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Highlights

• Irregular lattices are analysed considering the compound effect of viscoelasticity and stochas-

ticity.

• A practically relevant stochastic modelling approach is developed in conjunction with quasi-

periodic lattices to consider spatially correlated structural and material attributes.

• Computationally efficient and physically insightful closed-form analytical formulae are devel-

oped for analysing viscoelastic properties of spatially irregular lattices in frequency domain.
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Abstract

An analytical framework is developed for investigating the effect of viscoelasticity on irregular

hexagonal lattices. At room temperature many polymers are found to be near their glass tem-

perature. Elastic moduli of honeycombs made of such materials are not constant, but changes in

the time or frequency domain. Thus consideration of viscoelastic properties are essential for such

honeycombs. Irregularity in lattice structures being inevitable from practical point of view, analysis

of the compound effect considering both irregularity and viscoelasticty is crucial for such structural

forms. On the basis of a mechanics based bottom-up approach, computationally efficient closed-

form formulae are derived in frequency domain. The spatially correlated structural and material

attributes are obtained based on Karhunen-Loève expansion, which is integrated with the developed

analytical approach to quantify the viscoelastic effect for irregular lattices. Consideration of such

spatially correlated behaviour can simulate the practical stochastic system more closely. The two

effective complex Young’s moduli and shear modulus are found to be dependent on the viscoelastic

parameters, while the two in-plane effective Poisson’s ratios are found to be independent of viscoelas-

tic parameters and frequency. Results are presented in both deterministic and stochastic regime,

wherein it is observed that the amplitude of Young’s moduli and shear modulus are significantly

amplified in the frequency domain. The response bounds are quantified considering two different

forms of irregularity, randomly inhomogeneous irregularity and randomly homogeneous irregularity.

The computationally efficient analytical approach presented in this study can be quite attractive for

practical purposes to analyse and design lattices with predominantly viscoelastic behaviour along

with consideration of structural and material irregularity.
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1. Introduction

Hexagonal lattices/ lattice-like structural forms are present as materials and structures in abun-

dance across various length-scales (nano, micro and macro) within natural systems and artificial

products. Such structures have received considerable attention in last few decades as an advanced

material because of the capability to meet high performance application-specific demands in various

critically desirable parameters such as specific strength and stiffness, crushing resistance, fatigue

strength, acoustic properties, shock absorption properties, electro-mechanical properties, corrosion

and fire resistance (Gibson and Ashby, 1999). The application of honeycomb core for lightweight

sandwich structures is an active area of research (Dey et al., 2018; Mukhopadhyay and Adhikari,

2016c; Yongqiang and Zhiqiang, 2008; Zenkert, 1995). An in-depth understanding of the structural

behaviour of such hexagonal lattices is useful in emerging research fields of nano-materials like

Graphene and Boron Nitride, which are often idealized as hexagonal periodic structures (Liu et al.,

2012; Mukhopadhyay et al., 2016a; Pantano et al., 2004).

To eliminate the need of detail finite element modelling for hexagonal lattices/ honeycombs as

a part of another complex structural system (host structure such as sandwich panel), such lattices

are generally modelled as a continuous solid medium with equivalent elastic moduli throughout the

domain. A similar approach is followed to evaluate the effective material properties of different nano-

structures having hexagonal configurations (Mukhopadhyay et al., 2016a, 2017). It is a common

practice to consider a representative unit cell to model various other periodic structures (Javid et al.,

2016). Extensive research has been conducted so far to predict effective elastic properties of regular

hexagonal lattices without any form of irregularity (El-Sayed et al., 1979; Gibson and Ashby, 1999;

Goswami, 2006; Malek and Gibson, 2015; Zhang and Ashby, 1992). Computational homogenization

techniques are reported in scientific literature to characterize the linear and non-linear responses

of different lattices (Berkache et al., 2017; Nady and Ganghoffer, 2016; Nady et al., 2017; Reis and

Ganghoffer, 2012a,b, 2014; Reis and Ganghofferi, 2010). Other crucial research areas concerning

different responses related to honeycombs include crushing behaviour, low velocity impact, buckling

analysis and wave propagation through lattices (Gonella and Ruzzene, 2008a,b; Hu and Yu, 2013;

Jang and Kyriakides, 2015; Jimenez and Triantafyllidis, 2013; Klintworth and Stronge, 1988; Liu

et al., 2016; Schaeffer and Ruzzene, 2015; Wilbert et al., 2011; Zschernack et al., 2016). Substantial

amount of scientific literature is available dealing with perfectly periodic hexagonal auxetic lattices

(Berinskii, 2016; Critchley et al., 2013). Recently theoretical formulations have been presented for

equivalent elastic properties of periodic asymmetrical honeycomb (Chen and Yang, 2011). Tailorable
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elastic properties of hierarchical honeycombs and spiderweb honeycombs have also been reported

(Ajdari et al., 2012; Mousanezhad et al., 2015; Oftadeh et al., 2014). Analysis of two dimensional

hexagonal lattices/honeycombs, as presented in the above literature review, are based on a unit cell

approach, which can be applied only for perfectly periodic lattice forms.

The major limitation of the aforementioned unit cell based approach is that it cannot be used

to analyse a system with spatial irregularity. Spatial irregularity/variability in lattices is practically

inevitable; it may occur due to structural defects, manufacturing uncertainty, variation in tempera-

ture, micro-structural variability and pre-stressing. Moreover, development of novel meta-materials

(Srivastava, 2016) having hexagonal micro-structures may involve spatially varying structural and

material attributes. To consider the effect of irregularity in cellular lattices, voronoi honeycombs

are found to be considered in literature (Li et al., 2005; Zhu et al., 2001, 2006). Dynamic crushing of

honeycombs with irregularity in cell wall thickness and cell shapes have been investigated (Li et al.,

2007). Triantafyllidis and Schraad (1998) have studied the failure surface of aluminium honeycombs

for general inplane loading considering micro-structural imperfections. Papka and Kyriakides (1994,

1998) and Jang and Kyriakides (2015) have reported numerical and experimental study of honey-

comb crushing and buckling behaviour accounting for geometrical imperfections, such as over/ under

expanded cells and variation in length of bond line. Ronan et al. (2016) have recently investigated

the tensile ductility of cellular solids including the effect of irregularity. The effect due to defects

on regular as well as voronoi honeycombs and the effect of manufacturing uncertainty on auxetic

honeycomb have been reported by Ajdari et al. (2008) and Liu et al. (2014), respectively. Though

the above mentioned studies substantially investigate the effect of irregularities based on limited

number of expensive samples, there is a further need to extend these works following a more realis-

tic and robust probabilistic framework for spatially random imperfections/irregularities in order to

develop appropriate uncertainty quantification models. For voronoi honeycombs, the shape of all

the irregular cells may not be necessarily hexagonal that violates the presumption of hexagonal cell

structure. A thorough review of the literature on hexagonal lattices/ honeycomb dealing with dif-

ferent forms of structural irregularity reveals that the investigations are commonly based on either

expensive finite element (FE) simulations or experimental investigations. As experimental inves-

tigations are expensive and time consuming, it is practically not feasible to quantify the effect of

random irregularities in lattice structures by testing a huge number of samples. In the finite element

approach, a small change in the geometry of a constituent cell may require completely new mesh

generation. For dynamic and quasi-static analysis, separate finite element modelling of the honey-
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comb core in a sandwich structure may increase the degrees of freedom for the entire system up to

such an extent that can make the overall process unmanageably complex and prohibitively expen-

sive for simulation. In case of uncertainty quantification using a Monte Carlo based approach, the

problem aggravates as large number of expensive finite element simulations are needed to be carried

out (Dey et al., 2017, 2016a,b,c,d; Hurtado and Barbat, 1998; Mahata et al., 2016; Mukhopadhyay,

2017; Mukhopadhyay et al., 2015, 2016b,c). Application of surrogate based approaches to achieve

computational efficiency, as adopted in many of these papers, does not make the analysis physically

insightful and this approach often suffer from lack of confidence in the predicted results. Surro-

gate based approaches may not perform well in case of high non-linearity in the model and high

dimensional input parameter space, which becomes a crucial factor in analysing spatially irregular

lattices. Moreover, large scale numerical simulation to quantify the effect of irregularity in cellular

lattices may not necessarily yield proper understanding of the underlying physics of the system. An

analytical approach for this purpose could be a simple, efficient, yet insightful alternative.

