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Abstract

Structural parameter estimation is affected not only by measurement noise but

also by unknown uncertainties which are present in the system. Deterministic

structural model updating methods minimise the difference between experimen-

tally measured data and computational prediction. Sensitivity-based methods

are very efficient in solving structural model updating problems. Material and

geometrical parameters of the structure such as Poisson’s ratio, Young’s mod-

ulus, mass density, modal damping, etc. are usually considered deterministic

and homogeneous. In this paper, the distributed and non-homogeneous char-

acteristics of these parameters are considered in the model updating. The pa-

rameters are taken as spatially correlated random fields and are expanded in

a spectral Karhunen-Loève (KL) decomposition. Using the KL expansion, the

spectral dynamic stiffness matrix of the beam is expanded as a series in terms

of discretized parameters, which can be estimated using sensitivity-based model

updating techniques. Numerical and experimental tests involving a beam with

distributed bending rigidity and mass density are used to verify the proposed

method. This extension of standard model updating procedures can enhance

the dynamic description of structural dynamic models.

Keywords: Parameter estimation, Sensitivity-based model updating, Random
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field.

1. Introduction

Quantifying uncertainty in numerically simulated results is not recent. How-

ever, during the last few years, this research area has undergone remarkable

development, in special for dynamic systems. The method most used is Monte

Carlo (MC) simulation [1]. Otherwise, non-sampling approaches such as the5

Perturbation Method may be used. It consists of expanding a random field

in a truncated Taylor series around its mean [2]. The Direct Method consists

in applying the moment equations to obtain the random solutions. The un-

knowns are the moments and their equations are derived by taking averages

over the original stochastic governing equations. A powerful method in compu-10

tational stochastic problems is the Stochastic Finite Element Method (SFEM)

[3]. SFEM is an extension of the classical deterministic FE approach to the

stochastic framework, i.e., to solve static and dynamic problems with stochastic

mechanical, geometric, or loading properties [4]. Adhikari [5] presented a dou-

bly Spectral Stochastic Finite Element Method, where the Spectral Element15

Method is given a stochastic treatment.

The spectral element method (SEM) [6, 7] is based on the analytical solu-

tion of the displacement wave equation, written in the frequency domain. The

element is tailored with the matrix ideas of FEM, but in SEM the interpolation

function is the exact solution of the wave equation [8, 9, 10, 11, 12, 13, 14, 15,20

16, 17, 18, 19, 20]. Both techniques, SFEM and doubly Spectral SFEM, are

formulated in a context of random fields. A method with a wide application

when considering random fields is the Karhunen-Loève (KL) expansion [3, 21, 2].

The KL expansion can be used to discretize the random field by representing

it by scalar independent random variables and continuous deterministic func-25

tions. By truncating the expansion, the number of random variables becomes

finite and numerically treatable. Many authors use the KL expansion to model

Gaussian random processes, but it is possible to extend the KL expansion to
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non-Gaussian processes [22, 23, 24, 25].

Model updating methods in dynamic structural analysis are basically a pro-30

cess of minimizing the differences between the numerical model predictions and

measured responses obtained in experimental tests using a parameter estima-

tion procedure [26, 27]. The model updating procedure starts with the param-

eter choice (parametrisation), followed by a correction procedure based on the

available measured data. The parametrisation is an important topic in model35

updating which requires considerable physical knowledge regarding the system.

More details can be found in references [28, 29, 30, 31, 32]. In the field of

structural dynamics, some authors traditionally use modal parameters (natu-

ral frequencies and mode shapes) for updating the model due to the facility in

estimating the modal parameters using modal analysis [33, 34] and also to the40

freedom in the choice of the updating parameters and the applicability of the

method [35]. Examples of theoretical and practical applications can be found

in references [36, 27, 37, 38, 32]. However, in a structural dynamic test, it is a

common practice to measure the data in the form of Frequency Response Func-

tions (FRF), which requires an additional modal parameter estimation [33, 39]45

to extract the modal parameters. Natke [40] presented a model updating proce-

dure using measured FRFs instead of modal parameters. After that, a growing

number of researchers focused on model updating algorithms using the mea-

sured data directly [41, 42, 43, 44, 45, 46, 47]. In the practical applications of

model updating, the measured data are often incomplete and include random-50

ness. Based on the system variability, some authors proposed stochastic model

updating techniques [48, 49, 50, 51]. The main advantage of this approach is to

add randomness in the model updating process. Statistical techniques combined

with model updating can improve the parameter estimation. The first works

that incorporated statistical methods for the treatment of measurement noise55

in model updating were presented by Collins at al.[52] and later by Friswell

[53]. Differences between measure data and model predictions may arise due to

randomness present in the system, e.g. manufacturing variability as well as to

variations in the material properties of the structure components. In Friswell’s
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paper [53], errors in the analytical model and in the measurements (e.g. caused60

by noise [[27]] ) are associated to a weighting matrix and it is shown how to

estimate the variance in the updated parameters. This technique is called the

minimum variance estimator. Other techniques for model updating in the pres-

ence of uncertainty are the Bayesian probabilistic framework presented by Beck,

Katafygiotis, and Mares [54, 55, 56], model updating based on an inverse ap-65

proach, and fuzzy arithmetic [57]. Soize[58] presented a methodology for robust

model updating using a non-parametric probabilistic approach. Uncertainty in

structural properties, such as Poisson’s ratio, Young’s modulus, mass density,

modal damping, etc., are considered irreducible uncertainty and require differ-

ent mathematical approaches for the updating procedure. The distributions70

of the updated parameters are then modified in order to improve the corre-

lation between model-predicted distributions and measured data distributions.

