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SHARP GAGLIARDO-NIRENBERG INEQUALITIES
IN FRACTIONAL COULOMB-SOBOLEV SPACES

JACOPO BELLAZZINI, MARCO GHIMENTI, CARLO MERCURI, VITALY MOROZ,
AND JEAN VAN SCHAFTINGEN

ABSTRACT. We prove scaling invariant Gagliardo-Nirenberg type inequalities of the form

.
e(@)|* le(y)|*
||so|Lp<Rd><c|so||Hst><NH '|x_y'|da dedy |

involving fractional Sobolev norms with s > 0 and Coulomb type energies with 0 < a < d
and g > 1. We establish optimal ranges of parameters for the validity of such inequalities

and discuss the existence of the optimisers. In the special case p = dz‘é our results include a

new refinement of the fractional Sobolev inequality by a Coulomb term. We also prove that
if the radial symmetry is taken into account, then the ranges of validity of the inequalities
could be extended and such a radial improvement is possible if and only if o > 1.
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2 J. BELLAZZINI, M. GHIMENTI, C. MERCURI, V. MOROZ, AND J. VAN SCHAFTINGEN
1. INTRODUCTION AND STATEMENT OF RESULTS

1.1. Introduction. Given d € N, s > 0, a € (0,d) and ¢q € [1,00), we define the fractional
Coulomb—Sobolev space by

5.0, (@) [ ()] s |2
£ RY) = {gp RY SR : Rdf{{d’x_y’dadmdy<ooand /Rd||§| (&) d£<oo}.

Since for every measurable function ¢ : R — R

(1.1) (/B \(p\qu> < OR¥™ fj wdxdy,

e 1Tyl

the boundedness of the double integral on the right-hand side of (1.1) ensures that ¢ is a
tempered distribution and that its Fourier transform ¢ is a well-defined tempered distribution.
In particular |£|*® is a well-defined distribution on R%\ {0}. The integrability condition in the
definition of £%%9(R%) means that this distribution can be represented by an L?-function.

In the sequel we define the fractional Laplacian (—A)Z¢ by

(=2)3)(6) = (27lE*)? 3(6).
Recall that the homogeneous Sobolev space H $(R%) is the space of tempered distributions
¢ over RY, the Fourier transform of which belongs to L}, (R?) and satisfies |¢| . ®RY) =
H(—A)%@HLQ(Rd) < 400, see [1, Definition 1.31]. The space H*(R?) is a Hilbert space if and
only if s < % [1, Proposition 1.34].
We endow the space £%*9(R?) with the norm

1L
S q q E 2
s = (68l [ N )
xRd

In particular, when s < %, a function ¢ is in the space £5*4(R%) if and only if ¢ € H*(RY)

e |o(2) 17 e(y)|?
(@) ey
ff 7 — ’da dxdy < oo.
Rd xR

Following the arguments in [28, Section 2], the space £%9(R%) is a Banach space (see Propo-
sition 2.1 below).

The space £%%9(R%) is the natural domain for the fractional Coulomb-Dirichlet type energy

)3 [ (@)] e (y)|?
I(=a)3¢|%, Rd)+Rd££d Ha e dedy

which appears in models of mathematical physics related to multi-particle systems. Typically,
the Coulomb term with ¢ = 2 represents the electrostatic repulsion between the particles.
Relevant models include Thomas-Fermi-Dirac-von Weizsécker (TFDW) models of Density
Functional theory [5,19,21]; or Schrédinger—Poisson—Slater approximation to Hartree—Fock
theory [9]. Nonquadratic (¢ # 2) Coulombic energies appear in a possible zero mass limit of
the relativistic Thomas—Fermi—von Weizsacker (TFW) energy, see [7,8] where d = 3, s = 1,
a =2, g = 3; or [6, Section 2] where d = 2, s = 1, « = 1, ¢ = 4. The fractional case



SHARP GAGLIARDO-NIRENBERG INEQUALITIES 3

s = 1/2 occurs in the ultra-relativistic models, cf. [22,23]. In particular, d = 2, s = 1/2
and o = 1 appears in the recent TFDW theory of charge screening in graphene [26], where
relevant powers are ¢ = 2 or ¢ = 1. Interpolation inequalities (1.3) associated with the space
£5252(R%) are in some cases equivalent to the Lieb-Thirring type inequalities [27, Theorem 3],
which are fundamental in the study of stability of non-relativistic (s = 1) and ultra-relativistic
(s = 1/2) matter [23].

Mathematically, the space £122(R?) has been introduced and studied by P.-L. Lions [24,
Lemma 4; 25, (55)] and in D.Ruiz [31, section 2]. In particular, P.-L. Lions established a
Coulomb-Sobolev interpolation inequality

2 1/6
(12) lellzageey <o||wuié3R3( J j PR 4y

\fc—

which holds for all ¢ € £122(R3). Lions’ proof relies on the quadratic structure of the
nonlocal term (¢ = 2) and the special relation o = 2s and cannot be extended beyond these
restrictions. Coulomb-Sobolev inequalities in the fractional space £%%2(R?) had been studied
in [2,4] using methods of fractional calculus, while the non-quadratic case £-*%(R?) had been
introduced and studied in [28] using Morrey type estimates.

We emphasize that unlike the classical Hardy—Littlewood—Sobolev inequality, Coulomb-
Sobolev inequality is a lower bound on the nonlocal Coulomb energy. In particular, (1.2)
ensures the continuous embedding £22(R3) ¢ L3(R3) N L°(R3). D.Ruiz in [31, Theorem
1.2] observed that if the radial symmetry is taken into account, then the ranges of validity
of the Coulomb—Sobolev inequalities could be extended. As a consequence, he established
an improved embedding Erl 22(R3) ¢ LP(R3) N LS(R3), for any p > 18/7. In [28] the radial
improvement was extended to £.5%(R%) with any o > 1. Tt was also shown that no radial
improvement occurs when a < 1. In [3], the radial improvement was obtained in £ 22(R3) for
1/2 < s < 3/2. The result however did not include the physically important ultra-relativistic
case s = 1/2. Technically, this was related to the failure of pointwise Strauss type estimates
on the radial functions in fractional Sobolev spaces of order s < 1/2.

The aim of the present paper is threefold:

e We extend Coulomb-Sobolev inequalities associated to the space £%9(R%) to arbi-
trary s > 0 and ¢ > 1, thus completing the studies in [2] (¢ = 2) and [28] (s = 1). Our
proof is different from the proofs in [2,28]. It is based only on the standard fractional
Gagliardo-Nirenberg inequality and a fractional chain rule.

e We analyze a family of refined Sobolev inequalities, which appear as a special end

point case of the interpolation inequalities in Es’a’%(Rd). For some values of pa-

rameters we establish the existence of optimizers to the refined Sobolev inequalities.

The existence of the optimisers is new even in the previously studied case s = 1.
e We obtain a radial improvement of Coulomb-Sobolev inequalities in the space £’ Y(R%)
of radially symmetric functions for the complete range s > 0, ¢ > 1, a > 1. This
includes, in particular, previously open case s < 1/2. We also show that a radial
improvement is possible if and only if o > 1, so @ = 1 is a universal critical con-
stant which does not depend on any other parameter. In addition, we observe that
q = (ﬁ) L plays a special role as the only value of ¢ where the radial embedding

interval is closed.
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All of our results are essentially sharp, which is demonstrated by a range of counterexamples
confirming optimality.

