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Abstract. We consider the degrees of non-computability (Weihrauch
degrees) of finding winning strategies (or more generally, Nash equilib-
ria) in infinite sequential games with certain winning sets (or more gen-
erally, outcome sets). In particular, we show that as the complexity of
the winning sets increases in the difference hierarchy, the complexity of
constructing winning strategies increases in the effective Borel hierarchy.

1 Overview

We consider questions of (non)computability related to infinite sequential games
played by any countable number of players. The best-known example of such
games are Gale-Stewart games [10], which are two-player win/lose games. The
existence of winning strategies in (special cases of) Gale-Stewart games is often
employed to show that truth-values in certain logics are well-determined. The
degrees of noncomputability of variations of (Borel) determinacy [17] can be
studied using our techniques, and several are fully classified.

This work falls within the research programme to study the computational
content of mathematical theorems in the Weihrauch lattice, which was outlined
by BRATTKA and GHERARDI in [3]. In particular, it continues the investigation
of the Weihrauch degrees of operations mapping games to their equilibria started
n [21]. There, finding pure and mixed Nash equilibria in two-player games with
finitely many actions in strategic form were classified.

One motivation for this line of inquiry is the general stance that solution
concepts in game theory can only be convincing if the players are capable of (at
least jointly) computing them, taken e.g. in [22]. Even if we allow for some degree
of hypercomputation, or are, e.g., willing to tacitly replace actually attaining a
solution concept by some process (slowly) converging to it, we still have to reject
solution concepts with too high a Weihrauch degree.

The results for determinacy of specific pointclasses that we provide are a
refinement of results obtained in reverse mathematics by NEMOTO, MEDSALEM
and TANAKA [20]; the first is also a uniformization of a result by CENZER and
REMMEL [7]. For some represented pointclass I', let Detr : I' = {0,1}Y be

* A full version is available as [16].



the map taking a I'-subset A of Cantor space to a (suitably encoded) Nash
equilibrium in the sequential two-player game with alternating moves where the
first player wins if the induced play is in A, and the second player wins otherwise.
Let A be the closed subsets of Cantor space, and © := {U\ U’ | U,U’ € A}.
Some of our results are:

Theorem. Dety =w Cyg,1yv and Detny =w Cig1yv x lim.

We have two remarks. One, by combining the preceding theorem with the
main result of [6], we find that Detg is equivalent to the Bolzano-Weierstrass-
Theorem. This may be a bit unexpected in particular seeing that Cyg 1yn x lim
is not (yet) known to contain a plethora of mathematical theorems (unlike,
e.g., C{O,l}N). Two, we already need to use a limit operator in order to move
up one level of the difference hierarchy — rather than being able to move up
one level in the Borel hierarchy as one may have expected naively. Thus, this
observation may complement Harvey Friedman’s famous result [9] that proving
Borel determinacy requires repeated use of the axiom of replacement.

Another group of results is based on inspecting the various results extend-
ing Borel determinacy to more general classes of games (and solution concepts)
in [13-15]. If we instantiate these generic results with specific determinacy ver-
sion as above, we can prove for some of them that they are actually optimal
w.r.t. Weihrauch reducibility. We shall state two such classifications explicitly.

Consider two-player sequential games with finitely many outcomes and an-
tagonistic (inverse of each other) linear preferences over the outcomes. For any
upper set of outcomes w.r.t. some player’s preference let the corresponding set
of plays be open or closed. Let NE¢, , be the operation taking such a game
(suitably encoded) and producing a Nash equilibrium. Then:

Theorem. NEg, , =w Cfo 13 X LPO"

Next, we restrict the aforementioned class of games to antagonistic games,
that is, games where the preferences of one player are the inverse of the pref-
erences of the other player. Those games will have subgame-perfect equilibria,
and we let SPEop 4 be the operation mapping such games to a subgame-perfect
equilibrium.

Theorem. SPEyh 4 =w lim

2 Fundamentals

We proceed to give brief, informal introductions to represented spaces, Weihrauch
reducibility and infinite sequential games. For a formal treatment and further
references, we refer to the extended version of the present paper [16].

2.1 Informal background on represented spaces and Weihrauch
reducibility

We use representations to induce computability notions on the spaces of interest
to us, in particular on pointclasses (i.e. sets of subsets of Cantor space) and



derived from that, infinite sequential games. A represented space is a set X
together with a partial surjection 6 :C NN — X. A function between represented
spaces is computable, iff there is a matching computable function on Baire space.