This is a technique developed by Mottershead at al., and Mare at al. [59, 56]

and it is called stochastic model updating or uncertainty identification. The

stochastic model updating is efficient, not only because it includes variabil-75

ity data due to measurement noise, for example, but also because it includes

the variability already existing in the structural property [59, 56, 48, 49, 50].

Govers and Link[60] presented an approach for stochastic model updating with

covariance matrix adjustment from uncertain experimental modal data. Fur-

ther, researchers have investigated different problems using stochastic model80

updating [52, 53, 61, 62, 63] . The majority of those methods can include and

estimate of the global model randomness or uncertainties that are assumed to

be spatially homogeneous along the structure. By considering that structure

parameter values can be spatially distributed in nature, Adhikari and Friswell

[64] estimated distributed parameters modelled as realizations of a random field85

using modal parameters.

The main goal of this paper is to investigate the use of sensitivity-based

model updating with measured FRFs to estimate spatially distributed param-

eters. The distributed parameters are assumed to be realizations of a random

process, which is more realistic for simulating the variability caused by the man-90
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ufacturing process. The study uses a beam structure where the uncertainty is

included in the flexural bending and mass per unit of length modelled by SEM.

Such distributed deviations are unknown a priori and therefore can be con-

sidered to be samples from a random field, which is discretized into random

variables using the KL expansion. The implemented technique is validated in95

a numerical simulation and then applied to experimental data for a polymer

beam manufactured by 3D printing.

2. Spectral element method for stochastic systems

By supposing a linear damped distributed parameter dynamic system gov-

erned by a linear differential equation [65]

ρ0
∂2U(r, t)

∂t2
+ L10

∂U(r, t)

∂t
+ L20U(r, t) = 0 (1)

where U(r, t) is the time dependent displacement variable, r ∈ R is the spatial

position vector, and t is time specified in some domain D. In the frequency

domain we can write eq. 1 as :

−ω2ρ0u(r, ω) + iωL10{u(r, ω)}+ L20{u(r, ω)} = 0 (2)

Similar to FEM, the frequency-dependent displacement within an element can

be interpolated from the nodal displacements ue(r, ω) = g(r, ω)T ûe(ω), where

ûe(ω) is the nodal displacement vector and g(r, ω) is the vector of frequency-

dependent shape functions represented by

g(r, ω) = Γ(ω)s(r, ω) (3)

where Γ(ω) is a complex matrix that depends on the boundary conditions and

s(r, ω) is a vector containing exponential functions [e−ik(ω)x]. One of the ad-

vantages using SEM is that only one element is required for a homogeneous

structural member. The global dynamic spectral matrix for a undamped deter-

ministic system can be described as

D0(ω) = −ω2M(ω) +K(ω) (4)
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In a weak form, frequency-dependent n×n complex stiffness and mass matrices

can be expressed as

K(ω) =

∫

D

ks(r)L20{g(r, ω)}L20{g(r, ω)}Tdr (5)

and

M(ω) =

∫

D

ρ(r)g(r, ω)g(r, ω)T dr (6)

In this present work a spectral element for a straight homogeneous beam is

used ([6, 7, 5]) and expanded for a stochastic treatment.100

2.1. Spectral Beam Element

The fundamental equations for the flexural motion of a beam structure are

briefly described. A more extensive formulation can be found in [6, 7]. Figure (1)

shows an elastic two-node beam element with an uniform rectangular cross-

section subjected to dynamic forces at both ends. In this section all parameters105

are assumed to be deterministic variables.

Figure 1: Two-node beam spectral element

The equation of motion of a damped Euler-Bernoulli beam under bending

vibration may be written as [5],

∂2

∂x2

[

EI(x)
∂2v(x, t)

∂x2

]

+ ρA(x)
∂2v(x, t)

∂t2
= 0 (7)

where EI is the bending stiffness, ρA is the mass per unit length, v(x, t) is

the transverse flexural displacement, E is the Young’s modulus, A is the cross-

section area, ρ is the mass density, and I is the inertia moment. A hysteretic
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structural damping is assumed and introduced into the model formulation by110

adding an imaginary part proportional to the loss factor η to the Young’s mod-

ulus. In the deterministic case a complex value given E = E0(1 + iη), where

E0 is the Young’s modulus mean value, η is the loss factor and i =
√
−1 [6]. In

the stochastic case, the complex random variable E(θ) will follow the complex

random variable rules [21]. It is given by E(θ) = Ê(θ)+E0iη, where the random115

part of the Young’s modulus is a real value , Ê(θ), and the imaginary part is

taken as deterministic E0iη.

