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Abstract. We answer a question by Vasco Brattka and Guido Gherardi by proving
that the Weihrauch lattice is not a Brouwer algebra. The computable Weihrauch lattice is
also not a Heyting algebra, but the continuous Weihrauch lattice is. We further investigate
embeddings of the Medvedev degrees into the Weihrauch degrees.

1. Introduction

In [9, 3] Weihrauch reducibility was suggested as conceptual tool to investigate the computa-
tional content of mathematical theorems. A theorem T of the form ∀x ∈ X ∃y ∈ Y P (x, y)
(with some arbitrary binary predicate P ) can be considered as the definition of a multi-
valued function fT : X ⇒ Y via Skolemization; and the computability of fT amounts to a
form of constructive truth of T . If fT is Weihrauch reducible to fS derived from some other
theorem S, then S implies T in a strong constructive sense, as a single invocation of S in an
otherwise constructive proof is sufficient to prove T . Hence, the degree of incomputability
of fT , i.e. its Weihrauch degree, tells us something about how far away from being con-
structively true the theorem T is – for some notion of constructive truth. Contributions to
this research programme can be found e.g. in [17, 6, 5, 11].

Another approach to constructive truth are (super)intuitionistic logics, so we would
like to know whether these are compatible, i.e. whether we can consider Weihrauch degrees
to be the truth-values of a superintuitionistic logic. We point out that Medvedev’s origi-
nal definition of the reducibility named after him was motivated by the desire to identify
intuitionistic truth-values with Medvedev degrees [15, 22]. The degrees of a reducibility
structure can be conceived of as truth-values of a superintuitionistic logic (with the easy
degrees being closer to truth), if and only if they form a Brouwer algebra [7]. Below we shall
demonstrate that neither the whole Weihrauch lattice nor several of its usual modifications
form a Brouwer algebra, however, three cases remain open.

2012 ACM CCS: [Theory of computation]: Logic–Modal and temporal logics; Logic—Constructive
mathematics.
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2 K. HIGUCHI AND A. PAULY

Surprisingly, the dual of the continuous (i.e. relativized) Weihrauch lattice does turn
out to be a Brouwer algebra; this is equivalent to the continuous Weihrauch lattice being
a Heyting algebra. In this regard, the continuous Weihrauch lattice exhibits exactly the
opposite behaviour of the Medvedev lattice, which is Brouwerian but not Heyting [15, 20].
None of the computable versions of the Weihrauch lattice we consider is a Heyting algebra,
though.

Apart from the connection to superintuitionistic logics, the presented work also adds
to the understanding of the general structural properties of the Weihrauch lattice. As the
Weihrauch lattice is not a Brouwer algebra, it cannot be isomorphic to any structure that
is. In particular, this yields the result that the Weihrauch lattice is not isomorphic to the
Medvedev lattice. In a related fashion, the question whether certain reducibilities induce
Brouwer or Heyting algebras have been studied in the literature, e.g. in [10, 14, 19, 23].

We further study the connection between the Weihrauch lattice and the Medvedev
lattice by investigating the properties of certain embeddings between them, both order
preserving and order reversing.

2. Preliminaries

A partially ordered set (L,≤) is a lattice, if one can define operations ∧,∨ : L×L → L (for
which we shall use an infix notation) such that for all a,b, c ∈ L:

(1) (a ∧ b) ≤ a, (a ∧ b) ≤ b

(2) c ≤ a and c ≤ b implies c ≤ (a ∧ b)
(3) a ≤ (a ∨ b), b ≤ (a ∨ b)
(4) a ≤ c and b ≤ c implies (a ∨ b) ≤ c

If these operations can be defined, they are determined completely by the partial order, and
in turn allow to completely define the partial order themselves. Hence we will either specify
the order ≤, or the operations ∧, ∨, or even neither, if they are clear from the context in
the following.

A partially ordered set is bounded, if it has a minimal and a maximal element. A lattice
is distributive, if ∧ and ∨ distribute over each other. We call a ∈ L meet-irreducible, if
a = b ∧ c implies a = b or a = c; and dually call a join-irreducible, if a = b ∨ c implies
a = b or a = c

A (bounded) lattice (L,∧,∨) is a Brouwer algebra, if for all a,b ∈ L the set {c ∈ L |
b ≤ c ∨ a} contains a smallest element. It is a Heyting algebra, if {c ∈ L | c ∧ a ≤ b}
contains a largest element, this maximal element will be denoted by a → b. Any Brouwer
or Heyting algebra is distributive.

For any partially ordered set (L,≤), we use (L,≤)op to denote the partially ordered
set (L,≥) where the order is reversed. If (L,∧,∨) is a lattice, then so is (Lop,∨,∧). L is
distributive and/or bounded, if Lop is; and L is a Brouwer algebra, if and only if Lop is a
Heyting algebra.

We remind the reader that an operation C : L → L on a partially ordered set is called
a closure operator, if a ≤ C(a) holds, if a ≤ b implies C(a) ≤ C(b) and if C(C(a)) = C(a)
holds for all a,b ∈ S. The elements of the form C(a) are called fixed (by C).

If (L,∧,∨) is a lattice, then for any closure operator C on L, there is some ∨′ defined
on C(L), such that (C(L),∧,∨′) is a again a lattice. A special case of this are the upper
cones, which are of the form {a ∈ L | b ≤ a} for some fixed b. These are the images of the
closure operator given as a 7→ a ∨ b.
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We can interpret every propositional formula as an expression in a Heyting algebra
(L,∧,∨,→) with smallest element ⊥ and largest element ⊤, considering ¬a as an abbrevi-
ation of a → ⊥. By Th(L) we denote the theory of L, that is the set of all propositional
formulae that evaluate to ⊤ regardless of the elements of L substituted for the variables.
As shown in [7], Th(L) is a superintuitionistic logic for any Heyting algebra L, and any
superintuitionistic logic arises as the theory of some Heyting algebra.

A map m : L1 → L2 between two lattices (L1,∧1,∨1) and (L2,∧2,∨2) is called a meet-
semilattice homomorphism, if m(a ∧1 b) = m(a) ∧2 m(b) holds for all a,b ∈ L1; and a
join-semilattice homomorphism if m(a ∨1 b) = m(a) ∨2 m(b) holds for all a,b ∈ L1. If m
fulfills both conditions, m is a lattice homomorphism.

If m : L1 → L2 is a lattice homomorphism, L1 and L2 are Heyting algebras with
operations →1 and →2, and m satisfies m(a →1 b) = m(a) →2 m(b) for all a,b ∈ L1, and
m also preserves the smallest and the largest element, then m is a Heyting homomorphism.
If m : Lop

1 → L
op
2 is a Heyting morphism, then m : L1 → L2 is a Brouwer morphism.

We call an injective homomorphism an embedding, and remark that if there is a Heyting
embedding of L1 into L2, then Th(L2) ⊆ Th(L1).

3. The lattices

Compared to the definition of Weihrauch reducibility in [4], we shall use a restricted version,
which can readily be seen to yield the same degree structure, as every multi-valued function
between represented spaces is trivially Weihrauch equivalent to its realizer relation.

Definition 3.1. For P,Q :⊆ NN
⇒ NN, let P ≤W Q hold, iff there are computable

H,K :⊆ NN → NN, such that for all choice functions g of Q the function H〈idNN , gK〉
is a choice function of P .

