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SCIENTIFIC REPLIRTS

Measuring the role of seagrasses
in regulating sediment surface
elevation
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Seagrass meadows provide numerous ecosystem services and their rapid global loss may reduce human
welfare as well as ecological integrity. In common with the other ‘blue carbon’ habitats (mangroves
and tidal marshes) seagrasses are thought to provide coastal defence and encourage sediment
stabilisation and surface elevation. A sophisticated understanding of sediment elevation dynamics in
mangroves and tidal marshes has been gained by monitoring a wide range of different sites, located

in varying hydrogeomorphological conditions over long periods. In contrast, similar evidence for
seagrasses is sparse; the present study is a contribution towards filling this gap. Surface elevation
change pins were deployed in four locations, Scotland, Kenya, Tanzania and Saudi Arabia, in both
seagrass and unvegetated control plots in the low intertidal and shallow subtidal zone. The presence of
seagrass had a highly significant, positive impact on surface elevation at all sites. Combined data from
the current work and the literature show an average difference of 31 mm per year in elevation rates
between vegetated and unvegetated areas, which emphasizes the important contribution of seagrass
in facilitating sediment surface elevation and reducing erosion. This paper presents the first multi-site
study for sediment surface elevation in seagrasses in different settings and species.

Foundation species are organisms that structure their associated ecosystems, by moderating abiotic conditions
and exerting strong influences on the whole biotic community'. Seagrasses are marine foundation species that
form ecologically important habitats in coastal areas around the world?®. They provide a range of ecosystem ser-
vices, including habitat and nursery grounds for commercially important species, the regulation of water quality
and the stabilisation of sediment*®. Recently, the potentially large contribution of seagrass meadows (along with
the other ‘blue carbon’ habitats of mangroves and tidal marshes) to global carbon sequestration and storage has
also become apparent’. This long-term carbon storage relies on the ability of the plants to modify their environ-
ment. Coastal wetlands, including seagrass meadows, must elevate vertically such that the sediment surface keeps
pace with rising sea level, in order to avoid falling below critical productivity and stability thresholds, which can
lead to subsequent loss of stored carbon as the wetland deteriorates®.

Mangroves and tidal marshes can form effective natural coastal defences®!°. The coastal vegetation acts as
a baffle for reducing wave and tidal energy, in addition to trapping sediment and raising the intertidal profile,
thus directly contributing to coastal protection. Sediment stabilisation is often acknowledged as an important
ecosystem function of seagrasses>!!, which in combination with other factors can lead to sustained elevation
of the sediment surface in these habitats'?. A well-developed network of rhizomes and roots anchors seagrasses
into the sediment and directly contributes to buried organic carbon whilst the canopies reduce current speeds
aiding the settlement of suspended allochthonous material'*-'¢. These processes result in the accumulation of
organically rich particles in a low oxygen environment, leading to carbon storage in the sediment, sometimes for
millennia!”!8,

1School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK. 2Department of Biosciences, Swansea
University, Swansea, SA2 8PP, UK. 3U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome
Blvd., Lafayette, Louisiana, 70506, USA. “School of Ocean Sciences, Bangor University, Anglesey, UK. *Biological and
Environmental Sciences & Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi
Arabia. ®Institute of Marine Sciences, University of Dar es Salaam, Zanzibar, Tanzania. ’Kenya Marine and Fisheries
Research Institute (KMFRI), Mombasa, Kenya. 85t Abbs Marine Station, The Harbour, St Abbs, UK. Correspondence
and requests for materials should be addressed to M.P. (email: m.potouroglou@napier.ac.uk)