By considering the homogeneous differential equation with constant proper-

ties along the beam length, the spectral form becomes:

d4v̂

dx4
− β4v̂ = 0 (8)

Equation (8) can be split into a product of two terms which must vanish. A

solution of the type v(x)eiωt = ekxeiωt, where k (wavenumber) is given by:

k4 − β4 = 0 ⇒ k = ±iβor ± β (9)

for

β4 =
ρAω2

EI
(10)

where ω is the circular frequency. For the spectral Euler-Bernoulli beam element

of length L, the general solution of v(x)eiωt = ekxeiωt can be then obtained in

the form of

v(x, ω) = a1e
−ikx + a2e

−kx + a3e
−ik(L−x) + a4e

−k(L−x) = s(x, ω)a (11)

where

s(x, ω) =
[

e−ikx, e−kx, e−ik(L−x), e−k(L−x)
]

a(x, ω) = {a1, a2, a3, a4}T (12)

The spectral nodal displacements and slopes of the beam element

d =

















v1

Θ1

v2

Θ2

















=

















v(0)

v′(0)

v(L)

v′(L)

















(13)
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can be related to the displacement field at the two nodes (x = 0 and x = L), by

d =

















s(0, ω)

s′(0, ω)

s(L, ω)

s′(L, ω)

















a = Γ(ω)a (14)

where

Γ(ω) =

















1 1 e−ikL e−kL

−ik −k ie−ikLk e−kLk

e−ikL e−kL 1 1

−ie−ikLk −e−kLk ik k

















(15)

The frequency-dependent displacement within an element is interpolated

from the nodal displacement vector d by eliminating the constant vector a from

Eq.( 13) and using Eq.( 14) it can be expressed as

v(x, ω) = g(x, ω)d (16)

where the shape function can be expressed as

g(x, ω) = s(x, ω)Γ−1(ω) =































g1(x)

g2(x)

g3(x)

g4(x)































T

(17)

=































−2 cos(kx)−2 cosh(kx)+(1−i)(cos(k((1+i)L−x))+i cos(k((1+i)L−ix))+cosh(k((1+i)L−x))+i cosh(k((1+i)L−ix)))
4 cos(kL) cosh(kL)

− 2 sin(kx)+2 sinh(kx)+(1+i)(sin(k((1+i)L−x))−sin(k((1+i)L−ix))+sinh(k((1+i)L−x))−sinh(k((1+i)L−ix)))
4k(cos(kL) cosh(kL)−1)

cos(k(L−x))−cos(kx) cosh(kL)+cosh(k(L−x))−cos(kL) cosh(kx)+sin(kx) sinh(kL)−sin(kL) sinh(kx)
2−2 cos(kL) cosh(kL)

sin(k(L−x))−cos(kx) sinh(kL)+cosh(kx)(sinh(kL)−sin(kL))+cosh(kL)(sin(kx)−sinh(kx))+cos(kL) sinh(kx)
2k(cos(kL) cosh(kL)−1)































T

In the case of the Euler-Bernoulli beam, a generalized transverse displace-

ment at an arbitrary point can be expressed as (Eq. 16),

v(x) = g1(x)v1 + g2(x)Θ1 + g3(x)v2 + g4(x)Θ2
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The damping is assumed hysteric and for this reason only the (4x4) mass

and (4x4) stiffness matrices will be determined in a weak form:

K0(ω) =

∫ L

0

EI0(x)g
′′(x)g′′T (x)dx (18)

and

M0(ω) =

∫ L

0

ρA0(x)g(x)g
T (x)dx (19)

where ′ express the spatial partial derivative. The stochastic beam spectral

element is formulated as a random process expanded in a spectral KL decom-

position.120

2.2. Karhunen-Loève expansion

Since the equations of motion for the beam spectral element are written as

partial differential equations, it would be very difficult to apply random fields

directly to them. To overcome this difficulty the random field is discretized in

terms of random variables. By doing this, many mathematical procedures can

be used to solve the resulting discrete stochastic differential equations. The

procedure applied here is a random field spectral decomposition using the KL

expansion. Assuming that the spectral covariance function is finite, symmetric

and positive definite, it can be represented by a spectral decomposition, similar

to a Fourier series expansion. By using this concept a random field can be

expressed as a generalized Fourier series,

̟(r, θ) = ̟0(r) +

∞
∑

j=1

ξj(θ)
√

λjϕj(r) (20)

where̟(r, θ) is a random field with covariance function C̟(r1, r2), θ denotes an

element of the sample space Ω, so that θ ∈ Ω, and ξj(θ) are uncorrelated random

variables. The subscript 0, in ̟0(r) implies the corresponding deterministic

part. The constants λj and functions ϕj(r) are, respectively, eigenvalues and

eigenfunctions satisfying the integral equation:

∫

D

C̟(r1, r2)ϕj(r1)dr1 = λjϕj(r2) ∀j = 1, 2, .... (21)
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In this paper one dimensional spaces are considered. Since a Gaussian random

field is representative of many physical systems and closed form expressions for

the KL expansion exist, a Gaussian autocorrelation function with exponential

decay will be assumed here. It can be expressed as,

C(x1, x2) = e−|x1−x2|/b (22)

where b is the correlation length, which is an important parameter to describe

the random field. A random field can be expanded in a finite basis of determin-

istic functions and random variables if the correlation length is large compared

with the domain under consideration; for more details, see [3]. An analytical

solution in the interval −a < x < a where it is assumed that the mean is zero,

produces a random field as,

̟1(x, θ) =

∞
∑

j=1

ξj(θ)
√

λjϕj(x) (23)