Here the notation P :⊆ NN
⇒ NN identifies P as a partial multi-valued function on Baire

space. These can be given by their graphs: Any G ⊆ NN×NN defines a partial multi-valued
function PG with dom(PG) = {x ∈ NN | ∃y (x, y) ∈ G} and PG(x) = {y ∈ NN | (x, y) ∈ G}
for x ∈ dom(PG).

A partial function f :⊆ NN → NN is a choice function of P , if dom(f) ⊇ dom(P ) and
f(x) ∈ P (x) holds for all x ∈ dom(P ). Finally, 〈 〉 : NN × NN → NN is a standard pairing
function. Details of Type-2 computability theory can be found in [25]. A particular aspect
we will use repeatedly is the existence of an effective enumeration (Φn)n∈N of the partial
computable functions with maximal domain.

One can readily verify that ≤W is transitive and reflexive, hence a preorder. The
partially ordered set of equivalence classes induced by ≤W , i.e. of Weihrauch degrees, shall
be denoted by W. Another reducibility we will occasionally refer to is Medvedev reducibility
[15], which is defined for subsets of Baire space via A ≤M B for A,B ⊆ NN, if there is a
computable function H with B ⊆ dom(H) and H(B) ⊆ A. The Medvedev degrees will be
denoted by M. For details, see [20].

There are several interesting operations on Weihrauch degrees introduced in [4, 18].
For the proofs that these operations are invariant under Weihrauch reducibility, we refer to
these papers.

Definition 3.2. For P,Q :⊆ NN
⇒ NN, define P

∐
Q,P ⊕ Q,P × Q :⊆ NN

⇒ NN

via (P
∐

Q)(0p) = 0P (p), (P
∐

Q)(1p) = 1Q(p), (P ⊕ Q)(〈p, q〉) = 0P (p) ∪ 1Q(q) and
P ×Q(〈p, q〉) = 〈P (p), Q(q)〉.
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The multi-valued function with the empty domain ⊥ is the bottom element. The nature
of the top element is more complicated: Based on Definition 3.1 a multivalued function is
maximal regarding ≤W , iff it has no choice function. To avoid unwelcome complications,
we assume that all multivalued functions on Baire space have choice functions, and obtain a
top element by adjoining an artificial degree ⊤. Consequently, we understand P

∐
⊤ = ⊤,

P ×⊤ = ⊤ and P ⊕⊤ = P . A more detailed discussion on how to treat the top element is
relegated to a later publication.

Theorem 3.3 ([4, 18]). The Weihrauch degrees W form a distributive lattice (W,⊕,
∐
).

The upper cone of the identity idNN on Baire space is of particular interest for appli-
cations, as it contains exactly those multi-valued functions with a computable element in
their domain. This is because the computable witness K for idNN ≤W g in Definition 3.1
has to produce an element of dom(g) for each element of dom(idNN). Following [1], we call
the degrees in this upper cone pointed, the corresponding partially ordered set is denoted
by pW. It is easy to see that

∐
,⊕,× all preserve pointedness, hence, (pW,⊕,

∐
) is again

a distributive lattice.
Two operators on W have turned out to be useful in order to characterize concrete

problems. Additionally, these operators give rise to further variants of the Weihrauch
lattice. The operation ∗ was introduced in [17, 18] as , and allows finitely many parallel

uses of the initial problem, while ̂ was introduced in [3, 4] and allows infinitely many
parallel uses of the initial problem. In the following definition, we make use of standard
tupling functions 〈, 〉 of both finite and infinite arity.

Definition 3.4. For P :⊆ NN
⇒ NN, define P ∗, P̂ :⊆ NN

⇒ NN via P ∗(n〈p1, . . . , pn〉) =

n〈P (p1), . . . , P (pn)〉 and P̂ (〈p1, p2, . . .〉) = 〈P (p1), P (p2), . . .〉. We understand P ∗(0p) = 0N

and ⊤∗ = ⊤̂ = ⊤.

By [4, Proposition 4.2] ̂ is a closure operator, and by [18, Theorem 6.5] ∗ is a closure
operator. The image of ∗ allows a nice characterization in terms of ×, as we have f = f∗,
if and only if f = f × f for all f ∈ pW. Note that 0N ∈ dom(P ∗) for any P :⊆ NN

⇒ NN,
hence W

∗ ⊂ pW.
The structural role of × and ∗ can be described in terms of Kleene algebras, as was

observed initially by Brattka. We adapt the definition from [13], and refer to the same
work for an overview on the theory of Kleene algebras.

Definition 3.5. A commutative Kleene algebra is a tuple (L,∨, ·,∗ , 0, 1), where (L,∨, 0) is
a bounded join-semilattice, together with operations · : L × L → L and ∗ : L → L and a
constant 1 ∈ L such that the following axioms hold for all a,b, c ∈ L:

(1) (a · b) · c = a · (b · c)
(2) 1 · a = a · 1 = a

(3) a · (b ∨ c) = (a · b) ∨ (a · c)
(4) (a ∨ b) · c = (a · b) ∨ (b · c)
(5) 0 · a = a · 0 = 0
(6) a · b = b · a
(7) 1 ∨ (a · a∗) ≤ a∗

(8) a · b ≤ a implies a · b∗ ≤ a

Lemma 3.6. (W,
∐
,×,∗ ,⊥, idNN) is a commutative Kleene algebra.
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Proof. Properties 1. - 7. follow rather directly from the definitions. For 8., assume that
P × Q ≤W P is witnessed by computable H, K. Define K ′ recursively by K ′〈p, 0q〉 = p
and K ′〈p, (n + 1)〈q1, . . . , qn, qn+1〉〉 = K(〈K ′〈p, n〈q1, . . . , qn〉〉, qn+1〉). Furthermore, define
H ′ recursively by H ′〈〈p, 0q〉, r〉 = 〈r, 0N〉 and H ′〈〈p, (n + 1)〈q1, . . . , qn+1〉〉, r〉 = 〈h1, (n +
1)〈h12, . . . , h

n+1
2 〉〉 where H〈〈K ′〈p, n〈q1, . . . , qn〉〉, qn+1〉, r〉 = 〈r′, hn+1

2 〉 and
H ′〈〈p, n〈q1, . . . , qn〉〉, r

′′〉 = 〈h1, n〈h
1
2, . . . , h

n
2 〉〉. Now H ′, K ′ witness P ×Q∗ ≤W P .

The image of a lattice under a closure operator is again a lattice, and a sub-meet-
semilattice of the original one, i.e. the binary infima of fixed elements are fixed elements

themselves. For both ∗ and ̂, even the stronger result holds that they commute with ⊕ on
all degrees. The supremum in the new lattices turns out to be a familiar operation, if we

restrict ourselves to pointed degrees: W∗ and pŴ are lattices with ⊕ as infimum and × as

supremum. For pŴ this was proven in [4]. The result for W
∗ will be the consequence of

the following observations:

Lemma 3.7. (f ⊕ g)∗ = f∗ ⊕ g∗ for all f ,g ∈ W.