1.2. Coulomb—Sobolev inequalities. Our first main result in this paper is the continuous
embedding
2(2g9s+a)

54 (RY) — L2+ (RY).

More specifically, we establish a family of scaling—invariant interpolation inequalities for the
space £5P(RY).

Theorem 1.1 (Coulomb—Sobolev inequalities). Let d € N, s >0, 0 < a < d, ¢q,p € [1,00)
and q(d — 2s) # d + . There ezists a constant C = C(d, s, «, q,p) > 0 such that the scaling
invariant inequality

—p(d—2s)

L3)  elly < c||go||“§fg?<d2d%>>( j j —|y|TZ le@)I*lely)” dxdy)w
holds for every function ¢ € £5%4(R%) if and only if

2(2 d
(1.4) > w gox
(1.5) c [2(528:;)’ ' 3‘123} fs<s  and ; > 212;"
(1.6) p {d 3d23’ 2(33(9;;01)} if s < g and (11 < 6212;

Moreover, if p is not an end-point of the intervals (1.4)—(1.6), i.e. p # Q%gf:;o‘ and p # 2% 25,

then the best constant for (1.3) is achieved.

In the case s = 1 inequality (1.3) was known for d = 3, @ = 2 and ¢ = 2 [25, (55);
31, Theorem 1.5]; and for d € N, a € (0,d) and ¢ > 1 [28, Theorem 1]. The fractional
inequality (1.3) first appeared for d = 3, s = 1/2, a = 2 and ¢ = 2 in [4, Proposition 2.1];
and for d € N, s > 0, a € (0,d) and ¢ = 2 in [2, Proposition 2.1].

1.3. Reﬁned Sobolev inequalities. The special case ¢(d — 2s) = d + «, which corresponds
top = 23 and ¢ = C‘ffg‘s , is not covered by the previous theorem and the exponents in
(1.3) are meanmgless. In this special case we obtain a refinement of the Sobolev embedding,

extending the one observed for s =1 [28, (1.7)] and for ¢ = 2 [2, Proposition 2.1].

Theorem 1.2 (Endpoint refined Sobolev inequality). Let d € N, 0 < s < %, 0<a<d.
Then there exists C = C(d, s,a) > 0 such that the inequality

s(d—2s)

a(d—2s)

d(25ta) d 2(3‘5’%0( )‘% d(25ta)
(1.7) ol 224 o < Cllellign H |w_ T dedy
dxRd

holds for all o € £ 55 (RY).
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Remark 1.1. It is interesting to compare our refinement for Sobolev embedding with two
other improvements. The Gérard—Meyer—Oru improvement [1, Theorem 1.43; 20] states that
if0<s< % and 6 € S(R?) is such that 0 has compact support, has value 1 near the origin
and satisfies 0 < ) <1, then

2s

d

2s d .
(1.8) <C(d,s G)H(‘DHHé(Rd (ig%)\gﬂua()\-)*ngm) Vo € H*(RY).

5 (RY)

The Palatucci-Pisante improvement [29, Theorem 1.1] (see also [34, (4.2)]) states that if
0<s< g, then

1_%8 27? 75 (Mo d
(1.9) el 7% gy = < Cd )l paaallell {0 g Vo € H'RY).
In the last inequality, the Morrey norm is defined as
1
ol = s B(flel)
R>0,zcR4 Br(z)

one proof of (1.9) relies on (1.8) and on the observation that
d
AP ) % gloe < Cllgl o
In our case we have by Holder’s inequality and monotonicity of the integral

= Fpwi#E Y
4_ -8 dta dtoa 2s |p(y )| 4-25
R2 5][ ’(,0‘) < R ][ ‘gp’d—Qs < C - dz dy
( Br(z) Br(x) H \l’— y|4-

R xR4

so that it is clear that Coulomb norm controls the Morrey norm MUE=5. On the other hand,
a(d—2s) 2
(23+a) - ( ds) 1+23/a

the exponent 1 — F for H*-norm in (1.8) and (1.9). This suggests that the inequality (1.7)
cannot be derived directly from the already known ones.

the exponent for H*-norm in our improvement is always less than

Remark 1.2. The refinement of the Sobolev inequality in Theorem 1.2 is sharp. Indeed, by
scaling it can be proved that if a scaling invariant inequality of the following form holds

+a dta ol
d 2s SO d—2s
L10) el < C(d,s,0)[l ¢l I ‘m_ “ly) dxdy) ,

L5 (je) ED i

then the exponents v and (3 are related by the equation

d_225 (g—s)ﬁ—k(d—kah.

On the other hand, estimates (3.7)—(3.9) in the proof of Theorem 1.1 below imply that

d—2s ﬂ
20 2
We conclude that g > d(g fsg is necessary for (1.10) to hold.

Interpolating between the refined and classical Sobolev inequalities, we obtain a new family
of interpolation inequalities, for which the best constant is achieved.
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Theorem 1.3 (Non-endpoint refined Sobolev inequalities). Let d € N, 0 < s < %l, 0<a<d

and 0 < e < dég 25)). Then there exists C = C(d, s,a,e) > 0 such that the inequality
+a dta ;E;_fg)) —€
a(d—2s) | _2(artd) d 25 |p(y)| =25 e
2sd+ad d—2s
1) el < Cllel F5 j£ d ‘x e dedy
X

d+a
holds for all ¢ € Ss’a’ﬁ(Rd). Moreover, the best constant for (1.11) is achieved.

When ¢ = Csl((g;fz)) the inequality (1.11) is the classical Sobolev inequality.

The existence of optimizers for the non-endpoint inequality (1.7) provides a partial answer
towards the question raised in the case s = 1 in [28, Section 1.5.5]. The existence of optimizers
for the endpoint inequality (1.7) remains open.

1.4. Radial improvements. We now consider the question of embeddings for radial func-
tions. Since the symmetric decreasing rearrangement increases the nonlinear nonlocal Coulomb
energy term, the situation might be more favorable for radial functions. Our next result
shows that for the subspace of radially symmetric functions in the Coulomb—Sobolev space
£ (R?) the intervals (1.4)—(1.6) of the validity of the Coulomb-Sobolev inequality (1.3)

can be extended provided that a > 1.

Theorem 1.4 (Sharp Improvement in the radial case fora > 1). Letd > 2, s >0, 1 < a < d,
q,p € [1700); Q(d - 23) 7& d+«a and

(2s —1)g+2)(d—«a)
2s(d+a—2)+d—a’

There exists a constant Craqg = Crad(d, s, v, q,p) > 0 such that the scaling invariant inequality

Prad ‘=

2d—p(d—2s)

 p(dta)—2dg )| q Tp(dta—q(d—25))
Fdta—q(d—35) ()| |e(y)]
(112)  J¢llo@e) < Craallol o™ ( J| Fa e dedy
Rd xRd
hold for all radially symmetric functions ¢ € E239(R?) if and only if
d
(1.13) P > Drad if s > >
2d . d 1 d-2s
(114) pE (prad, m} ZfS < 5 and 6 > d+a ;
2d d 1 d—2s 1 1—2s
1.15 _— ) — d — —
( ) pe[d—287prad> Zf3<2 an q<d+a’ q?é 2 )
2d 1 1 1—2s
1.1 = fs< - .
(1.16) pe[d—Qs’q] zfs<2 and . 5

If0 < a < 1 then inequality (1.12) holds on £591(RY) if and only if (1.3) holds on £5*9(RY).