Recently an analytical framework has been reported for in-plane elastic moduli of hexagonal

honeycombs with spatially varying structural configurations (Mukhopadhyay and Adhikari, 2016a,b,

2017a,b) without any spatial correlation. However, in practical situation the material and struc-

tural attributes are often found to be spatially correlated. Thus it is important to account for such

correlation in structural irregularity and material property distribution. Moreover, many polymers

are found to be near their glass temperature at room temperature. Elastic moduli of honeycombs

made of such materials are not constant, but changes in the time or frequency domain. So con-

sideration of viscoelastic properties are essential for such honeycombs. Gibson and Ashby (1999)

have provided analytical expressions for regular viscoelastic honeycombs in time domain. Other-

wise, investigation on the viscoelastic properties of honeycomb-like lattices is very scarce to find in

literature. Irregularity in lattice structures being inevitable from practical point of view, analysis

of the compound effect considering both irregularity and viscoelasticty is crucial for such structural

forms.

In the present paper, we aim to develop an analytical model to analyse spatially correlated

irregular lattices considering viscoelastic properties in frequency domain (refer to figure 1(c)). The

spatially correlated structural and material attributes are obtained based on Karhunen-Loève ex-

pansion, which is integrated with the developed analytical approach to quantify the viscoelastic

effect. This paper deals with the viscoelastic properties of randomly disordered lattice structures

that varies spatially i.e. the structural units are different in geometry along a two-dimensional
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Figure 1: (a) Illustration to define degree of irregularity and perturbation of nodes (b) Typical representation of
irregular honeycomb (c) Scope and focus of the present study (d) Conventional unit cell for regular lattices (e)
Representative unit cell element (RUCE) for the analysis of spatially irregular lattices

plane; but they do maintain a particular shape. One representative unit in the present problem

may be considered as shown in figure 1(e) and the entire lattice structure shown in figure 1(b)

is basically a tessellation of the shape shown in figure 1(e) with different values of the lengths of

the three members and their orientations. Thus such repetition of the representative units can be

referred as quasi-periodicity. This article is organized hereafter as follows: description of the under-

lying concepts of viscoelastic analysis is provided in section 2; derivation of the effective viscoelastic

properties of irregular lattices is given in section 3; effective viscoelastic properties of irregular

lattices with correlated structural and material attributes based on Karhunen-Loève expansion is
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described in section 4; section 5 presents the numerical results based on the developed analytical

formulae; Finally, section 6 presents the conclusion and perspective of this paper.

2. Formulation for viscoelastic analysis

In classical elasticity, instantaneous stress within a material is a function of instantaneous strain

only. In contrast, in viscoelasticity, instantaneous stress is considered to be a function of strain

history. When a linear viscoelastic model is employed, the stress at some point of a structure can

be expressed as a convolution integral over a kernel function Fung (1965) as

σ(t) =

∫ t

−∞
g(t− τ)

∂ε(τ)

∂τ
dτ (1)

Here t ∈ R+ is the time, σ(t) is stress and ε(t) is strain. The kernel function g(t) also known

as ‘hereditary function’, ‘relaxation function’ or ‘after-effect function’ in the context of different

subjects. The stress-strain relationship in (1) can be directly applied to dynamic analysis of a solid

body. For example, if it is applied to a uniform rod, Equation (1) can be multiplied by the area

and the equation can be expressed in terms of the force and displacement rate (or velocity). In

practice, the kernel function is often defined in the frequency domain (or Laplace domain). Taking

the Laplace transform of Equation (1), we have

σ̄(s) = sḠ(s)ε̄(s) (2)

Here σ̄(s), ε̄(s) and Ḡ(s) are Laplace transforms of σ(t), ε(t) and g(t) respectively and s ∈ C is the

(complex) Laplace domain parameter. There are two broad ways by which the kernel function g(t)

can be constructed, namely by a physics based approach or a more general mathematical approach.

2.1. Physics-based representation of the kernel function

In a physics based approach, the kernel function appearing in the viscoelastic constitutive re-

lationship can arise from a combination of springs and dashpots. This can be achieved in various

ways. Four main cases are in shown in figure 2.

We define the unit step function U(t) and Dirac delta function δ(t) as below

U(t) =





1 if t ≥ 0,

0 if t < 0.

and δ(t) =





0 if t 6= 0,

∫∞
−∞ δ(t)dt = 1

(3)

Using these functions, the viscoelastic kernel function can be expressed Bland (1960); Christensen

(1982); Fung (1965); Jones (2001) for the four models as

9
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(a) Maxwell model (b) Voigt model

(c) Standard linear model (d) Generalised Maxwell model

Figure 2: Springs and dashpots based models viscoelastic materials.

• Maxwell model:

g(t) = µe−(µ/η)tU(t) (4)

• Voigt model:

g(t) = ηδ(t) + µU(t) (5)

• Standard linear model:

g(t) = ER

[
1− (1− τσ

τε
)e−t/τε

]
U(t) (6)

• Generalised Maxwell model:

g(t) =

[
n∑

j=1

µje
−(µj/ηj)t

]
U(t) (7)

Models similar to this is also known as the Prony series model.

These functions can be constructed by considering the equilibrium of forces arising by stretching

the springs and dashpots appearing in figure 2.

2.2. Mathematical representation of the kernel function

The kernel function in Equation (2) is a complex function in the frequency domain. For nota-

tional convenience we denote

Ḡ(s) = Ḡ(iω) = G(ω) (8)

10
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where ω ∈ R+ is the frequency. The complex modulus G(ω) can be expressed in terms of its real

and imaginary parts or in terms of its amplitude and phase as follows

G(ω) = G′(ω) + iG′′(ω) = |G(ω)|eiφ(ω) (9)

The real and imaginary parts of the complex modulus, that is, G′(ω) and G′′(ω) are also known

as the storage and loss moduli respectively. One of the main restriction on the form of the kernel

function comes from the fact that the response of the structure must start before the application of

the forces. This causality condition imposes a mathematical relationship between real and imaginary

parts of the complex modulus, known as Kramers-Kronig relations (see for example Rouleau et al.

(2013) for recent discussions). Kramers-Kronig relations specifies that the real and imaginary parts

should be related by a Hilbert transform pair, but can be general otherwise. Mathematically this

can be expressed as

G′(ω) = G∞ +
2

π

∫ ∞

0

uG′′(u)

ω2 − u2
du

G′′(ω) =
2ω

π

∫ ∞

0

G′(u)

u2 − ω2
du

(10)

where the unrelaxed modulus G∞ = G(ω →∞) ∈ R. Equivalent relationships linking the modulus

and the phase of G(ω) can be expressed as

ln |G′(ω)| = ln |G∞|+
2

π

∫ ∞

0

uφ(u)

ω2 − u2
du

φ(ω) =
2ω

π

∫ ∞

0

ln |G(u)|
u2 − ω2

du

(11)

It should be noted that complex modulus derived using the physics based principled discussed above

automatically satisfy these conditions. However, there can be many other function which would

also satisfy these condition. It is possible to determine G(ω) from experimental measurements

(see Enelund and Olsson (1999); Rouleau et al. (2013)) which satisfy these conditions. In Table 1

we show some functions which have been used in literature. Among various possible viscoelastic

models, the Biot’s model is considered here.