Proof. For P,Q :⊆ NN
⇒ NN the reduction (P ⊕ Q)∗ ≤W P ∗ is witnessed by com-

putable H,K :⊆ NN → NN defined via K(n〈〈p1, q1〉, . . . , 〈pn, qn〉〉) = n〈p1, . . . , pn〉 and
H(〈q, n〈p1, . . . , pn〉〉) = n〈0p1, . . . , 0pn〉. By symmetry, we can conclude (f⊕g)∗ ≤W f∗⊕g∗.

For the remaining direction, we provide witnesses for P ∗ ⊕ Q∗ ≤W (P ⊕ Q)∗. Define
computable K :⊆ NN → NN via

K(〈n〈p1, . . . , pn〉,m〈q1, . . . , qm〉〉) = (n ·m)〈〈p1, q1〉, 〈p1, q2〉, . . . , 〈pn, qm〉〉.

Further define H ′ :⊆ NN
⇒ NN via

H ′(〈〈nq1,mq2〉, (n ·m)〈d11p11, d12p12, . . . , dnmpnm〉〉)

=

{
0n〈p1i1 . . . pnin〉 ∀j ≤ n ∃ij djij = 0

1m〈pj11 . . . pjmm〉 ∀i ≤ m ∃ji djii = 1

and let H be a computable choice function of H ′. Then H and K witness P ∗ ⊕ Q∗ ≤W

(P ⊕Q)∗.

Lemma 3.8. (f
∐

g)∗ = f∗ × g∗ for all f ,g ∈ W.

Proof. For P,Q :⊆ NN
⇒ NN the reduction (P ∗ × Q∗) ≤W (P

∐
Q)∗ is witnessed by

computable H,K :⊆ NN → NN defined via:

K(〈n〈p1, . . . , pn〉,m〈q1, . . . , qm〉〉) = (n+m)〈0p1, . . . , 0pn, 1q1, . . . , 1qm〉

H(〈r, (n +m)〈0p1, . . . , 0pn, 1q1, . . . , 1qm〉〉) = 〈n〈p1, . . . , pn〉,m〈q1, . . . , qm〉〉

The reduction (P
∐

Q)∗ ≤W (P ∗ × Q∗) is witnessed by computable H,K :⊆ NN → NN

defined via

K(n〈d1r1, . . . , dnrn〉) = 〈|{i | di = 0}|〈p1, . . . , p|{i|di=0}|〉, |{i | di = 1}|〈q1, . . . , q|{i|di=1}|〉〉

where pi = rmin{k|i=|{j≤k|dj=0}|}, qi = rmin{k|i=|{j≤k|dj=1}|}; and via

H(〈n〈d1r1, . . . , dnrn〉, 〈l〈p1, . . . , pl〉, k〈q1, . . . , qk〉〉〉) = n〈d1s1, . . . , dnsn〉

where si = p|{j≤i|dj=0}| for di = 0 and si = q|{j≤i|dj=1}| for di = 1.
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Proposition 3.9. (W∗,⊕,×) is a lattice.

Proof. Lemma 3.7 implies that ⊕ is indeed the infimum in W
∗, and Lemma 3.8 implies that

× is the supremum in W
∗.

Corollary 3.10. pŴ is a sublattice of W∗.

Proof. This follows from Proposition 3.9 together with [4, Corollary 4.7, Propositions 4.8,
4.9].

Proposition 3.11. f ⊕ (g×h) = (f ⊕ g)× (f ⊕ h) and f × (g⊕ h) = (f × g)⊕ (f ×h) for
all f ∈ W

∗, g,h ∈ W.

Proof. For any P,Q,R :⊆ NN
⇒ NN the reduction . . .

(1) P ⊕ (Q × R) ≤W (P ⊕ Q) × (P ⊕ R) is witnessed by computable H,K defined via
K(〈p, 〈q, r〉〉) = 〈〈p, q〉, 〈p, r〉〉 andH(〈x, 〈1q, 1r〉〉) = 1〈q, r〉 as well asH(〈x, 〈d1p1, d2p2〉〉) =
0pi with i such that di = 0.

(2) (P ⊕ Q) × (P ⊕ R) ≤W (P × P ) ⊕ (Q × R) is witnessed by computable H,K defined
via K(〈〈p1, q〉, 〈p2, r〉〉) = 〈〈p1, p2〉, 〈q, r〉〉 and H(〈x, d〈p, q〉〉) = 〈dp, dq〉.

(3) P × (Q ⊕ R) ≤W (P × Q) ⊕ (P × R) is witnessed by computable H,K defined via
K(〈p, 〈q, r〉〉) = 〈〈p, q〉, 〈p, r〉〉 and H(〈x, d〈p, q〉〉) = 〈p, dq〉.

(4) (P × Q) ⊕ (P × R) ≤W (P × P ) × (Q ⊕ R) is witnessed by computable H,K defined
via K(〈〈p1, q〉, 〈p2, r〉〉) = 〈〈p1, p2〉, 〈q, r〉〉 and H(〈x, 〈〈p1, p2〉, dq〉〉) = d〈pd+1, q〉.

If P is a representative of some f ∈ W
∗, then P × P ≡W P , so the first claim follows from

1. and 2., and the second from 3. and 4..

Corollary 3.12. Both W
∗ and pŴ are distributive.

As computable functions are by necessity continuous, and moreover, proofs for Weihrauch
reducibility tend to employ a blend of recursion theoretic and topological arguments, a
straight-forward generalization of Definition 3.1 is the following:

Definition 3.13. For P,Q :⊆ NN
⇒ NN, let P ≤c

W Q hold, iff there are continuous

H,K :⊆ NN → NN, such that for all choice functions g of Q the function H〈idNN , gK〉 is a
choice function of P .

It is well-known that Definition 3.13 can also be obtained from Definition 3.1 via rela-
tivization with respect to an arbitrary oracle. All the result above relativize, yielding corre-
sponding statements about the continuous Weihrauch degrees. Note that the relativization
of pointedness is non-emptiness of the domain, hence, the pointed continuous Weihrauch
degrees are all continuous degrees but ⊥. We shall use C to denote the non-empty contin-
uous Weihrauch degrees, and write C0 if ⊥ is included. We consider the element ⊤ to be
present in C, C0, and to be identical to the top element of W.

Proposition 3.14. (C0,⊕,
∐
), (C,⊕,

∐
), (C∗,⊕,×) and (Ĉ,⊕,×) are distributive lattices.

C is a sublattice of C0 and Ĉ is a sublattice of C∗.

In the continuous case, the coproduct
∐

can easily be extended to a countable number
of arguments, as can be done for the infimum⊕ and the product×. Hence, the lattices in the
continuous case are ℵ0-complete. Also, using the countable version of

∐
the relativization of

Lemma 3.6 can be strengthened to yield a closed semiring. These features are not available
for the computable reductions, as the following non-relativizing proofs show:



THE DEGREE STRUCTURE OF WEIHRAUCH REDUCIBILITY 7

Proposition 3.15. W has no non-trivial infinite suprema, i.e. a sequence (ai)i∈N of degrees
in W has a supremum if and only if it is already the supremum of some finite subset (ai)i≤N .

Proof. As we have finite suprema, it is sufficient to show that no countable strictly increasing
sequence (Pe :⊆ NN

⇒ NN)e∈N can admit a supremum. Let Q be an upper bound for the
Pe. We construct an R satisfying Pe ≤W R for all e ∈ N, but Q �W R, by defining
R(anp) = Pn(p) for a sequence (an)n∈N to be determined next. In particular, it is clear
from the definition that Pe ≤W R holds for any e ∈ N.