SCIENTIFICREPORTS|7: 11917 | DOI:10.1038/s41598-017-12354-y 1



www.nature.com/scientificreports/

Changes in sediment surface elevation are influenced not only by surficial processes of sediment deposition
or erosion but also by subsurface processes, such as shallow subsidence and root expansion'®; understanding
elevation change over time requires accounting for both sets of processes. Sediment accretion rates and elevation
change in seagrasses worldwide have been determined by various methods that consider historical and recent
changes (Table 1). Mapping techniques (with e.g. Altus altimeter, Stanley compulevel, topographic surveys*°-2?)
provide estimates of large scale and long-term changes in elevation and coverage, but lack the precision needed
to track elevation changes annually. Radiometric dating methods using *’Cs, *C, 2°Pb and other isotopes to
date marker depths!'”!®2*-28 can provide estimates of sedimentation rates over hundreds to thousands of years,
whereas sediment traps® measure sedimentation over days to a few months, but ignore root contributions to
sediment binding. These traditional methods for measuring rates of sedimentation, however, provide neither
direct estimates of surface elevation nor the opportunity to distinguish the contribution of subsurface processes
to surface elevation change. Sediment accretion alone, whether measured over long or short time periods, is not
equivalent to surface elevation change; assuming so can lead to overestimations of the vulnerability of some tidal
wetlands®*3!.

Patterns of elevation and accretion have been extensively studied in mangroves and tidal marshes around
the world using Surface Elevation Tables (SETs) and closely related Rod Surface Elevation Tables (RSETs)?2. This
approach measures above and below ground processes and their effects on surface elevation. It allows very pre-
cise measurements - to within 1.5mm?* - that can be regularly taken - giving data that may inform ecosystem
responses to short-term events, including storms, disease and grazing, but which may also be continued over
years or decades. Hence, the RSET method complements and extends other approaches, and has been recom-
mended as a global standard for measuring wetland vulnerability to climate change given the right spatial cov-
erage and timeframes of monitoring®?. Despite the similarities between mangroves, tidal marshes and seagrass
meadows, and the advantages of the RSET methodology, very few studies have so far used RSETs or similar meth-
ods in seagrasses®**. Testing the applicability of approaches that provide similar insight to seagrasses as those
gained from RSET approaches in other wetlands, in a range of settings, was a key objective of the current work. In
addition, most studies on sedimentation and elevation in seagrass meadows have not used appropriate controls,
making it difficult to understand the relative impacts of seagrass and general geo-morphological settings. Hence
comparing rates with control sites was another important goal.

Seagrass ecosystems face numerous anthropogenic threats including increasing storms, seawater warming,
sea level rise, eutrophication and mechanical damage from boating and fishing. At an estimated average decline
of 1.5% of global distribution per year since the time of the earliest records in the late 1800s%, they are suffering
the fastest rate of loss of the three blue carbon systems, and 65% of seagrass systems worldwide are thought to be
degraded”. Such estimates are however uncertain given the relative paucity of studies on seagrass distribution
and condition, compared with mangroves and tidal marshes, and the accelerating rates of decline (median rate of
decline <1% per year before 1940, 5% per year after 1980). Degradation and loss of seagrasses lead to diminution
and loss of their ecosystem services. This loss of ecosystem services value may be rapid (for example with fisheries
habitat provision) or delayed (for example carbon may remain stored below-ground for some time after degrada-
tion begins under some circumstances®). The temporal relationship between seagrass degradation and loss, and
coastal protection is currently unknown.

There is, therefore, a need to test the role of seagrass meadows on surface elevation change and sediment
retention, and to explore the utility of a standard method, using sediment pins, for measuring elevation change in
seagrass settings. Building capacity to measure sedimentary processes and surface change in seagrass meadows
will increase our understanding of these key processes, and may allow us to model seagrass vulnerability and
management needs in the face of sea level rise as has been achieved for mangroves and tidal marshes®'. The pres-
ent study aims to assess to what extent seagrass meadows contribute to sediment deposition and stability, deter-
mining their role on sediment dynamics, in a range of settings and locations. More specifically, the objectives were
to: 1) test the utility of sediment pins approach in determining the rate of surface elevation change in seagrass and
unvegetated plots of different species and in different locations, ii) examine seasonal and geographical patterns in
surface elevation change, and iii) compare these to published sedimentation rates.