An open subset U of Cantor space is represented by some list of finite words
(wi)ien such that U = J;cy wi{0, 1}". For other derived pointclasses their rep-
resentation follows directly from how they are defined; i.e. closed sets are given
via their complement as an open set, a X9-set is given by a sequence of closed
sets whose union it is, etc. (this idea is explored in more detail in [2]).

Weihrauch reducibility is a relation between multivalued functions on repre-
sented spaces, where f <y ¢ means that f can be computed with the help of a
single oracle call to g. We make use of some operations on Weihrauch degrees:
With f x g we denote the ability to make a call to f and an independent call
to g. Having f* means being able to make any given finite number of indepen-
dent calls to f, whereas f allows countably many parallel calls. Given f % g, one
can first use g, and then use the answer to choose the query for f. By f() we
denote the n-th fold iteration of x on f. Finally, f” means that one does not
have to provide the input to f explicitly, but merely a sequence converging to a
sequence. . . (n-times) converging to the input to f (so fl% = f, flI = # with
/' as in [6]).

There is a zoo of Weihrauch degrees commonly appearing in the classifica-
tion of theorems. Relevant for us are Cyg 1yv, which takes a non-empty closed
subset of Cantor space (i.e. an infinite binary tree) and produces a point in it
(i.e. an infinite path through the tree), LPO, which decides whether a sequence
is constant 0 or not, and lim, which computes the limit of a sequence in Cantor
space.

2.2 Informal background on infinite sequential games

We use the formal definitions of sequential games and related concepts from [15]
and [13]. Informally, given a fixed (wlog) set C, we let the players sequentially
choose elements in C' until an infinite sequence in C* is generated. Whose turn
it is depends on the finite history of choices. The outcome (from a set O) of the
game depends on the generated sequence in C¥, and each player may compare
outcomes via a binary relation over O, called preference. A strategy of a player
is an object that fully specifies what the choice of the player would be for each
possible finite history that requires this player to play. A combination of one
strategy per player is called a strategy profile and it induces one unique infinite
sequence in C¥, and thus one unique outcome. So, preferences may be lifted
from outcomes to strategy profiles. A Nash equilibrium is a profile such that no
player can unilaterally change strategies and induce a (new) outcome that he
or she prefers over the old one. We also consider a refinement of the concept
of a Nash equilibrium, namely subgame-perfect Nash equilibria. Intuitively, a
strategy profile is subgame-perfect, if it still forms an equilibrium if the game
were started at an arbitrary history.

As a important special case we consider win/lose games. These are games
with two players a, b and two outcomes w,, wy, where a prefers w, to w, and b



prefers wy to w,. We say that a wins the game, if outcome w, is reached, and
call the set of all plays that induce outcome w, as the winning set for a (likewise
for b and wy).

2.3 Defining the problems of interest

Let I' be a represented pointclass over {0, 1}". In a straightforward fashion, we
can obtain a representation of the infinite sequential games with countably many
agents, countably many outcomes, sets of choices C' = {0, 1} and I'-measurable
valuation function v : {0, 1} — O. The representation encodes the number of
agents and outcomes available, for each upper set of outcome the I'-set of plays
resulting in it, the map d as a look-up table, and the relations <, as look-up
tables. We always assume that the inverse of any preference relation is well-
founded (this guarantees that equilibria exist). Using a canonic isomorphism
{0,1}* 2 N, we will pretend that the space of strategy profiles in such a game
is {0, 1}N.
We now consider the following multivalued functions:

1. Det takes a two-player win/lose game as input, where the first player has
a winning set in I'. Valid outputs are the Nash equilibria, i.e. the pairs of
strategies where one strategy is a winning strategy.

2. Winy has the same inputs as Detp, and decides which player (if any) has a
winning strategy.

3. FindWS| is the restriction of Detp to games where the first player has a
winning strategy.

4. NE takes as input a game with countably many players, finitely many
outcomes, and linear preferences, where each upper set of outcomes (w.r.t.
each player preference) comes from a I'-set. The valid outputs are the Nash
equilibria.

5. NE?” is the restriction of NEp to the two-player games with antagonistic
preferences (i.e. <,==; ).

6. SPE, takes as input a two-player game with finitely many outcomes and
antagonistic preferences, where each upper set of outcomes comes from a
I'-set. Valid outputs are the subgame perfect equilibria.

We abbreviate I' := {UY | U € I'}. Some trivial reducibilities between
these problems are: Winp =w Wing, Detr =w Dety, FindWSp <w Detp <w
NE?f’Uf <w SPE[ 7 and NE}Y <w NE.

