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Continuous reducibilities are a proven tool in Computable Analysis, and have applications in other fields such as
Constructive Mathematics or Reverse Mathematics. We study the order-theoretic properties of several variants
of the two most important definitions, and especially introduce suprema for them. The suprema are shown to
commutate with several characteristic numbers.
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1 Introduction

Studying discontinuity of functions is an interesting topic on its own, an observation that is fortified by noting
that continuity behaves similarly to computability in the framework of Computable Analysis. This suggests to
compare the discontinuity of functions through continuous reducibilities. In the present paper, a continuous
version of bounded Turing reducibility (≤2) and a continuous version of many-one reducibility (≤0) are studied.

While the implicitly involved concept of an Oracle-Type-2-Machine as defined in [16] is significantly more
complicated than its classical counterpart, the resulting properties are basically the same. As we are primarily
interested in the topological variants of the relations of relative computability in the present paper, we do not need
to consider any details.

Another motivation for the study of these relations stems from parallels between Computable Analysis and
Bishop’s Constructive Mathematics ([1]) for ≤0 and ≤2 and between Computable Analysis and Reverse Mathe-
matics ([18]) for ≤2. As spelled out in [20], statements of the form f ≤0 g often correspond to set inclusions in
Constructive Mathematics. The relationship between discontinuity and inconstructibility was studied in [21]. In
Reverse Mathematics, f ≤2 g can correspond to the observation that a statement A can be proven with no more
axioms than needed for proving B, as demonstrated in [8]. Neither of the two parallels is strict, but both were
successfully used to derive new insight in one of the respective fields.

An even stronger link between continuous reducibilities and the foundations of mathematics was suggested
recently in [4]. Through careful identification of mathematical theorems with sets of (discontinuous) functions,
the reducibilities discussed here can be used to compare the effective content of these theorems. For a further
presentation of this approach, we refer to [4].

2 Preliminaries

2.1 Topology

Given a set X , a topology T on X is a set of subsets of X including ∅ and X , which is closed under formation
of arbitrary unions and finite intersections. The elements of a topology are called open sets, their complements
are called closed sets. Since any union of open sets returns an open set, any intersection of closed sets is closed,
enabling the definition of clU as the smallest closed set containing U ⊆ X . For each set X , the discrete topology
is given by Td = 2X and the indiscrete topology is given by Ti = {∅, X}.

∗ e-mail: Arno.Pauly@cl.cam.ac.uk
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A topological space is a set equipped with a topology. Given a set-indexed family (Xi, Ti)i∈I , the coproduct∐
i∈I(Xi, Ti) is the set

⋃
i∈I({i}×Xi) equipped with the smallest topology T satisfying {({i} × U) | U ∈ Ti}

is a subset of T for all i ∈ I . The product
∏

i∈I(Xi, Ti) is the set
∏

i∈I Xi equipped with the smallest topology
containing {

∏
i∈I Ui | (∀i ∈ I)Ui ∈ Ti, |{i ∈ I | Ui �= Xi}| < |N|}. For a topological space (X, T ) and a

subset Y ⊆ X , the subspace topology on Y is defined as TY = {U ∩ Y | U ∈ T }.
A function f between topological spaces (X, T ) and (Y,S) is a function f : X −→ Y . It is continuous,

if it satisfies f−1(U) ∈ T for all U ∈ S . The injection ιj : (Xj , Tj) −→
∐

i∈I(Xi, Ti) defined through
ιj(x) = (j, x) is continuous, as well as the projection πj :

∏
i∈I(Xi, Ti) −→ (Xj , Tj) to the jth entry. The

inclusion ↪→ of (Y, TY ) in (X, T ) for Y ⊆ X is also continuous. If f : (X, T ) −→ (Y,S) is continuous, and
Z ⊆ X , so is f|Z : (Z, TZ) −→ (Y,S).

For a family of continuous functions (fi : (Xi, Ti) −→ (Yi,Si))i∈I we define by
∐

i∈I fi(i, x) = (i, fi(x))
their coproduct

∐
i∈I fi :

∐
i∈I(Xi, Ti) −→

∐
i∈I(Yi,Si). The function

∐
i∈I fi is continuous. Analogously,∏

i∈I fi :
∏

i∈I(Xi, Ti) −→
∏

i∈I(Yi,Si) is defined through
∏

i∈I fi(
∏

i∈I xi) =
∏

i∈I fi(xi). As abbrevia-
tion, f1 × f2 stands for

∏
i∈{1,2} fi. For continuous functions f : (X, T ) −→ (Y,S) and g : (Y,S) −→ (Z,R),

the composition g ◦ f : (X, T ) −→ (Z,R) is continuous.
As the specific topologies are not relevant for the rest of the paper, we will use the notation X to indicate

that a set X is equipped with a certain topology. Subsets are equipped with the restriction of the topology of the
superset and (co)products of sets with the (co)product topology. A standard reference on topology is the book [6].

2.2 Order and lattice theory

A preorder on a class is a binary relation � that is reflexive and transitive. Each preorder defines an equivalence
relation ∼= via a ∼= b ↔ a � b ∧ b � a. On the equivalence classes regarding ∼=, � becomes a partial order,
as it is antisymmetric. In the following, we will not distinguish between a preorder and the partial order on its
equivalence classes, the interpretation will be clear from the context.

A partially ordered class (P,�) is said to be an α-complete join-semilattice, for a cardinal α, if for each
P ⊆ P with |P | < α there is an element supP ∈ P so that x � supP holds for all x ∈ P , and where for each
z ∈ P satisfying (∀y ∈ P ) y � z also supP � z is true. The dual notion is an α-complete meet-semilattice,
where the existence of inf P with inf P � x for x ∈ P is required, so that (∀y ∈ P ) z � y implies z � inf P .

If a partially ordered class is an α-complete join-semilattice for all cardinals α, it is called a complete join-
semilattice. A partially ordered class that is both an α-complete join-semilattice and an α-complete meet-
semilattice is called an α-complete lattice. The definition of a complete lattice is straightforward.

If Q is a subclass of P , then (Q,�) is called a sub-join-semilattice of (P,�), if supP ∈ Q holds for all
P ⊆ Q, the definition of sub-meet-semilattices and sub-lattices is straight-forward.

By choosing P = ∅, each α-complete join-semilattice has a least element sup ∅, and every α-complete meet-
semilattice has a maximal element inf ∅. Note that not all results on partially ordered sets are valid for proper
classes. An important distinction is that a complete join-semilattice that is defined over a set is also a complete
lattice, while this is generally not true for an underlying proper class1).

Among the realm of further interesting properties of (semi)lattices is distributivity. While distributivity in
the common sense is only defined for lattices, there are several possible ways of extending distributivity to
semilattices. We will call a complete join-semilattice distributive, if x ≤ supi∈I yi implies the existence of a
family (xi)i∈I satisfying xi ≤ yi for all i ∈ I and x = supi∈I xi. For complete lattices, distributivity as defined
above is equivalent to the more familiar equation inf{x, supi∈I yi} = supi∈I(inf{x, yi}).

A treatment on lattices over sets can be found in [5] or [9].