In the important special case s = 1/2 we have the simplified expression pq = q + d—a

1
while for s = 0 we formally obtain p,.q = 2.

In the special case d = 3, s = 1, @« = 2 and ¢ = 2 the improved radial inequality (1.12)
was first established in [31, Theorem 1.2]. For d € N, s = 1, @ € (0,d) and ¢ > 1 the
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improved radial inequalities (1.3) were studied in [28, Theorem 4]. The fractional case d = 3,
1/2 < s <3/2, a =2, ¢ =2 was considered in [3].

We shall emphasise that the radial improvement is possible for any s > 0 but if and only if
a > 1. The universality of the threshold o = 1 which does not depend on any other parameter
in the problem is quite interesting.

Another new and purely fractional phenomenon is the special role of the exponent ¢ = 1%25

in the case s < 1/2. Observe that for s > 1/2 we always have p;,q > ¢, while p.q < ¢ if

s < 1/2 and q > 1%25, the latter requires g > jj;fs. If s<1/2 and ¢ = 1—225 then praq = ¢

and this is the only case when the endpoint embedding £77%(RY) — LPrad(R?) is valid.

87a7q

Finally, we prove that the embedding £} (RY) — LP(R?) is compact provided that p is
not an endpoint of the embedding intervals.

Theorem 1.5 (Compact embeddings for radial functions). Letd > 2, s > 0, and q € [1,00).
Moreover we assume that p is away from the endpoints of the intervals in (1.4)—(1.6) when
0<a<1andin (1.13)-(1.16) when 1 < a < d. Then, the embedding £33 (R?) — LP(R?)
is compact.

Compactness of the radial embedding implies in a standard way the existence of radial
optimizers associated to the inequalities (1.12), cf. [28, Section 7] where the case s = 1 was
considered.

1.5. Open questions. Here we list some of the open problems related to the results in the
present work.

1.5.1. Radial symmetry breaking. It is an open question whether the optimal constants C' and
Crad in (1.3) and (1.12) share the same value for p in the intervals (1.4)—(1.6), where both

constants are well-defined. A result by D.Ruiz [31, theorem 1.7] gives an indirect indication
2(2¢s+a)

Teta - However the

that C' < Cyaq might be possible, at least for the values of p close to
problem remains open even in the well-studied case s =1, a = 2, ¢ = 2.

2(2¢s+a)

1.5.2. Radial compactness in the borderline case o = 1 and p = . Compactness of

. esLa md S o
the borderline embedding & Y(R*) — L

i 251 (R9) is open. This includes 538{5’1’2(R2) —
L3(R?), which appears in the ultra-relativistic TFDW model for graphene studied in [26].

1.5.3. Other symmetries. We believe that the critical threshold o = 1 for the radial improve-
ment is related to the essential uni-dimensionality of radial functions. It seems plausible that
the Coulomb-Sobolev embeddings can be improved for other types of symmetries. A natural
conjecture would be that the relevant value of the critical constant « is the number of vari-
ables on which the symmetric functions depend. For example, for axisymmetric functions in
R3, we would expect a critical value o = 2.

1.6. Outline. The rest of the paper is organised as follows. Section 2 contains a short proof
of the completeness of the Coulomb—Sobolev spaces. In Section 3 we discuss the spaces
£%%4(RY) in the nonradial context and show that interpolation inequalities of Theorems 1.1
and 1.2 can be deduced from the standard fractional Gagliardo—Nirenberg inequality (3.3)
using a fractional chain rule. We also discuss the existence of the optimisers and prove
Theorem 1.3. In Section 4 we derive the radial improvement of Theorem 1.4 as a consequence



8 J. BELLAZZINI, M. GHIMENTI, C. MERCURI, V. MOROZ, AND J. VAN SCHAFTINGEN

of Ruiz’s inequality for Coulomb energy (see Theorem 4.1) and de Napoli’s interpolation
inequality (see Theorem 4.2), which is a fractional extension of the classical pointwise Strauss
type bounds valid only for s > 1/2. In case s < 1/2 we replace de Napoli’s pointwise bounds
by Rubin’s inequality (Theorem 4.3), which is a refinement for radial functions of the classical
Stein—Weiss inequality. In Section 5 we construct special families of functions which are used
to prove the optimality of the radial embeddings, while in Section 6 we prove the compactness
of the radial embedding.

1.7. Asymptotic notation. For real valued functions f(¢),g(t) > 0, we write:

f(t) S g(t) if there exists C' > 0 independent of ¢ such that f(t) < Cy(t);
f@t) = g(t) if f(t) < g(t) and g(t) < [(2)-

As usual, C,| ¢, ¢, etc., denote generic positive constants independent of ¢.

2. COMPLETENESS OF THE FRACTIONAL COULOMB—-SOBOLEV SPACE
As in [28, Section 2], it is not difficult to see that the space £%*%(R?) is a normed space.
Proposition 2.1. For everyd € N, s >0, 0 < a < d and q € [1,00), the normed space
£59(R%) is complete.

Proof. Tf (un )nen is a Cauchy sequence in £5*4(R%), then ((—A)2uy, )ne is a Cauchy sequence
in L?(R%) and there exists thus f € L?(R%) such that ((—A)2uy,)nen converges strongly to f
in L2(R%). On the other hand, by (1.1) we have for every R > 0,

lim |tun, — um|? = 0.

There exists thus a measurable function u : R — R such that (u,),en converges to u in

Ll _(R%). By Fatou’s lemma, we have

, |un (@) — u(@)|? |un(y) — un(y)|?
lim Jf 7 —yjio dz dy

n—oo
R xR4

< lim liminf ﬂ [tn (%) = (@)[" [t (y) = m ()" dz dy.

n—00 M—00 |IE _ y|d7a
R xR4

It remains now to prove that (—A)Zu = f. We observe that by (1.1),

1
lim sup ——

— / |tup, —u|? = 0.
7O R>0 R 2 JBR(0)
Therefore (uy)nen converges to u as tempered distributions on R?, and thus the sequence
(tin)nen converges to U as tempered distributions on R%. Tt follows that ((27)%2[€|%1 )nen

converges to 2775/2|§\ |€]°u as dlstrlbutlons on R%. Since on the other hand, ((27)%/2|¢|°T )nen
converges to f it follows that (—A) 2u = f. O
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3. GAGLIARDO—NIRENBERG INEQUALITIES: PROOF OF THEOREMS 1.1, 1.2 AND 1.3

We first establish the endpoint inequality.

Theorem 3.1. Let d € N, s >0, 0 < a < d and q € [1,00). Then the following inequality
holds

q q 2qss+o¢
< 2q,5+a ‘ ’(10 )‘ > S8,0,q Rd
||‘P”L2(§Zf;a) (RY) ~ ||( ‘)OHLQ (R4) <Rj y\d o dz dy Voe& ( )

d 2(2gs+a) d .
In particular, E5*1(R?*) — L™ 2s¥a" (R?) continuously.

The above inequality in the particular case ¢ = 1 implies that Es’a’l(Rd) embeds continu-
ously into H*(R?).