Throughout the paper we assume that I" is determined (which implies that
all operations are well-defined in the first place), closed under rescaling and finite
intersection with clopens, and that (}, {0, 1} € I'. All such closure properties
(including those appearing as conditions in the results) are assumed to hold in a
uniformly computable way, e.g. given a name for a set in I" and a clopen, we can
compute a name for the intersection of the set with the clopen. With rescaling
we refer to the operation (w,A) — {wp | p € A} : {0,1}* x I' — I" and its
inverse.



2.4 The difference hierarchy

The pointclasses we shall study in particular are the levels of the Hausdorff dif-
ference hierarchy. Intuitively, these are the sets that can be obtained as boolean
combinations of open sets; and their level denotes the least complexity of a suit-
able term. Roughly following [12, Section 22.E], we shall recall the definition of
the difference hierarchy. We define a function par from the countable ordinals to
{0,1} by par(a) = 0, if there is a limit ordinal 5 and a number n € N such that
a =+ 2n; and par(a) = 1 otherwise. For a fixed ordinal a, we let ©, be the
collection of sets D definable in terms of a family (Ux)x<q of open sets via:

x € D < par (inf{f | z € Ug}) # par(a)

In the preceding formula, we understand that inf ) = «.. In particular, ®¢ =
{0} and ©, = O.

For our constructions, a different characterization is more useful, though: For
some pointclass I', let D(I") := {J;c;vilUs | Vi, 5 € Tv; € {0,1}* AU € I' Aoy A
Uj}.

Lemma 1. D,.; = D(D,) and, more generally, D, = D (UA<O‘ CD,\).
Observation 1. If A, is in ®, for alln € N, so is A := U,en0"1A4,.
Corollary 1. If B, is in D, for alln € N, so is B := {0V} U Unen 0"1B,,.

A fundamental result on the difference hierarchy is the Hausdorff-Kuratowski
theorem stating that (J,.,, Do = AY (where wq is the smallest uncountable
ordinal), see e.g. [12, Theorem 22.27].

3 The computational content of some determinacy
principles

We begin by classifying the simplest non-computable games, namely games
where the first player wants to reach some closed set. This classification es-
sentially is a uniform version of a result by CENZER and REMMEL [7].

Theorem 2. FindWSa =w Dety =w Cio,1yv.

Proof. Cy 1w <w FindWS 4 Given a closed subset A € A({0,1}"), we can
easily obtain the game where only player 1 moves, and player 1 wins iff
the induced play falls in A. If A is non-empty, then player 1 has a winning
strategy: Play any infinite sequence in A.

FindWS 4 <w Det 4 Trivial.

Det 4 <w Cjp,1;v Given the open winning set of player 2, we can modify the
game tree by ending the game once we know for sure that player 2 will
win. Now the set of strategy profiles where either player 1 wins and player
2 cannot win, or player 2 wins and player 1 cannot prolong the game, is a
closed set effectively obtainable from the game. Moreover, it is non-empty,
and any such strategy profile is a Nash equilibrium.

O



Proposition 1. Winy =w LPO.

Proof. This follows by combining the constructions from the preceding theorem
with the fact that IsEmpty : A({0, 1})) — {0, 1} is equivalent to LPO. O

We can use the results for A4 as the base case for classifying the strength of
determinacy for the difference hierarchy.

Lemma 2 (3). Detyry <w Cyo,1yv *(Detp/x\Wz'np) and Wingry <w LPO %

/.\
Winr.

We will relate deciding the winner and finding a winning strategy for games
induced by sets from some level of the difference hierarchy to the lessor lim-
ited principle of omniscience and the law of excluded middle for X%-formulae
of the corresponding level. These principles were studied in [1, 6, 11] (among
others). Let (X9 — LLPO) :C {0,1} x {0,1}" = {0,1} be defined via i €
(22 — LLPO) <p07p1> iff Vk‘lﬂk/’g ce ukn pi((kh ey kn>) =1 (Where u =Vifnis
odd and § = 3 otherwise). Let (X9 — LEM) : {0,1}" — {0,1} be defined via
(22 — LEM) (p) =1iff Vk13ks . .. tky, p((k1, ..., kn)) = 1and (22 — LEM) (p) =
0 otherwise. Then:
Proposition 2. (Z‘O

n

+1 — LLPO) =y LLPO™ and (29, — LEM) =y LPO™.

Lemma 3. (50— LLPO) <y Deto, and (52 — LEM) <y Wino, .