Now we define the an recursively in stages n ∈ N, using as auxiliary a−1 = 0. Let
Φn be the nth partial computable function. If there is a q ∈ dom(Q) ∩ dom(Φn) with
Φn(q)(0) > an−1, set an = Φn(q)(0) + 1 for such a q; otherwise let an = an−1 + 1.

Now assume that Q ≤W R were witnessed by H, Φn. This directly implies dom(Q) ⊆
dom(Φn). So if there were a q ∈ dom(Q) with Φn(q)(0) > an−1, we would find an >
Φn(q)(0) > an−1, hence Φn(q) /∈ dom(R), violating the assumption that Φn witnesses a
reduction to R. So we may conclude Φn(q)(0) < an for all q ∈ dom(Q). This in turn means
that H, Φn witness the reduction Q ≤W R′, where R′ is defined via R′(aip) = Pi(p) for
i < n. As the Pe are increasing, we have Q ≤W R′ ≤W Pn−1; which contradicts the further
assumption that the Pe are strictly increasing and Pn ≤W Q holds.

Proposition 3.16. A sequence (Pn :⊆ NN
⇒ NN)n∈N with Pn+1 <W Pn and dom(Pn+1) ≤M

dom(Pn) for all n ∈ N has no infimum in W.

Proof. Given such a sequence and Q :⊆ NN
⇒ NN such that Q ≤W Pn for all n ∈ N, we can

find R such that R ≤W Pn for all n ∈ N and R �W Q.

We may safely assume that 0f 6∈ dom(Pn) for all f ∈ NN and n ∈ N. For natural
numbers n ∈ N and m < n, let Hn

m,Kn
m be computable functions such that Pn ≤W Pm via

Hn
m,Kn

m. Note that dom(Pm) ≤M dom(Pn) via Kn
m. We construct (Rn)n∈N stage by stage

and define R =
⋃

n∈NRn. R is forced to satisfy ¬(R ≤W Q via Φi,Φj) by the construction
of R〈i,j〉. This involves the construction of a sequence of natural numbers, as auxiliary
assumption we shall understand a−1 = 0.

Stage n = 〈i, j〉. Assume that we have a finite sequence (ak)k<n of natural numbers
by this stage n. If there is a choice function q of Q such that

(Φj ◦ 〈idNN , q ◦ Φi〉)〈K
n
0 (f), · · · ,K

n
n−1(f), f, 0

N, 0N, 0N, · · · 〉(0) > max
k<n

ak (3.1)

for some f ∈ dom(Pn), take such f, q and define

an = (Φj ◦ 〈idNN , q ◦Φi〉)〈K
n
0 (f), · · · ,K

n
n−1(f), f, 0

N, 0N, 0N, · · · 〉(0) + 1. (3.2)

Otherwise, define an = maxk<n ak + 1. Define Rn by

Rn(〈K
n
0 (f), · · · ,K

n
n−1(f), f, 0

N, 0N, 0N, · · · 〉)

=
⋃

k<n

akPk(K
n
k (f)) ∪ anPn(f) ∪

⋃

m∈N\{0}


 ⋃

g∈dom(Pn+m)

(an +m)Pn+m(g)




for all f ∈ dom(Pn). Note that R =
⋃

n∈NRn ≡W

∐
n∈NRn.

First we claim R �W Q. Assume contrarily that R ≤W Q is witnessed by Φi, Φj . Then
Φi, Φj also witness R〈i,j〉 ≤W Q. If there were q, f s.t. the inequality (3.1) were true,
then the definition (3.2) shows that Φi, Φj do not act correctly. Hence, Φi, Φj also have

to witness R′
〈i,j〉 ≤W Q for R′

n defined via R′
n(〈K

n
0 (f), · · · ,K

n
n−1(f), f, 0

N, 0N, 0N, · · · 〉) =
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⋃
k<n akPk(K

n
k (f)). But by definition of the Kn

k , we find Pn ≤W R′
n. Taking everything

together, the assumption R ≤W Q implies Pn ≤W Q for some n, violating the original
assumptions.

Now we show that R ≤W Pm for any m ∈ N. We have Rn ≤W Pn+m for any m ∈ N\{0}
since dom(Pn) ≥M dom(Pn+m) - the reduction is not necessarily uniform in n, m, though!

Fix m ∈ N. Note that

R =
⋃

n∈N

Rn ≡W R0

∐
R1

∐
· · ·
∐

Rm

∐
(
⋃

n>m

Rn).

Since Rn ≤W Pm for any n < m as shown above and Rm ≤W Pm due to the amPm(f) term
in the definition of Rm, it suffices to prove that

⋃

n>m

Rn ≤W Pm.

This follows from

amPm(Kn
m(f)) ∈

( ⋃

k>m

Rk

)
(〈Kn

0 (f), · · · ,K
n
m(f), · · · ,Kn

n−1(f), f, 0
N, 0N, 0N, · · · 〉)

holding for n > m.

Corollary 3.17. W is not an ℵ0-complete meet-semilattice nor an ℵ0-complete join-semi-
lattice.

Corollary 3.18. pW has no non-trivial infinite infima, i.e. a sequence (ai)i∈N of degrees
in W has an infimum if and only if it is already the infimum of some finite subset (ai)i≤N ..

The domains of any decreasing chains with an infimum in W must be an increasing
chain in M, and the following example demonstrates that this case actually occurs:

Example 3.19. There exists a decreasing sequence {an}n∈N of degrees which have its g.l.b.
a in W.

Proof. Take f0 <T f1 < · · · . Define Pn(g) = 0N for any n ∈ N and g 6≤T fn and define
P (h) = 0N for any h ∈ NN such that h 6≤T fm for all m ∈ N. Clearly, P <W Pn+1 <W Pn.
Suppose that Q satisfies Q ≤W Pn for all n ∈ N. Then, dom(Q) ⊆ dom(P ) – to see this,
assume h ∈ dom(Q). Since dom(Q) ≥M dom(Pn) for any n ∈ N, there is a qn ∈ dom(Pn)
with qn ≤T h and qn �T fn, which in turn implies h �T fn, i.e. h ∈ dom(P ). Let H be
a computable function such that Q ≤W P0 via H,K for some K. We have Q ≤W P via
H, idNN .

4. Main results

In this section we investigate whether any of the lattices introduced in the previous section
is a Brouwer or a Heyting algebra. First, we fix some notation: We define the computable
shift function Sh : NN → NN via Sh(np) = p and denote the Turing jump by J : NN → NN,
i.e. J(p) is the Halting problem for Turing machines with oracle p considered as a sequence
in {0, 1}N ⊆ NN.

Theorem 4.1. Neither W nor pW is a Brouwer algebra.
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Proof. Let (qi)i∈N\{0} be a sequence of pairwise Turing incomparable elements of Baire space

below J(0N). Define pi = i0qi, if iqi ∈ dom(Φi) and Φi(iqi)(2) > 0 and pi = i1qi otherwise.
Now define P ,Q :⊆ NN → NN via P (0N) = 0N = Q(0N) and P (p) = J(0N) = Q(q) for
p ∈ {pi | i ∈ N}, q ∈ {iqi | i ∈ N}.