Defining c = 1/b, the corresponding eigenvalues and eigenfunctions for odd j

are given by [3],

λj =
2c

ω2
j + c2

; ϕj(x) =
cos(ωj

L
2 )

√

a+
sin(2ωja)

2ωj

where tan(ωja) =
c

ωj
(24)

and for even j are given by,

λj =
2c

ω2
j + c2

; ϕj(x) =
sin(ωj

L
2 )

√

a− sin(2ωja)
2ωj

where tan(ωja) =
ωj

−c
(25)

These eigenvalues and eigenfunctions will be used to obtain the stochastic

dynamic stiffness matrices for beam spectral elements.

For practical applications, equation (23) is truncated with M terms, which

can be selected based on the amount of information to be kept. Its value is also125

related with the correlation length and the number of eigenvalues kept, provided

that they are arranged in decreasing order.

2.3. Stochastic beam spectral element

In this work the flexural bending (EI(x)) and mass per unit length (ρA(x))

are considered as spatially distributed random variables. Therefore, the flexural
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bending is assumed as a random field of the form:

EI(x, θ) = EI0[1 + ε1̟1(x, θ)] (26)

and the mass per unit of length is assumed a random field as

ρA(x, θ) = ρA0[1 + ε2̟2(x, θ)] (27)

The subscript 0 indicates the mean value, 0 < εi ≪ 1(i = 1, 2, ...) are deter-

ministic constants and the random field ̟i(x, θ) is taken to have zero mean,

unit standard deviation and covariance Rij(ξ). Since, EI(x, θ) and ρA(x, θ) are

strictly positive, ̟i(x, θ)(i = 1, 2, ...) is rigorously required to satisfy the prob-

ability condition P[1 + εi̟i(x, θ) ≤ 0] = 0. This requirement would exclude

the use of Gaussian models for these random fields. However, for small εi, it

is expected that Gaussian models can still be used if the primary interest of

the analysis is to estimate the first few response moments and not the response

behaviour near tails of the probability distributions. Expanding the random

fields ̟1(x, θ) and ̟2(x, θ) in a KL spectral decomposition one obtains the

(4x4) stochastic dynamic stiffness matrix written as,

D(ω, θ) = D0(ω) + ∆D(ω, θ)

= −ω2 [M0(ω) + ∆M(ω, θ)] + [K0(ω) + ∆K(ω, θ)] (28)

where the deterministic part is given by the Eqs.(18)-(19), and the random

part ∆D(ω, θ) is related to the stiffness and mass coefficients ∆K(ω, θ) and

∆M(ω, θ), respectively, expanded in a KL decomposition of the form

∆K(ω, θ) = ε1

NK
∑

j=1

ξKj(θ)
√

λKjKj(ω) (29)

and

∆M(ω, θ) = ε2

NM
∑

j=1

ξMj(θ)
√

λMjMj(ω) (30)

where Nk and NM are the numbers of terms kept in the KL expansion; ξKj(θ)

and ξMj(θ) are uncorrelated Gaussian random variables with zero mean and
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unit standard deviation. The constant (4x4) matrices Kj(ω) and Mj(ω) can be

expressed as

Kj(ω) = EI0

∫ L

0

ϕKj(xe + x)g′′(x)g′′T (x)dx (31)

Mj(ω) = ρA0

∫ L

0

ϕKj(xe + x)g(x)gT (x)dx (32)

where xe the local coordinate. Substituting equation (24) and (25) in equa-

tion (31) and (32), the closed-form expressions for the random part of the stiff-

ness and mass matrices for the beam spectral element in odd j can be expressed

as

Kj(ω) =
EI0

√

a+
sin(2ωja)

2ωj

[

∫ L

0

cos(ωj(xe + x))g′′(x)g′′T (x)dx

]

(33)

Mj(ω) =
ρA0

√

a+
sin(2ωja)

2ωj

[

∫ L

0

cos(ωj(xe + x))g(x)gT (x)dx

]

(34)

and for even j it is given by

Kj(ω) =
EI0

√

a− sin(2ωja)
2ωj

[

∫ L

0

sin(ωj(xe + x))g′′(x)g′′T (x)dx

]

(35)

Mj(ω) =
ρA0

√

a− sin(2ωja)
2ωj

[

∫ L

0

sin(ωj(xe + x))g(x)gT (x)dx

]

(36)

3. Sensitivity-based updating method using FRFs

The objective of sensitivity based parameter estimation methods is to im-

prove the correlation between the measured and predicted responses. The cor-

relation is determined by an objective function involving modal or dynamic

response data. In general, they are non-linear functions with respect to the

model parameters, and so an iterative procedure is required with the possible

associated convergence problems [27]. The non-linear least squares method uses

a truncated Taylor series expansion of the dynamic response in terms of the

12



unknown parameters, often limited to the first two series terms, yielding the

linear approximation:

