE (1.6) has weak ezistence (respectively uniqueness) if and only if it has
strong existence (respectively uniqueness).

Proof. (a) Since the strong existence implies the weak one, it suffices to prove the strong
existence from the weak one. For any initial distribution g € %, let (X;, W;) be a weak
solution under probability P. We have

(68) dXt = bt(Xt, [Lt)dt + Ut(Xt, ,ut)dI/T/ta

where iy := Z%,|s. Now, given a Brownian motion under the probability P, let X; be a
strong solution to (6.7) with Zx, = po. By Yamada-Watanabe’s principle for SDE, the
strong existence and uniqueness of (6.7) imply the weak uniqueness, so that Zx, = p; so
that (6.7) reduces to the DDSDE (1.6). Then the strong solution to (6.7) is also a strong
solution to (1.6).

(b) Obviously, the weak uniqueness implies the strong uniqueness. On the other hand,

let (1.6) has strong uniqueness, we aim to prove the weak uniqueness. Let (Xt(i), Wt(i)) under

probability P*(i = 1,2) be two weak solutions to (1.6) with £ q)|p = £, o|p> = po, we
0 0

aim to prove
(6.9) gx(l) |IP’1 = fX(z) |]11>2.
Let = £ ) |p1. By assumption, the SDE

t

(6.10) AX, = b( Xy, p)dt + o0( Xy, p)dWP, Xo = X

has a unique strong solution X := (X;);>¢. By Yamada-Watanabe’s principle, (6.10) also
has weak uniqueness. So,

(611) gx’]}ﬁ :gX(l)‘pl.

In particular, Z,|pz = p, so that X; is also a strong solution to (1.6) with the given

Brownian motion VVt(Z) replacing W;. Since Xt(Q) solves the same DDSDE, by the strong
uniqueness of (1.6) we have X = X, Combining this with (6.11), we prove (6.9). O
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Now, we consider the DDSDE (1.6) with b; and oy in (6.3) for v € (0, 1].

Corollary 6.4. Let with by and o, in (6.3) for v € (0,1]. Then for any Fo-measurable X,
with density fo satisfying (1.5), the DDSDE (1.6) has a unique strong solution such that
EelX® < 0o for any t > 0.

Proof. By [8, Theorem 2], the SDDE has a unique weak solution such that EeX** < oo for
any t > 0. According to Theorem 6.3, the same holds for the strong solution. O
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