Now the set {R ∈ W | Q ≤W P
∐

R} has no minimal element, and no minimal pointed
element. Assume the contrary, let R be a minimal (pointed) element, and let Q ≤W P

∐
R

be witnessed by computable H ′, K ′ = Φe.

(1) Claim: Φe(eqe) is defined, and Sh(Φe(eqe)) ∈ dom(R).
As we have eqe ∈ dom(Q), we find Φe(eqe) ∈ dom(P

∐
R), in particular Φe(eqe)(0) ∈

{0, 1}. Assume Φe(eqe)(0) = 0. Then Sh(Φe(eqe)) ∈ dom(P ), so either Φe(eqe) = 0N or
Φe(eqe) = 0pi for some i ∈ N. If Φe(eqe) = 0N, then (P

∐
R)(Φe(eqe)) = 0N, a contra-

diction to the assumption that J(0N) = Q(eqe) is Turing below 〈eqe, (P
∐

R)(Φe(eqe))〉.
If Φe(eqe) = 0pi for i 6= e, the Turing incomparability of qe and qi is contradicted.

So we are left with the case Φe(eqe) = 0pe. But this contradicts the definition of pe.
So the assumption Φe(eqe)(0) = 0 was wrong, which implies Φe(eqe)(0) = 1. Then
Φe(eqe) ∈ dom(P

∐
R) yields the claim.

(2) Claim: For all p ∈ R(Sh(Φe(eqe))) we have J(0N) ≤T 〈qe, p〉.
(3) Claim: Define S via S(p) = Q(p) for all p ∈ dom(Q) \ {eqe}. Then R �W S.

Assume R ≤W S witnessed by computable G,L. Then, by 1., L(Sh(Φe(eqe))) ∈
dom(S). By assumption of Turing incomparability, we cannot have L(Sh(Φe(eqe))) =
iqi for i 6= e. Thus, L(Sh(Φe(eqe))) = 0N follows. Hence, the assumption leads us to
G(〈Sh(Φe(eqe)), 0

N〉) ∈ R(Sh(Φe(eqe))). Together with 2. this contradicts J(0N) �T qe.

(4) Claim: Q ≤W P
∐

S.
We give computable witnesses H,K for the claim. DefineH(〈p, dq〉) = q, K(lp) = 1lp

for l 6= e and K(ep) = 0ejp where j ∈ {0, 1} satisfies pe = ejqe. Intuitively, the
reduction calls S for any input to Q which is also in the domain of S, where S and Q
agree. The only remaining input is eqe, in which case P is called on input pe, which
correctly produces J(0N).

The assumption R were the minimal (pointed) element in {R ∈ W | Q ≤W P
∐

R} is
refuted by the construction of the pointed element S not above it.

A similar argument can be used for W∗ and pŴ:

Theorem 4.2. Neither W
∗ nor pŴ is a Brouwer algebra.

Proof. As in the proof of Theorem 4.1, let (qi)i∈N\{0} be a sequence of pairwise Turing

incomparable elements of Baire space below J(0N). For each e ∈ N \ {0}, define a natural
number ae such that ae = pi(0) + 1, if Φe(〈eqe, eqe, · · · 〉) = 〈〈0N, 0N, · · · , 0N, pi, pi+1, · · · 〉, r〉
and pi 6= 0N, and ae = 1 otherwise. Define P,Q :⊆ NN → NN via P (0N) = 0N = Q(0N) and
P (p) = J(0N) = Q(q) for p ∈ {aiqi | i ∈ N \ {0}}, q ∈ {iqi | i ∈ N \ {0}}.

We show that the set {R ∈ W | Q̂ ≤W P̂ × R} does not have a minimal element, and
also does not have a minimal parallelizable element. Take any R and H ′,K ′ = Φe such that

Q̂ ≤W P̂ ×R via H ′,K ′.

(1) Claim: There is r ∈ NN such that Φe(〈eqe, eqe, · · · 〉) = 〈〈0N, 0N, · · · 〉, r〉.

Since 〈eqe, eqe, · · · 〉 ∈ dom(Q̂), we have Φe(〈eqe, eqe, · · · 〉) ∈ dom(P̂ × R). Assume
Φe(〈eqe, eqe, · · · 〉) = 〈〈0N, 0N, · · · , 0N, pi, pi+1, · · · 〉, r〉 for some pi ∈ dom(P )\{0N}. Then
pi = amqm for some m 6= 0 and qm ≤T qe. Since ae > pi(0) = am holds by definition,
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we conclude m 6= e. But by our choice of the sequence (qi)i∈N\{0}, we have qm|T qe for
m 6= e, whence we obtain a contradiction.

(2) Claim: For all f ∈ R(r), J(0N) ≤T f .

(3) Claim: Define S via S(s) = Q(s) for all s ∈ dom(Q) \ {eqe}. Then R 6≤W Ŝ.

Assume R ≤W Ŝ witnessed by computable G,L. Then, by 1, L(r) ∈ dom(Ŝ) and,
therefore, L(r) = 〈0N, 0N, · · · 〉 by assumption of Turing incomparability. Hence, we have
G(〈r, 〈0N, 0N, · · · 〉〉) ∈ R(r). Together with 2, this contradicts J(0N) 6≤T qe.

(4) Claim: Q̂ ≤W P̂ × Ŝ.
We give computable witnesses H,K for the claim. Define K by

K(〈k1α1, k2α2, . . . 〉) = 〈〈β1, β2, · · · 〉, 〈γ1, γ2, · · · 〉〉,

where βi = aeαi & γi = 0N if ki = e and βi = 0N & γi = kiαi if ki 6= e and define H by

H(〈k1α1, k2α2, . . . 〉, 〈〈δ
1
1 , δ

1
2 , · · · 〉, 〈δ

2
1 , δ

2
2 , · · · 〉〉) = 〈δl11 , δ

l2
2 , · · · 〉,

where li = 1 if ki = e and li = 2 if ki 6= e.

We know that R is neither the minimal element nor the minimal parallelizable element of

{R ∈ W | Q̂ ≤W P̂ × R} by 3 and 4. This concludes the proof for Ŵ. Regarding pW∗,

note that P , Q, S and Ŝ constructed above are all pointed. In particular, Ŝ is fixed by ∗,

showing that no least element fixed by ∗ can exist in {R ∈ W | Q̂ ≤W P̂ ×R}.

The recursion-theoretic methods employed in the proofs of the Theorems 4.1, 4.2 cannot
be extended to the continuous case: All elements of Baire space are equivalent with respect
to some oracle, hence all the functions used there are equivalent with respect to continuous
Weihrauch reducibility. In the following we shall use combinatorial principles to derive
an alternative proof technique. The study of continuous Weihrauch reductions between
multi-valued functions of this kind was initiated in [24], and extended significantly in [16].

Definition 4.3 ([24]). For n > 1, define LLPOn,1 :⊆ NN
⇒ NN via

dom(LLPOn,1) = {〈p1, p2, . . .〉 | 1 ≥ |{〈i, j〉 | pi(j) 6= 0}|}

and i0N ∈ LLPOn,1(〈p1, p2, . . .〉), if i ≤ n and pi = 0N.

Definition 4.4 ([16]). For n ∈ N, define LLPO∞,n :⊆ NN
⇒ NN via

dom(LLPO∞,n) = {〈p1, p2, . . .〉 | n ≥ |{〈i, j〉 | pi(j) 6= 0}|}

and i0N ∈ LLPO∞,n(〈p1, p2, . . .〉), if pi = 0N.