δH = Sjδξ, (37)

where δH = Hm − Hj is the residual of the measured output, δξ = ξ − ξj is

the perturbation in the parameters, and Sj is the sensitivity matrix. It contains

the derivatives of the frequency response functions with respect to the chosen

parameters to be varied, ξj . The iteration is initialized with ξ0 equal to 0 and it

is assumed that there are more measured data than unknown parameters. Then,

equation (37) provides an over-determined set of simultaneous equations that

can be solved using a least squares solution. Adopting the weighted objective

function:

J(δξ) = εTWeε, (38)

where ε = δH−Sjδξ is the error in the predicted measurements based on the up-

dated parameters and We is a positive definite weighting matrix. Substituting

ε in equation (38) leads to

J(δξ) = WeδHδHT −We(SjδH
T δξ + ST

j δHδξT ) + δξSjWeS
T
j δξ

T . (39)

Minimizing J with respect to δξ is equivalent to:

∇J(δξ) = 0 = −SjWeδH
T + SjS

T
j Weδξ, (40)

and solving equation (40) for δξ results,

δξ = [ST
j WeSj ]

−1ST
j WeδH. (41)

Thus, the updated parameter can be obtained from:

ξj+1 = ξj + [ST
j WeSj ]

−1ST
j We(Hm −Hj). (42)

The solution of equation (42) can be ill-conditioned, which might be a central

problem in this kind of method. The treatment of ill-conditioning is explained

in [66, 67, 68, 69, 32]. Titurus and Friswell [70] presented a regularization

13



treatment within the context of sensitivity-based FE model updating, which is

used in this paper. The method gives the updated parameter vector as:

ξj+1 = ξj + [ST
j WeSj + γ2Wp]

−1{ST
j We(Hm −Hj)}. (43)

The regularization parameter γ ∈ [0 1] determines the relative weight be-130

tween the regularized solution (‖ξj+1 − ξj‖) versus the corresponding residual

norm (‖§j(ξj+1 − ξj)− (Hm −Hj)‖). The size of the regularisation parameter

γ will provides the balance between the residual (‖Hm −Hj‖) and the param-

eter change (ξj+1 − ξj). For γ too small the problem will be too close to the

original ill-posed problem, while γ too large the problem solved will have little135

connection with the original problem [67]. Link [71] suggested the regularisation

parameter γ2 lies between 0 to 0.3. Accordingly, in this paper the regulariza-

tion parameter was assumed as 0.3. The updated parameter is evaluated in

an iterative process until convergence, which is determined when the change in

parameters,‖ξj+1 − ξj‖ or the FRF ‖Hm −Hj‖ is sufficiently small.140

The choice of the weighting matrices is a difficult subject, and estimated

statistical properties can be employed [27]. Here, we use a solution procedure

presented by Grafe [47] where no explicit statistical calculations of the weighting

factors are required and the correlation coefficient (Xs(ω)) is used directly as

[rWer] = [rXs(ω)r] (44)

The correlation coefficient is based on the Modal Assurance Criterion (MAC)

theory [72, 73]. For any measured frequency the correlation coefficient is a

correlation between the measured and predicted response vectors, given by

Xs(ω) =

∣

∣{Hm(ω)}H{Ha(ω)}
∣

∣

2

({Hm(ω)}H{Hm(ω)})({Ha(ω)}H{Ha(ω)})
(45)

whereHm(ω) and Ha(ω) are the measured and predicted FRF vectors at match-

ing excitation/response locations, respectively. Xs(ω) assumes a value between

zero (Xs(ω) = 0) that indicates no correlation exists and unity (Xs(ω) = 1)

which signifies perfect correlation. The correlation coefficient is sensitive to dis-

crepancies in the global deflection shape of the structure. However analogous
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to the MAC, it is unable to detect scaling errors. A definition of parameter

weighing matrix (Wp) was proposed by Link [74] and later by Mottershead and

Foster [69]. Similar to the approach of Link[74], the parameter weighing matrix

used here is expressed as

[rWpr] =
‖[we]‖2

max(diag([we]))
[rdiag([we])r] (46)

where [we] = [[S][rWer][S]
T ]−1.

3.1. Stochastic sensitivity of the FRF

The sensitivity method is based on the linearisation of the non-linear rela-

tionship between measurable outputs (modal data or frequency response func-

tions) and the model parameters to be estimated [32]. By considering that in

practice the measured raw data obtained from the experimental test are the

FRF, in this paper the sensitivity of the FRF will be used. The coefficients of

the KL expansion are assumed as uncertain parameters and will be estimated

by Eq. (42). By following [40, 42, 46, 47] the deterministic FRF sensitivity

related to a general parameter ϕ can be written as:

∂H(ω)

∂ϕ
= −H(ω)

∂D(ω)

∂ϕ
H(ω) (47)

where H(ω) = D−1(ω) is the inverse of the deterministic dynamic stiffness ma-

trix. In the stochastic context, two techniques can be applied. The fist one

estimates a random variable, ϕ(θ). The second one is associated with the pa-

rameter ξKj of the KL expansion, which are the uncorrelated random variables

of the random field. With the first approach equation (47) becomes:

∂H(ω, θ)

∂ϕ(θ)
= −H(ω, θ)

∂D(ω, θ)

