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Abstract (150 words): 

Tourists’ photographs can be a rich database for researchers wishing to study tourists’ 

perceptions and attitudes towards destinations. Such data can also be useful in examining 

how tourists behave, where, when, with whom and why. Many researchers favour the 

qualitative analysis of such data, which requires the use either of relatively small numbers of 

photographs or a considerable expense of researcher time and effort to undertake. Much of 

this process is speculative, in that it involves working with variables which may or may not 

prove to be significant in addressing the hypotheses set for the research. This research note 

recommends the use of a preliminary phase of research in which a quantitative approach is 

used to reduce the number of variables needing to be coded. Canonical variate analysis is 

suggested as an appropriate tool for achieving this. Case study results are presented to 

demonstrate the utility of this approach. 

 

Keywords: Tourists, Photographs; Canonical variate analysis; Data reduction 

 

Highlights: 

• Tourists’ photographs can be a rich source of behavioural, perceptual and attitudinal data 

• Analysis of such data tends to be resource-intensive if coder subjectivity is to be regulated 

• A pragmatic response may be to identify and select the most meaningful variables for coding 

• Canonical variate analysis (CVA) has great potential to accomplish this without loss of data 

richness or explanatory power 

• CVA has distinct advantages over alternative multivariate techniques 
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Making sense of tourists’ photographs using canonical variate analysis  

 

1. The problem 

There is a considerable untapped potential for applying visual research methods in tourism 

(Garrod, 2008). This is despite the significant progress that has been made in recent years in 

terms of theorising visual tourism research (Scarles, 2011), addressing critics’ concerns about 

the ‘subjective’ nature of visual research (Crang, 2003; Balomenou & Garrod, 2014), and 

technological advances in personal photography (Straumann et al., 2014). More specifically, 

tourists’ photographs can serve as rich datasets to help answer pressing questions about 

tourists’ preferences and behaviours. Such images are increasingly available in large volumes, 

whether they are collected using participant-generated image (PGI) techniques (Sun et al.; 

2014; Pan et al., 2014; Fung and Jim, 2015; Cutler et al., 2016) or employ images found in the 

media, notably the burgeoning number of social media sites such as Flickr and Instagram 

(Michaelidou et al., 2013; Kim & Stepchenkova, 2015; Konijn et al., 2016). As such, they can 

be thought of as ‘big data’ and have enormous potential for the application of data-mining 

techniques, for example to identify the elements of the destination that appeal the most to 

tourists and can be emphasised in marketing activities. 

Big photographic datasets can, however, be exceedingly resource-hungry to prepare, analyse 

and interpret (Pearce et al., 2015; Balomenou & Garrod, 2014). Merely the coding-up can take 

months of researcher time. Pearce et al. (2015), for example, used a team of two researchers 

who worked full time for four months coding 10,000 photos into 42 variables. One of the 

authors of this note, meanwhile, spent two months of full-time work coding 500 photos into 

33 variables, and a further four months coding 996 photos into 12 variables. These significant 

resource demands serve to limit the practicality of using visual methods with large numbers 

of images. 

This research note sets out a possible response, which is to identify a reduced set of variables 

that are of greatest relevance to the research questions involved (Darlington et al., 1973), 

thus making the coding-up and subsequent analytical processes more manageable. 
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Researchers have long proposed that a preliminary interpretation phase could be applied to 

reduce the number of variables to be coded up (Albrecht, 1980). 

Principal component analysis (PCA) has, to date, been the most widely used technique (Taylor 

et al., 2002; Schultz et al., 2004; Johnson et al., 2007) for dimensionality reduction. A 

proposed advantage of PCA is that it does this by introducing new variables that are 

composites of the original variables. It is important to note, however, that PCA is 

fundamentally an unsupervised technique (Martens & Neaes, 1989), so it does not allow a 

priori hypotheses to be tested. Even where correlations are observed, PCA can provide no 

measure of the significance of these (Johnson et al., 2007). Moreover, PCA cannot provide 

clear graphical representations of the interrelationships between the variables, which would 

be particularly useful in the interpretation of large datasets. Assuming unknown weights for 

the variables in PCA also risks losing valuable information. This is mainly because of 

correlation between the number of units analysed and the number of variables (Pérez et al., 

2013). Moreover, PCA cannot be used in cases where the data come from multiple samples, 

nor for a repeated-measures design. This limits the utility of PCA as a means of dimensionality 

reduction. 

An alternative technique that is sometimes used for dimensionality reduction is Factor 

Analysis. Dwyer et al. (2004), for example, use it to suggest various indicators that can be used 

to estimate the competitiveness of tourism destinations. However, as with PCA, there are no 

established criteria against which to assess the findings. 