Proof of Theorem 3.1. Recall that for all qb € Lloc(Rd) such that
(3.1) jf |d adxdy<oo

it holds that

(3:2) I8 6] e = ¢ | f ,d ) dzdy,

]Rded

Moreover we recall the endpoint Gagliardo—Nirenberg inequality (see for example [1, Theorem
2.44))

_2s
(3.3) [(=A) 29[| Lo gay < ClYN 73Ry (1) 2¢||‘£f2u§d)

where _ ) )
s o
p 5(044—25) * ;(a—l—%)'
it

When ¢ =1 by (3.1) and (3.2) it holds that
_ )| le(y)
(3.4) (= ||L2 Rdy = € ff |x — ‘d = d:n dy <c ff ‘d = dx dy.
Rd xRd Rd xRd

Setting ¢ = (—A)"Tpand p = r = 2, (3.3) together with (3.4) yields the inequality for ¢ = 1.
Let ¢ > 1. Setting ¢ = (—A)"7|p|? in (3.3), we get

2s
Il oy < €)7ol i | =) Bl
which implies
(3.5) HSDH%qP(Rd) <C||(-4) 4\go|q||z;2]§d)|| —A)%Spnz;&gd HSDHL(q 1ﬁ+[§§)

by the fractional chain rule where 1 o= 5 + 7 [17, Corollary of Theorem 5]. Now choosing !
such that (¢ — 1)l = gp, i.e. such that
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we conclude that p = (12(05;&‘5) By (3.5) and setting ¢ = |p|? in (3.2), this concludes the

proof. O

Proof of Theorem 1.1 and Theorem 1.2. The exponents for the refined Sobolev inequality
given by Theorem 1.2 are derived directly from the endpoint Gagliardo—Nirenberg inequality
of Theorem 3.1.

The scaling-invariant inequalities of Theorem 1.1 follows from the fact that by interpolation
between Theorem 3.1 and the classical fractional Sobolev embedding, £%%4(R9) «— LP(R?)
continuously for

2(2¢s +a) 2d _ d+«

f1 _

pe( 25+« 7al—ZJ ! <Q<d—2s’
2d  2(2¢s+ «) . d+ «
f .
pe[d—%’ 2%+ a ) = e

Indeed, let us consider the scaling uy(z) = )\%u()\x) such that ||ux|prway = |ulp(rae)- From
the embedding we get

1

s 2 ux(z)|? |ur(y)|? q

HUAH%IJ(RGZ) N ||(_A)QUA’|L2(Rd) + ({Rff | ](:1: )_’ ;’d—(a)’ dfvdy) ,
dyRd

which gives by scaling

1

2d_gi9g s 2 2d_ (dto) ux(z)|? |ux(y)|? q

56) Tl 3 e+ 4375 (] PO 0y
dywRd

Notice that when g = gfg‘s and p = dzdz@ we obtain as expected %d —d+2s =0, %fj — @ =0.

Minimizing the right-hand side of (3.6) with respect to A we get the scaling invariant inequality
given by Theorem 1.1. The same computation of course works in the radial case.

Optimality of the embedding intervals. Given a nonnegative function n € C°(R%) \ {0} and
a vector a € R%\ {0}, for k € N set

Ug k() = n(x + ka).

Following [31, Section 5], we define the functions v, ,, € C(RY) by

m
Va,m = Z Ug, -
k=1

Then for |a| — oo we obtain

(3.7) ||Ua,m”lzp(Rd) =m,
(38) [0 gty S
Va,m\T q Va,m\Y 1
(3.9) Jf | \(a: )_‘ y"d_a( ) dzdy < m.

R xR4
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To deduce (3.8), choose k € N such that k > s. Interpolating between homogeneous L? and
H* norms (cf. [1, Proposition 1.32]), for |a| — oo we conclude that

2s 2(1,5) 2 1-£
lam 3o gty < Woaamll e gy oamll sy S (Ml gay) * (mllnlFegay) = S .

Using the diagonal argument, from (1.3) we deduce that for all sufficiently large m € N it
must hold
p(d+a)—2dq 2d—p(d—2s)
m SJ m 2(d+a—a(d=2s)) y 2(d+a—a(d=2s)) |

which implies the optimality of the embedding intervals (1.4)—(1.6).

Existence of the optimizers. The existence of optimizers follows almost identically to the proof
of [2, Theorem 2.2], see also [3, proof of Corollary 0.1]. We only sketch the argument.

Fix p inside one of the intervals (1.4)—(1.6). By homogeneity and scaling we can assume
that an optimizing sequence (¢n)nen in £5%9(R?) satisfies

len (@) pn(y)4
lonll grs(ray = dzdy =1,
" RthLd ’

x -yt

and [|¢nl|pera) = C(d; s, ) +o(1).

Since p is not an end-point of the intervals (1.4)—(1.6), we can use interpolation inequality
(1.3) to find a uniform upper bound on [|n || 1r1 (rey and [|n || Lr2 (re), for some p1 < p < po.
Therefore, via the pgr-lemma [16, Lemma 2.1 p.258] and Lieb’s compactness lemma in H*(R%)
[2, Lemma 2.1], we conclude that ¢, — @ # 0 in H*(R?). Finally, using the non-local
Brezis-Lieb splitting lemma for the Coulomb term [28, Proposition 4.8], the existence of a
maximizer could be proved similarly to the arguments in [2, pp.661-662] (see also the proof
of Theorem 1.3 below for similar estimates). 0

Proof of Theorem 1.3. Inequality (1.11) is obtained directly by interpolation between the clas-
sical Sobolev inequality and endpoint refined Sobolev inequality (1.7).

To prove that the best constant C(d, s, o, ¢) in (1.11) is achieved, we will use the following
result.

Theorem 3.2 (Gerard Meyer-Oru). Let 0 < s < d/2 and let 0 € S(R?) be such that 0 has

compact support, has value 1 near the origin and satisfies 0 < 6 < 1. Then there is a constant
C = Cyq(0) such that for all u € H*(RY),

2s
d—2s d
Whﬁécwm:GwAWWWAMM@>.
—4s A>0

Consider a maximizing sequence (¢n)nen for (1.11) such that |¢nl|fsge) =1 and

s(d—2s)

||<Pn||d37d% = (C(d,s,a,e) + 0(1)) (D(Cﬂn)) d(25+a) a’

where for brevity, we denoted

(@) T35 | (y)| 55

@ \T)| e |p\Y)|a—=°

D(p) = jf 7= ylio dz dy.
R xRd y
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Using the endpoint refined Sobolev inequality we infer that

s(d=2s) __ ld2e)
(D(n)) 7 5 llpall_2a S (D(ion)) 5.
This implies that
1 S D(Son)
and hence,
(3.10) 1S [l@nll_2a_.

Let ¢ denotes the weak limit of (¢,,) in H*(R?). Recall that our inequality (1.11) is critical,
i.e. it is both scaling and translation invariant. From Theorem 3.2 together with (3.10) there
exists sequences (o, )nen in R? of translations and (A, ),en in R of dilations such that

g
it AL [ 0o = n)gulu)d > 0.

This fact implies by the change of variable that
s—i T — Ty _
An wn( A ) @ # 0.