∂ϕ(θ)
H(ω, θ) (48)

where H(ω, θ) = D−1(ω, θ), which is inverse of the stochastic dynamic stiffness

matrix (eq.28). In the second approach, used in this paper, equation (47) is

described by:

∂H(ω, θ)

∂ξ
= −H(ω, θ)

[

∂K(ω, θ)

∂ξKj
− ω2 ∂M(ω, θ)

∂ξMj

]

H(ω, θ) (49)
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the derivative of K(ω, θ) and M(ω, θ) related to the parameter ξKj produces:

∂K(ω, θ)

∂ξKj(θ)
= ε1

√

λKjKj(ω) (50)

and
∂M(ω, θ)

∂ξMj(θ)
= ε2

√

λMjMj(ω) (51)

Substituting equation (50) and (51) in (49),

∂H(ω, θ)

∂ξ(θ)
= sij = −H(ω)

[

ε1
√

λKjKj(ω)− ω2ε2
√

λMjMj(ω)
]

H(ω) (52)

In this paper the sensitivities of the receptance FRFs (H(ω, θ)) were taken in

dB scale [75] with 1m/N reference. It can be shown that [75]

∂(20log10) |H(ω, θ)|
∂ξ(θ)

≈ 8.6859





ℜ(H(ω, θ))∂(H(ω,θ))
∂ξ(θ) + ℑ(H(ω, θ))∂(H(ω,θ))

∂ξ(θ)

ℜ(H(ω, θ))2 + ℑ(H(ω, θ))2





(53)

The elements of the sensitivity matrix sij are given by equation (53) and the

NK +NM dimensional vector of updating parameters ξ is

ξ = [ξK1
, ξK2

..., ξKNK
ξM1

, ξM2
..., ξMNM

]T (54)

The elements of the vector ξ are sampled from independent and identically

distributed standard Gaussian random variables (i.e., with zero-mean and unit

standard deviation) from the KL expansion. The parameter vector ξ will be145

estimated from the measured FRF and used to reconstruct the EI(x, θ) and

ρA(x, θ) random field realizations. Once the parameters ξ are obtained, the

estimated FRF can be calculated as H(ξ).

4. Numerical and experimental tests

The objective is to show the efficiency of the developed technique. A free-free150

beam structure is considered and modelled by a two-node beam spectral element

with variabilities considered for the beam flexural rigidity EI and for the mass

per unit of length ρA. The measured FRF simulates the receptance FRF with

an impact force excitation at node 1 and displacement response measured at

16



some points along the beam. The nominal physical properties and geometrical155

parameters of the beam are: L = 0.33 m, h = 0.006 m, b = 0.018 m, η = 0.1,

E = 1.198 GPa, and ρ = 1140 kg/m3. It is assumed that a variation of the

value of EI and ρA can be modelled by a homogeneous Gaussian random field.

For the numerical calculations we considered ǫ1 = ǫ2 = 20% of variation with a

correlation length of b = L/3.160

Numerical cases

Two initial cases were carried out with noise-free simulated FRFs which are

referred to as synthetic measured FRF. In the first case, an investigation of

how the number of FRFs considered can increase the amount of information

and yield more accurate parameter estimates. A random field estimation of the165

beam flexural rigidity and mass per unit of length was performed. The data was

generated using 4 terms in the KL expansion, simulating a physically realistic

property. We use the FRFs obtained at beam length positions (0∗L), (0.25∗L),
(0.70 ∗L), and (L) of the perturbed beam element. In this case, the objective is

to reconstruct the distributed flexural rigidity (EI) function and mass per unit170

of length (ρA) from the synthetic measured FRFs obtained with a sample of

the stochastic beam model.
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Figure 2: Baseline, sample and reconstructed random field sample of the flexural rigidity along

the length using 1,2,3, and 4 FRFs in the estimation.
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Figure 3: Baseline, sample and reconstructed random field sample of the mass per unit of

length using 1,2,3, and 4 FRFs in the estimation.

The flexural rigidity random field sample estimated with 1, 2, 3 and 4 FRFs,

and 4 terms in the KL expansion is shown in figure (2). In all cases, the re-

constructed functions are close to the simulated functions which generated the175

synthetic measured data. Analogously, the mass random field sample estimated

is shown in figure (3). Both reconstructed random field samples using only one

FRF showed the least effective estimation. By including FRFs in the updat-

ing procedure one can improve the information and a better estimation can be

achieved. In this numerical example, two FRFs are suitable for the analysis,180

given that the estimation using more than two FRFs did not present major im-

provements. Because of the increased information when more FRFs are included

in the updating procedure, better estimation for the reconstructed random field

samples were obtained.
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Figure 4: Comparison between the FRF obtained with an initial value, and updated value,

and the synthetic measured FRF using one FRF at node 1(0 ∗ L).
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(b)

Figure 5: Comparison between an initial value, updated and the synthetic measured using

two FRFs (a) at 0 ∗ L and (b) at 0.25 ∗ L.
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Figure 6: Comparison between an initial value, updated and the synthetic measured using

three FRFs (a) at 0 ∗ L, (b) at 0.25 ∗ L, and (c) at 0.70 ∗ L.