This paper proposes that canonical variate analysis (CVA) has strong potential as a 

dimensionality-reduction technique. It can be said to be superior to similar techniques in 

several important respects. CVA can measure the comparative contribution of each variable 

in the canonical (composite) relationships that are calculated, hence allowing the 

relationships between various sets of the independent and dependent variables to be 

assessed. As Larimore (1997) explains, CVA is a maximum likelihood statistical technique that 

can be used to classify the relationships between variables. As such, CVA allows for the testing 

of hypothesis using a measure of prediction accuracy. The following section presents a brief 

outline of CVA. 
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2. A proposed solution: Canonical variate analysis 

Canonical variate analysis (also known as canonical discriminant analysis) can be thought of 

as a variant of canonical correlation analysis (CCA), where group indicators form one variable 

set (Gittins, 1985). CCA was developed by Hotelling (1935) as a means of identifying the linear 

combination of one set of variables, X, that is most correlated with another linear 

combination of a second set of variables, Y. Beaghen (1997, p. 6) emphasises that Canonical 

Correlation has the property of biorthogonality, which is ‘the property that each canonical 

variate in the X-domain is uncorrelated with the canonical variates in the Y-domain except 

the corresponding Y-variate’. CCA has been used in tourism research in the context of travel 

motivations and push and pull factors (Uysal & Jurowski, 1994; Oh et al., 1995; Balogu & Uysal, 

1996; Gonzalez & Bello, 2002), tourism behaviour (Wong & Lau, 2001), destination marketing 

and branding (Ahmed, 1986; Hosany et al., 2006), e-relationship marketing and hotel financial 

performance (Jang et al, 2006), hosts perceptions of impacts (Allen et al, 1988) and demand 

(Uysal & O’Leary, 1986). However, CCA has not been used extensively, nor specifically to 

analyse tourism photographs. 

Muller (1982) proposed a general linear model (GLM) for canonical correlation techniques. 

Developed in 1948 by Rao (1948, 2005), CVA can be thought of as being part of this family. As 

with CCA, the technique works by constructing canonical variables, each of which can include 

one or more of the original variables. Darlington et al. (1973) explain the mechanics as a two-

stage process, with two statistics. Starting with the original variables, the first canonical 

correlation is the highest correlation possible between a weighted combination of X variables 

and a weighted combination of Y variables. These are the first canonical variates (CVs). The 

second canonical correlation is then calculated as the highest correlation that can be found 

between the X and Y weighted composites that are uncorrelated with the first canonical 

variates (Figure 1). These are known as second CVs. 
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Figure 1: CVA process  

 

CVA thus works by detecting the optimum dimensionality of each variable that strengthens 

the relationship between dependent and independent variable sets. It is based on the 

premise of defining how much of the variance in one set of variables can be explained by the 

second set. The most common practice to achieve this is by identifying functions where the 

canonical correlation coefficients are statistically significant beyond some predetermined 

level, typically .05. In so doing, using CVA helps to ensure that proper regard is given to 

variations within each variable set (Darlington et al., 1973; Chatfield & Collins, 1980; Russell 

et al., 2000; Bussell et al., 2008). Hair et al. (1998) recommend three criteria to use in 

combination to decide which of the canonical functions should be interpreted: (i) the level of 
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statistical significance of the function, (ii) the magnitude of the canonical correlation, and (iii) 

the redundancy measure for the percentage of variance accounted for from the two data sets. 

CVA has thus far been used predominantly in the biological sciences (Albrecht, 1980; Causton, 

2008). Few studies have used CVA in a tourism and hospitality context (rare exceptions being 

Tran et al., 2013, Tran & Ralston, 2006) and none as a tool to analyse photographs in the 

tourism field, despite the surge in readily available photographic data that often result in very 

large photographic datasets (Lee, 2016). 

 

2.1. Justification for the use of CVA 

The studies by Brown et al. (1980) and Tran and Ralston (2006) both used CVA to test 

hypotheses they had already developed based on interviews with informants. This reflects a 

key advantage of CVA that is reported by non-social science researchers, who suggest that 

CVA is best used when the researchers have a priori knowledge of the data (Alsberg et al., 

1998; Johnson et al., 2007). PCA, in contrast, is fundamentally an unsupervised technique. 

CVA also allows any variable (be it an original variable or a canonical one) to be continuous, 

categorical or even mixed (Darlington et al., 1973). This can be vital in the social sciences, 

allowing ‘soft’ data to be brought in to help the analysis. 