Results

Cumulative sediment surface elevation and rates. Scotland. At plots where seagrass was absent,
there was an apparently cyclical trend in sediment surface elevation through the course of the study (Fig. 1A).
This resulted in no net annual change in the average height of sand across the length of the study, but with pro-
nounced losses in winter, and accumulation in summer. In this case, a sinusoidal function with a period of one
year was a significantly better descriptor of the data than a linear function (Likelihood Ratio (L.R.) =199, df=1,
p <0.001). Conversely, at plots where seagrass was present (Fig. 1B), there was a statistically significant increase
in sediment elevation across the whole study period (mean=9.01 (SE=2.17) mm per year, t=4.16, df =1,
P <0.001). Overall, 99.4% of variance was explained by the fixed effects of time and treatment. Of the remainder,
a small but statistically significant amount of variation was explained by random differences between rods, within
plots (variance component =0.03%, L.R. =12.6, df =1, p < 0.001), and by random differences between plots (var-
iance component=0.04%, L.R.=12.7, df=1, p < 0.001), with 0.53% of variance unexplained. Sediment height
measured with 2m rods was not significantly different from the one measured with standard pins (F =2.33,
df=1, p=0.128), indicating that the rods do not change vertical position in the sediment.

Kenya. At plots where seagrass was absent (Fig. 1C), there was a significant linear reduction in sand height
throughout the study (mean =34.7 (SE=7.26) mm per year, t =5.19, df =1, p < 0.001). Where seagrass was
present (Fig. 1D), there was statistically significant non-linear trend (L.R.=24.6, df =7, p=0.0089) resulting
in an average sand height gain of 33.7 (SE =7.08) mm over the length of the study. There was no evidence of an
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Sediment Elevation
Oregon, USA (Valino Island) 10.08 Intertidal/Zostera marina, Zostera japonica 1 year 34
Oregon, USA (Danger Point) —5.28 Intertidal/Zostera marina, Zostera japonica 1 year 34
?;;Egrz;face Elevation Tables Florida bay (Cross Bank, north side) | —7.7 g;fiﬁ?;i;i;i;%?ﬁi%:) Halodule wrightii 17 years iggt%‘;ﬁ:
Florida bay (Cross Bank, south side) | 13.5 32?;;1;;2%71}2%:2’ Halodule wrightii 17 years ig?i%‘ﬁ;’
Washington, USA (northern sites) —5.1(£1.27) Intertidal/Zostera marina 4 years 35
Surface Elevation Tables (SETs)
Washington, USA (southern sites) —5.31 (£2.33) Intertidal/Zostera marina 4 years 35
Altus altimeter Bassin d’Arcachon, France R=8-32%* Intertidal/Zostera noltii 1 year 21
Bassin d’Arcachon, France —49%% Unvegetated area 1 year 21
‘Wadden sea R=5-7%%% Zostera marina (planting unit) 3months |20
Stanley Compulevel
Wadden sea <0.5 Unvegetated area 3months | 20
DGPS Trimble RTK topographic | Berre Point, France from 10 to 30 Zostera noltii 14 months | 22
survey Berre Point, France from —30to —10 | Unvegetated areas 14 months | 22
NK Rhode Island, USA 12.5% Zostera marina 2 years 63
NK Rhode Island, USA —7.5% Unvegetated plots 2 years 63
Sediment accretion
Seto Inlad Sea, East Asia 0.9 (0.28) Zostera marina NA 27
Seto Inlad Sea, East Asia 0.32 Unvegetated area NA 27
Ishigaki Island, Southeast Asia 1.23 Enhalus acoroides NA 27
Southern Thailand 0.82 Enhalus acoroides, Thalassia hemprichii NA 27
Ischia, Italy 1.65 Posidonia oceanica NA 17
Culip, Spain 0.61 Posidonia oceanica NA 17
Port-Lligat, Spain 4.14 Posidonia oceanica NA 17
Campello, Spain 2.03 Posidonia oceanica NA 17
Tabarca 1, Spain 1.14 Posidonia oceanica NA 17
Tabarca 2, Spain 1.88 Posidonia oceanica NA 17
Medes, Spain 0.79 Posidonia oceanica NA 17
. Port Lligat, Spain 1.3 Posidonia oceanica NA 25
Port Lligat, Spain 1.1 Posidonia oceanica NA 24
Talamanca Cove, Spain 23 Posidonia oceanica NA 26
Pujols Cove, Spain 1.7 Posidonia oceanica NA 26
Mellieha Bay, Malta 4.9 Posidonia oceanica NA 28
Salina Bay, Malta 4 Posidonia oceanica NA 28
Sydney, Botany Bay R=4.7-9.9 Posidonia australis, Zostera capricornii NA 18
Opyster Harbor, Australia 0.49 Posidonia australis NA 28
Waychinicup Inlet, Australia 0.43 Posidonia australis NA 28
Big Lagoon, Australia 0.51 Posidonia australis NA 28
Port Pirie, Australia 0.13 Posidonia australis NA 28
Port Broughton, Australia 2.5 Posidonia australis NA 28
Cockburn Sound, Western Australia | R=0.6-1.3 Posidonia sinuosa NA 26
210pp Florida Bay 9(£7) Thalassia testudinum NA 23
Western Baltic 22 Zostera marina 8months | 64
Sediment traps Fanals Point, Spain 2 Posidonia oceanica 14 months | 29
Fanals Point, Spain 3 Unvegetated area 14 months | 29
Foraminifera Spencer Gulf, Australia R=0.15-0.25 Posidonia australis NA 65