The fact that ¢ is an optimizer is now standard. By the Brezis—Lieb type splitting proper-
ties [10] of the three terms in (1.11) (for the splitting of the nonlocal term D see [28, Propo-
sition 4.7]), we obtain

C(d, s, 0,e) 75 (rw +llon - AlI7aF +o<1>)

) - d(2d+ )+€2d(a+d2) _ _\\ g T
> (161 + 9 — Bl ey + (1) ™7 T (D) 4 Dl — ) T 4T

Since

2d(a + 2s)
(d — 2s)?

da Zd(a—l—d)) (d( 2ds 2d o1,

(d(25+a)+€(d—25)2 2s+a)_8d—28

As a consequence of the discrete Holder inequality we have

)=1+5

2oy o 4d(a+d) 2ds 2d 2da 4 o 4d(a+d) 2ds 2d
qd2s+a) T (@-25)2 pd(Zsta) Cd-2s | hd2sta) T (d-25)2 pd(2sta) Cd-2s

2d(a+d)
+e 2ds __ __2d
(CL 4 b?) d(25+a) (d—25)2 (C + 6) dsta) Cd-2s

for all a,b,c,e > 0. Hence

Cldss,0,0) 75 (|I6lI7 + llon — @lI%5 +o(1)

S g T e

Hs(R4)

2ds _2d
(d—25)2 D(@)aes+a) ~ €a-2s

2da 4d(a+d)
(2s+a) 2ds 2d

YY) . _2ds __ __2d_
tllon = @lyegn 7 Dlpn — @)™ T 4o(1).

Therefore we can conclude that
d 2da 4d(a+d)

2 2ds 2d
C(d,s,a,e)” @ QSHsoH‘i >Hs0HZ(fq£§) (47297 D(g) Testa TT% + 0(1),
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which implies that ¢ is an optimizer. O

4. SHARP IMPROVEMENT IN THE RADIAL CASE

In order to establish the radial inequality (1.12) we will use a version of the weighted
estimate involving the Coulomb term which was originally established by Ruiz [31].

Theorem 4.1 (Ruiz [31, Theorem 1.1], see also [28, Proposition 3.8]). Letd € N, 0 < o < d,
€ [1,00). Then for every e > 0 and R > 0 there exists C = C(d,«,q,e) > 0 such that for

d
all ¢ € Lite (RY),

1

2)e NE NE 2

(4.1) / Je@l” 4, < < H et oyl dxdy> |
RA\BRr(0) |z| 2 t€ |z —

xRd

(4.2) /B ‘Tﬂws dz < CR5< H |‘P|x _‘q ’ﬁ( Dl g, dy>2

‘l‘ xRd
We will also employ two different estimate on the functions in Hrsad(Rd). In the case s > 1/2
our proof of (1.12) relies on the following interpolation result.
Theorem 4.2 (De Népoli [12, Theorem 3.1]). Letd >2, s> 3, r>1 and
(4.3) —(d-1)<a<d(r—-1).
Then
(44)  [p@)] < Od s,r, a7 (~A) 5 ol Il ey Vo € Hisa(RY 0 L(RY),

2s(d—1)+(2s—1)a 0 —
@s—Dr+2 -’

where o =
norm

o= 1) 5 and Ly, "(RY) is the weighted Lebesgue space with the

1
Jull gy = ( [ ol @)l de)
Rd

Remark 4.1. The inequality (4.4) has important special cases:

i) When r = 222~ and a = 0 we obtain Cho-Ozawa’s inequality [11]:

(4.5) sup [p(z)| S |«

(R4) V(P € rad (Rd)
|z|>0

ii) When r = 2 and a = 0 we obtain Ni type inequality

_d—1 1 1—L d
lSlllpOIsO(:v)l Sl el Fuga el 2y Vo € Haa(®RY).
x|>

In the case s < 1/2 pointwise estimates on functions in Hfad (R9) are no longer available.
Instead, our proof of (1.12) relies on the radial version of the classical Stein-Weiss estimate
[32].
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Theorem 4.3 (Rubin [13; 14, Theorem 1.2; 30]). Let d > 2 and 0 < s < d/2. Then

1

(4.6) ([ Jet@riel ™) < Cld.srBlielimes Vo€ Haal®?,
where r > 2 and

1 1 d
4, —d-1(=-=)<p<l
(4.7) (@-D(5--)<p<,

1 1 f[g-s

4. Z_Z
(48) ro 2 + d
Remark 4.2. The difference with the classical (non-radial) Stein—Weiss estimate [32] is only

in the extended range (4.7) for 5 (in the non-radial case we must have 0 < § < g) Note

special cases of (4.6):

i) When = s and s < 4 we obtain r = 2 which gives the Hardy inequality:

(/ o) 2] Qde) Sl Vo € Haa(RY),

2d

ii) When =0 and s < 5 we obtain r = -=5- which gives the Sobolev estimate:

1

374 J
(L75)" 7 Slelg Vo€ @),

iii) When 8 = —(d — 1)(3 — %) and s < 3 we see from (4.8) that r = % and hence
B =—(d—1)s, so we obtain a “limiting” inequality

2 2s(d—1) %_5 d
IR{dlwll* x| 72 da Slellge@ey Vo € Hopg(RY).

A corollary of Rubin’s inequality is an integral replacement of the Cho—Ozawa bound (4.5).

Lemma 4.1 (Weak Ni’s inequality). Let d > 2, 0 < s < 1/2 and % —s< ]% < % — 5. Then
for R >0,
(4.9) / ol < O(d, s, )R PE gl o0 Vo € Hia(RY.
Rd\BR(O) Hmd(R )
Proof. Follows from Rubin’s inequality (4.6) by setting r = p and = %ﬁ_%). O

Using (4.1), (4.4) and (4.6) in the exterior and the classical Sobolev inequality in the interior
of a ball we deduce the following.

Proposition 4.1. Letd > 2, s >0, 1 < a < d and (Cfifas)Jr < é < 1. Then the space
EXVI(RY) is continuously embedded into LP(R?) for
2d d
4.1 rad, 5 o o)
(4.10) pe(pad d—2s} and s<2
d
(4.11) D> Drad and s> 5
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Proof. Tt is sufficient to establish continuous embedding £297(R%) — LP(R?) only for p in a
small right neighbourhood of p;,q, the remaining values of p are then covered by interpolation
via Theorem 3.1. Given R > 0, we shall estimate the LP-norm of a functlon o € EXTIRY

separately in the interior and exterior of the ball Br(0). Since p < d—2s? in the 1nter10r of the
ball Br(0) we estimate by Sobolev inequality

[ 1ol < R Delr
Br(0) (

The estimate in the exterior of the ball Br(0) will be split into the cases s > 1/2 and
s < 1/2. Observe that p > praq > ¢, since ¢ < d+°‘ . For a small € > 0, denote

Case s > 1/2. Using successively the inequalities (4.4), (4.1) and (4.5), we estimate

q
@ [ jers s (ell) [ DR,
R4\ B (0) r\Br(0) 2]

|z|>R

1-0)(p—a)

q
A I 1
I oo ks o7

‘ |q‘ +(1 9%(79 a)
9(p q) (@) [y 1
Vs ) (RQE f iz — y|d—e d:):dy)
a-0)(r—a)