3. Effective in-plane properties of viscoelastic irregular honeycombs

3.1. Viscoelastic effect on the intrinsic Young’s modulus

We consider that each constitutive element of a hexagonal unit with the honeycomb structure

is modelled using viscoelastic properties. For simplicity, we use Biot model (see Table 1) with only

one term. Frequency dependent complex elastic modulus for an element is expressed as

E(ω) = ES

(
1 + ε

iω

µ+ iω

)
(12)
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Table 1: Complex modulus for viscoelastic models in the frequency domain

Viscoelastic
model

Complex modules Main references

Biot model G(ω) = G0 +
∑n

k=1
akiω

iω+bk
Biot (1955, 1958)

Fractional
derivative

G(ω) = G0+G∞(iωτ)β

1+(iωτ)β
Bagley and Torvik
(1983)

GHM G(ω) = G0

[
1 +

∑
k αk

−ω2+2iξkωkω
−ω2+2iξkωkω+ω2

k

]
Golla and Hughes
(1985) and McTavish
and Hughes McTavish
and Hughes (1993)

ADF G(ω) = G0

[
1 +

∑n
k=1 ∆k

ω2+iωΩk
ω2+Ω2

k

]
Lesieutre and Mingori
(1990)

Step-function G(ω) = G0

[
1 + η 1−e−st0

st0

]
Adhikari (1998)

Half cosine
model

G(ω) = G0

[
1 + η 1+2(st0/π)2−e−st0

1+2(st0/π)2

]
Adhikari (1998)

Gaussian model G(ω) = G0

[
1 + η eω

2/4µ
{

1− erf
(

iω
2
√
µ

)}]
Adhikari and Wood-
house (2001)

where µ and ε are the relaxation parameter and a constant defining the ‘strength’ of viscosity,

respectively. Es is the intrinsic Young’s modulus. The amplitude of this complex elastic modulus

is given by

|E(ω)| = ES

√
µ2 + ω2 (1 + ε)2

µ2 + ω2
(13)

The phase (φ) of this complex elastic modulus is given by

φ
(
E(ω)

)
= tan−1

(
εµω

µ2 + ω2(1 + ε)

)
(14)

The complex elastic modulus has the following limiting properties, which can be useful in under-

standing the role of viscoelasticity in the homogenised elastic properties of the honeycomb.

|E(ω)| → ES for µ→∞ and |E(ω)| → ES(1 + ε) for µ→ 0 ∀ω > 0 (15)

|E(ω)| → ES for ω → 0 and |E(ω)| → ES(1 + ε) for ω →∞ ∀µ > 0 (16)

φ
(
E(ω)

)
→ 0 for µ→∞ and φ

(
E(ω)

)
→ 0 for µ→ 0 ∀ω > 0 (17)

φ
(
E(ω)

)
→ 0 for ω → 0 and φ

(
E(ω)

)
→ 0 for ω →∞ ∀µ > 0 (18)

It can be seen that for all these limiting cases, the viscoelastic effects vanish (the phase is zero) and

then the material is purely elastic. The cases µ→∞ and ω → 0 correspond to minimum amplitude

whiles cases µ→ 0 and ω →∞ correspond to maximum amplitude.

12
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3.2. Effective elastic properties of randomly irregular lattices without the effect of viscoelasticity

The elastic moduli with spatially random structural and material attributes have been derived

in a previous paper (Mukhopadhyay and Adhikari, 2017a) using classical mechanics based princi-

ples. The underlying philosophy of the proposed idea is that the entire irregular hexagonal lattice

structure consists of several representative unit cell elements (RUCE) at the elementary level as

shown in figure 1. Each of the RUCEs possess different individual elastic moduli depending on its

structural geometry and intrinsic material properties (i.e. l1, l2, l3, α, β, γ, Es are different for the

RUCEs in spatially irregular lattices; refer to figure 1 for the symbols). The effect of irregularity

in material and geometric attributes are accounted in the elementary local level first by analysing

the RUCEs and then the effect of such irregularity is propagated to the global scale (equivalent in-

plane properties of the entire irregular lattice structure). This is achieved by following a multi-scale

and multi-stage framework as described in Mukhopadhyay and Adhikari (2017a). The closed-form

formulae for five in-plane elastic moduli of a single RUCE are derived as a function of their re-

spective material and geometric attributes. Thus the formulae developed for a single RUCE is

effectively capable of expressing the equivalent material properties at local scale. The RUCEs are

idealized further in this stage on the basis of the adopted assembling scheme. Subsequently, using

the formulae for a single idealized RUCE, the expressions for effective elastic moduli of the entire

irregular lattice are derived based on the basic principles of mechanics along with the equilibrium

and deformation compatibility conditions following a multi-stage approach.The obtained formulae,

which correspond to a generalization of the elastic moduli for perfectly periodic lattices (Gibson

and Ashby, 1999), are given below:

E1eq =
t3

L

n∑

j=1

m∑
i=1

(l1ij cosαij − l2ij cos βij)

m∑
i=1

l21ijl
2
2ij (l1ij + l2ij) (cosαij sin βij − sinαij cos βij)

2

Esij((l1ij cosαij − l2ij cos βij)
2)

(19)

E2eq =
Lt3

n∑
j=1

m∑
i=1

(l1ij cosαij − l2ij cos βij)

m∑
i=1

Esij

(
l23ij cos2 γij

(
l3ij +

l1ij l2ij
l1ij+l2ij

)
+

l21ij l
2
2ij(l1ij+l2ij) cos2 αij cos2 βij

(l1ij cosαij−l2ij cosβij)
2

)−1

(20)

ν12eq = − 1

L

n∑

j=1

m∑
i=1

(l1ij cosαij − l2ij cos βij)

m∑
i=1

(cosαij sin βij − sinαij cos βij)

cosαij cos βij

(21)
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ν21eq = − L

n∑
j=1

m∑
i=1

(l1ij cosαij − l2ij cos βij)

m∑
i=1

l21ijl
2
2ij (l1ij + l2ij) cosαij cos βij (cosαij sin βij − sinαij cos βij)

(l1ij cosαij − l2ij cos βij)
2
(
l23ij cos2 γij

(
l3ij +

l1ij l2ij
l1ij+l2ij

)
+

l21ij l
2
2ij(l1ij+l2ij) cos2 αij cos2 βij

(l1ij cosαij−l2ij cosβij)
2

)

(22)

G12eq =
Lt3

n∑
j=1

m∑
i=1

(l1ij cosαij − l2ij cos βij)

m∑
i=1

Esij

(
l23ij sin2 γij

(
l3ij +

l1ij l2ij
l1ij+l2ij

))−1

(23)

Here Esij represents the intrinsic material property of the honeycomb material without viscoelas-

ticity, while the structural dimensions are indicated in figure 1(e). The parameter t denotes the

thickness of honeycomb cell wall and L is the total length of the lattice. The subscripts i and j

(i = 1, 2, 3, ...,m and j = 1, 2, 3, ..., n) are used to indicate location of a RUCE. In the present

analysis, the entire irregular lattice is assumed to have m and n number of RUCEs in direction-1

and direction-2, respectively. Thus, to denote a particular parameter, the subscript of ij is used

when a RUCE is referred corresponding to a position of ith column and jth row. From the above

expressions, it can be observed that only the two Young’s moduli and shear modulus are dependent

on the intrinsic material properties of the honeycomb material (Es), while the two Poisson’s ratios

are dependent only on the structural geometry of the honeycomb. Thus the two Young’s moduli

and shear modulus would be influenced by viscoelasticity, but the two Poisson’s ratios will remain

unaltered. The expressions of Poisson’s ratios for the case of viscoelastic material property variation

will remain same as Equation 21–22.

3.3. Effective viscoelastic properties of randomly irregular lattices

Based on the elastic-viscoelastic correspondence principle (Christensen, 2012) and the discussion

furnished in subsection 3.1, the expressions for two Young’s moduli and shear modulus accounting

the viscoelastic effect can be obtained easily in the frequency domain by replacing Young’s modulus

Esij in Equation 21–22 by the frequency dependent Young’s modulus Esij
(

1 + εij
iω

µij + iω

)
. We
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then obtain

E1v(ω) =
t3

L

n∑

j=1

m∑
i=1

(l1ij cosαij − l2ij cos βij)

m∑
i=1

l21ijl
2
2ij (l1ij + l2ij) (cosαij sin βij − sinαij cos βij)

2

Esij

(
1 + εij

iω

µij + iω

)
((l1ij cosαij − l2ij cos βij)

2)

(24)

E2v(ω) =
Lt3

n∑
j=1

m∑
i=1

(l1ij cosαij − l2ij cos βij)

m∑
i=1

Esij

(
1 + εij

iω

µij + iω

)(
l23ij cos2 γij

(
l3ij +

l1ij l2ij
l1ij+l2ij

)
+

l21ij l
2
2ij(l1ij+l2ij) cos2 αij cos2 βij

(l1ij cosαij−l2ij cosβij)
2

)−1

(25)

G12v(ω) =
Lt3

n∑
j=1

m∑
i=1

(l1ij cosαij − l2ij cos βij)

m∑
i=1

Esij

(
1 + εij

iω

µij + iω

)(
l23ij sin2 γij

(
l3ij +

l1ij l2ij
l1ij+l2ij

))−1

(26)

The above expressions allow us to consider spatially varying structural attributes and viscoelastic

material properties. It can be noted that the above expressions provide complex values of the

viscoelastic moduli, from which the respective amplitudes and phase angles can be obtained nu-

merically. The effective elastic moduli of irregular viscoelastic lattices with spatially correlated

material and structural attributes are obtained by integrating the above closed-form expressions (as

furnished in subsection 3.2–3.3) and the Karhunen-Loève expansion, as described in section 4.