2.3 Partial functions and problems

While we use the word function only to denote total functions, it will be convenient to use partial functions,
as well. A partial function f :⊆ X −→ Y is a function f : Z −→ Y with Z ⊆ X . A partial function
f :⊆ X −→ Y will be called continuous, if f : Z −→ Y is continuous. A statement such as f(x) = g(x) for

1) For a set P ⊆ P , the infimum can be constructed as inf P = sup{x ∈ P | (∀y ∈ P ) x � y}, provided the right side exists. If the
join-semilattice (P,�) is complete, the right side will exist, as long as {x ∈ P | (∀y ∈ P ) x � y} is a set. This is guaranteed only if P is
a set.
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partial functions means that either both sides are undefined (that is x is not a member of the respective subspace),
or equal.

For some applications, functions are not necessarily an adequate formalisation for the notion of a problem to
be solved. In some cases, a problem can be represented by a binary relation linking instances with solutions. We
will employ an even more general notion, defining a problem2) P : X −→ Y to be a set of partial functions
from X to Y . It is straight-forward to identify a function with the singleton set containing it, which allows us to
consider functions as a special case of problems. For relations, we will choose another way, and call problems
satisfying a certain locality property relations.

Definition 2.1 A problem P : X −→ Y is called a relation, if f ∈ P follows for all partial functions
f :⊆ X −→ Y that fulfill (∀x ∈ X) (∃gx ∈ P ) f(x) = gx(x).

Especially, both the problem ∅ and the problem {∅} (with all possible domains and codomains) are considered
as relations due to our definition, the latter being the set containing only the nowhere defined function. The
problem ∅ is the problem without solutions, the problem {∅} is the problem without instances. The notion of
problems was taken from [22].

2.4 Strongly zero-dimensional metrisable spaces

For applying the results of the present paper to computable analysis, the topological spaces of particular im-
portance are the strongly zero-dimensional metrisable spaces. The most important examples for this class are
the spaces αN for a cardinal number α. The set αN is defined as αN = {f | f : N −→ α}, with the topology
derived from the metric d(f, g) = 2−min{n∈N|f(n) �=g(n)}. Of particular relevance is NN as it serves as foundation
for the theory of representations. A representation of a set X is defined as a surjective partial function
δ :⊆ N

N −→ X .
We will now define a strongly zero-dimensional metrisable space as a topological space that admits a metric d,

so that the range of d is {0} ∪ {2−n | n ∈ N}. Clearly, each space αN is a strongly zero-dimensional metrisable
space. On the other hand, each strongly zero-dimensional metrisable space with weight α is homeomorphic to a
subspace of αN.

Subspaces, coproducts and countable products of strongly zero-dimensional metrisable spaces are strongly
zero-dimensional metrisable spaces. For each α > 1, all coproducts of not more than α subspaces of αN are
homeomorphic to a subspace of αN, the same holds for countable products. The results in this subsection are due
to [10] and [7].

3 Definitions

A function f is many-one reducible to a function g, if there is a computable function G with f = g ◦ G.
Analogously, ≤0 reducibility is defined using continuous functions. Clearly, the codomain of all functions to be
compared with ≤0 has to be fixed. Additionally, a topology on the codomain is not needed.

Definition 3.1 Let f : X −→ Z and g : Y −→ Z be functions. Then f ≤0 g holds, if there is a continuous
function G : X −→ Y with f = g ◦G.

The primary application of ≤0 is given by its interpretation as translatability of representations ([23], [22],
and [17]). In this case, the domain is usually restricted to be subspaces of NN. Some results for comparing the
discontinuity of functions in general with ≤0 can be found in [10].

The version of bounded Turing reducibility that is analogous to ≤2-reducibility states that f is reducible to g,
if f can be computed using a single oracle call to g. To replace oracle calls with compositions of functions, the
continuous function ΔX : X −→ (X×X) defined through ΔX(x) = (x, x) has to be introduced for topological
spaces X . Furthermore, the identity on a topological space X is denoted by idX .

Definition 3.2 3) Let f : X1 −→ Y1 and g : X2 −→ Y2 be functions. Then f ≤2 g holds, if there are
continuous partial functions F :⊆ X1 × Y2 −→ Y1, G :⊆ X1 −→ X2 with f = F ◦ (idX1

× (g ◦G)) ◦ΔX1
.

2) There is a close analogy to the notion of mass problems used by Medvedev [11].
3) In some of the older literature, ≤2 is called Wadge-reducibility (≤w), recently the name Weihrauch-reducibility (≤W) was suggested

in [3].
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Note that in Definition 3.2, G could also be required to be a function, while requiring F to be a function leads
to a different reducibility, as pointed out in [14, Subsection 1.6.3], using an example from [10, Theorem 2.5.5].

The Definitions 3.1, 3.2 are often restricted through placing certain conditions on the occurring topological
spaces. For ≤2, [22], [19], [12], [13] only consider subspaces4) of certain products of N and N

N or equivalent
spaces, [14] restricts considerations to metric spaces, while [2] studies computable metric spaces. [10] presents
some results for ≤2 restricted to functions with strongly zero-dimensional metrisable spaces as domain and
discrete codomain.

While any restrictions on the kind of topological spaces to be considered can be employed for ≤0, as the
definition of ≤2 contains some products of the involved spaces, as well as partial functions, it seems reasonable to
restrict ≤2 only to classes of topological spaces that are closed under formation of binary products and subspaces.

An extension of 3.2 to problems is presented in [22], the same approach can also be used for extending ≤0 to
problems. The uniform approach employed here, as the functions F , G in the following definitions do not depend
on g, is justified by the interpretation of problems as sets of possible solutions.

Definition 3.3 Let P : X −→ Z and Q : Y −→ Z be problems. Define P ≤0 Q, if there is a continuous
partial function G :⊆ X −→ Y satisfying g ◦G ∈ P for all g ∈ Q.

Definition 3.4 Let P : X1 −→ Y1 and Q : X2 −→ Y2 be problems. Define P ≤2 Q, if there are continuous
partial functions F , G with F ◦ (idX1

× (g ◦G)) ◦ΔX1
∈ P for all g ∈ G.

It is easy to see that Definitions 3.3 and 3.4 extend the Definitions 3.1 and 3.2 when functions are identified
with the singleton set containing them. Note especially, that while G was required to be a continuous function
in Definition 3.1, but a continuous partial function in Definition 3.3, in the case of singleton sets of functions,
G turns to be a (total) function even in Definition 3.3.

There are further variants of ≤2 that are not restrictions of Definition 3.4, such as the realizer reducibility
introduced in [2] or the reducibility for multi-valued functions generalizing realizer reducibility on represented
metric spaces from [8]. However, the corresponding partial order of Brattka’s realizer reducibility is isomorphic
to the restriction of ≤2 as defined here for relations to subspaces of NN.

In the following, we will study equivalence classes for both ≤0 and ≤2. The class of equivalence classes
of functions regarding ≤i is denoted by Fi, the class of equivalence classes of relations by Ri and the class of
equivalence classes for problems by Pi for i ∈ {0, 2}. Note that despite not having been defined explicitly, the
reducibilities for relations are obtained as restrictions of the reducibilities for problems.