1
|o(@)|* e (y)]* 2 dmas g
+ H(pHHs (Rd) (RQE fj de’ dy B (0) |x] 2 77y )

where 0 = The application of (4.4) requires that

(25— 1)q+2

2 —1-
(4.13) e B s(d ’Y)-i-W7
p—q (2s —1)g+2

which is fulfilled for a sufficiently small € > 0 if p > proq. The last integral in (4.12) is finite
when

d—2s
2

(4.14) = q—v<—d;

d+o¢
—2s°

this is the case for a sufficiently small € > 0 when ¢ <



16 J. BELLAZZINI, M. GHIMENTI, C. MERCURI, V. MOROZ, AND J. VAN SCHAFTINGEN

Case s <1/2. Let r > p > qand 0 € [0, 1] besuchthatqul;O %,16 9—%% By the

»Q

Holder inequality together with (4.1) and (4.6), we estimate

pP—q r—p

=p = q —a

/ so!pé(/ |<p(x)mxm2dx> (/ lo(z) dx) 7
R4\ Bg(0) R4\ Bg(0) RO\Br(0) 7]

p—q r—p

1
el ) e@) @)l |\
4.1 S (/ z)|"|x Bd:v) < dad )
(4.15) N C Ol o ﬂ o yia drdy

r—p
= (@)l (y) T
r—q
S H90||Hs(Rd <R2E fde$dy) )
where in view of (4.8) we must express r and 3 as

2(yp —d(p — q)) _ 17(2d —p(d —25))
v—(d—2s)(p—q) 2 yp—dp- ) '
d—l—a

N|=

Note that 8 < 0 for sufficiently small € > 0, since q <

and p < 24—, Hence (4.7) requires

d—17(p—2)—25(P—Q)
2 yw—dp—q)

B> -

The latter is satisfied provided that
gs(d—1)+~
2s(d—1) +~(1—2s)’
where p; \( praq as € — 0. In addition, observe that r 1%25 as p = p. and € — 0, which

in particular, ensures that we can choose r > p and r > 2 in (4.6). We conclude that (4.15)
holds for p > praq, provided that € > 0 is sufficiently small. ]

(4.16) D> pe =2

Proposition 4.2. Letd > 2, 0 < s < %, l<a<dand 5”20‘8 < q < oo. Then the space
ESTYRD) is continuously embedded into LP(R?) for

rad

2d 1 1
4.1 — D d = #=—s,
(4.17) pe gy pa) and # 5

2d 1 1
(418) pE {m,prad} and 6 = 5 — S.

Proof. Note that for % 3 — s it is sufficient to establish continuous embedding £7/5'?(RY) —

LP(R?) only for p in a small left neighbourhood of p,aq, the remaining values of p are then
covered by interpolation via Theorem 3.1.

Given R > 0, we shall estimate the LP—norm of a function ¢ € Efég’q(Rd) separately in the
interior and exterior of the ball Bg(0). The proof will be splitted into a number of separate
cases, which we outline in Table 1.

Case s > 1/2. In the exterior of the ball Br(0), for any p > d we can estimate

(4.19) / ol < ORd*pG*S)llsoH?s .
R4\ BR(0) R

using the classical Sobolev inequality and Cho-Ozawa’s inequality (4.5). To obtain an esti-
mate in the interior of the ball Br(0), we observe that for s > 1/2 we have ¢ < pyaq and hence
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s q Br(0) R?\ Bg(0)
s>1/2 q> & De Napoli + Ruiz as in (4.12) Sobolev + Cho-Ozawa (4.5)
e < g < 2. Rubin + Ruiz as in (4.15) Weak Ni (4.9)
s<1/2 q= 13 Li-estimate (1.1) Weak Ni (4.9)
q> 3 Li-estimate (1.1) Rubin + Ruiz as in (4.15)

TABLE 1. Different cases in the proof of Proposition 4.2

we can assume that ¢ < p < praq. For a small € > 0, set v := d_TO‘ — €. Then the estimate
on [ Br(0) |p|P is identical to the argument in (4.12), but carried out in the interior of the ball

Br(0), which reverses the inequalities in (4.13) and (4.14).

Case s < 1/2 and ‘Ha < ¢ < 125. In the exterior of the ball Bg(0) the estimate (4.19)
follows directly from the weak Ni’s 1nequality (4.9). To obtain an estimate in the interior of
the ball Br(0), observe that for ¢ < 5 5 we have ¢ < praq and hence we can assume that
q < p < pradq- For asmall e > 0, set v := 452 —¢. Then the estimate on fBR(o) | [P is identical
to the argument in (4.15), but carried out in the interior of the ball Br(0) with ¢ < p < 7.

The only difference is that for ¢ > C‘lij'zo; the inequality in (4.16) reverses and that p.  praq

as € — 0, since’y<d—a

Note that for 0 < s < 1/2 and ¢ > 15 we have ¢ > paq and a Hélder inequality estimate
of type (4.15) on fBR |p|P is no longer poss&ble.

Case s < 1/2 and q = ﬁ Observe that in this case we have p..g = ¢. In the exterior of
the ball Br(0) the estimate

(4.20) / It < CRTIG )[4, o,
R\ BR(0)

follows directly from the weak Ni’s inequality (4.9), which is valid for ¢ = 1%25 To estimate
fBR(o) |p]?, we can use the L%—estimate (1.1), i.e

1

oo @l )l 2

121 [ el ers( drdy)
(4.21) ol f{w R

Combining (4.20) and (4.21) together we conclude that £759(R?) < L4(R?), the remaining
range of p follows by interpolation.

Case s < 1/2 and q > 75;. Observe that in this case p < praq < ¢. To estimate fB £(0) |cp|
we use the questlmate (1 1) to obtain

QL

\90 \q\so y)| !

gpp<CR dx dy .
G N e
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To obtain an estimate in the exteriour of the ball Br(0), we will use Holder, Rubin and Ruiz’s
inequalities similarly to (4.15), with v = d_?"‘ + ¢ and r < p < ¢, which could be carried out
for p < praq provided that € > 0 is sufficiently small, because pyaq > ﬁ O

Proof of Theorem 1.4. The scaling invariant inequalities of Theorem 1.4 follow from Propo-
sitions 4.1 and 4.2 by by the same scaling consideration as in the proof of Theorem 1.1. [

The estimates of Propositions 4.1 and 4.2 improve upon the estimate of Theorem 3.1 only
when o > 1. In the next section we show that the intervals of Propositions 4.1 and 4.2 are
optimal and that for e < 1 there is no improvement for the radial embedding.

5. OPTIMALITY OF THE RADIAL EMBEDDINGS

The optimality of the intervals in Theorems 1.1 and 1.4 for s < 1 is a consequence of the
following.

Theorem 5.1. Let d > 2, 1 <o <d, 0<s<1/2 and g = 3. Then the space £,,3(R?)

is not continuously embedded into LP(RY) for p > q = praa.

Theorem 5.2. Letd > 2, 1 < a <d, 0 < s <1 andp,q € [1,400). Then the space
ESVU(RY) is not continuously embedded in LP(R?) for

rad

1 d—2s
5.1 < p; d —> ,
(5.1) P<Praa ond o> s

1 d—2s 1 1-—2s
5.2 > or d - , — .
(5.2) P> DPrad  an <ita q# 5

Theorem 5.3. Let d > 2, 0 < o < 1,0 < s <1 and p,q € [1,400). Then the space
E5SURY) is not continuously embedded in LP(R?) for

rad
2(2 1 d-2
(5.3) S 2gsta) g L A28
25+« q d+a
2(2 1 d—2
(5.4) 22sta) 01 _d=2s
25+« qg d+a

The proof of Theorems 5.2 and 5.3 is obtained by constructing counterexamples, i.e. a
family of functions u such that for a suitable p it holds

ol gy = 1.