3.4. Remark 1: Effective viscoelastic properties of hexagonal lattices with only spatial variation of
material properties

According to the notations used for a regular honeycomb by Gibson and Ashby (1999) (as shown

in figure 1(d)), the notations of the present paper for honeycombs without any structural irregularity

can be expressed as: L = n(h+ l sin θ); l1ij = l2ij = l3ij = l; αij = θ; βij = 180◦−θ; γij = 90◦, for all

i and j. Using these transformations in case of the spatial variation of only material properties, the

structural parameter in Equations 24–26 can be put out of the sums and the closed-form formulae
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for compound variation of material and geometric properties are simplified as

E1v = κ1

(
t

l

)3
cos θ

(h
l

+ sin θ) sin2 θ
(27)

E2v = κ2

(
t

l

)3 (h
l

+ sin θ)

cos3 θ
(28)

and G12v = κ2

(
t

l

)3
(
h
l

+ sin θ
)

(
h
l

)2
(1 + 2h

l
) cos θ

(29)

The multiplication factors κ1 and κ2 arising due to the consideration of spatially random variation

of intrinsic material properties can be expressed as

κ1 =
m

n

n∑

j=1

1
m∑
i=1

1

Esij

(
1 + εij

iω

µij + iω

)
(30)

and κ2 =
n

m

1
n∑
j=1

1
m∑
i=1

Esij

(
1 + εij

iω

µij + iω

)
(31)

The expressions of κ1 and κ2 are complex in nature and include the viscoelastic material properties.

Thus the effective elastic moduli presented in Equation 27–29 are also complex valued and dependent

on the spatially random variation of intrinsic material property and the viscoelastic parameters.

The amplitude and phase angle of the three complex valued in-plane elastic moduli can be obtained

numerically. In the special case when ω → 0 and there is no spatial variabilities in the material

properties of the lattice, all viscoelastic material properties become identical (i.e. Esij = Es,

µij = µ and εij = ε for i = 1, 2, 3, ...,m and j = 1, 2, 3, ..., n) and subsequently the amplitude of κ1

and κ2 becomes exactly Es. This confirms that the expressions in Equation 30 and Equation 31

give the necessary generalisations of the classical expressions of Gibson and Ashby (1999) through

Equation 27–29.

3.5. Remark 2: Effective viscoelastic properties of hexagonal lattices with only structural irregularity

In case of only spatially random variation of structural geometry but constant viscoelastic ma-

terial properties (i.e. Esij = Es, µij = µ and εij = ε for i = 1, 2, 3, ...,m and j = 1, 2, 3, ..., n) the

Equation 24–26 lead to

E1v = ES

(
1 + ε

iω

µ+ iω

)
ζ1 (32)

E2v = ES

(
1 + ε

iω

µ+ iω

)
ζ2 (33)
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G12v = ES

(
1 + ε

iω

µ+ iω

)
ζ3 (34)

where ζi (i = 1, 2, 3) are the factors concerning spatially random variation of structural geometry.

These factors can be expressed as

ζ1 =
t3

L

n∑

j=1

m∑
i=1

(l1ij cosαij − l2ij cos βij)

m∑
i=1

l21ijl
2
2ij (l1ij + l2ij) (cosαij sin βij − sinαij cos βij)

2

(l1ij cosαij − l2ij cos βij)
2

(35)

ζ2 =
Lt3

n∑
j=1

m∑
i=1

(l1ij cosαij − l2ij cos βij)

m∑
i=1

(
l23ij cos2 γij

(
l3ij +

l1ij l2ij
l1ij+l2ij

)
+

l21ij l
2
2ij(l1ij+l2ij) cos2 αij cos2 βij

(l1ij cosαij−l2ij cosβij)
2

)−1

(36)

ζ3 =
Lt3

n∑
j=1

m∑
i=1

(l1ij cosαij − l2ij cos βij)

m∑
i=1

(
l23ij sin2 γij

(
l3ij +

l1ij l2ij
l1ij+l2ij

))−1

(37)

The amplitude of the three viscoelastic moduli for the case of only spatially random variation of

structural geometry can be expressed as

|E1v| = Esζ1

√
µ2 + ω2 (1 + ε)2

µ2 + ω2
(38)

|E2v| = Esζ2

√
µ2 + ω2 (1 + ε)2

µ2 + ω2
(39)

|G12v| = Esζ3

√
µ2 + ω2 (1 + ε)2

µ2 + ω2
(40)

The phase (φ) of the three complex elastic moduli corresponding to the case of only spatially random

variation of structural geometry are given by

φ
(
E1v

)
= φ

(
E2v

)
= φ

(
G12v

)
= tan−1

(
εµω

µ2 + ω2(1 + ε)

)
(41)

From the above expression it is interesting to notice that the phase angle in case of regular lattice

configurations are not dependent on the structural geometry and they are same for the three in-

plane elastic moduli. This result is expected since, for this case, the viscoelasticity parameters are

the same in all the cells of the lattice, the global time delay induced by the viscoelastic effects of

the material is the same compared to the ones related to each cell. The amplitude of the elastic
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moduli obtained based on the above expressions converge to the closed-form equation provided by

Gibson and Ashby (1999) in the limiting case of ω → 0 and regular structural configuration (i.e.

L = n(h + l sin θ); l1ij = l2ij = l3ij = l; αij = θ; βij = 180◦ − θ; γij = 90◦, for all i and j). For the

limiting cases µ→ 0, µ→∞, ω → 0, ω →∞, Equation 38–41 for the viscosity dependent in-plane

elastic properties simplify as

|E1v| → ESζ1 for µ→∞ and |E1v| → ES(1 + ε)ζ1 for µ→ 0 ∀ω > 0 (42)

|E1v| → ESζ1 for ω → 0 and |E1v| → ES(1 + ε)ζ1 for ω →∞ ∀µ > 0 (43)

|E2v| → ESζ2 for µ→∞ and |E2v| → ES(1 + ε)ζ2 for µ→ 0 ∀ω > 0 (44)

|E2v| → ESζ2 for ω → 0 and |E2v| → ES(1 + ε)ζ2 for ω →∞ ∀µ > 0 (45)

|G12v| → ESζ3 for µ→∞ and |G12v| → ES(1 + ε)ζ3 for µ→ 0 ∀ω > 0 (46)

|G12v| → ESζ3 for ω → 0 and |G12v| → ES(1 + ε)ζ3 for ω →∞ ∀µ > 0 (47)

φ
(
E1v

)
, φ

(
E2v

)
, φ

(
G12v

)
→ 0 for µ→∞ (48)

and φ
(
E1v

)
, φ

(
E2v

)
, φ

(
G12v

)
→ 0 for µ→ 0 ∀ω > 0 (49)

φ
(
E1v

)
, φ

(
E2v

)
, φ

(
G12v

)
→ 0 for ω → 0 (50)

and φ
(
E1v

)
, φ

(
E2v

)
, φ

(
G12v

)
→ 0 for ω →∞ ∀µ > 0 (51)

3.6. Remark 3: Effective viscoelastic properties of regular hexagonal lattices

The closed-form expressions for all the in-plane elastic moduli (without the viscoelastic effect)

of irregular lattices in Equation 19 - 23 can be reduced to the formulae provided by Gibson and

Ashby (1999) in the special case of uniform honeycombs. According to the notations used for a

regular honeycomb by Gibson and Ashby (1999) as shown in figure 1(d), the geometric notations

of the present paper for regular lattices can be expressed as: L = n(h+ l sin θ); l1ij = l2ij = l3ij = l;

αij = θ; βij = 180◦ − θ; γij = 90◦, for all i and j. Using these transformations in Equation 19 - 23,

the expressions of in-plane elastic moduli for regular hexagonal lattices (without the viscoelastic

effect) can be obtained.