4 The induced partially ordered classes

4.1 Suprema for ≤2

Since every preorder induces a partial order on its equivalence classes, in particular (F2,≤2) is a partially ordered
class. As will be proven below, it is even a complete join-semilattice. We start with recalling a definition from
Subsection 2.1.

Definition 4.1 Let (fi : Xi,−→ Yi)i∈I be a set-indexed family of functions between topological spaces.
Define

∐
i∈I fi :

∐
i∈I Xi −→

∐
i∈I Yi through

∐
i∈I fi(i, x) = (i, fi(x)).

Theorem 4.2 (F2,≤2) is a complete join-semilattice. The suprema are given by supS =
∐

f∈S f .
P r o o f. We have to show the following claims:
1. For all j ∈ I , fj ≤2

∐
i∈I fi.

Define G(x) = (j, x), F (x, i, y) = y. Both functions are continuous with respect to the relevant topologies.
2. fi ≤2 g for all i ∈ I implies

∐
i∈I fi ≤2 g.

fi ≤2 g implies the existence of suitably defined continuous functions Fi, Gi with fi(x) = Fi(x, g(Gi(x))).
Define F through F (i, x, y) = (i, Fi(x, y)) and G through G(i, x) = Gi(x). The properties of the coproduct of
topological spaces ensure that F and G are continuous with respect to the relevant topologies.

Theorem 4.2 can be transferred to restrictions of ≤2 to suitable classes of topological spaces, as long as these
are closed under formation of coproducts. While not all natural examples are closed under arbitrary coproducts,
the following theorem provides results for almost all studied restrictions.

4) The consideration of subspaces is hidden in the use of partial functions.
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492 A. Pauly: On the (semi)lattices induced by continuous reducibilities

Corollary 4.3 The partial order induced by the restriction of ≤2 to a class of topological spaces that is closed
under formation of α-coproducts, is an α-complete join-semilattice.

Starting from the definition of
∐

for functions, a definition of
∐

for problems can obtained. For that, we need
to define the coproduct of a family of partial functions, which can be done by reading partial functions instead of
functions in Definition 4.1. A separate definition for relations will not be given, but can be obtained as a special
case of the following.

Definition 4.4 Let (Pi : Xi −→ Yi)i∈I be a set-indexed family of problems. Then we define
∐

i∈I Pi as
{
∐

i∈I fi | (∀i ∈ I) fi ∈ Pi}.
Theorem 4.5 (P2,≤2) is a complete join-semilattice. The suprema are given by supS =

∐
P∈S P .

P r o o f. We have to show the following claims:
1. For all j ∈ I , Pj ≤2

∐
i∈I Pi.

Define G(x) = (j, x) and F (x, i, y) = y. Both functions are continuous with respect to the relevant topolo-
gies. For each

∐
i∈I fi ∈

∐
i∈I Pi, F (x,

∐
i∈I fi(G(x))) = fj(x) and fj ∈ Pj hold, proving the statement.

2. Pi ≤2 Q for all i ∈ I implies
∐

i∈I Pi ≤2 Q.
If Pi ≤2 Q, then there exists suitably defined continuous functions Fi, Gi with x �−→ Fi(x, g(Gi(x))) ∈ Pi

for all g ∈ Q. Define F through F (i, x, y) = (i, Fi(x, y)) and G through G(i, x) = Gi(x). The properties of the
coproduct ensure that F and G are continuous with respect to the relevant topologies. x �−→ F (i, x, g(G(i, x)))
for any g ∈ Q and fixed i ∈ I is in Pi, so (i, x) �−→ F (i, x, g(G(i, x))) is in

∐
i∈I Pi.

To cover relations, a new definition of suprema is not needed. Straight-forward observation of the relevant
definitions is sufficient to obtain the next proposition and the following corollary:

Proposition 4.6 If the problem Pi is a relation for all i ∈ I , then
∐

i∈I Pi is also a relation.
Corollary 4.7 (R2,≤2) is a sub-join-semilattice of (P2,≤2). In particular, (R2,≤2) is a complete join-semi-

lattice with suprema given by supS =
∐

R∈S R.
Through identifying a function f with the problem {f}, the partially ordered class (F2,≤2) is a substructure

of the partially ordered class (R2,≤2). As suprema are formed in a compatible fashion, the complete join-
semilattice (F2,≤2) is even a sub-join-semilattice of (R2,≤2), and hence of (P2,≤2).

Similar statements to Corollary 4.3 can be phrased and proved for (R2,≤2) and (P2,≤2), which is not exer-
cised here.

As the coproduct of an empty family of topological spaces is the space (∅, {∅}), the minimal element
in (F2,≤2) is the equivalence class containing exactly the functions with domain ∅. The minimal element
in (P2,≤2) is the equivalence class containing all problems that contain a function with domain ∅. The con-
tinuous functions with non-empty domain form the second-least element of (F2,≤2), the problems containing a
continuous function with non-empty domain are the second-least element of (P2,≤2).

Definition 4.8 A function f : X −→ Y is sequentially continuous, if limn→∞ f(xn) = f(limn→∞ xn) holds
for each sequence (xn)n∈N in X . A topological space X is called sequential, if every sequentially continuous
function on X is continuous.

The restriction to sequential topological spaces even yields a third-least equivalence class of functions con-
taining the function cf : NN −→ {0, 1} with cf−1({1}) = {0N}. This can be rephrased to yield a characterization
of sequential topological spaces:

Theorem 4.9 A topological space X is sequential, if and only if cf ≤2 f holds for all discontinuous functions
f : X −→ Y with some topological space Y .

P r o o f. As all continuous functions are sequentially continuous, our claim is equivalent to: cf ≤2 f holds, if
and only if f is not sequentially continuous.

As sequential continuity is preserved under composition and products, sequential continuity of g and f ≤2 g
implies sequential continuity of f . It is trivial to see that cf is not sequentially continuous, hence, one direction
of our equivalence.

For the other direction, assume that f is not sequentially continuous. Then there is a converging sequence
(xn)n∈N in X with

f(limn→∞ xn) �= limn→∞ f(xn).

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org
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The limit on the right side might not exist, and both limits are not necessarily unique. In any case, this means that
there is an open neighbourhood U of f(limn→∞ xn), and a subsequence (xnk

)k∈N of (xn)n∈N with f(xnk
) /∈ U

for all k ∈ N.
Define a continuous function G : NN −→ X by G(x) = xnk

, if d(0N, x) = 2−k, and G(0N) = limn→∞ xn.
Due to the properties of a metric, G is continuous. A partial function F : X × Y −→ {0, 1} is defined via
F (0N, y) = 1 and F (x, y) = 0 for x �= 0N. The domain of F is

({0N} × {limn→∞ xn}) ∪ ((NN \ {0N})× (X \ U)).

To show that F is continuous on its domain, we have to show that both ({0N} × {limn→∞ xn}) and
((NN\{0N})×(X\U)) are closed subsets of their union. By ({0N} × {limn→∞ xn}) = ({0N} ×X) ∩ dom(F )
and ((NN \ {0N}) × (X \ U)) = (NN × (X \ U)) ∩ dom(F ) this is indeed the case. Now F and G witness
cf ≤2 f .