NE )4
ff [u@)] ‘Z a| derdy ~ 1,
Rd xR ’x B |

||u||ip(Rd) — +-00.

Given a nonnegative function n € C*°(R) \ {0} such that suppn C [—1,1], we consider the
family of functions

(5.5) unns(@) = An( 2 -1,

where R > S > 0 and A > 0 will be specified in the sequel.
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By elementary computation we obtain

(5.6) un gl ~ NP RITLS.
We also claim that
(57) Hu)\,R,SH?'{s(Rd) ~ )\2Rd7151725’
and
| ()] W)l 24 Ri+a=2g2 if 1 <a<d,
G8) f] R RIS drdy S 0 VRIS og(R/S) ifa=1,
RixRd Ty A20 Rd-1g1+a if0<a<l.

The estimate (5.8) is proved in Appendix A below.

To prove (5.7), for any s > 0 choose k € N such that 2k > s. Taking into account that
S < R, by the change of variables and scaling we compute

2

|92 d—1 0k
2 ~ k 2 ~ v v d—1
(5:9)  lluxrslFer e = /Rd |A%uy ps|” dx —/0 ’{aTQ +— 87’} uyps(r)| rdr
| g2k g, §ok-1 a OF 2 i
:[;‘m%+rm%l+“+wwﬁwﬁW7T dr

< N4 (/000 ’77(2]‘“)(%) ’2rd_1dr + |a1] /000 77(%_1) (%))2rd_3dr

IS ‘ad| /Ooo 77(k:) (T_SR)rrd_l_%dr)

< /\2<Sl_4de_1 +S1—2(2k—1)Rd—3+M+Sl—2de—1—k)

S A251_4de_1 .

Interpolating between the L? and H?*-norm of uy g s (cf. [1, Proposition 1.32]), we conclude
from (5.6) and (5.9) that

s 2—2 — —
x5 o gy < Muars | frow gy lun .51l o feay S AZRETTST2.

Proof of Theorem 5.1. Let ug := uy g,s be the function in (5.5), where we fix R > 0 and for
S < R set

A=S"1.
Then, since by our assumption 1 < a < d,
(510) ||uS||%[s(Rd) S Rd_la
q q
R4 x R4 Ty
(5.12) luslff, gay = AWPSRITH o NP TIRI S1GRd-1,

Since R is fixed, we conclude that |usl|p»ge) — 0o for p > ¢ when S — 0. O
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Proof of Theorem 5.2. Let ug :=) g s be the function in (5.5), where we set

A=RP and S=(\RIY)FT =R,

with
N R A e T
Then we compute
(5.14) wm@mﬁsL
U U q
(5.15) RHR | R|$ ) y”jfi D Gy <1,
(5.16) HuRHip(Rd) ~ ARG ~ RA(P—Praa)

provided that R > S, that is, either R > 1 and v < 1 or R < 1 and v > 1. To complete the
proof Theorem 5.2 for p # p,aq we select R according to Table 2.

q I5} y Choice of R Conclusion
é > ‘ifds <0 0<y<l R— ||uR||iP(Rd) — oo for p < prad
l € ((1_25)+,i:_2§) g<0 y>1 R—0 HUR”IEP(RCI) — 00 for p > praq
s<1/2and i g < 52 350 4<0 R — HuR”ip(Rd) — 00 for p > prag

TABLE 2. Choice of R which ensures R > S and HuRHiP(Rd) — oo for a > 1.

Next we prove that £29(R?) ¢ LPrad(RY) when % # 1525 Similarly to [28, Lemma 6.4],
we consider the “multibump” sequence

m
URm = Z URk,
k=1

28+d—1
where the functions up are as in (5.5) with R = R*, A\ = R¥3| § = R*" 2T and where f3
is given in (5.13). Note that for R # 1 and sufficiently large quotient R/S the functions gk
(k=1,...,m) have mutually disjoint supports.

If l > Ci_% or s < 1/2 and % < % then we let R — oco. We obtain

+d >
5a7) ol gy = m.
(5.18) Hvaqus(Rd) <m,
q
R xR4 Y

For derivation of (5.19) see [28, proof of Lemma 6.4]. To obtain (5.18), we observe that

(520) ”UR,meqs(Rd) Z HuRkHHS Rd + 2 Z uRl uR] (Rd)'

4,J=1,i>j
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If s is an integer the second term vanishes, or if s < 1 then the second term is negative. Other-
wise, s = ¢+ o, with £ € N and o € (0,1). Thus by the Gagliardo seminorm characterization
of HS(Rd), if up: and up; have disjoint supports,

(uris URi) frs (ray jj (Viupi(x) = Viup:(y)) - (Vg (2) = Vg (y) dz dy
i Fs(Rd) =

R xR4 |17_»y‘d+20
(5.21) Yun(@) - Vs (y)
URZ URi\Y
=-2C dx dy.

Similarly to (5.9), we deduce that HDZU)\,R,S”LI(Rd) < AR*181= and hence

(5.22) 1D ug | 1 ey S RF(B+d—14~(1-0))

If% a+d then 3 < 0 and 0 < v < 1. For i > j and if R > R’ we estimate (5.21) a
follows,

1D upi || 1 ey || D s || £ ey

< prild+20) i) (+d—14+~(1-0)

(upi, URJ')HS(]Rd) ~
(5.23)
g Rfi(d+2U)Ri(2(fysfﬁ)+20'y) 5 Rfi(2a(177))7

since we note that 2(ys — ) < d, provided that ¢ < %. Then in (5.20) for all sufficiently
large R we have

(5.24) lorml| ey Sm+ > RO <m,

ij=1,>7

The case % € ((1_223)+, i‘fj) is similar, but letting R — 0 and observing that v < 0.

Now, set
0 X
Wrm(x) =m UR,m(—mg).

Then by the standard scaling we have

(5.25) R ml|7 ey = mP 7,
(5.26) lwr e ey S m> o2,
|wR,m (@)|? |wrm(y)|? 2¢0+0(d+a)+1

(5.27) = drdy < m 7 ToleTarT,

D
If we set

o q—1 0— _ 2s+ «
d+a—q(d—2s) 2(d+ a — q(d—2s))’
then for R — oo and m — oo we obtain
(5.28) lwmml3e g s L
q

(5.29) {f ‘me ’TZR;”(ZM dedy <1,

R4 xRd
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5.30 p ~ mPftod+l Mﬁ
( . ) ||wR,m||Lp(Rd) m m — 00,

since > 1 and d > 2.