Partial proof. The game for the first claim works as follows: The second player
may pick some k1 € N, or refuse to play. If the second player picks a number,
then the first player may pick ks € N or refuse to play. This alternating choice
continues until k,,_1 has been chosen, or a player refuses to pick. A player refusing
to pick a number loses. If all numbers are picked, the winner depends on the input
p to XY —LEM as follows: If n is even and 3k,, p((k1,...,k,)) = 1, then player 1
wins. If n is odd, and 3k, p((k1,...,kn)) = 0, then player 2 wins. Note that this
always describes an open component Upickea Of the winning set of the respective
player.

Furthermore, note that the set of plays U; where a value for k; was chosen is
always an open set. Now the condition that the second player refused to pick first
is USU(UaNU3)U(UsNUs)U. . .. This makes for a winning set in D,,, as required.
If player 1 has a winning strategy in the game, the answer to (22 — LEM) (p)
is 1, if player 2 wins, it is 0. O

Combining the results above yields:

Theorem 3. Dety, ., =w {%]1}N and Wing,,,, =w LPOM™.

3 This is a generalization of the proof idea for [20, Theorem 3.7] by NEMOTO, MED-
SALEM and TANAKA. [20, Theorem 3.7] states that ACAg proves determinacy for
D(27).



Knowing the Weihrauch degree of a mapping entails some information about
the Turing degrees of outputs relative to the Turing degrees of inputs, this was
explored in e.g. [4-6,22]. Thus, we can obtain the following corollaries:

Corollary 2. Any computable game with a winning condition in ©,11 has a
winning strategy s such that s' is computable relative to 0"V and there is a
computable game of this type such that any winning strateqy computes the n-th
Turing jump of a completion of Peano arithmetic.

Corollary 3. Let (G;)icn be an effective enumeration of computable games with
winning conditions in .11, and define w € {0,1} via w(i) = 1 iff the first
player has a winning strategy in G;. Then w <7 0"tV and there is an enu-
meration (G;)ien such that w = (D,

Corollary 4. There is a 22+1—mea3umble function mapping games with win-
ning conditions in ®,, to winning strategies, but no X°-measurable such function.

4 The complexity of equilibrium transfer

In [13-15], various results were provided that transfer Borel determinacy (or,
somewhat more general, determinacy for some pointclass), to prove the existence
of Nash equilibria (and sometimes even subgame-perfect equilibria) in multi-
player multi-outcome infinite sequential games. In this section, we shall inspect
those constructions and extract Weihrauch reductions from them.

In [14], the first author gave a very general construction that allows to extend
determinacy of win/lose games to the existence of Nash equilibria for two-player
games of the same type. For brevity, we only consider the strength of the toy
example from [14] here:

Theorem 4 (Equilibrium transfer). NE{” <y Det;. x Winp..

Proof. For any upper set of outcomes (for either players preferences), we con-
struct the win/lose derived game where that player wins, iff he enforces the set,
and loses otherwise. There are finitely many such games, so we can use Win}-
to decide which are won and which are lost. As shown in [14], there will be a
combination of upper sets of outcomes for each player, such that if both players
enforce their upper set, this forms a Nash equilibrium. We use Det}. to com-
pute Nash equilibria for all derived games in parallel, and then simply select the
suitable strategies. O

Techniques suitable for multiplayer sequential games were then introduced
in [13], again by the first author. Again for brevity, we only consider the version
with finitely many outcomes:

Theorem 5 (Constructing Nash equilibria). NEf <y Wz\np X ﬁet\p.



A further improvement on the techniques in [13] were provided by the authors
in [15]. These techniques in particular suffice to prove the existence of subgame-
perfect equilibria in antagonistic games (this implies two players and finitely
many outcomes).

Theorem 6. SPEr <y Wm\p X D/eEﬂ,

5 Deciding the winner and finding Nash equilibria

The results in Section 3 show that for many concrete examples of I', the problem
Detr is inherently multivalued, i.e. not equivalent to any functions between
admissible spaces. On the other hand, the upper bounds provided in Section
4 all include Winp, which is of course single-valued. In the current section,
we will explore some converse reductions, from deciding the winner to finding
Nash equilibria. This generally requires some (rather tame) requirements on the
pointclasses involved.