However, even if one regards only problems with domain N
N, there exists a decreasing chain between the

continuous problems and {cf}, as shown in [21, Section 4].
For (P2,≤2), there exists a maximal element, this contains all empty problems. For functions, however,

no maximal element exists, proving that (F2,≤2) is not an α-complete meet-semilattice and therefore not an
α-complete lattice for any α > 0. This claim follows from the examples given at the end of Subsection 5.1
utilizing the concept of Basesize. Note that all specific problems mentioned here are relations, so the statements
hold for (R2,≤2), as well.

4.2 Infima for ≤2

Recently, Brattka and Gherardi presented a construction of binary infima of relations for computable Weihrauch
reducibility in [3], which can be transferred to the topological setting in a straight-forward manner.

Definition 4.10 Define
∧

i∈I Ri :
∏

i∈I Xi −→
∐

i∈I Yi, where (Ri : Xi −→ Yi)i∈I is a set-indexed
family of relations, by f ∈

∧
i∈I Ri, if for all x ∈

∏
i∈I Xi we have f(x) = (i, y) and there is a g ∈ Ri with

g(πi(x)) = y.

Theorem 4.11 (R2,≤2) is a complete meet-semilattice. The infima are given by inf A =
∧

R∈A R.

P r o o f. We have to show the following claims:
1. For all j ∈ I ,

∧
i∈I Ri ≤2 Rj holds.

For g ∈ Rj , we have x �−→ ιj(g(πj(x))) ∈
∧

i∈I Ri. As both the projection πj and the injection ιj are
continuous, this concludes the proof.

2. If S ≤2 Ri holds for all i ∈ I , then S ≤2

∧
i∈I Ri is implied.

Suppose that the witnesses for S ≤2 Ri are Gi and Fi. Define G by G(x) =
∏

i∈I Gi(x), and define F by
F (x, (j, y)) = Fj(x, y). Then F and G witness S ≤2

∧
i∈I Ri.

An extension of the concept to problems is possible, also, by utilizing injections and projections even more:

Definition 4.12 Define �i∈IPi :
∏

i∈I Xi −→
∐

i∈I Yi, where (Pi : Xi −→ Yi)i∈I is a set-indexed family
of problems, by f ∈ �i∈IPi, if there is an j ∈ I and a g ∈ Pi with f = ιj ◦ g ◦ πj .

Theorem 4.13 (P2,≤2) is a complete meet-semilattice. The infima are given by inf A = �P∈AP .

P r o o f. We have to show the following claims:
1. For all j ∈ I , �i∈IPi ≤2 Pj holds.
Both injections and projections are continuous.
2. If Q ≤2 Pi holds for all i ∈ I , then Q ≤2 �i∈IPi is implied.
Suppose that the witnesses for Q ≤2 Pi are Gi and Fi. Define G by G(x) =

∏
i∈I Gi(x), and define F by

F (x, (j, y)) = Fj(x, y). Then F and G witness Q ≤2 �i∈IPi.
Note that despite the similarity of Definition 4.10 and Definition 4.12 the former is not a special case of the

latter: Even if all problems Pi are relations, for |I| > 1 the problem �i∈IPi is not a relation. In particular, the
conjecture that (R2,≤2) is not a sub-lattice of (P2,≤2), although both share suprema, seems reasonable to us.
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4.3 Suprema and infima for ≤0

Using a very similar construction to Definition 4.1, suprema can be introduced for all variations of ≤0 studied
here. Again, we will start with considering functions only.

Definition 4.14 Let (fi : Xi −→ Z)i∈I be a set-indexed family. Define ↑fi ↑i∈I :
∐

i∈I Xi −→ Z through
↑fi ↑i∈I(i, x) = fi(x).

Theorem 4.15 (F0,≤0) is a complete join-semilattice. The suprema are given by supA = ↑f ↑f∈A.

P r o o f. We have to show the following claims:
1. For all j ∈ I , fj ≤0 ↑fi ↑i∈I .
Choose G : Xj −→

∐
i∈I Xi defined through G(x) = (j, x).

2. If fj ≤0 g holds for all j ∈ I , then ↑fi ↑i∈I ≤0 g holds.
There are continuous functions Gj , so that fj = g ◦Gj holds for each j ∈ J . Define G by G(i, x) = Gi(x).

G is continuous, and satisfies ↑fi ↑i∈I = g ◦G.
For representations, binary suprema5) for ≤0 have already been introduced in [22]. Taking into consideration

that Nω and N
ω
∐

N
ω are homeomorphic, Definition 4.14 extends [22, Definition 3.3.11], while the Theorem 4.15

extends [22, Theorem 3.3.12 1.]. As the restriction of ≤0 to functions with domain in a class of topological spaces
closed under formation of α-coproducts yields an α-complete join-semilattice, also countable suprema exist for
representations.

By extending [22, Definition 3.3.7], a definition of binary infima for representations, (F0,≤0) is shown to lead
to a complete lattice.

Definition 4.16 Let (fi : X −→ Z)i∈I be a set-indexed family of functions. Define ↓fi ↓i∈I : P −→ Z,
where P = {

∏
i∈I xi ∈

∏
i∈I Xi | (∀i ∈ I)(∀j ∈ I) fi(xi) = fj(xj)} is equipped with the restriction of the

usual product topology, through ↓fi ↓i∈I(
∏

i∈I xi) = fi0(xi0) for an arbitrary fixed i0 ∈ I .

Theorem 4.17 (F0,≤0) is a complete meet-semilattice. The infima are given by inf A = ↓f ↓f∈A.

P r o o f. We have to show the following claims:
1. For all j ∈ I , ↓fi ↓i∈I ≤0 fj .
Choose G : P −→ Xj as the restriction of the projection πj to the jth entry.

2. Let g : Y −→ Z be a function. If g ≤0 fi holds for all i ∈ I , then g ≤0 ↓fi ↓i∈I follows.
Assume the existence of continuous functions Gi, so that g = fi ◦Gi holds. Then fi(Gi(y)) = fj(Gj(y)) for

all i, j ∈ I , y ∈ Y . Thus a continuous function G : Y −→ P can be defined via G(y) =
∏

i∈I Gi(y). G satisfies
g = ↓fi ↓i∈I ◦ G.

The definition of suprema can be extended to relations and problems in the usual manner, as exercised below.
Definition 4.18 Define ↑Pi ↑i∈I = {↑fi ↑i∈I | (∀i ∈ I) fi ∈ Pi}, where (Pi : Xi −→ Z)i∈I is a set-indexed

family of problems.
Theorem 4.19 (P0,≤0) is a complete join-semilattice. The suprema are given by supA = ↑P ↑P∈A.