Definition 4.5. For k ∈ N, define
∑∞

k LLPO :⊆ NN
⇒ NN via

∑∞
k LLPO(〈0N, p〉) =

LLPO∞,2(p),
∑∞

k LLPO(〈0n10N, p〉) = LLPOn,1(p) for n ≥ k.

For n > 1, by [24, Satz 4.3] we know LLPOn+1,1 <
c
W LLPOn,1, and by [16, Satz 18] we

know LLPOn,1 �c
W LLPO∞,k and LLPO∞,k+1 �c

W LLPOn,1 for any k ∈ N. Additionally,
we will need the following:

Lemma 4.6. LLPOk,1 �c
W

∑∞
k+1 LLPO.

Proof. Assume the contrary, witnessed by continuous functions H, K with
K(p) = 〈K1(p), 〈K

1
2 (p),K

2
2 (p), . . .〉〉.



THE DEGREE STRUCTURE OF WEIHRAUCH REDUCIBILITY 11

(1) For all n > 1, 〈〈0N, 0N, . . .〉, n0N〉 ∈ dom(H).
If 〈〈0N, 0N, . . .〉, n0N〉 /∈ dom(H), then n0N /∈

(∑∞
k+1 LLPO

)
(K(〈0N, 0N, . . .〉)) must

hold. This in turn implies Kn
2 (〈0

N, 0N, . . .〉) 6= 0N. Due to continuity of Kn
2 , there must

be some m ∈ N such that for all pi ∈ NN we have Kn
2 (〈0

mp1, 0
mp2, . . .〉) 6= 0N. Noting

LLPOk,1(〈0
mp1, 0

mp2, . . .〉) = LLPOk,1(〈p1, p2, . . .〉), we see that H, K also witness a
reduction from LLPOk,1 to

∑∞
k+1 LLPO restricted to those 〈q, 〈p1, p2, . . .〉〉 in its domain

with pn 6= 0N. It is easy to see that the latter is equivalent to LLPO∞,1, hence we have
a reduction from LLPOk,1 to LLPO∞,1, but this contradicts [16, Satz 18].

(2) Define h : {n | n > 1} → {i | 1 ≤ i ≤ k} via H(〈〈0N, 0N, . . .〉, n0N〉) = h(n)0N.
By 1. together with the restrictions on the range of H, h(n) is defined for n > 1, and

has to take a value in {i | 1 ≤ i ≤ k}.
(3) h is injective.

Assume we have n 6= m with h(n) = h(m). By continuity of H, there is some
l ∈ N with H(〈〈0lp1, 0

lp2, . . .〉, n0
N〉) = H(〈〈0lp1, 0

lp2, . . .〉,m0N〉) = h(n)0N for all suit-
able pi. This can only produce a correct answer to LLPOk,1, if K

n
2 (〈0

lp1, 0
lp2, . . .〉) 6=

0N 6= Km
2 (〈0lp1, 0

lp2, . . .〉) for ph(n) 6= 0N. But then K only produces an element of

dom(
∑∞

k+1 LLPO) for such input, if K1(〈0
lp1, 0

lp2, . . .〉) = 0N for ph(n) 6= 0N. By con-

tinuity of K1, then also K1(〈0
lp1, . . . , 0

lph(n)−1, 0
N, 0lph(n)+1, . . .〉) = 0N follows. Noting

again LLPOk,1(〈0
l′p1, 0

l′p2, . . .〉) = LLPOk,1(〈p1, p2, . . .〉), we obtain a reduction from
LLPOk,1 to LLPO∞,2, contradicting [16, Satz 18].

(4) By the pigeon hole principle, 2. and 3. are mutually exclusive. This contradicts the
initial assumption.

Theorem 4.7. Neither C0 nor C is a Brouwer algebra.

Proof. We shall prove that {R | (
∑∞

2 LLPO) ≤c
W R

∐
LLPO2,1} := R contains no minimal

element.

(1) (
∑∞

k LLPO) ∈ R for all k > 1.
For k = 2 the claim is obvious. Now observe (

∑∞
k LLPO) ≡W LLPOk,1

∐
(
∑∞

k+1 LLPO),
recall LLPOk+1,1 <W LLPOk,1 and proceed by induction.

(2) For any R ∈ R, there is a k > 1 with (
∑∞

k LLPO) ≤c
W R.

Let (
∑∞

2 LLPO) ≤c
W R

∐
LLPO2,1 be witnessed by continuous H, K. Then A =

{p ∈ dom(
∑∞

2 LLPO) | K(p)(0) = 0} and B = {p ∈ dom(
∑∞

2 LLPO) | K(p)(0) = 1}
are a relatively clopen disjoint cover of dom(

∑∞
2 LLPO). One of the two sets must con-

tain 〈0N, 〈0N, 0N, . . . , 〉〉 and hence also all 〈0kp0, 〈0
kp1, 0

kp2, . . .〉〉 ∈ dom(
∑∞

2 LLPO)
for some k ∈ N. Thus, it follows that either (

∑∞
k LLPO) ≤c

W R or (
∑∞

k LLPO) ≤c
W

LLPO2,1. The latter assumption would imply LLPO∞,2 ≤c
W LLPO2,1 and hence con-

tradict [16, Satz 18], leaving only the first case possible.
(3) For any k > 1, we have

(∑∞
k+1 LLPO

)
<c

W (
∑∞

k LLPO).

That
(∑∞

k+1 LLPO
)
≤c

W (
∑∞

k LLPO) holds is obvious, and a reduction in the other
direction would contradict Lemma 4.6.

(4) By 1. and 2., any minimal R ∈ R would need to be equivalent to (
∑∞

k LLPO) for some
k ∈ N. But this would contradict 1. and 3., so there cannot be a minimal element in
R.
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As the next step, we demonstrate that none of the computable lattices, i.e. W, pW, W∗

and pŴ, is a Heyting algebra. Our proof makes use of the meet-reducibility of idNN in W,
so as contrast we present:

Proposition 4.8. idNN is meet-irreducible in C (and hence in C0, C
∗ and Ĉ).

Proof. Assume P,Q :⊆ NN
⇒ NN such that P ⊕ Q has a continuous choice function I.

Define A = {p ∈ NN | I(p)(0) = 0} and B = {p ∈ NN | I(p)(0) = 1}. Then A,B is a disjoint
clopen cover of {〈p, q〉 | p ∈ dom(P ), q ∈ dom(Q)}. If there is some p0 ∈ dom(P ) with
〈p0, q〉 ∈ B for all q ∈ dom(Q), then q 7→ Sh(I(〈p0, q〉)) is a continuous choice function for
Q.

The negation of this assumption states that for all p ∈ dom(P ) there is some qp with
〈p, qp〉 ∈ A. As A is clopen, we can ensure that qp depends only on some finite prefix of p.
Hence p 7→ qp is continuous, and p 7→ Sh(I(〈p, qp〉)) is a continuous choice function for P .

Being meet-irreducible in an upper cone is clearly sufficient for being meet-irreducible,
thus the result for C0 follows. Meet-irreducibility is a meet-semilattice property inherited

by appropriate substructures, so the result translates to C
∗ and Ĉ.

Theorem 4.9. Neither W nor pW is a Heyting algebra.