Table 1. Methods used to measure sediment elevation and accretion rates in seagrass meadows worldwide.
“Ganthy et al. reported that between February and September of 2009, sediments were accreted at all seagrass
stations (+41 mm, +16 mm, +15mm for high density HD, medium density MD and low density LD plots
respectively) whereas unvegetated showed minimal change (+ 3 mm). Between September 2009 and February
2010, sediments eroded at all seagrass stations (—9 mm, —6 mm, —7 mm for HD, MD and LD respectively),
whereas the unvegetated station showed a strong erosion of —54 mm. **Harlin et al. reported 2.5 cm of
accretion in seagrass plots, and 1.5 cm of erosion in denuded plots in the course of 2 years. ***Measurements
reported for the growing season. NK: Not known, NA: Not Applicable, R: Range.
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Figure 1. Cumulative surface elevation change at unvegetated (left column; A,C,E,G) and seagrass plots (right
column; B,D,F,H) in Scotland, Kenya, Tanzania and Saudi Arabia (from the top to the bottom). Solid lines show
mean trajectories, with shaded area representing 95% confidence intervals. A horizontal dotted line indicates
zero net height change.

annual cyclical pattern in this non-linear trend (L.R. =0.719, df =1, p = 0.40). At this site, 61.8% of variance was
explained by time and treatment. Of the remainder, a small but statistically significant amount of variation was
explained by random differences between rods, within plots (variance component =1.26%, L.R.=56.5, df=1,
p <0.001), and by random differences between plots (variance component =12.0%, LR.=121, df=1, p < 0.001),
with 24.9% of variance unexplained.
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Figure 2. Sediment elevation rates (mm/y) in seagrass and unvegetated plots compiled from the literature
(marked with the reference number) and this study (marked with an asterisk). The studies that reported
sediment elevation rates for both seagrass and unvegetated plots are enclosed in the square. Note that the
control plots in the Wadden Sea showed an erosion of <0.5 mm/y, whereas in Tanzania and Scotland, there was
no net annual sediment elevation change for seagrass and control plots respectively.