P r o o f. We have to show the following claims:
1. For all j ∈ I , Pj ≤0 ↑Pi ↑i∈I .
Choose G : Xj −→

∐
i∈I Xi defined through G(x) = (j, x). Then ↑fi ↑i∈I ◦ G = fj holds, so from

↑fi ↑i∈I ∈ ↑Pi ↑i∈I follows ↑fi ↑i∈I ◦ G ∈ Pj .
2. Pi ≤0 Q for all i ∈ I implies ↑Pi ↑i∈I ≤0 Q.
There are continuous functions Gj , so that g ◦ Gj ∈ Pj holds for each j ∈ J and each g ∈ Q. Define G

through G(i, x) = Gi(x). G is continuous, and satisfies ↑g ◦Gj ↑i∈I = g ◦ G, and thus g ◦ G ∈ ↑Pi ↑i∈I for
each g ∈ Q.

Theorem 4.20 If the problem Pi is a relation for all i ∈ I , then ↑Pi ↑i∈I is also a relation.

Corollary 4.21 (R0,≤0) is a sub-join-semilattice of (P0,≤0). In particular, (R0,≤0) is a complete join-
semilattice with suprema given by supA = ↑R↑R∈A.

5) In addition, a definition of countable suprema and infima is given by Weihrauch, but, as the focus in [22] is on computable reducibilities,
the fact that the constructions given are (co)limits for the continuous reducibilities was not pointed out explicitly.
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As (F0,≤0) is a complete lattice, there is a smallest and greatest element. The smallest element is the inclu-
sion of the empty set in Z, the greatest element is the identity id : (Z, {∅, Z}) −→ Z. Constant functions are
equivalent, if and only if they have the same image, and incomparable otherwise. Each constant function is a
second-smallest element.

Considering problems does not change the results from the last paragraph much, the empty problem is even
greater than {id}, but the equivalence class including {id} is the unique second-greatest element.

4.4 Distributivity

Theorem 4.22 (F2,≤2) is distributive.

P r o o f. We assume functions f : X −→ Y and gi : Xi −→ Yi for i ∈ I satisfying f ≤2

∐
i∈I gi. There

are continuous partial functions F :⊆ X × (
∐

i∈I Yi) −→ Y and G :⊆ X −→
∐

i∈I Xi with
f(x) = F (x, [

∐
i∈I gi](G(x))) for all x ∈ X . We can assume that G is a continuous function. If I is the

set I with the discrete topology, then the function ρ :
∐

i∈I Xi −→ I defined via ρ(i, x) = i is continuous, and
so is ρ ◦G. The set Oi = (ρ ◦G)−1({i}) for i ∈ I thus is a open and closed subset of X .

We use fi to denote the restriction of f to the set Oi. As set-inclusions are continuous, each fi fulfills fi ≤2 f ,
implying

∐
i∈I fi ≤2 f . Suitable restrictions of F and G also yield fi ≤2 gi for all i ∈ I . It remains to prove

f ≤2

∐
i∈I fi. If we use the continuous function � : X × (

∐
i∈I Oi) −→ X defined by �(x, i, y) = y, the

identity

f(x) = �(x, [
∐

i∈I fi]((ρ ◦G)(x), x))

shows the remaining claim.

Theorem 4.23 (R2,≤2) is distributive.

P r o o f. To extend the proof of Theorem 4.22 to relations, we need exactly the locality condition specified in
Definition 2.1 to show that the constructed function is a member of the relevant relation.

For exactly this reason, the theorem is not extended to general problems.

Theorem 4.24 (F0,≤0) is distributive.

P r o o f. The proof is exactly parallel to the proof of Theorem 4.22.

Theorem 4.25 (R0,≤0) is distributive.

P r o o f. The proof is exactly parallel to the proof of Theorem 4.23.

5 Suprema and characteristic numbers

5.1 Level and Basesize

An important tool in the study of the discontinuity of functions are certain characteristic numbers that are com-
patible with ≤2 (and hence with ≤0). Here, two variants of the Level as introduced in [10], as well as Basesize
introduced in [14] will be considered. Called cardinality of discontinuity, Basesize was studied extensively
in [24].

Definition 5.1 Let f : X −→ Y be a function. For an ordinal number α, inductively define the sets L1
α(f) ⊆ X

via

L1
0(f) = X, L1

α+1(f) = {x ∈ L1
α(f) | f|L1

α(f) is discontinuous at x},
L1
γ(f) =

⋂
α<γ L1

α(f) for a limit ordinal γ.
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Definition 5.2 Let f : X −→ Y be a function. For an ordinal number α, define inductively the sets L2
α(f) ⊆ X

via

L2
0(f) = X, L2

α+1(f) = cl ({x ∈ L2
α(f) | f|L2

α(f) is discontinuous at x}),
L2
γ(f) = cl

⋂
α<γ L2

α(f) for a limit ordinal γ.

Definition 5.3 Let f : X −→ Y be a function and x ∈ X . Define levi(f, x) = min{α | x /∈ Li
α(f)} and

Levi(f) = min{α | Li
α = ∅} for i ∈ {1, 2}.

The formulation of statements involving the Level of a function usually is simplified by assuming that a non-
existing Level is comparable with the normal ≤ relation for ordinal numbers, and is greater than all ordinal
numbers. This agreement extends to suprema and minima of suitable classes of ordinal numbers.

Proposition 5.4 Levi(f) = sup{levi(f, x) | x ∈ X}.

Theorem 5.5 If f ≤2 g holds, then Levi(f) ≤ Levi(g).

P r o o f. This is the statement of [10, Korollar 2.4.3].

When trying to define the Level of a problem, two main criteria should be employed. First, the Level of a
singleton problem should be identical to the Level of the function it contains. Second, the result of Theorem 5.5
should remain valid when functions are replaced by problems. An elegant way6) of reaching both criteria is
presented in the following definition, which already was given by Hertling in [10, Section 1.3].

Definition 5.6 Let P be a problem. Define Levi(P ) = min{Levi(f) | f ∈ P} for i ∈ {1, 2}.

Theorem 5.7 If P ≤2 Q holds, then Levi(P ) ≤ Levi(Q) follows for i ∈ {1, 2}.

P r o o f. If P ≤2 Q holds, there are continuous functions F , G with x �−→ F (x, g(G(x))) ∈ P for all g ∈ Q.
Choose a special g ∈ Q, so that Levi(g) = Levi(Q) is fulfilled. Clearly, x �−→ F (x, g(G(x))) ≤2 g is true,
so from Theorem 5.5 results Levi(x �−→ F (x, g(G(x)))) ≤ Levi(g) = Levi(Q). The claim now follows from
Definition 5.6.

The third characteristic number to be considered is Basesize. Basesize extends the notion of k-continuity
explored in [21]. Its definition for functions was first presented in [14]. In contrast to the Level, the Basesize of a
function is a cardinal number.

Definition 5.8 Let f : X −→ Y be a function. A partition for f is a partition p of X , so that f|U is continuous
for all U ∈ p. The Basesize of f is defined as the least cardinality of a partition for f and denoted by bas(f).

Theorem 5.9 For functions f : X −→ Y , g : U −→ V , f ≤2 g implies bas(f) ≤ bas(g).

P r o o f. Let {Ai | i ∈ I} be a partition for g with minimal cardinality. Let F , G be continuous partial
functions with f(x) = F (x, g(G(x))) for all x ∈ X . Then {G−1(Ai) | i ∈ I} is a partition of X , and as g ◦G
is continuous when restricted to G−1(Ai), so is f . So {G−1(Ai) | i ∈ I} is a partition for f .