Proof. Define P : {0N, 1N} → {0N, J(0N)} via P (0N) = 0N and P (1N) = J(0N). Then
{R | P ⊕R ≤W idNN} has no maximal (pointed) element. To see this, for any q ∈ NN define
Qq : {0

N, J(0N)} → {0N, q} via Qq(0
N) = 0N and Qq(J(0

N)) = q.
P ⊕ Qq is computable (and pointed, hence equivalent to idNN): If either of the two

arguments is 0N, then the index of the respective argument together with 0N is a valid
output and can easily be produced. If this is not the case, the input must be 〈1N, J(0N)〉.
But from that, we can of course compute 0J(0N), which constitutes a valid output.

So if R were a maximal element in {R | P ⊕ R ≤W idNN}, we would have Qq ≤W R

for all q ∈ NN. All that a computable reduction to R can see from it are the values taken
on inputs Turing reducible to J(0N), i.e. it follows that Qq ≤W R|{p∈NN|p≤T J(0N)} for any

q ∈ NN. But as {p ∈ NN | p ≤T J(0N)} is countable, only countably many Turing degrees
are below any R(p) with p ≤T J(0N). This yields the desired contradiction.

Corollary 4.10. Neither W
∗ nor pŴ is a Heyting algebra.

Proof. Using [4, Proposition 4.9] the proof of Theorem 4.9 can readily be adapted.

Corollary 4.11. idNN is not meet-irreducible in W, pW, W∗ or pŴ.

Proof. P and QJ(J(0N)) from the proof of Theorem 4.9 form a counterexample.

Not only do we find that the continuous versions of the lattices actually are Heyting al-
gebras, but – even more surprisingly – our proof of this fact primarily makes use of recursion
theoretic methods. While the interpretation of continuity as computability with respect to
an arbitrary oracle [26, 25] generally does allow recursion theory to be applied to continuous
functions, to our knowledge this is the first application of recursion theoretic methods in
the continuous case which does not constitute a relativization of the corresponding result
for the computable case.
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Definition 4.12. For P,Q :⊆ NN
⇒ NN with P �c

W Q and P 6= ⊤, we define (P → Q) :⊆
NN

⇒ NN via:

dom(P → Q) = {ijq |∀p ∈ dom(P ) Φi(〈p, q〉) ∈ dom(Q)∧

∀r ∈ Q(Φi(〈p, q〉)) Φj(〈〈p, q〉, r〉) ∈ 0P (p) ∪ 1NN}

(P → Q)(ijq) =
⋃

p∈dom(P )

⋃

r∈Q(Φi(〈p,q〉))

{Sh(s) | s = Φj(〈〈p, q〉, r〉) ∧ s ∈ 1NN)}

For P ≤c
W Q, we set P → Q = ⊤, and understand ⊤ → Q = Q.

To see that P → Q is actually well-defined, we have to verify (P → Q)(ijq) 6= ∅ for
P �c

W Q and ijq ∈ dom(P → Q). Assuming (P → Q)(ijq) = ∅ for such ijq, we see that
Φi(〈p, q〉) ∈ dom(Q) for all p ∈ dom(P ), and Φj(〈〈p, q〉, r〉) ∈ 0P (p) for all r ∈ Q(Φi(〈p, q〉)).
But that means that relative to the oracle q we have P ≤W Q, hence we indeed find P ≤c

W Q
in contradiction to our assumption.

Theorem 4.13. C0 is a Heyting algebra, with P → Q being a maximal element of
{R ∈ C0 | P ⊕R ≤c

W Q}.

Proof. In the case P ≤c
W Q or P = ⊤ the claim is clear. For P �c

W Q, we show P ⊕ (P →
Q) ≤W Q. For p ∈ dom(P ) and ijq ∈ dom(P → Q), we have Φi(〈p, q〉) ∈ Q. Given some
r ∈ Q(Φi(〈p, q〉)), if Φj(〈〈p, q〉, r〉) = 0r′, then r′ ∈ P (p) holds. If Φj(〈〈p, q〉, r〉) = 1r′, then
r′ ∈ (P → Q)(ijq) holds.

Now assume P ⊕ R ≤c
W Q witnessed by continuous functions H,K. Any continuous

function is computable with respect to some oracle, hence we can assume H(〈〈p1, p2〉, q〉) =
H ′(〈〈p1, 〈p2, O〉〉, q〉) and K(〈p1, p2〉) = K ′(〈p1, 〈p2, O〉〉) with computable functions K ′,H ′

and some constant oracle O ∈ NN by providing the oracle information in a suitable way.
From this, we can construct some R′ from R with P ⊕ R′ ≤W Q being witnessed by

computable H ′,K ′, and R(p) = R′(〈p,O〉), hence R ≡c
W R′. Set H ′ = Φj and K ′ = Φi.

Then for any q ∈ dom(R′) we have ijq ∈ dom(P → Q). Moreover, we find (P → Q)(ijq) ⊆
R′(q), which together implies R′ ≤W (P → Q). By transitivity, then also R ≤c

W (P → Q)
follows.

The proof of the preceding theorem shows more than necessary. In fact, → has some
properties of an implication even in W:

Corollary 4.14. If P 6≤c
W Q, then P ⊕ (P → Q) ≤W Q.

Corollary 4.15. If P ⊕R ≤W Q, then R ≤W (P → Q).

Corollary 4.16. C is a Heyting algebra.

Proof. Every upper cone in a Heyting algebra is a Heyting algebra itself.

Proposition 4.17. (P → Q1)× (P → Q2) ≤W (P → (Q1 ×Q2))

Proof. If (P → (Q1 ×Q2)) = ⊤ or P = ⊤, then the claim is trivially true. Otherwise, we
can conclude P �c

W Q1, P �c
W Q2, P �c

W (Q1 ×Q2); so for all three occurrences of →, the
first case of Definition 4.12 is used then.

The reduction in the case (P → (Q1 × Q2)) 6= ⊤ 6= P is witnessed by computable H,
K, defined via H(〈r, 〈p1, p2〉〉) = 〈p1, p2〉 and K(〈i1j1q1, i2j2q2〉) = ij〈q1, q2〉, where i is an
index such that

Φi(〈p, 〈q1, q2〉〉) = 〈Φi1(〈p, q1〉),Φi2(〈p, q2〉)〉



14 K. HIGUCHI AND A. PAULY

and j is an index such that

Φj(〈〈p, 〈q1, q2〉〉, 〈r1, r2〉〉)

=





1〈Sh(Φj1(〈〈p, q1〉, r1〉)),Sh(Φj2(〈〈p, q2〉, r2〉))〉 if Φjk(〈〈p, qk〉, rk〉) ∈ 1NN for k = 1, 2

Φj1(〈〈p, q1〉, r1〉) if Φj1(〈〈p, q1〉, r1〉)(0) = 0

Φj2(〈〈p, q2〉, r2〉) otherwise

Proposition 4.18. Suppose P �c
W Q and P 6= ⊤. Then (P → Q) is pointed iff dom(Q) ≤M

dom(P ).

Proof. Let ijq ∈ dom(P → Q) be computable. Then the computable map p 7→ Φi(〈p, q〉)
witnesses dom(Q) ≤M dom(P ). Conversely, let computableH witness dom(Q) ≤M dom(P ),
let i0, j0 be such that Φi0(〈p, q〉) = H(p) and Φj0(r) = 1N. Then i0j0NN ⊆ dom(P → Q).