Tanzania. At plots where seagrass was absent, there was a statistically significant non-linear trend (L.R. =22.0,
df=7, p=0.0026) resulting in an average sediment elevation reduction of 44.7 (SE = 12.6) mm over the length
of the study (Fig. 1E). There was no evidence of an annual cyclical pattern in this non-linear trend (L.R.=3.67,
df =1, p=0.055). Where seagrass was present (Fig. 1F), there was no significant trend in sediment elevation
change across the study period (t=0.821, df=1, p=0.41). Here, 25.2% of variance was explained by the fixed
effects, with 0.01% of variance attributed to random differences between rods (L.R.=31.3, df=1, p <0.001),
24.6% as variance between plots (L.R. =208, df =1, p < 0.001), and 50.1% of variance unexplained.

Saudi Arabia. At plots where seagrass was absent, there was a statistically significant non-linear trend
(L.R.=518,df=7, p<0.001) resulting in an average sediment elevation reduction of 30.9 (SE =4.52) mm over
the length of the study (Fig. 1G). There was insufficient temporal resolution to test for seasonal trends at this
site. At plots where seagrass was present (Fig. 1H), there was a statistically significant linear increase in sediment
elevation (mean =7.84 (SE=1.48) mm per year, t=>5.31, df =1, p < 0.001). Finally, at this site, 97.0% of variation
was explained by the effects of time and treatment. Here, random variation between rods and plots was not statis-
tically significant (variance components <0.01%) and the remaining 3% of variance attributed to residual error.

Comparison with published surface elevation rates. The literature review found ten other studies that
produced sediment elevation rates data; although only four of these produced directly comparable data allowing
comparisons with unvegetated controls. Previous studies in seagrasses on sediment elevation, using multiple
methods (SET, RSET, Altus altimeter, DGPS Trimble RTK and Stanley compulevel) and sampling a wide range of
elevations (subtidal to high intertidal) have yielded variable results (Fig. 2; Supplementary Information) (for the
whole dataset see Table 1). When pooling all available data from the literature and the present study, seagrasses
are facilitating sediment surface elevation at a rate of 5.3 (SE =2.69) mm per year, whereas in unvegetated plots
(where available), sediment is eroding at a rate of 21.3 (SE=7.33) mm per year. The overall effect of seagrasses by
averaging the within-site mean differences, where both seagrass and unvegetated plots were reported, was 31.2
(SE=9.57) mm per year (Supplementary Information).

Water motion. The weight loss of the plaster blocks deployed in unvegetated plots was significantly higher
than seagrass plots after 48h (df =1, t=—4.67, p < 0.01), indicating that hydrodynamic energy was lower at
seagrass patches compared to unvegetated areas. This was not observed, however, 24 h after deployment; in that
case the weight loss of the plaster blocks of control plots was not significantly different from seagrass plots (df=1,
t=—1.69, p=0.152). More specifically, the weight of the plaster blocks in seagrass plots was reduced by 14% and
32% after 24 h and 48 h respectively, whereas in unvegetated areas, that reduced by 17% and 42% (Fig. 3).

Discussion

The present study demonstrates that seagrass meadows can stabilise sediments and help to facilitate surface eleva-
tion. This occurs at sites in very different settings (both inter and subtidal, and tropical and temperate) and with
a wide range of seagrass species. Importantly our results also allow comparisons with unvegetated control areas
(chosen for their proximity and similarity to the seagrass plots) which reveal how seagrasses can drive surface
elevation even in settings where erosion is occurring without them. The impact of seagrasses is remarkably strong,
with an average difference of 31 mm per year in elevation rates between seagrass and unvegetated areas; in com-
parison, surface elevation change in natural mangroves ranges between —5.8 to 6.3 mm per year®*. This much
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Figure 3. Weight loss of clod cards in seagrass and unvegetated plots after 24 h and 48 h (Error bars: 95%
confidence intervals).

greater impact may be related to the much greater hydrodynamic energy and longer (or permanent) periods of
submersion in seagrasses compared with mangroves.