The two variants of the Level and Basesize are linked with an inequality. All combinations of equality and
strict inequality are possible.

Theorem 5.10 bas(f) ≤ Lev1(f) ≤ Lev2(f).

P r o o f. By Definition 5.1, for Dα = L1
α(f) \ L1

α+1(f), the restriction f|Dα
is continuous. As we have

dom(f) =
⋃Lev1(f)

α=0 Dα, the sets Dα form a partition for f . Thus, the first inequality is proven. The second
inequality is the statement of [10, Satz 1.1.7 (1)].

When trying to define the Basesize of a problem, both the goals and the method to achieve them are completely
analogous to the same task for the Level.

Definition 5.11 For a problem P , define bas(P ) = min{bas(f) | f ∈ P}.

6) The validity of Theorem 5.5 gives min{Levi(f) | f ∈ P} as an upper bound for Levi(P ), but the two criteria are not sufficient to
uniquely determine Definition 5.6.
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Theorem 5.12 For problems P , Q, if P ≤2 Q, then bas(P ) ≤ bas(Q).

P r o o f. Choose g ∈ Q with bas(g) = bas(Q). There exists an f ∈ P with f ≤2 g. This implies that
bas(P ) ≤ bas(f) ≤ bas(g) = bas(Q) holds.

Clearly, the inequalities in Theorem 5.10 hold for problems, too.
In the following, examples will be constructed showing that all combinations of Basesize and Level not ruled

out by Theorem 5.10 can occur.

Let N = {0}∪{ 1
n
| n ∈ N}. Given an ordinal number λ, let Mλ be the set of order-preserving functions from

(λ,≤) to (N ,≥). For each x ∈ Mλ, let Ux ⊆ Mλ be defined via Ux = {y ∈ Mλ | (∀ν ∈ λ) y(ν) ≥ x(ν)},
and equip Mλ with the topology induced by the base7) {Ux | x ∈ Mλ}.

For c ∈ M, let F (c) ∈ λ+1 denote the least element with c(F (c)) = 0 or λ if no such element exists. Given
further a cardinal number β with β ≤ λ, we define a function Rλβ : (λ + 1) −→ β using ordinal left division
with remainder. Rλβ(α) shall be the uniquely determined ordinal number less than β, so that there is an ordinal ζ
with α = βζ +Rλβ(α). The restriction β ≤ λ ensures the surjectivity of Rλβ .

Now a function fλβ : Mλ −→ β is defined as fλβ = Rλβ ◦F , where β is the set β equipped with the discrete
topology.

Theorem 5.13 Lev1(fλβ) = λ and bas(fλβ) = β.

P r o o f. The first statement follows from the observation that L1
α(fλβ) = {c ∈ Mλ | F (c) ≥ α}, which we

will continue to prove. For α = 0, the claim is trivially true.
If F (c) = ν holds for some c ∈ Mλ, then we have F (x) ≤ ν for all x ∈ Uc. In particular, the restriction

(fλβ)|A to some set A is always continuous in the points x ∈ A with (∀y ∈ A)F (x) ≤ F (y). On the other hand,
define x+ for some x with F (x) = α + 1 by x+(ν) = x(ν) for ν �= α, and x+(α) = 0. Then x+ ∈ Mλ holds,
additionally x+ is in every neighborhood of x in some subset of Mλ that contains both x and x+. Thus, on such
a subset, fλβ is discontinuous in x. This shows the claim for all successor ordinals α+ 1.

For limit ordinals δ, the claim follows from the definition of L1
δ(fλβ) =

⋂
α<δ L1

α(fλβ). This concludes the
proof of Lev1(fλβ) = λ.

bas(fλβ) ≤ β is clear. It remains to show β ≤ bas(fλβ). For that, note that we can consider Mλ1
as a subset

of Mλ2
for λ1 ≤ λ2 by extending g ∈ Mλ1

to g′ with g′(x) = g(x) for x < λ1 and g′(x) = 0 otherwise.
Especially, this makes fββ a restriction of fλβ , so proving β ≤ bas(fββ) is sufficient.

For that, consider the elements xν ∈ Mβ with xν(α) = 1 for α < ν and xν(α) = 0 for ν ≤ α ≤ β. Then
xν is in every neighborhood of xμ for ν < μ, and the presence of xν makes fββ discontinuous in xμ. Thus, if P
is a partition of fββ , no P ∈ P may contain xν , xμ with ν < μ. This contradicts the assumption |P| < β and
concludes the proof.

Corollary 5.14 (F2,≤2) has no greatest element.

P r o o f. Let g : X −→ Y be a representative of the greatest element of (F2,≤2). Obviously, we have
bas(g) ≤ |X|. Abbreviate β = |X|+. Consider the function fββ . Due to assumption, we have fββ ≤2 g, so
Theorem 5.9 yields bas fββ ≤2 |X|. Together with Theorem 5.13, we have |X|+ ≤ |X|, an obvious contra-
diction. Thus, there is no greatest element in (F2,≤2).

5.2 Permutability of characteristic numbers and suprema

In this subsection we show that the characteristic numbers defined above commute with suprema, that is, the
supremum of the characteristic numbers of some family of functions, relations or problems is the characteristic
number of the supremum of these. While the proofs are done only for ≤2, the corresponding results for ≤0 are
direct consequences (as it is true for the previous subsection).

7) The intersection
⋂

x∈A Ux for some A ⊆ Mλ is identical to Uy , where y ∈ Mλ is defined by requiring y(ν) = maxx∈A x(ν) for
all ν ∈ λ.
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Theorem 5.15 Lev1(
∐

i∈I fi) = sup{Lev1(fi) | i ∈ I}.

P r o o f. Assume that for each i ∈ I the domain of fi is Xi, so the domain of
∐

i∈I fi is
∐

i∈I Xi. As for each
j ∈ I , the set Xj is open and closed in

∐
i∈I Xi,

∐
i∈I fi is continuous in (j, x) if and only if fj is continuous

in x. The same is true for all restrictions. Thus, L1
α(
∐

i∈I fi) =
⋃

i∈I{i}×L1
α(fi) follows. So L1

α(
∐

i∈I fi) = ∅
is true if and only if L1

α(fi) = ∅ holds for all i ∈ I .

Theorem 5.16 Lev2(
∐

i∈I fi) = sup{Lev2(fi) | i ∈ I}.

P r o o f. To prove the claim, the proof of Theorem 5.15 needs to be slightly modified. To this end, note
cl

∐
i∈I Ui =

∐
i∈I clUi.

Theorem 5.17 bas(
∐

i∈I fi) = sup{bas(fi) | i ∈ I}.

P r o o f. The first fact in the proof of Theorem 4.2 together with Theorem 5.9 yields

bas(
∐

i∈I fi) ≥ sup{bas(fi) | i ∈ I}.