The in-plane Poisson’s ratios are not dependent on the viscoelastic properties, as discussed in the

preceding subsection. For regular honeycombs with viscoelastic effect, the geometrical transforma-

tions described in the preceding paragraph are applicable along with Esij = Es, µij = µ and εij = ε

for i = 1, 2, 3, ...,m and j = 1, 2, 3, ..., n. Thus, based on Equation 24 - 26, the in-plane Young’s

moduli and shear modulus (viscosity dependent in-plane elastic properties) can be expressed as

E1v = Es

(
1 + ε

iω

µ+ iω

)(
t

l

)3
cos θ

(h
l

+ sin θ) sin2 θ
(52)
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E2v = Es

(
1 + ε

iω

µ+ iω

)(
t

l

)3 (h
l

+ sin θ)

cos3 θ
(53)

G12v = Es

(
1 + ε

iω

µ+ iω

)(
t

l

)3
(
h
l

+ sin θ
)

(
h
l

)2
(1 + 2h

l
) cos θ

(54)

The amplitude of the three viscoelastic moduli are given by

|E1v| = Es

√
µ2 + ω2 (1 + ε)2

µ2 + ω2

(
t

l

)3
cos θ

(h
l

+ sin θ) sin2 θ
(55)

|E2v| = Es

√
µ2 + ω2 (1 + ε)2

µ2 + ω2

(
t

l

)3 (h
l

+ sin θ)

cos3 θ
(56)

|G12v| = Es

√
µ2 + ω2 (1 + ε)2

µ2 + ω2

(
t

l

)3
(
h
l

+ sin θ
)

(
h
l

)2
(1 + 2h

l
) cos θ

(57)

The phase (φ) of the three complex elastic moduli corresponding to regular configuration are given

by

φ
(
E1v

)
= φ

(
E2v

)
= φ

(
G12v

)
= tan−1

(
εµω

µ2 + ω2(1 + ε)

)
(58)

From the above expression, as expected, again the phase angle in case of regular lattice configura-

tions are not dependent on the structural geometry and they are same for the three in-plane elastic

moduli. It can also be noticed that the expressions of phase angle are identical to the special case

considered in subsection 3.5. The amplitude of the elastic moduli obtained based on the above

expressions converge to the closed-form equation provided by Gibson and Ashby (1999) in the lim-

iting case of ω → 0. Again, for the limiting cases µ → 0, µ → ∞, ω → 0, ω → ∞, the viscosity
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dependent in-plane elastic properties simplify as

|E1v| → ES

(
t

l

)3
cos θ

(h
l

+ sin θ) sin2 θ
for µ→∞ (59)

and |E1v| → ES(1 + ε)

(
t

l

)3
cos θ

(h
l

+ sin θ) sin2 θ
for µ→ 0 ∀ω > 0 (60)

|E1v| → ES

(
t

l

)3
cos θ

(h
l

+ sin θ) sin2 θ
for ω → 0 (61)

and |E1v| → ES(1 + ε)

(
t

l

)3
cos θ

(h
l

+ sin θ) sin2 θ
for ω →∞ ∀µ > 0 (62)

|E2v| → ES

(
t

l

)3 (h
l

+ sin θ)

cos3 θ
for µ→∞ (63)

and |E2v| → ES(1 + ε)

(
t

l

)3 (h
l

+ sin θ)

cos3 θ
for µ→ 0 ∀ω > 0 (64)

|E2v| → ES

(
t

l

)3 (h
l

+ sin θ)

cos3 θ
for ω → 0 (65)

and |E2v| → ES(1 + ε)

(
t

l

)3 (h
l

+ sin θ)

cos3 θ
for ω →∞ ∀µ > 0 (66)

|G12v| → ES

(
t

l

)3
(
h
l

+ sin θ
)

(
h
l

)2
(1 + 2h

l
) cos θ

for µ→∞ (67)

and |G12v| → ES(1 + ε)

(
t

l

)3
(
h
l

+ sin θ
)

(
h
l

)2
(1 + 2h

l
) cos θ

for µ→ 0 ∀ω > 0 (68)

|G12v| → ES

(
t

l

)3
(
h
l

+ sin θ
)

(
h
l

)2
(1 + 2h

l
) cos θ

for ω → 0 (69)

and |G12v| → ES(1 + ε)

(
t

l

)3
(
h
l

+ sin θ
)

(
h
l

)2
(1 + 2h

l
) cos θ

for ω →∞ ∀µ > 0 (70)

φ
(
E1v

)
, φ

(
E2v

)
, φ

(
G12v

)
→ 0 for µ→∞ (71)

and φ
(
E1v

)
, φ

(
E2v

)
, φ

(
G12v

)
→ 0 for µ→ 0 ∀ω > 0 (72)

φ
(
E1v

)
, φ

(
E2v

)
, φ

(
G12v

)
→ 0 for ω → 0 (73)

and φ
(
E1v

)
, φ

(
E2v

)
, φ

(
G12v

)
→ 0 for ω →∞ ∀µ > 0 (74)

In the case of regular uniform honeycombs with θ = 30◦, we have

E1v = E2v = 2.3ES

(
1 + ε

iω

µ+ iω

)(
t

l

)3

(75)

Similarly, in the case of shear modulus for regular uniform honeycombs (θ = 30◦)

G12v = 0.57ES

(
1 + ε

iω

µ+ iω

)(
t

l

)3

(76)
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The amplitude of the three viscoelastic moduli for regular uniform honeycomb are given by

|E1v| = |E2v| = 2.3Es

√
µ2 + ω2 (1 + ε)2

µ2 + ω2

(
t

l

)3

(77)

|G12v| = 0.57Es

√
µ2 + ω2 (1 + ε)2

µ2 + ω2

(
t

l

)3

(78)

The phase (φ) of the three complex elastic moduli corresponding to regular configuration are given

by

φ
(
E1v

)
= φ

(
E2v

)
= φ

(
G12v

)
= tan−1

(
εµω

µ2 + ω2(1 + ε)

)
(79)

Limiting values for the amplitude and phase angle of the three viscoelastic moduli for regular

uniform honeycomb can be obtained by substituting θ = 30◦ in Equation 60 –74.

Regular viscoelastic honeycombs satisfy the reciprocal theorem

E2vν12v = E1vν21v = ES

(
1 + ε

iω

µ+ iω

)(
t

l

)3
1

sin θ cos θ
(80)

It is noteworthy that for regular uniform honeycombs, the Poisson’s ratios become unity (i.e. ν12 =

ν21 = 1) and the regular uniform honeycombs with viscoelastic properties correctly obey the relation

G = E/2(1 + ν), where E, G and ν represent Young’s modulus, shear modulus and Poisson’s ratio

of isotropic viscoelastic solids respectively.

4. Effective viscoelastic properties of irregular lattices with correlated structural and
material attributes based on Karhunen-Loève expansion

Let’s introduce the probability space (Θ,F ,P), where Θ , F and P are the classical sample

space, σ−algebra and probability measure respectively. Let H (x, θ) be a random fields defined on

(Θ,F ,P), where θ ∈ Θ is an outcome and x is the spatial coordinates. In this section, H (x, θ) is

a general notation for a random field and can represent the random structural parameters (coor-

dinates of the nodes of a lattice) or the random material properties parameters (Young’s moduli

and viscoelastic parameters). There are a useful tool to model random field H (x, θ). The tra-

ditional way of dealing with random field is to discretize the random field into finite number of

random variables. The available schemes for discretizing random fields can be broadly divided

into three groups: point discretization (e.g., midpoint method Kiureghian (1988), shape function

method Liu et al. (1986a,b), integration point method Matthies et al. (1997), optimal linear esti-

mate method Li and Der Kiureghian (1993)); average discretization method (e.g., spatial average

Vanmarcke (1983); Vanmarcke and Grigoriu (1983), weighted integral method Deodatis (1991); De-

odatis and Shinozuka (1991)), and series expansion method (e.g., orthogonal series expansion Zhang
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and Ellingwood (1994)). An advantageous alternative for discretizing H (x, θ) is to represent it in a

generalized Fourier type of series as, often termed as Karhunen-Loève (KL) expansion (Karhunen,