Sediment trapping and stabilisation will cause much of this seagrass-mediated elevation. The Plaster of Paris
clods showed significant reductions in current speeds at the Scottish site, and work at the Kenyan site gave similar
results (Githaiga, pers. comm.), which accords with previous studies showing that seagrasses reduce current and
wave energy’*!!. Sediment accumulation in seagrass beds results from a balance between deposition of suspended
sediment and resuspension. The capacity of seagrasses for balancing these two processes is highly dependent on
the development stage and health of the plants, as well as local hydrological conditions. Sediment stabilisation by
seagrasses has been generally attributed to seagrass canopy properties'>!®42, which decrease the physical stress
on the sediment-water interface, thereby creating and maintaining a stable hydrodynamic state**. Intriguingly,
however, the Scottish site shows sediment stabilisation and retention even during winter, when above-ground
biomass is sparse and when the control plots show strong seasonal patterns of erosion. This suggests that canopy
biomass and form alone are not sufficient to explain sediment retention and that surface processes (possibly
involving associated flora) and subsurface effects of roots and rhizomes are also important*+*>. Previous studies
have demonstrated that seagrasses with low canopies highly variable in biomass and cover, or strongly reduced
canopies caused by grazing by turtles, can still prevent the sediment from eroding?*®. Data from Kenya (Githaiga et
al., unpublished) show enhanced bioturbation following seagrass removal; so faunal impacts may also play a part.

One of the strengths of the combined RSET and marker horizons (MH) approach is that it allows for dis-
crimination between sediment accretion and subsurface processes in their contributions to surface elevation or
subsidence®’. Unfortunately our attempts to measure both of these processes simultaneously were largely unsuc-
cessful; using feldspar and other materials for MHs proved difficult or impossible in these permanently water-
logged or submerged plots, where even if an MH could be successfully established it was often washed rapidly
away. We were able to measure elevation rates in four very different sites, using cheap materials that could be
simply installed and replicated. The structural support for a standard RSET platform can create scouring (e.g.
at the Collver Point study site®*), leading to holes of a few centimetres deep to cones of depression (Frankovich,
pers. comm). Hence this approach is unsuitable for seagrass habitats, whilst our SECP methodology did not
cause obvious scouring. However, we are not able to distinguish between surface and subsurface processes with
our approach because we could not combine it with an acceptable MH method, and we suggest that future work
should combine other types of sediment trapping with rods in order to do this.

The rates of elevation recorded here lie within the range of values reported from other studies (Table 1;
Supplementary Information), although the addition of data from unvegetated sites emphasizes the large rela-
tive average contribution of seagrass, suggesting the effects of seagrass are much greater than implied by eleva-
tion rates in seagrass plots alone. Previous meta-analysis from Duarte et al.*® using three estimates available at
the time, indicates that subsidence occurs at seagrass meadows with sediment eroding at a rate of 0.08 mm per
year; in comparison our meta-analysis suggests that seagrasses facilitate sediment deposition at a rate of 5.3 mm
per year. Also, the elevation rates reported here are generally higher than values for accretion. Whilst Orem et
al.?, using 21°Pb, revealed accretion rates of 9+ 7 mm per year (mean + SE), the sediment trapping by Gacia &
Duarte? showed accretion of 2 mm per year, and studies using'“C dating suggest much lower accretion rates, of
1.6 £0.3 mm per year (mean =+ SE), at the millennial time scale. Such a discrepancy (with long term accretion
rates lower than elevation estimates) is common in the coastal wetlands literature, and may reflect the impacts
of long-term geological compaction®. The mean difference between vegetated and unvegetated areas that we
recorded here — 31 mm per year - is clearly unlikely to be representative over long time periods, since it would
imply total erosion of unvegetated sites. Rather it captures some of the short term changes in these dynamic sys-
tems and gives a strong impression of the powerful short term effects of seagrass in damping sediment movement.
Using radiosotopes for estimates over either centennial (*'°Pb) or millennial (**C) timescales gives data relevant
to long term retrospective or predictive understanding but does not accurately capture current conditions and
short-term ecological and biogeophysical drivers. Furthermore, the sediment mixing and erosion that is common
in seagrass sites, and which itself is influenced by seagrass characteristics, can obscure or potentially confound
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Figure 4. Map of the locations where sediment elevation rates have been reported, from our sites and published
studies, both for intertidal and subtidal seagrass meadows. The background map shows the latest dataset for the
global seagrass distribution (available from UNEP-WCMC, Short FT (2016). Global distribution of seagrasses
(version 4.0). Fourth update to the data layer used in Green and Short (2003). Cambridge (UK): UNEP World
Conservation Monitoring Centre®*. http://data.unep-wcmc.org/datasets/7).