It is also argued that CVA is useful for data visualisation, particularly to evaluate inter-

relationships (Johnson et al., 2007) and to reveal the basic structure of complex datasets 

(Albrecht, 1980). CVA allows the mapping of clusters in two or three dimensions (Hammer 

and Harper, 2006). Albrecht (1980) explains how CVA helps visualise the dataset on a plot. He 

regards CVA as a succession of rotational and rescaling transformations of the original 

variables which protect the integrity of the data while allowing the researcher to interpret 

them (Albrecht, 1980). He further suggests that using CVA is as if the:  

‘coordinate system defined by the original descriptor variables is suspended in air such 

that the investigator can walk around it until the most favorable vantage point is located 

for viewing the differences among the populations. Canonical Variate Analysis simply 
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defines the most favourable vantage point as being related to the greatest statistical 

separation among the populations’ (Albrecht, 1980, p. 687)  

The results of CVA can be conveyed as bivariate plots of one CV versus another, or as three-

dimensional plots (Albrecht, 1980). This allows associations between sample groups to 

become visible (Johnson et al., 2007). The mean of each sample class is plotted against each 

CV, usually surrounded by a confidence area. The confidence area is circular, and Quinn and 

Keough (2002) describe it as an ‘interim’ calculation of the population mean which, according 

to Johnson et al. (2007), is equivalent to confidence intervals in the univariate situation. If 

95% confidence circles are plotted around each mean, significantly different sample groups 

can be identified visually on the plot (by their lack of overlap). 

 

2.2. An example: The use of CVA in a volunteer-employed photography (VEP) study  

This section presents an example of the use of CVA. The dataset used in the study was 

collected for a tourism planning study in the St David’s area of Pembrokeshire Coast National 

Park, Wales (see Balomenou & Garrod, 2014; this paper presents a different analysis of the 

data collected in that study). Tourists and residents were given cameras, diaries and a 

demographic survey, and were asked to photograph positive and negative aspects of 

holidaying and living in the area. A brief description of the dataset is presented in Table 1:  

 

Table 1: Study dataset in numbers 

Total number of participants 278 
Overall return rate 64.7% (51.2% locals, 76.5% tourists) 
Average survey time per participant 21 minutes 
Total data collection time for main 
study 

98 hours 

Number of photographs analysed 1496 

 

CVA analysis of this data used only the variables that were already expressed in quantitative 

form or could sensibly be converted into such. These are shown in Table 2.  
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Table 2: Survey questions data drawn for the quantitative analysis 

Tourists Locals 

Question 3: What is your main activity 
during your visit? 

Question 2: How long have you lived in St 
David’s peninsula? 

Question 4: Why have you chosen to visit 
Pembrokeshire Coast National Park? 

Question 4: Is your job related to the 
tourism industry in any way? 

Question 5: What is it that you value most 
about this area? 

Question 5: What do you think is special 
about Pembrokeshire Coast National Park? 

Question 6: Have you visited 
Pembrokeshire Coast National Park 
before? 

Question 6: What is it that you value most 
about this area? 

Question 7: Is this the start, middle or end 
of your holiday? 

Question 9: How might the area be 
improved? 

Question 8: Are you going to spend all 
your holiday in the St David’s area? 

Question 10: Given the chance would you 
ever think of moving elsewhere in this 
country? 

Question 10: How might the area be 
improved? 

Question 11: Our National Parks are under 
a lot of pressure. Are there any aspects of 
the area that, if changed, would mean you 
wouldn’t enjoy living in Pembrokeshire 
Coast National Park anymore? 

Question 12: Our National Parks are under 
a lot of pressure. Are there any aspects of 
the area that, if changed, would mean that 
you would not choose to come back to 
Pembrokeshire Coast National Park for 
your holidays? 

 

 

The software used to run the CVAs for this study was devised by Dr David Causton, from the 

Institute of Biological, Earth and Rural Sciences at the University of Wales in Aberystwyth and 

has been used in multiple occasions in biology (Bussell et al., 2008; Johnson et al., 2007). 

Other software available in the market include CVAGen6 AND PCAGen6.  

The data were extracted by coding the answers to these questions. There are three reasons 

why these questions were used. First, the answers to them could be grouped effectively and 

researcher interpretation was minimal. Second, one of the objectives of the analysis was to 

compare photos captured by different user groups, so the questions and the answers needed 

to be comparable. Third, the decision to run a satisfactory number of tests and get the 
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maximum amount of information from the data collected: the data collected from the rest of 

the questions asked in the survey would be used in the analysis of the survey and the in-depth 

analysis of all the elements of the technique together.  