1947; Loève, 1977). Suppose, H (x, θ) is a random field with covariance function ΓH(x1,x2). The

KL expansion for H (x, θ) takes the following form

H (x, θ) = H̄ (x) +
∞∑

i=1

√
λiξi (θ)ψi (x) (81)

where {ξi (θ)} is a set of uncorrelated random variables. {λi} and {ψi (x)} are the eigenvalues and

eigenfunctions of the covariance kernel ΓH(x1,x2), satisfying the integral equation
∫

<N

ΓH(x1,x2)ψi (x1) dx1 = λiψi (x2) (82)

In practise, the infinite series of Equation 81 must be truncated, yielding a truncated KL approxi-

mation

H̃ (x, θ) ∼= H̄ (x) +
M∑

i=1

√
λiξi (θ)ψi (x) (83)

which approaches H (x, θ) in the mean square sense as the positive integer M →∞. Finite element

methods can be readily applied to obtain eigensolutions of any covariance function and domain of

the random field. For linear or exponential covariance functions and simple domains, the eigen-

solutions can be evaluated analytically (Ghanem and Spanos, 1991; Huang et al., 2001). Once

ΓH(x1,x2) and its eigensolutions are determined, the parameterization of H̃ (x, θ) is achieved by

the KL approximation of its Gaussian image, i.e.,

H̃ (x, θ) ∼= G

[
H̄ (x) +

M∑

i=1

√
λiξi (θ)ψi (x)

]
(84)

According to Equation 84, the KL approximation provides a parametric representation of the ran-

dom field H (x, θ). It is to be noted that KL expansion is not the only available discretization

scheme for the random field H (x, θ). However, KL expansion has some desirable properties, such

as uniqueness and error-minimization, making it a convenient choice over other available methods.

The readers may refer to (Ghanem and Spanos, 1991; Huang et al., 2001) for a detailed study of

the cited and other KL expansion properties.

In the present study, both intrinsic material properties and structural irregularity are represented

as random fields and discretized using the KL expansion with a Gaussian random field. For both

the cases, the covariance function is assumed to be represented as:

ΓH(y1, z1; y2, z2) = σ2
He

(−|y1−y2|/by)+(−|z1−z2|/bz) (85)
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in which by and bz are the correlation parameters along y and z directions (that corresponds to

direction - 1 and direction - 2 respectively, as shown in figure 1(b)) and where σ2
H is the variance

of the random field. These quantities control the rate at which the covariance decays. In a two

dimensional physical space the eigensolutions of the covariance function are obtained by solving the

integral equation (refer to Equation 82) analytically

λiψi(y2, z2) =

∫ a1

−a1

∫ a2

−a2
ΓH(y1, z1; y2, z2)ψi(y1, z1)dy1dz1 (86)

where −a1 6 y 6 a1 and −a2 6 z 6 a2. Substituting the covariance function and assuming the

eigen-solution is separable in y and z directions, i.e.

ψi(y2, z2) = ψ
(y)
i (y2)ψ

(z)
i (z2) (87)

λi(y2, z2) = λ
(y)
i (y2)λ

(z)
i (z2) (88)

The solution of Equation 86 reduces to the product of the solutions of two equations of the form

λ
(y)
i ψ

(y)
i (y1) =

∫ a1

−a1
e(−|y1−y2|/by)ψ

(y)
i (y2)dy2 (89)

The solution of this equation, which is the eigensolution (eigenvalues and eigenfunctions) of an

exponential covariance kernel for a one-dimensional random field is obtained as




ψi(ζ) =
cos(ωiζ)√
a+ sin(2ωia)

2ωi

λi =
2σ2
Hb

ω2
i + b2

for i odd

ψi(ζ) =
sin(ω∗i ζ)√
a− sin(2ω∗i a)

2ωi∗

λ∗i =
2σ2
Hb

ω∗2i + b2
for i even

(90)

where b = 1/by or 1/bz and a = a1 or a2. ζ can be either y or z; ωi and ωi∗ are the solutions of

equations b − ωi tan(ωia) = 0 and ωi + b tan(ωia) = 0 respectively. It is to be noted that the KL

expansion was developed for discretizing Gaussian random fields and hence, all the operations de-

scribed above are only applicable to Gaussian random fields. For lognormal random fields considered

in this study, the KL expansion is carried out on its classical Gaussian image.

In the present analysis of spatially irregular lattices with spatially varying viscoelastic properties,

the scheme for introducing structural irregularity is explained in figure 1(a), where it can be noticed

that each node of a regular lattice is simultaneously perturbed with a certain bound (defined by

degree of irregularity) for each of the realizations (Mukhopadhyay and Adhikari, 2017a). A typical

resulting structure obtained from figure 1(a) after introducing irregularity is shown in figure 1(b).

Multiple such structural configurations with random geometry are considered to quantify the effect
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of irregularity. Each structural parameter and each material parameter is represented by an inde-

pendent random field parametrized by a mean value, a coefficient of variation (ratio of the mean

value and the standard deviation) and two correlation parameters. The mean values are equal to

the deterministic nominal values. To present the results in a physically insightful way for randomly

inhomogeneous systems, we have defined (1) a unique degree of structural irregularity (r) and (2) a

unique degree of material property variation (∆m). The two parameters are equal to the respective

coefficients of variation of their Gaussian random fields. The statistical results are computed on the

basis of 10,000 such realizations of irregular lattices.

5. Results and discussion

In this section results are presented to portray the viscoelastic effect on effective in-plane material

properties of irregular hexagonal lattices considering two different forms of irregularity in structural

and material attributes: randomly inhomogeneous correlated irregularity and randomly homoge-

neous irregularity (Naskar et al., 2017). In randomly inhomogeneous correlated system, spatial

variability of the stochastic structural attributes are accounted, wherein each sample of the Monte

Carlo simulation includes the spatially random distribution of structural and materials attributes

with a rule of correlation. The spatial variability in structural and material properties (Es, µ and

ε) are physically attributed by degree of structural irregularity (r) and degree of material property

variation (∆m) respectively, as discussed in the section 4. In randomly homogeneous system, no

spatial variability is considered. It is assumed that structural and material attributes remain the

same spatially for a particular realization. However the stochastic parameters vary from sample

to sample following a probabilistic distribution (a Monte Carlo simulation based random variable

approach). This model of irregularity can be regarded as a random distribution of over and under

expanded cells. The degree of stochasticity in randomly homogeneous system (r) is defined based

on the coefficient of variation of the considered random distribution. As the two Young’s moduli

and shear modulus for low density lattices are proportional to Esρ3 (Zhu et al., 2001), the non-

dimensional results for in-plane elastic moduli E1, E2, ν12, ν21 and G12, unless otherwise mentioned,

are presented as: Ē1 =
E1eq

Esρ3
, Ē2 =

E2eq

Esρ3
, ν̄12 = ν12eq , ν̄21 = ν21eq and Ḡ12 =

G12eq

Esρ3
respectively,

where ‘ (̄.) ’ denotes the non-dimensional elastic modulus and ρ is the relative density of the lattice

(defined as a ratio of the planar area of solid to the total planar area of the lattice).
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l = 1 (b) θ = 30◦; h

l = 1.5

(c) θ = 45◦; h
l = 1 (d) θ = 45◦; h

l = 1.5

Figure 3: Effective Young’s modulus (E1) of irregular lattices with different structural configurations considering
correlated attributes

(a) θ = 30◦; h
l = 1 (b) θ = 30◦; h

l = 1.5

(c) θ = 45◦; h
l = 1 (d) θ = 45◦; h

l = 1.5

Figure 4: Effective Young’s modulus (E2) of irregular lattices with different structural configurations considering
correlated attributes
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5.1. Analysis of spatially correlated irregular lattices without considering viscoelasticity

As discussed in the section 3, the two Young’s moduli and shear modulus depend on the vis-

coelastic intrinsic material properties of the constituent members, while the two Poisson’s ratios

depend only on the structural configurations. For this reason, we have concentrated primarily on

the two Young’s moduli and shear modulus to show the viscoelastic effect. However, the variation

of all the in-plane elastic moduli for spatially correlated structural randomness are presented with-

out considering the effect of viscoelasticity in figure 3 – 5 (obtained using Equation 19 – 23). The

results are compared with the elastic moduli obtained from direct finite element simulation. The

elastic moduli are obtained for two different h/l ratios (1 and 1.5) considering different cell angles

θ = 30◦ and θ = 45◦ with a small t/l value (∼ 10−2) corresponding to respective deterministic

lattice configurations (refer figure 1(d)).