The reconstructed random field samples are used to calculate the FRF of

the stochastic beam at each iteration in the optimisation procedure. The com-185

parison between the synthetic measured, initial and updated FRF is shown in

figure (4), (5), (6), and (7). In all cases of this first test (estimation with 1, 2,

3 and 4 FRFs), the initial FRFs are calculated assuming deterministic homo-

geneous EI and ρA, in the end of the iteration procedure the FRFs calculated
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Figure 7: Comparison between an initial value, updated and the synthetic measured using

four FRFs (a) at 0 ∗ L, (b) 0.25 ∗ L, (c) 0.70 ∗ L, and (d) L.
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Figure 8: FRF correlation coefficient (Xs(ω)).

with the estimated parameters is closer to the synthetic measured FRF. The190

FRFs exhibit a high level of correlation as it can be seen in the correlation co-

efficients plotted in figure (8). The high correlation indicates no errors because

of its immunity to scaling, i.e., each predicted frequency point can be scaled to

match its measured counterpart. For all cases, similar correlation results were

obtained.195
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Figure 9: Convergence of the FRF residual (‖Hm −Hj‖) and parameters (‖ξj+1 − ξj‖) using

(a) 1 FRF, (b) 2 FRFs, (c) 3 FRFs, and (d) 4 FRFs.

The iteration convergence stop criterion was the change in the response,

‖Hm − Hj‖ or change in parameter ‖ξj+1 − ξj‖ below 1% and 0,1% of rela-

tive error, respectively. Figure 9(a-d) shows the convergence of the FRFs and

updating parameters estimated using 1 , 2, 3, and 4 FRFs.
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In the second case, it was fixed in two the number of FRFs used in the es-200

timation and varied the number of terms in the KL expansion. The FRFs used

were measured at node 1 and 2. Two other samples of random field data were

generated with 12 terms in the KL expansion. The estimation of distributed

parameters, EI and ρA, was performed with 4, 8 and 12 terms in the expan-

sion, and similar stop criteria was assumed. As in the last test, the objective205

is to reconstruct the distributed flexural rigidity and mass from the synthetic

measured FRFs obtained with a sample of the stochastic model. However, the

random field samples are estimated with a different number of terms.
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Figure 10: Baseline, sample and reconstructed random field sample of the flexural rigidity

along the length using 4 (LHS), 8 (middle) and 12 (RHS) modes.
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Figure 11: Baseline, sample and reconstructed random field sample of the mass along the

length using 4 (LHS), 8 (middle) and 12 (RHS) modes.

Figures (10) and (11) show the flexural rigidity and mass random field sample

estimations, respectively. As mentioned, the samples were simulated with 12210

modes in the KL expansion and the estimation performed using 4 (shown in

Fig. 11 on the left had side, 8 (shown in the middle), and 12 (shown in the right

hand side) parameters (ξ). Although the terms in the KL expansion cannot

be precisely estimated from the data, note that both reconstructed distributed

random parameters presented a good approximation of the sample distributed215
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parameters. Obviously, the random field samples reconstructed with the same

number as the actual sample can better represent the distributed parameter.

However, the reconstruction performed with 4 and 8 modes was reasonable.
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Figure 12: Comparison among an initial, updated and the synthetic measured FRF at node

1 (LHS) and node 2 (RHS). Updated FRFs calculated with the random field sample recon-

structed with 4 modes.
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Figure 13: Comparison among an initial, updated and the synthetic measured FRF at node

1 (LHS) and node 2 (RHS). Updated FRFs calculated with the random field sample recon-

structed with 8 modes.
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Figure 14: Comparison among an initial, updated and the measured FRF at node 1 (LHS)

and node 2 (RHS). Updated FRFs calculated with the random field sample reconstructed

with 12 modes.

Next, the reconstructed flexural rigidity EI and mass per unit of length ρA

were used to calculate the frequency response function of the stochastic beam220

at each iteration of the optimization procedure. The responses used 4, 8 and 12
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Figure 15: FRF correlation coefficient (Xs(ω)).

terms in KL expansion, are shown in figures (12), (13) , and (14), respectively.

They show the comparison between initial, synthetic measured, and estimated

FRFs. In all cases, the comparison between the updated and synthetic measured

FRFs showed a suitable approximation. Figure (15) shows that the correlation225

function (Xs(ω)) is unity across the full spectrum. The major part of the correc-

tions was introduced by the first iterations and subsequent iterations introduced

only minor adjustments.
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Figure 16: Convergence of the FRF (‖Hm−Hj‖) and parameters (‖ξj+1−ξj‖) using 4 (LHS),

8 (middle) and 12 (RHS) terms in the KL expansion.

In figure 16 the graphics show the evolution of the iteration process until

the change in the FRFs or change in the updating parameters with 4, 8, and 12230

terms in KL expansion falls under a determined threshold value. In this case,
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similar to the first case, the stop criterion was assumed 0.5% for both.