Maintaining data integrity and avoiding researcher bias was imperative. Thus, instead of the 

researchers constructing the variables according to their own interpretation of the face value 

of the photographs, the coding system was based on interviews with the general public and 

their assessment of the photograph content. Thirty photos were selected randomly from the 

dataset and copies were placed on a board that could be easily transported. The board was 

approximately 1m x 80cm and could hold a maximum of 30 photographs. Interviews took 

place in three different locations in Aberystwyth, another seaside town in the same part of 

Wales, among people from a similar range of age groups and user groups to those in 

Pembrokeshire. Stratified sampling was used, based on data drawn from the UK census 

regarding age and gender. Participants were simply asked to describe what they could see in 

five photographs of their choice.  

Seven sets of variables were produced in the process of identifying the variables for the 

coding process. After each set was produced, its selection was challenged by the research 

team and an improved version was produced, which was again challenged and so on. The final 

set of 30 variables that would be used as a basis for the coding were identified in the seventh 

attempt and can be seen in Table 3. 
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Table 3: Thirty variables identified after the interviews 

A. Overall percentage 
 

Water  Natural and man-made features: sea, river, marina, 
jetty, harbor 

Sky, blue  
Sky, clouds  
People  
Trees  
Vegetation Grass, fern, bracken 
Flowers  
Beach Shingle, sand, when tide is out 
Rocks/ hills In the distance and when this is what was captured, 

natural features 
Signs Road sign, walking path signs, cycling signs, 

advertisements, speed signs, etc 
Animals  
“Coastal Path”  
Heritage buildings  St David’s Cathedral, Treffin’s Mill, Solva Mill, etc 
Other buildings  
Means of transport  
Other man-made features  Roads, fences, tomb stones, car parks, rubbish bins, 

benches, chairs, tables 
Rubbish  
Tourism paraphernalia  Wind breaks, beach mats, tents, umbrellas 

B. Specific, units 
 

People Standing, sitting, engaged in activities 
Trees  
Signs  
Dogs  
Horses  
Other animals  Mammals, insects, birds, excluding people 
Heritage buildings St David’s Cathedral, Treffin’s Mill, Solva Mill, etc 
Other buildings  
Rubbish bins  
Cars  
Boats  
Flowers  

 

Initially, 500 randomly selected photographs were coded using these 30 variables. A double- 

blind coding process was used to enable inter-coding reliability statistics to be calculated. To 
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maintain the integrity of the dataset, CVA was applied to this dataset and it became apparent 

that 12 variables were responsible for 95% of total variation. These 12 variables (Table 4) were 

then used to code the rest of the dataset. This greatly reduced the amount of time and 

resources required to code up the remaining two-thirds of the photographs. 

 

Table 4: The final 12 variables used in the CVA coding 

Variable no. 1     Blue sky (proportion of photograph area) 

Variable no. 2     Cloudy sky (proportion) 

Variable no. 3     People (proportion) 

Variable no. 4     Animals (proportion) 

Variable no. 5     Car interior (proportion) 

Variable no. 6     Other man-made features (proportion) 

Variable no. 7     Tourism paraphernalia (proportion) 

Variable no. 8     People (number visible in photograph) 

Variable no. 9     Signs (number) 

Variable no.10    Horses (number) 

Variable no.11     Heritage buildings (number) 

Variable no.12     Flowers (number) 

 

Twelve hypotheses were then constructed, based on information from the literature and the 

data from the demographic questionnaires. These hypotheses were then tested using CVA. A 

high proportion of the original variation (99% to 100%) could be explained in relation to 

hypotheses with relatively few variables. One such hypotheses will be presented here to 

illustrate the success of using CVA for this dataset. 

Hypothesis 11: There are significant differences between the photographs taken by 

members of the local community compared to visitors according to what they value 

the most about the area. 
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Although it does not explain the highest proportion of the variation, it is used to indicate how 

CVA successfully analyses this complicated and rich dataset. The CVA thus compared 

photographs taken by locals and tourists according to people’s perception about what they 

most value about the area. Eight groups were thus formed, as shown in Table 5: 

Table 5: CVA 11 populations 

Locals  Tourists 
No overdevelopment No overdevelopment 
Quality of life Quality of life 
Location Location 
Community Other 

 

 

Table 6: Eigenvalues and canonical correlations 

Root No.       Eigenvalue      Pct.    Cum. Pct. 