Lemma 4. Let I' be obtained by Iy by first closing under finite union, rescaling
and union with clopens; and then adding complements. Then:

- P
Winy, <w NEF

Proof sketch. Given n win/lose games, the first player starts by announcing
which of these games she believes she can win. Then the second player can
choose one of the listed games to play. If the first player did not claim any
winnable games, the game ends and the outcome is 0. If the first player claimed
to be able to win k out of n games, then the outcomes of the games subsequently
chosen by the second player are scaled up to k, —k. Thus, the first player has
every reason to list precisely those games she can actually win: If she would not
list a game she could win, she trades payoff k — 1 for payoff k. If she lists a game
she cannot win, the second player will subsequently chose and win it, and then
the first player is punished by —k. O

Lemma 5. Let I' be closed under taking unions with I't and I',. Then:
NEP x FindWSr, =w NE

Lemma 6. Let I' be obtained by I'1 by first closing under finite union, rescaling
and union with clopens; and then adding complements. Then:

FindWSy, x Winp, <w NEP

If we have access to subgame perfect equilibria (and are in a context where
they are guaranteed to exist), then we can even decide the winner of countably
many games in parallel:



Lemma 7. Let Iy contain the closed sets and be closed under finite unions and
the operation (Ap)nen — ({0%} U U, en 0"1A4,). Let I' be obtained from Iy by
closing under complements. Then:

Proof sketch. Combine the input games like this:

6 General games with concrete pointclasses

The general constructions put together with the classifications for specific point-
classes allow us to obtain some concrete Weihrauch degrees. First, we shall see
that moving from a win/lose game with closed and open outcomes to a two-
player game with several outcomes just complicates the operation of finding
Nash equilibria by finitely many uses of LPO in parallel:

Theorem 7. NEg5, , =w Cpo1yn x LPO™.

Proof. For the reduction NEg, , <w Cyo13n x LPO", instantiate Theorem 4
with the results from Theorem 2 and Proposition 1.

For the other direction, note that FindWS 4 =w FindWSeoua =w Cyo,1)n as
in Theorem 2; and that I} := A and I' := O U A satisfy the requirements of
Lemma 6, which then provides the desired result. O

The result can actually be strengthened into the following (by noting that
the second game constructed in Lemma 3 is always won by the first player):

Theorem 8. NEgnﬂum =w {76],1}1“ X (LPO[n]) .

If one wishes to have subgame-perfect equilibria instead of mere Nash equi-
libria, then countably many uses of LPO become necessary, and the problem
becomes equivalent to lim. Note that as long as there are at least three distinct
outcomes, the number of outcomes has no further impact on the Weihrauch de-
gree (due to the nature of the construction used to prove Lemma 7)— unlike the
situation in Theorem 7, where the number of outcomes is related to the number
of times that LPO is used.



Theorem 9. SPE,  5-=w lim ™.

Proof. For SPE@,LUZT,L <w lim("), instantiate Theorem 6 with the results from

Theorem 3, and note that LPO™ =y 1im™ and CE{(L)] v <w lim ™Y,
For the other direction, we use Lemma 7 (applicable by Corollary 1) together
with Proposition 1. O

Regarding Theorem 5, we do not (yet?) have matching lower bounds for any
particular pointclass. The gap is exemplified by the following:

Corollary 5. 0{071}]\' x LPO* <w NE@UA <w lim.

7 Conclusions and Outlook

With Theorem 3, we have shown that the computational strength of determinacy
provides a tight connection between the difference hierarchy and the Borel hier-
archy (in form of Corollary 4). Note that winning sets from the difference hier-
archy correspond to Boolean combinations of reachability and safety conditions.
Corollary 3 then provides an upper bound and a worst case for corresponding
decidability questions for logic. Theorem 3 also shows that the computational
powers of the players required to find a winning strategy vastly exceeds the
computational power required to determine the outcome, thus casting doubt on
the adequateness of winning strategies (or Nash equilibria) as adequate solution
concepts for infinite sequential games.

The results in Section 4 contrasted with those in Section 6 essentially show
that the proofs in [13-15] are not too wasteful from a constructive perspective —
i.e. the constructions employed are not far less constructive than the theorems
proven with them.

There are several immediate avenues for extending the work presented here:
The restriction to finite action sets (i.e. finitely branching trees) can mostly be
lifted without a significant impact on the proof techniques. Note though that
the concrete Weihrauch degrees would change drastically, as in Theorem 2 we
would need to replace Cyg 1yn by Cyn, with the latter residing in a less explored
part of the Weihrauch lattice. The results in [15] are more general than covered
here, too (with the same proof complexity).

The study of the strength of determinacy for particular pointclasses in reverse
mathematics presumably offers further proofs adaptable into the framework of
Weihrauch reducibility, e.g. [8,18,19].

Further afield, understanding the Weihrauch degrees of determinacy prin-
ciples may be a contribution to the development of descriptive set theory in
computational /category-theoretical terms as suggested in [23].
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