Corollary 4.19. (P → Q∗)∗ ≡W (P → Q∗)

Proof. If P ≤c
W Q∗, then the claim evaluates to the trivially true ⊤ ≡W ⊤∗. If P = ⊤, it

becomes (Q∗)∗ ≡W Q∗. In the following, assume P �c
W Q∗ and P 6= ⊤. As Q∗ is always

pointed, by Proposition 4.18 the same holds for (P → Q∗). Together with (P → Q∗)×(P →
Q∗) ≤W (P → Q∗) from Proposition 4.17, we see that (P → Q∗) is a fixed point of ∗.

Corollary 4.20. C
∗ is a Heyting algebra.

Each of the three Heyting algebras we have identified gives rise to some superintuition-
istic logic as its theory. As a starting point to determine those logics, we consider Jankov
logic: By Jan we denote the smallest superintuitionistic logic containing ¬p∨¬¬p. Besides
its simple definition, this logic is of interest as it arises as the theory of the dual of the
Medvedev lattice M

op [12, 15, 21]1.
An important property a superintuitionistic logic might exhibit is the disjunction prop-

erty [8], which states that p ∨ q is true, if and only if p or q is true. In terms of Heyting
algebras, this amounts to ⊤ being join-irreducible. In these cases, we can characterize those
Heyting algebras validating the weak law of the excluded middle:

Proposition 4.21. Let (L,∧,∨,→) be a Heyting algebra with largest element ⊤ and small-
est element ⊥, such that ⊤ is join-irreducible. Then Jan ⊆ Th(L), if and only if ⊥ is
meet-irreducible.

Proof. Jan ⊆ Th(L) amounts to (a → ⊥) ∨ ((a → ⊥) → ⊥) = ⊤ for all a ∈ L. As ⊤ is
join-irreducible, this is equivalent to (a → ⊥) = ⊤ or ((a → ⊥) → ⊥) = ⊤. By definition
of →, the former is equivalent to a ∧⊤ = a = ⊥. The latter is equivalent to (a → ⊥) = ⊥,
which in turn is equivalent to a ∧ b = ⊥ implies b = ⊥.

Clearly, the first case only holds for a = ⊥. The second case, formulated for a 6= ⊥, is
equivalent to the meet-irreducibility of ⊥.

1In consulting these references, be wary that the theory of a lattice can refer to its theory as a Brouwer
algebra, too, rather than its theory as a Heyting algebra as defined in the present paper. Such statements
are mutually translatable by moving to the dual lattice.
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Due to the nature of the special functions representing ⊥ and ⊤ in all our lattices, we
see that they are join-irreducible and meet-irreducible in all of our lattices in which they
occur. Together with Proposition 4.8 and Corollary 4.8 showing meet-irreducibility of idNN

in C
∗ we get:

Corollary 4.22. Jan ⊆ Th(C0), Jan ⊆ Th(C) and Jan ⊆ Th(C∗)

In any of our Heyting algebras, we find P ∨¬P = P 6= ⊤ for P 6= ⊥,⊤, so their theories
are proper subsets of classical propositional logic; and neither of our lattices is a Boolean
lattice. Better upper bounds could be obtained by embedding suitable Heyting algebras
into C0, C and C

∗.

If C∗ or Ĉ should be a Brouwer algebra, or Ĉ be a Heyting algebra, then the considera-

tions above do equally apply to Th((C∗)op), Th(Ĉop) and Th(Ĉ).

5. Embedding the Medvedev degrees

Embeddings of the Medvedev degrees into the Weihrauch degrees were first studied in [4,
Section 5], using a definition very similar to the following:

Definition 5.1. Given some A ⊆ NN, define cA :⊆ NN
⇒ NN via dom(cA) = {0N} and

cA(0
N) = A.

As shown in [4], c : M →֒ W is a meet-semilattice embedding, and c : M →֒ pŴ
is a lattice embedding (hence c : M →֒ W

∗ is also a lattice embedding). First, we shall
complement these results by a corresponding negative one.

Proposition 5.2. cA is join-irreducible for all A ⊆ NN.

Proof. Any reduction cA ≤W P
∐

Q witnessed by H, K makes use of only the single point
K(0N) in the domain of P

∐
Q. But then only one of P and Q is ever evaluated, hence,

either cA ≤W P or cA ≤W Q follows.

Corollary 5.3. c : M →֒ W is not a lattice embedding.

The embedding c even preserves the structure of M as a Brouwer algebra, as far as its
codomain permits. This is formalized as the following:

Proposition 5.4. Let L be a sublattice of W∗ with c(M) ⊆ L, such that L is a Brouwer
algebra. Then c : M →֒ L is a Brouwer embedding.

Proof. We show the even stronger result that for any A,B ⊆ NN the set {R ∈ W | cA ≤W

cB ×R} has a minimal element of the form cC . This in turn already follows from the claim
that cA ≤W cB×R implies the existence of some C ⊆ NN with cC ≤W R and cA ≤W cB×cC ,
together with M being a Brouwer algebra and c : M → W

∗ being a lattice embedding.
To see the latter claim, assume that cA ≤W cB × R is witnessed by H, K. We have

K(0N) = 〈0N, p〉 for some computable p ∈ NN. Let C = R(p). Then cC ≤W R is obvious,
and cA ≤W cB × cC is witnessed by H, K ′ where K ′(0N) = 〈0N, 0N〉.
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There is another natural embedding of the Medvedev degrees into the Weihrauch de-
grees, this time however the ordering is reversed. We shall consider the straight-forward
definition originally suggested by Brattka:

Definition 5.5. Given some A ⊆ NN, define dA :⊆ NN → NN via dom(dA) = A and
dA(x) = 1N for x ∈ A.

Lemma 5.6. d : Mop →֒ W is a lattice embedding.

Proof. Recall that the lattice operations in M are + and × defined via A + B = 0A ∪ 1B
and A×B = {〈p, q〉 | p ∈ A ∧ q ∈ B}.

(1) A ≤M B iff dB ≤W dA
Let computableK witness A ≤M B. Then dNN andK witness dB ≤W dA. Conversely,

let H, K witness dB ≤W dA. Then K must witness A ≤M B.
(2) dA×B ≡W dA ⊕ dB

Both directions are witnessed by H = dNN , K = idNN .
(3) dA+B ≡W dA

∐
dB

Both directions are witnessed by H = dNN , K = idNN .

The following observation shows that the image d(Mop) contains exactly the computable
Weihrauch degrees:

Observation 5.7. P :⊆ NN
⇒ NN has a computable choice function, iff P ≡W ddom(P ).

Expanding on this, we see that the computable Weihrauch degrees are isomorphic to the
dual of the Medvedev degrees. Taking into consideration that the computable Weihrauch
degrees are the lower cone of idNN , we cannot hope to expand the Heyting algebra structure
of Mop any further from this starting point.

6. Summary

Finally, we summarize our results which lattices also have the structure of a Heyting or
Brouwer algebra. Note the three cases remaining open. It seems that additional techniques
will be necessary to provide the corresponding answers.

W pW W
∗ pŴ C0 C C

∗
Ĉ

Brouwerian? No No No No No No ? ?
Heyting? No No No No Yes Yes Yes ?
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