 1 0.1299   57.5923      57.5923      

 2 0.0449 19.9005 77.4927 

 3 0.0230 10.1863 87.6791 

 4 0.0132 5.8513 93.5304 

 5 0.0101 4.4707 98.0011 

 6 0.0033 1.4810 99.4822 

 7 0.0012 0.5178 99.9999      

 

The CVA plot (Figure 2) explains 87.7% of the total original variation. There are significant 

differences between the photographs taken by residents compared to visitors, according to 

what they value the most about the area. The only two groups whose photographs were not 

significantly different were locals who appreciate the limited scale of development in the 

area, and tourists who appreciate the quality of life in the area.  
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Figure 2: CVA 11 - what locals and tourists most value 

 

The two groups that were placed opposite on both axes were ‘tourists who most valued that 

the area is not overdeveloped’ and ‘locals who most valued the sense of community in the 

area’. Participants who fell into the first of these groups tended to include more people in 

their photographs, and participants in the second group tend to include more blue sky and 

man-made features. 

To verify the validity of the coding of the photographs, a third of the photographs were blind-

double coded by an independent researcher. The researcher coded the 500 randomly chosen 

photographs the principal researcher had used to narrow down the number of the original 33 

variables to 12. Both sets of coding were plotted and similarity was observed.  

 

3. Insights and future research 

The case study identifies three benefits of using CVA in analysing ‘big’ visual data. Firstly, it 

shows how CVA can be used to justify a reduction in the dimensionality of multivariate data. 

In this case, the identified variables were reduced from 30 to 12. This made a considerable 
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reduction in coding time. It took the researchers almost two months to code 30 variables for 

500 photos, implying the need for approximately another four months to complete the 

remaining 996. Using CVA allowed the elimination of variables that were common to all 

participants and could not be used to differentiate between photographs, thus reducing the 

number of variables that needed to be coded up. 

Secondly, the richness of the dataset was not compromised in the process. Despite the 

reduction in the number of the variables, the reduced variable set was responsible for 95% of 

the total original variation. Future researchers can be confident that by using a robust coding 

technique followed up by CVA, they can reduce the dimensionality of their dataset without 

compromising its depth and richness. 

Thirdly, an advantage of CVA is that the photos can be traced back to those who took them. 

This enabled the discrimination and identification of structures and inter-relationships within 

the multivariate statistical population (Bussell et al., 2008). These were associated with 

particular sorts of people and differences of opinion among different user groups of the same 

area. The analysis of the photographs indicated, inter alia, that there are significant 

differences between people who were born in the area compared with those who moved in 

the area, locals and tourists who were happy to see the character of the area change and 

those who were not, tourists depending on the stage of their holiday, and so on.  

CVA is subject to some limitations, including that it is the CVs that interpreted, rather than 

the original variables, and that interpretation takes place in pairs. Considering that solutions 

depend on the level of correlation between and within sets, it is likely that a modification in 

a variable of the one set will have implications to the structure of the other set. 

The findings presented here are invaluable, given the purpose of the study, which was to 

attempt to identify differences in the destination image construed by visitors, that perceived 

by residents, and that proposed by marketers (an aim also adopted by Michaelidou et al., 

(2013). Indeed, Markwell (1997), Urry (2002), and Urry and Larsen (2011) have all observed 

that the tourism industry can shape a destination image in ways that may be dissonant with 

that of residents or, indeed, be consistent with the actual experience of tourists. MacKay and 

Couldwell (2004), meanwhile, suggest that keeping a visual inventory of the visitors’ images 
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of a site can be especially useful for informing marketing efforts. The management 

implications of this kind of analysis of ‘big’ visual data are thus substantial. Future research 

can attempt to identify an ‘optimal’ image for use in marketing a destination to a target 

market: one that has all the components that will appeal particularly to their aesthetics. It 

would therefore be useful to examine whether marketing campaigns can be more effective if 

they employ such techniques. The analysis of differences in resident and tourist perceptions 

of the impacts of tourism can also be useful to complement tourism planning decision-

making.  

 

4. Conclusions 

This research note has demonstrated the utility of CVA as a dimensionality-reduction 

technique for use with ‘big’ visual data. Such data is increasingly becoming available, both 

through the use of PGI techniques and ‘found’ data available in various media, notably the 

huge amount of user-generated content on photograph-sharing websites. Using CVA in this 

way can make the meaningful analysis of such data considerably less resource-hungry, 

rendering it more tenable for use by destination marketing organisations, tourism planning 

departments, tour operators and other stakeholders. In an era of ever-shrinking research 

budgets this represents too an important an option to be overlooked, as it has tended to be 

to date. CVA also has distinct advantages over PCA and Factor Analysis in achieving this task, 

including the calculation of a meaningful correlation statistic, preservation of data integrity 

and the availability of graphical display of data patterns and inter-relationships, making the 

findings intelligible to a wide audience. As such, this research note argues that CVA opens up 

the potential for visual tourism research methods as never seen before.  
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