The elastic moduli of hexagonal lattices with spatially correlated structural irregularities are

found (refer to figure 3 – 5) to be increasingly influenced for higher degree of structural irregularity

(r) causing a significant change in the respective mean values with a wide response bound. Such

inevitable variability in the responses make it crucial to account for the effect of system irregularity

in the analysis and design of hexagonal lattices. It can be noticed from figure 3 – 5 that the elastic

moduli obtained using the analytical formulae and the direct finite element simulation are in good

agreement corroborating the validity of the analytical formulae for spatially correlated structural

randomness. Figure 8 shows the variation of effective normalized relative density (normalized with

respect to the corresponding relative density of regular structural configurations) for irregular lat-

tices considering different structural configurations with increasing degree of spatially correlated

structural irregularity. The figure reveals an interesting information; even though a regular hexag-

onal lattice with θ = 30◦ and h/l = 1 is regarded as the most efficient space filling pattern in a

two dimensional space, this structural configuration gets the most affected by spatial irregularity.

Influence of irregularity on the structural configuration with h/l = 1 is noticed to be higher than

the h/l = 1.5 configuration for both the cell angles (θ).

5.2. Deterministic analysis for the viscoelastic properties of regular lattices

Deterministic results depicting the effect of viscoelasticity on the two Young’s moduli and the

shear modulus of regular hexagonal lattices are presented in figure 9 – 11. The amplitude gives

an impression about the strength of the frequency components relative to other components (i.e.

frequency of the constituting signals corresponding to different amplitudes of the conventional time

domain representation), while the phase shows how all the frequency components align in time.

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP
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l = 1 (b) θ = 30◦; h

l = 1.5

(c) θ = 45◦; h
l = 1 (d) θ = 45◦; h

l = 1.5

Figure 5: Effective shear modulus (G12) of irregular lattices with different structural configurations considering
correlated attributes

Figure 9 shows the variation of amplitude and phase angle with frequency for the three viscoelastic

moduli considering different lattice configurations. To obtain numerical results we have considered

the viscoelastic parameters µ = ωmax/5 (where ωmax is the maximum value of considered frequency)

and ε = 2. With increasing value of frequency the amplitude of elastic moduli are found to increase

until a limit elastic moduli as explained in Equation 18. For very low frequency (i.e. ω → 0),

amplitude of all the three moduli assume the value of classical elastic moduli as provided by Gibson

and Ashby (1999). Similar trend has been reported for the viscoelastic properties of strand-based

composites in time domain (Malekmohammadi et al., 2014). The expressions provided by Gibson

and Ashby (1999) for accounting viscoelastic effect of honeycombs in time domain also yield similar

results. Figure 9 also shows the variation of phase angle for the three elastic moduli with frequency.

However, as the phase angles corresponding to the Young’s moduli and shear modulus for regular

lattices are same as the phase angle of the complex intrinsic elastic material property of the lattice,

the numerical values are indifferent for various structural configurations and they are also same for

the different elastic moduli (refer to Equation 58). A peak value of the phase angle is observed for a

certain critical frequency in all the tree cases. This behaviour can be explained by the use of a Biot
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T(a) θ = 30◦; h
l = 1 (b) θ = 30◦; h

l = 1.5

(c) θ = 45◦; h
l = 1 (d) θ = 45◦; h

l = 1.5

Figure 6: Effective Poisson’s ratio (ν12) of irregular lattices with different structural configurations considering
correlated attributes

(a) θ = 30◦; h
l = 1 (b) θ = 30◦; h

l = 1.5

(c) θ = 45◦; h
l = 1 (d) θ = 45◦; h

l = 1.5

Figure 7: Effective Poisson’s ratio (ν21) of irregular lattices with different structural configurations considering
correlated attributes
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Figure 8: Effective normalized relative density (normalized with respect to the corresponding relative density of
regular structural configurations) of irregular lattices with different structural configurations considering correlated
attributes

model here which is equivalent to the standard linear model represented in Figure 2(c): for very

low and very large frequencies, the model behaves like pure elastic while near the critical frequency

(which can easily be calculated using Equation 14) the viscous effect induced by the dashpot is

maximum and for very large values of ε, the phase at the critical frequency tend to π/2 which

corresponds to a pure viscous effect. Unlike amplitude of the elastic moduli, it is interesting to

notice that the variation of phase angle with frequency does not depend on the lattice configuration

for regular lattices, as discussed in subsection 3.6.

Figure 10(a) and figure 10(b) show the effect of variation of the viscoelastic parameters µ and

ε respectively on the amplitude of the elastic moduli with regular structural configuration, while

figure 11(a) and figure 11(b) show the effect of viscoelasticity for the phase angles of elastic moduli.

Normalized values (with respect to the corresponding elastic modulus for ω = 0) of the elastic

moduli, as shown in the Y-axes of the figures, are presented for the purpose of comparison. It is

evident from the figure that µ and ε influence the factor of amplification for the amplitude and

phase angle of the elastic moduli. As the results in figure 10 – 11 are presented in the form of

non-dimensional ratios normalized by respective elastic modulus, these observations are valid for

all the three viscoelastic moduli (i.e. E1, E2 and G12). It is interesting to notice from figure 10 – 11

that µ controls the critical frequency value (the critical frequency value increases with the increase

of µ), while ε controls the value of peak amplitude as well as phase angle of the elastic moduli (the
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peak values of amplitude and phase angle decrease with the increase of ε).

Figure 9: (a) Effect of viscoelasticity on the magnitude and phase angle of E1 for regular hexagonal lattices (b) Effect
of viscoelasticity on the magnitude and phase angle of E2 for regular hexagonal lattices (c) Effect of viscoelasticity
on the magnitude and phase angle of G12 for regular hexagonal lattices

5.3. Analysis of the viscoelastic properties for spatially correlated irregular lattices with randomly
inhomogeneous form of irregularity

Scope of the present investigation includes the compound effect of viscoelasticity and irregularity

of the lattices. Results corresponding to randomly inhomogeneous correlated structural and material

irregularity are presented in this subsection, followed by randomly homogeneous structural and

material irregularity in the next subsection.

There are two different types of randomness (related to structural and material attributes)

involved in the present problem of viscoelastic lattices with spatially varying system parameters.

One is random variation of the X- and Y- coordinates of the joints (within a circular bound,
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Figure 10: (a) Effect of variation of µ on the viscoelastic modulus of regular hexagonal lattices (considering a constant
value of ε = 2) (b) Effect of variation of ε on the viscoelastic modulus of regular hexagonal lattices (considering a
constant value of µ = ωmax/5). Here Z represents the viscoelastic moduli (i.e. E1, E2 and G12) and Z0 is the
corresponding elastic modulus value for ω = 0.

Figure 11: (a) Effect of variation of µ on the phase angle of regular hexagonal lattices (considering a constant value
of µ = ωmax/5) (b) Effect of variation of ε on the phase angle of regular hexagonal lattices (considering a constant
value of µ = ωmax/5). Here Z represents the complex viscoelastic moduli (i.e. E1, E2 and G12)

which defines the degree of irregularity) with respect to their corresponding deterministic values, as

shown in figure 1(a). The random variation of X- and Y- coordinates are considered to be correlated

spatially while generating the respective deviated values. A Gaussian random field is used for this

purpose following the standard approach described in section 4. In case of material properties

(such as intrinsic Young’s modulus and viscoelastic parameters), correlated spatial randomness

is imposed on each unit cell as shown in figure 1(e). Similar to the case of spatially random
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(a)

(b)

Figure 12: Typical representation of random fields for a particular realization considered in the analysis for (a)
movement of the top vertices of a tessellating hexagonal unit cell with respect to the corresponding determinitic
locations (r = 6) (b) intrinsic elastic modulus (Es) with ∆m = 0.002

structural irregularity, a Gaussian random field is used to model the correlated material properties

of each constituting unit cell of the lattice. Representative plots showing the typical distribution

of correlated structural and material attributes are shown in figure 12 for a particular realization.