Now assume an index set J with |J | = sup{bas(fi) | i ∈ I}. For each i ∈ I , there is a subset Ji of J , so that
there is a partition {Uij | j ∈ Ji} for fi. Define Uij = ∅ for j ∈ J \ Ji. A partition for

∐
i∈I fi can be obtained

as {
⋃

i∈I{i} × Uij | j ∈ J}, proving the other direction of the equality.

Again, by building on the result for functions presented in the theorems above, the results can also be obtained
for problems. Interestingly, the proof is uniform and not dependent on the specific characteristic number used.
This can be regarded as further strengthening the definition of Level and Basesize for problems.

Theorem 5.18 Let num ∈ {Lev1,Lev2, bas}. Then it follows that

num(
∐

i∈I Pi) = sup{num(Pi) | i ∈ I}.

P r o o f. According to Definition 4.4, num(
∐

i∈I Pi) = num({
∐

i∈I Pi | (∀i ∈ I) fi ∈ Pi}). By Defini-
tion 5.6 or 5.11 it follows that

num({
∐

i∈I fi | (∀i ∈ I) fi ∈ Pi}) = min{num(
∐

i∈I fi) | (∀i ∈ I) fi ∈ Pi}.

Applying Theorem 5.15, 5.16 or 5.17, we obtain

min{num(
∐

i∈I fi) | (∀i ∈ I) fi ∈ Pi} = min{sup{num(fi) | i ∈ I} | fi ∈ Pi}.

min and sup commute, so in the next step we have

min{sup{num(fi) | i ∈ I} | fi ∈ Pi} = sup{min{num(fi) | fi ∈ Pi} | i ∈ I}.

Another application of Definition 5.6 or 5.11 results in

sup{min{num(fi) | fi ∈ Pi} | i ∈ I} = sup{num(Pi) | i ∈ I}.

6 Additional observations

6.1 A continuous version of truth-table reducibility

For some applications the limitation of having only one call to the oracle will be too strict, so a continuous
version of truth-table reducibility, meaning the possibility of making any finite number of parallel oracle calls,
is desirable. The notion of n parallel calls to an oracle f can be replaced by the notion of one call to the oracle
fn :=

∏n
i=1 f . The extension to any finite number of calls is accomplished by taking the supremum over all n.

As abbreviation, we define f :=
∐

n∈N
fn. Then the corresponding reducibility can be defined:

Definition 6.1 For two functions f , g, let f ≤ct g hold, if f ≤2 g holds.
The properties of ≤ct are derived from the properties of ≤2, as is a closure operator for ≤2, as the following

theorem shows.
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Theorem 6.2 The operator satisfies the following properties:
1. f ≤2 f ;
2. f ≤2 g implies f ≤2 g;

3. f ≡2 f .
P r o o f.
1. Trivial.
2. By taking the n-fold products of the continuous partial functions witnessing f ≤2 g, we have fn ≤2 gn.

The properties of suprema then yield the claim.

3. We only have to show f ≤2 f . For the proof we utilize the following distributivity law, which generalises
[14, Theorem 2.2.5.5]:

f ×
∐

i∈I gi ≡2

∐
i∈I(f × gi).

Iterated application yields
∐

n∈N
fn ≡2 (

∐
n∈N

fn)m for all m ∈ N. The claim now follows again from the
general properties of suprema.

Obviously,
∐

can also be considered as supremum in the partially ordered set induced by ≤ct, yielding yet
another complete join-semilattice. Binary suprema, however, are also given by the product in this case, as they
are equivalent regarding ≤ct. Again it is possible to define ≤ct for relations and problems as well. The join-
semilattices corresponding to ≤ct are quotients of the respective join-semilattices for ≤2.

Other examples of closure operators for ≤2 implying other reducibilities have been studied in [3] and [16].
Some applications for the -operator can be found in [15].

6.2 From problems to relations

The relationship between the different infima operators � and
∧

for problems and relations can be understood
best by considering the following operator, which assigns a relation to each problem:

Definition 6.3 Given a problem P : X −→ Y , define the relation R(P ) : X −→ Y by

R(P ) = {f :⊆ X −→ Y | (∀x ∈ X) (∃gx ∈ P ) f(x) = gx(x)}.

Theorem 6.4 R is a co-closure operator (interior operator), i.e. it satisfies:
1. R(P ) ≤2 P ;
2. P ≤2 Q implies R(P ) ≤2 R(Q);
3. R(P ) = P , if P is a relation.
P r o o f.
1. We have P ⊆ R(P ) by choosing gx = f for all x ∈ X . This implies R(P ) ≤2 P .
2. This follows from the locality in the definition of ≤2.
3. According to Definition 2.1, R(P ) = P is equivalent to P being a relation.
By using R, we can now simply state the relationship as

∧
= R ◦ �.

6.3 A note on computable reducibilities

Due to issues of cardinality, our constructions of uncountable infima and uncountable suprema are inapplicable
for the computable versions of ≤0 and ≤2, as the resulting spaces are no longer representable. However, despite
the equivalence of NN and

∐
n∈N

N
N, already the existence of countable infima and suprema breaks down, as

countable products and coproducts of computable functions are not necessarily computable.
Existence of suprema and infima in the computable case is ensured for finite sets. In addition, considering

countable coproducts still makes sense. For example, the operator forms a closure-operator also in the com-
putable setting. While the properties of suprema cannot be invoked anymore, the functions actually realizing the
reductions do happen to be computable. We use ≤W to refer to the computable version of ≤2:
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Theorem 6.5 The operator satisfies the following properties:

1. f ≤W f ;

2. f ≤W g implies f ≤W g;

3. f ≡W f .

P r o o f.

1. The coproduct injections are computable.

2. If the computable partial functions F and G witness f ≤W g, then F ′ and G witness f ≤W g, where F ′ is
defined as F ′(i, x, i, y) = F i(x, y).

3. We only have to show f ≤2 f . Consider the computable function G defined as

G(n, ((i1, x1), (i2, x2), . . . , (in, xn))) = (
∑n

k=1 ik, 〈x1, x2, . . . , xn〉).

Then G witnesses the claim.

6.4 Decomposing functions

When a function f is expressed as a supremum of some functions fi, apparently all questions regarding the
discontinuity of f can be answered by examining the functions fi. An example for this is the notion of C∞-con-ti-
nuous functions introduced in [12], which corresponds to the supremum of the Ωn-continuous functions.

For functions defined on a strongly zero-dimensional metrisable space whose Level exists and is a countable
limit-ordinal, a general procedure to find an expression as a supremum of less discontinuous functions will be
given below. We consider the function f : X −→ Y , where X is assumed to be metrisable and strongly zero-
dimensional. We set γ = Lev2(f), and let (γn)n∈N be an arbitrary sequence satisfying γn ≤ γ for all n ∈ N, as
well as limi→∞ γi = γ. Further, Ln shall denote the set L2

γn
(f), and fn the restriction of f to X \ Ln.

Theorem 6.6 f ∼=2

∐
n∈N

fn.