Experimental results

A beam made of polyamide (PA) with uniform rectangular cross-section was

used in the experimental tests. The beam is 18mm wide, 6mm thick, with235

a mass per unit length of approximately 0.02343kg/m. The average flexural

rigidity (EI) was obtained experimentally. The beam was manufactured using

the Selective Laser Sintering (SLS) technology. As a consequence of the man-

ufacturing process, a variability of the beam properties along its length can be

expected. In order to verify the efficiency of the proposed method it was applied240

to a measured FRF and results were compared with measurements of the flexural

rigidity at many points along the beam measured using an ultrasound appara-

tus. The Young’s modulus (E) was measured at 22 points along the beam with

an ultrasonic pulse-echo device. The experimental setup is shown in figure (17).

In this experiment a shear wave transducer (OlympusU8403072/U8403071) was245

used. The signals were measured and analysed using an Olympus Parametrics

NDT EPOCH 4 Ultrasonic Flaw Detector. The measured Young’s modulus E

along the beam is shown in figure (19), where it is compared with the predicted

values using the KL expansion with 4 and 6 estimated parameters. The number

of terms in KL expansion was chosen based on the shape sample characteristics.250
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Figure 17: Procedure for experimental measurement of polyamide beam properties.

Figure (18) shows the second experimental test setup, used to measure the

FRFs. The signals were acquired and analysed using LMS Test Lab. The FRFs

were estimated with a bandwidth of 1024Hz and 1024 spectral lines. An impact

hammer was used to excite the structure and a micro accelerometer Kistler series

8614A was used to measure the response. The experimental FRFs were obtained255

by impact force excitation at node 1 and acceleration response at node 1 and

node 2. The micro accelerometer mass is considerably small and lightweight

compared with the beam so that the accelerometer mass was neglected. To

simulate the free-free boundary condition we supported the beam by using a

soft polyurethane foam edges.260
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Figure 18: The test rig for the free-free beam.

The initial, measured sample of EI and reconstructed distributed sample

with 4 and 6 terms in KL expansion are shown in figure (19). The random

field experimental sample could not be reconstructed accurately; nevertheless,

an acceptable difference between updated and measured FRFs can be observed.

Experimental, initial and updated FRFs using 4 and 6 terms in KL expansion265

are illustrated in figure (20) and (21), respectively. Similar stop criteria of the

numerical case were applied. Examining both cases, it can be observed that

the reconstruction using 6 terms was more appropriated in this test. Even the

FRFs updated procedure showed better convergence using 6 terms; However,

the reconstructed EI(x) with 4 terms presents a good approximation compared270
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with random field sample measured by ultrasound. Figure 23 shows the iteration

process until the change in the FRFs and change in the updating parameters

converge with 4, and 6 terms in the KL expansion.
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Figure 19: Baseline, experiential sample and reconstructed random field sample of the flexural

rigidity (EI(x)) with 4 (LHS) and 6 (RHS) terms in the KL expansion.
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Figure 20: Comparison between an initial value, updated and the experimental measured FRF

at node 1 (LHS) and at node 2 (RHS) using 4 terms in the KL expansion.
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Figure 21: Comparison between an initial value, updated and the experimental measured FRF

at node 1 (LHS) and at node 2 (RHS) using 6 terms in the KL expansion.
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Figure 22: FRF correlation coefficient (Xs(ω)).
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Figure 23: Convergence of the FRF (‖Hm−Hj‖) and parameters (‖ξj+1−ξj‖) using 4 (LHS)

and 6 (RHS) terms in the KL expansion.

As shown in figure (22), the adjustments in the model have led to a high

level of correlation. Regarding the numerical and experimental cases presented,275

it was shown that the proposed method can be used to reconstruct the dis-

tributed variability of the beam. In all cases, the random field samples were

reconstructed with a certain error associated. In general, all results were sat-

isfactory; close shape of the random field sample was estimated, which demon-

strated the performance of the proposed technique. It was also observed that280

the iteration always stopped after achieving the threshold value for the FRF
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residual, similarly to the second case.

5. Final Remarks

In the present work, a technique to estimate spatially distributed parameters

of samples of a stochastic structure using a KL expansion and sensitivity-based285

FRF model updating was proposed. Randomness was included in the flexural

rigidity (EI) and mass per unit length (ρA) of a beam structure. As a stochastic

model is employed, the sensitivity-based method using FRF is also developed

for a stochastic model based on a spectral beam element. To verify the efficiency

of the presented technique numerical and experimental tests were performed. In290

the first case, random field estimation of the beam flexural bending and mass

per unit length have were performed. The discretized variables (ξ) were es-

timated from the synthetic measured FRF through a non-linear least squares

curve fit procedure. A subset of these random variables can be considered as

parameters to reconstruct the random field of the flexural bending and mass per295

unit of length. In the experimental test, an experimentally obtained FRF was

used. An experimental measurement of Young’s modulus at 22 points along

the beam was performed using ultrasound. By comparing the reconstructed

and experimentally measured of EI(x) the proposed method proved to work

reasonably well. Ongoing work consists of improving these preliminary results300

by curve fitting many measured FRF, instead of just one, to enrich the spatial

information of the measured data. Based on the numerical and experimental

cases presented, it was shown that the proposed method can be used to recon-

struct the distributed variability of the beam. In all cases, the random field

samples were reconstructed with a certain error associated. In general, all re-305

sults were satisfactory, close shape of the random field sample was estimated,

which demonstrated the performance of the proposed technique.
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