Multiple such random realizations (following a Gaussian random field) are considered in this paper

to present the results in a probabilistic framework. Figure 13 presents the structural configuration

of a hexagonal lattice with different degree of structural irregularities considering a single random
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Figure 13: Structural configurations for a single random realization of an irregular hexagonal lattice considering
deterministic cell angle θ = 30◦ and h/l = 1: (a) r = 0 (b) r = 2 (c) r = 4 (d) r = 6

Figure 14: Simulation bound of the structural configuration of an irregular hexagonal lattice for multiple random
realizations considering θ = 30◦, h/l = 1 and r = 6. The regular configuration is presented using red colour.
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Figure 15: Effect of viscoelasticity on Young’s modulus E1 corresponding to randomly correlated inhomogeneous
lattices having spatial structural irregularity. Frequency dependent amplitudes and phase angles are presented for
various cellular configurations considering two different degree of structural irregularity (r = 3 and r = 6).
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Figure 16: Effect of viscoelasticity on Young’s modulus E2 corresponding to randomly correlated inhomogeneous
lattices having spatial structural irregularity. Frequency dependent amplitudes and phase angles are presented for
various cellular configurations considering two different degree of structural irregularity (r = 3 and r = 6).
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Figure 17: Effect of viscoelasticity on shear modulus G12 corresponding to randomly correlated inhomogeneous
lattices having spatial structural irregularity. Frequency dependent amplitudes and phase angles are presented for
various cellular configurations considering two different degree of structural irregularity (r = 3 and r = 6).
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Figure 18: Probability density function plots for the amplitude of the elastic moduli considering randomly inhomo-
geneous form of stochasticity for different structural configurations and degree of structural irregularity (r = 3 and
r = 6). Results are presented for the three in-plane elastic moduli as a ratio of the values corresponding to irregular
configurations and respective deterministic values. Probabilistic descriptions are shown both at a lower frequency
(100 Hz) and a relatively higher frequency (800 Hz).
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Figure 19: Probability density function plots for the amplitude of the elastic moduli considering randomly inhomo-
geneous form of stochasticity for different values of ∆m (i.e. coefficient of variation for spatially random correlated
material properties, such as Es, µ and ε). Results are presented as a ratio of the values corresponding to irregular
configurations and respective deterministic values (for a frequency of 800 Hz).

realization, while figure 14 shows the simulation bound an irregular hexagonal lattice for multiple

random realizations considering θ = 30◦, h/l = 1 and r = 6. These figures provide a physical

perspective of the correlated structural randomness considered in this study.

The compound effect of spatially correlated structural and material irregularity on the vis-

coelastic material properties of hexagonal lattices (randomly inhomogeneous system) are presented

in figure 15 – 17 for two different degree of structural irregularities (with ∆m = 0.002) considering

various structural configurations. The response bounds, mean values and deterministic values of

the amplitude and phase angles are shown corresponding to various frequencies. It is observed that

the response bounds increase with increasing degree of structural irregularity (r), as expected. The

response bounds for the elastic moduli also increase with the increasing value of frequency and then

becomes constant as the mean value becomes constant. However, it is interesting to notice that the

variation of phase angle with frequency is least influenced by the spatially random structural and

material irregularity in the system. Besides that, the phase angle also remain independent of the

deterministic lattice configuration under consideration. Probabilistic descriptions for the variation

of the amplitudes of viscoelastic properties are shown in figure 18 for both lower and higher fre-
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Figure 20: Effect of viscoelasticity on elastic modulus E1 considering randomly homogeneous form of stochasticity in
the structural and material attributes. Frequency dependent amplitudes and phase angles are presented for various
cellular configurations considering two different degree of stochasticity (r = 3 and r = 6).
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Figure 21: Effect of viscoelasticity on elastic modulus E2 considering randomly homogeneous form of stochasticity in
the structural and material attributes. Frequency dependent amplitudes and phase angles are presented for various
cellular configurations considering two different degree of stochasticity (r = 3 and r = 6).
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Figure 22: Effect of viscoelasticity on shear modulus G12 considering randomly homogeneous form of stochasticity in
the structural and material attributes. Frequency dependent amplitudes and phase angles are presented for various
cellular configurations considering two different degree of stochasticity (r = 3 and r = 6).
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Figure 23: Probabilistic descriptions for the amplitudes of three effective viscoelastic properties corresponding to a
frequency of 800 Hz considering individual and compound effect of stochasticity in material and structural attributes
with r = 6

quency ranges, wherein it can be noticed that the elastic moduli follow a Gaussian distribution. The

effect for variation of the degree of stochasticity in spatially random intrinsic material properties

and viscoelastic parameters (∆m) is investigated considering a lattice configuration with θ = 45◦

and h/l = 1 corresponding to a frequency of 800 Hz. From the probability distributions depicted

in figure 19, it is observed that the response bound and the mean value increase and decrease

respectively with the increasing value of ∆m.

5.4. Analysis of the viscoelastic properties for randomly homogeneous form of structural and mate-
rial irregularities

The amplitude and phase angle of viscoelastic properties considering randomly homogeneous

form of structural and material irregularities are presented in figure 20 – 22. In case of randomly

homogeneous irregularity, coefficient of variation (COV) of the samples for a particular parameter

(r = 1000×COV) is defined to relate degree of irregularity with the results. The elastic moduli are

obtained considering a compound effect of various structural (h, l and θ) and material attributes

(Es, µ, ε) for different degree of stochasticity (r). From the figures, the viscoelastic response bounds

for amplitudes are found to increase with increasing degree of irregularity, as expected. Similar to

the case of randomly inhomogeneous irregularity, the response bounds for the elastic moduli also
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increase with the increasing value of frequency and then becomes constant. Even though the re-

sults obtained for the two different forms of irregularities (randomly inhomogeneous and randomly

homogeneous) are not directly comparable, it is interesting to notice that the difference between

deterministic values and response mean for the amplitude of effective viscoelastic properties are

negligible in case of randomly homogeneous irregularity, while there exists a significant difference

between these two parameters in case of randomly inhomogeneous irregularity. Variation of phase

angle with frequencies shows a similar trend like randomly inhomogeneous system, wherein a negli-

gible variability in the response bound is observed. Figure 23 presents the probabilistic distributions

for the two Young’s moduli and the shear modulus (with a frequency of 800 Hz) considering individ-

ual and combined effect of structural and material irregularity. The results are shown considering

a lattice configuration with θ = 45◦ and h/l = 1. From the response bounds corresponding to

different probability distributions, it can be discerned that the structural irregularity has the most

influential effect on the amplitude of effective viscoelastic properties for randomly homogeneous

irregular lattices. This result could be expected regarding Equation 77 –78 where the structural

parameters have a power of three while material and viscoelastic parameters have lesser powers.

6. Conclusion

The effect of viscoelasticity on irregular hexagonal lattices is investigated in frequency domain

considering two different forms of irregularity in structural and material parameters, randomly in-

homogeneous irregularity and randomly homogeneous irregularity. Practically relevant spatially

correlated structural and material attributes are considered to account for the effect of randomly

inhomogeneous form of irregularity based on Karhunen-Loève expansion. Closed-form analytical

expressions are developed to quantify the effect of viscoelasticity for irregular lattices, wherein it is

observed that the two Young’s moduli and shear modulus are dependent on the viscoelastic param-

eters. Limiting values of the amplitude and phase angles are established based on the analytical

framework. The two in-plane Poisson’s ratios depend only on structural geometry of the lattice

structure. Results are presented in both deterministic and stochastic regime to comprehensively

analyse the structural behaviour. The amplitude of in-plane Young’s moduli and shear modulus

are amplified significantly due to the viscoelastic effect. Structural and material irregularity in the

lattices cause considerable amount of variation in the amplitude of effective elastic moduli from

their respective deterministic values, while the phase angle experiences negligible variation due to

this.
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Since the structural and material irregularities in lattices are inevitable for practical purposes

and many of the common materials show viscoelastic behaviour in room temperature, the combined

effect presented in this study will serve as a practical reference for future applications. Moreover,

the developed analytical approach being computationally efficient, can be quite attractive for the

purpose of analysis and design of lattices and metamaterials considering structural irregularities

and the effect of viscoelasticity along with Monte Carlo simulation based reliability analysis of the

system.
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