The case % € ((1_225)+, ‘i‘fj) is similar, by letting R — 0. O

Proof of Theorem 5.3. The strategy in the case 0 < o < 1 and * 7é 1+2a5 is the same as in

the first part of the proof of Theorem 5.2. Let ugr := uy r,s be the function in (5.5) and we
choose
1
A=RP,  S=(NR"HET =R,
where
B _ (d—1)(2s + )  (d-1)(g—-1)
2@2s—1)+1+a) | q@s-1+1lta
Then (5.14) and (5.15) hold, and

2(2gs+a) )

HuRH’ip(Rd) ~ WP RI-1g ~ A5

provided that R > S. Then to construct the required counterexamples, we select R according
to Table 3.

q 15} ~ Choice of R Conclusion
% > ‘flfj B<0 0<y<l R— o0 HURHip(Rd) — oo for p < 2(33‘_?;“)
Le ((B2),, %) B<0 4>1  R—=0  [ugll,ge — oo for p> 252t
s <1/2 and % < 11125 B>0 ~4<0 R — o0 HUR”IEP(Rd) — oo for p > Q%Z‘r;a)

TABLE 3. Choice of R which ensures R > S and HURH]EP(R@ — oo for a < 1.

In the case 0 < a < 1, s < 1/2 and ¢ = H—O‘ we note that 2(32_8:;6“) =

to the proof of Theorem 5.1, for ug := u,\,Rﬁ Wlth a fixed R > 0 and for S < R we set

A= § T — g

Then
(531) 2 gy = RO,

|us ()| |us (y)|® d-1
(5.32 dedy S R* 7,

) f{{d |:ZZ _ y‘d o
__2 (1-2s)

(5.33) lus? gay = APPSR o NP3t i1 A g1 2552 pd—1
Since R is fixed, we conclude that [us||ppge) — oo for p > Q%Zfaa) = %

The case a = 1 is similar, but takes into account the logarithmic correction in (5.8). We
omit the details. O
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6. RADIAL COMPACTNESS: PROOF OF THEOREM 1.5

We need the following preliminary local compactness result.

Lemma 6.1 (Local compactness). Let d € N, s > 0, a € (0,d) and q € [1,00). Then the
embedding £5*4(RY) — L} (RY) is compact.

Proof. Multiplication by 6 € S(R%) is a continuous mapping £*%(R%) — H*(R%). Indeed by
the fractional Leibniz rule, see e.g. [18, Theorem 1.4], we obtain

I(=2)20ull 2 gay S I1(=2)2ull 2@y 10] Lo ety + I1(=2) 20 pr gy lull 20sre)
L~ 2sta (Rd)

with r such that 2(32;‘;%) + % = % For ¢ = 1, we set r = oco. Hence by Theorem 3.1,

HHUHHS(Rd) < C(e)HuHSSﬂavq(Rd)-

For every p > 0, we choose § € C°°(R?) such that § = 1 on B, and 6 = 0 in R?\ By,. Let
(un)nen be a bounded sequence in Es’a’q(Rd). Setting v, = 6u,, theorem 3.1 implies that
(Vn)nen is also bounded in H*(R?). We can assume that v, converges weakly to some v in
L?(R?%). By testing against suitable test functions, it follows that v is also supported in By,
and thus © € L>°(R%). By Plancharel’s identity we have

o2 _ ~ PYPND ~ a2
fon — 012 g A CCRLCIRTS /Ig [5u(€) — B(E) 2 de.

>R

By showing that the right hand side goes to zero we will infer by Holder’s inequality that
un —vl[L1(,) — 0. We have

(&) — (O ? o 2515 (€) — D(€)|2 ¢
/§|>Rlvn<€> (OFdE < 7oy /R A1) a(©) = 9O A < s

Since €€ € L2(Bs,), by weak convergence in L?(Bs,) we have 5, (£) — 9(€) almost every-
where. To conclude it suffices to show that

, — (6> d€ = o(1).
(6.1) Af (@) @ g = o)

. ~ 1 1
Notice that [[Bulloc < lallzi(s,,) < #(Bap)? [vallizs,,) < a(Bay) [vallse(re) and hence

[0, (€)—0(€)|? is estimated by a uniform constant so that by Lebesgue’s dominated convergence
theorem (6.1) holds. This concludes the proof. O

Proof of theorem 1.5 . We sketch the proof only in the most interesting case o > 1, s < 1/2,
and ¢ > 1%237 namely when pp.q < ¢. Notice that for all R > 0, by (1.1) and Lemma 6.1,
interpolation between ¢ and p’ = 1 yields the compact embedding £27(RY) — LI (R9) for
all 1 < p < ¢q. Thus it suffices to show that for any bounded sequence (up)nen in €559 (R?)
it holds that

sup/ lun|P = 0, R — oo.
neN JRI\Bg(0)
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When p < we use Lemma 4.1 which yields

1-2s 2 ’
/Rd\BR(O) [nl” < o()lltnllg oy B = o0

When p > %55 2 the same conclusion holds by arguing as in the proof of (4.15) and using

the strict inequality p < praq. This is enough to prove the theorem for o > 1, s < 1/2, and
q>

1— 28
The other cases are similar, estimating the various integrals as in Proposition 4.1 for ¢ <

L;HO‘ and according to Table 1 for ¢ > d+°‘ . This concludes the proof. ([l

APPENDIX A. PROOF OF CLAIM (5.8)

Proof of (5.8). We use an estimate for radial functions from [28]. Similar estimates were
previously obtained in [15,30,33].

Lemma A.1 ([28, Lemma 6.3]). Let d > 2 and « € (0,d), then for every measurable function
f:10,00) = [0,00)

H = |d’yl dmdy—/ / P q(r s) f(s)rd1s?drds

where the kernel Kﬁd :[0,00) X [0, 00) — o0 is defined for r,s € [0,00) x [0,00) by

d d—3

1

1—
Kolc%d(ra 5) = Cd/ ( Z) - d—a dz.
’ 0 ((s+r)2—4dsrz) z

Moreover, there exists M > 0 such that

d—1 .
(Tl—s) z m if a <1,
(A1) Kla(rs) <M (5T m3El jfa=1
(L)=" if a > 1.

Case a > 1. From (A.1) we obtain for radially symmetric functions that

q NE oo q qpd—1g4d—1
H |o(2)|* |y ’dxdy<c// ()l lie(s) dr ds,

e Tyl rs)z"

and hence that

q q 00 o 2
I SR o ([T e

Let u = uy p g be defined in (5.5). Then

e RS (6 |r — R\ 4. 2
H @)l |le [l @I 4, 4y < cx20 (/ ('; |> r§+2—1dr> .

Rd xRRd R=S
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S—|r—R
Using the trivial estimate M < 1 it follows that

q [e]3 [e3 2
(U = |%)|dd<qn%«R+$%a_m Sﬁa)
wivga 1Tl
xR
and we get the desired estimate.

Case o = 1. From (A.1) we obtain for radially symmetric functions that

q q q q,.d—1.d—1 9
H o(@)|? [e(y)] d<C// [pr)tlp(s) 1T s ) 20 sl g g

« R4 ’x_y’d 7’5) P) ’T—S|
and hence that
)4 2
H o ()] Isz;_)l dz dy <C/ / () 7 E 533 n Arts oo
Rd [z —yl I — s|

S—|pr—
Let u = uy g s be defined in (5.5). Using the estimates @ <landr < R+S5,s<R+S
we have

q q R4S R+S
R xRd \:v B ’7” — 5|

and we can conclude that
q q R+S R+S
x

_ |d a T _ S‘
R4 xR4
i.e.
NE
([ ‘“| ) ’ﬁl (@)W 4, 4y < CARIIS (IR — 10§ + 1) = ORI+ 52,
Rixgd 1T
Case 0 < a < 1. This case is similar to o = 1, we omit the details. ]
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