P r o o f. As each fn is a restriction of f , for all n ∈ N, directly fn ≤2 f can be obtained. The second fact in
the proof of Theorem 4.2 yields

∐
n∈N

fn ≤2 f .
For the other direction, let d be a metric on X that induces its topology. As X is strongly zero-dimensional,

the range of d can assumed to be N = {0} ∪ { 1
n

| n ∈ N}, equipped with the restriction of the usual Euclidean

topology on the real field. For a subset A ⊆ X , the function x �−→ d(x,A) is a continuous function from X
to N . The function L : X −→

∏
n∈N

N , defined by L(x)(n) = d(x, Ln) is also continuous.
∏

n∈N
N is

homeomorphic to {0, 1}N using ι as homeomorphism, which is defined via ι(w)(〈n,m〉) = 1 if w(n) =
1

m
.

By definition, each set Ln is closed, so as X is metrisable, d(x, Ln) = 0 is equivalent to x ∈ Ln. Since
⋂

n→∞ Ln = ∅, for each x ∈ X there is an n with x /∈ Ln, so there is an m with d(x, Ln) =
1

m
. So for each x,

the sequence ι(L(x)) contains a 1. The function which takes a sequence w ∈ {0, 1}ω \{0ω} and returns the least
number n, so that wn is 1, is computable and thus continuous. The function 〈n,m〉 �−→ n is computable and
thus continuous. Composition of all these functions yields a continuous function L : X −→ N which satisfies
x /∈ LL(x).

Each x ∈ X thus satisfies x ∈ dom(fL(x)). Therefore, x �−→ [
∐

n∈N
fn](L(x), x) is well-defined. Compo-

sition with a projection yields f(x) = pr([
∐

n∈N
fn](L(x), x)), and as both L and pr are continuous, this shows

f ≤2

∐
n∈N

fn.

In other cases, the decomposition is already present in the definitions. Typical examples here are dimensions,
in many instances, some problem parameterized with some natural number in the role of a dimension will be the
supremum over all problems with the parameter fixed to some value.
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6.5 Defining admissibility via suprema of ≤0

Admissibility is a desirable property of representations which can be considered central to computable analysis.
In [17], Schröder extends the definition of admissibility that e.g. can be found in [22] to a more general case,
yielding the following definition:

Definition 6.7 A surjective partial function δ :⊆ N
N −→ X is called admissible, if it is continuous and

ρ ≤0 δ for all continuous surjective partial functions ρ :⊆ N
N −→ X .

Note the following two observations. If f ≤0 g holds, and f is surjective, so is g. If gi is continuous for i ∈ I ,
so is ↑gi ↑i∈I . Then admissibility can be rephrased as a maximality statement regarding the partial order8) ≤0.
We use Cp(X,Y ) to denote the set of continuous partial functions from X to Y .

Proposition 6.8 A partial function δ :⊆ N
N −→ X is admissible, if δ ∼=0 ↑ρ↑ρ∈Cp(NN,X) holds.

While Definition 6.8 does not seem to be more useful than Definition 6.7 for practical purposes, it does clearly
show the order-theoretic nature of admissibility. Also, Definition 6.8 invites the following extension:

Definition 6.9 A partial function f :⊆ Y −→ X is called admissible, if f ∼=0 ↑g↑g∈C(Y ,X) holds.

In [17] the topological spaces X admitting an admissible representation following Definitions 6.7 or 6.8 were
characterized as those T0-spaces with a countable pseudobase. A generalization of the question lies at hand:
Given a topological space Y , for which topological spaces X is there an admissible partial function f : Y −→ X?
We conclude with giving a trivial answer for a certain subcase: For a discrete space D, there is an admissible
(partial) function f : D −→ X if and only if |X| ≤ |D| holds, as admissibility then coincides with surjec-
tivity. As the class of topological spaces where the underlying sets do not exceed a certain cardinality is not
cartesian closed, this example can be considered as a demonstration that NN is especially suitable as domain for
representations.

6.6 Generalizing ≤0 in category theory

The simple Definition 3.1 can easily be formulated in the framework of category theory. Given a category L, a
subcategory K of L and an object Z ∈ L, a partial order ≤0 can be defined on the class of morphisms in L with
codomain Z:

Definition 6.10 For morphisms u : X −→ Z, v : Y −→ Z, u, v ∈ L, let u ≤0 v hold, if there is a morphism
G ∈ K with v = u ◦G.

While it is not necessary that K includes all objects from L for Definition 6.10 to be valid, this requirement
certainly makes ≤0 more useful, so it will be adopted in the following. Note that the trivial case K = L is a
worthwhile object of study on its own, just as ≤0 can be fruitfully used to compare continuous functions only.

For studying suprema for ≤0, we require that L has arbitrary coproducts and that K is closed in L under
formation of coproducts. We recall the definition of coproducts in category theory:

Definition 6.11 Given a family (Ai)i∈I of objects in a category L, an object A together with morphisms
μi : Ai −→ A is called the coproduct of the (Ai)i∈I , if for every family of morphisms (fi : Ai −→ Z) there is
a unique morphism f : A −→ Z satisfying fi = f ◦ μi for all i ∈ I .

We claim that this uniquely determined morphism f is the supremum of the morphisms fi. As K was required
to include all objects and to be closed under formation of coproducts, K includes all morphisms μi, proving
fi ≤0 f for all i ∈ I . If there is a morphism g ∈ L with morphisms Gi ∈ K for i ∈ I satisfying g = fi ◦Gi, then
g = f ◦ (μi ◦Gi) follows. Thus fi ≤0 g for all i ∈ I implies f ≤0 g, proving f to be the supremum of the fi.

Studying infima will require the existence of arbitrary pullbacks in L, and the closure of K in L under forma-
tion of pullbacks, albeit in a very strong sense. Again, we start with recalling the definition of pullbacks:

Definition 6.12 Given a family (fi : Ai −→ Z)i∈I of morphisms in L. The pullback of the fi is a family
of morphisms (pi : P −→ Ai)i∈I satisfying fi ◦ pi = fj ◦ pj for all i, j ∈ I , so that if (qi : Q −→ AI)i∈I is
another family of morphisms with fi ◦ qi = fj ◦ qj , there is a unique morphism λ : Q −→ P with qi = pi ◦λ for
all i ∈ I .

8) This was already noted in [17].
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The infimum of the family fi in the definition above is given by the morphism f = fi ◦ pi (which does not
depend on i), as long as pi ∈ K for all i ∈ I and λ ∈ K are fulfilled. f ≤0 fi is clear. Suppose g ≤0 fi for
all i ∈ I , so there are morphisms Gi with g = fi ◦ Gi. This implies fi ◦ Gi = fj ◦ Gj , so there is a λ with
Gi = pi ◦ λ, thus g = (fi ◦ pi) ◦ λ holds, establishing g ≤0 f .

Partially ordered classes can easily be expressed as categories. If (K,�) is a partially ordered class, the
associated partial-order-category has the elements of K as objects, and contains a unique morphism u : A −→ B
if and only if A � B holds. Composition of morphisms is defined in a straightforward fashion. Infima in the
partially ordered class are pullbacks in the partial-order-category, and suprema in the partially ordered class are
coproducts in the partial-order category.

The previous definition of ≤0 is obtained from the version given here by choosing K to be the category Top
of topological spaces and continuous functions, and L to be the category of topological spaces and arbitrary
functions, which is equivalent to Set.
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