the results from isotope work. Also, there has been no study to date of spatial variability in accumulation rates
in seagrass meadows and often dating of sediments where an accumulation rate cannot be provided is omitted
from published datasets. In common with RSETs in other coastal wetlands, our modified approach here gives an
estimate of integrated elevation change over years to (potentially) decades, but would need to be combined with
other approaches to expand the timeframe beyond that.

Seagrass meadows have suffered widespread declines and degradation over the past century, and these trends
are predicted to continue and accelerate®®**>*°. Given the powerful impact on surface elevation through sediment
accretion and retention that is demonstrated here, predicted seagrass loss will have major impacts on the stability
of coastal sediments and on coastal geomorphology. The average organic carbon stock in seagrass meadows has
been estimated to be 139.7 Mg C ha™! within the top metre of the sediment making them important global carbon
sinks*®*!. Since 95% of C in seagrass is stored below ground in sediments, the loss of sediment stabilisation and
elevation functions would remove future sequestration potential as well as threaten the release of carbon already
buried in these carbon dense ecosystems.

While global mean sea level has been gradually increasing for at least 18,000 years, this trend has accelerated
in the last 20 years in response to climate change®. In an era of rising seas, a substantial shift in suitable habitat
for seagrasses will occur. At intertidal or shallow subtidal areas, seagrasses will migrate shoreward®>*, if excessive
coastal development or seawalls do not already prevent this. In deeper areas, the reduced light availability will
cause substantial seagrass losses, which will be intensified if there are not adjacent suitable areas for colonisation.
Identifying areas where seagrasses could regulate surface elevation and providing managers with appropriate
tools to monitor the degree of resilience or vulnerability, would be key elements for seagrass conservation as
well as restoration projects. The present study represents an important first step in assessing the role of sea-
grasses in controlling sediment surface elevation and calls for the development of a global monitoring network
for seagrasses similar to that for mangroves and saltmarshes. This will co-ordinate and facilitate systematic and
long-term measurements across a broad range of geographical settings for better understanding of the future
status of seagrass meadows and their continued provision of biodiversity and ecosystem functions in the wake of
sea level rise.

Materials and Methods

Study Sites. The study was conducted in four locations: Scotland, Kenya and Tanzania (intertidal sites), and
Saudi Arabia (subtidal site) (Fig. 4). In Scotland, the site is located in Drum Sands (55°59'N 3°19’W), in the mac-
rotidal Firth of Forth, with only intertidal Zostera noltii present. Seagrass patches differ in size and shoot density
(ranging from 105 to 1881 shoots m~2), with an average shoot length of 179 + 9 mm (+£SE). The local microtop-
ographic relief retains water during low tides, with a mosaic of mounds with seagrass growing on the top and
generally unvegetated pools. In Kenya, the site is located in mesotidal Gazi Bay (4°25’S 39°30'E), on the southern
coast, in Kwale County. There are twelve seagrass species present at the bay (Cymodocea rotundata, Cymodocea
serrulata, Enhalus acoroides, Halodule uninervis, Haludule wrightii, Halophila minor, Halophila ovalis, Halophila
stipulacea, Syringodium isoetifolium, Thalassia hemprichii, Thalassodendron ciliatum, Zostera carpensis) occur-
ring either as monospecific or multispecific stands. The study area, which was located between the two creeks
of the bay, is dominated by Thalassia hemprichii and Enhalus acoroides with unvegetated patches found within
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e Stainless steel bar rods

Figure 5. (A) Top view of the SECP plot layout, (B) Vertical position of rods, (C) Seagrass and unvegetated
(control) plots set-up in Tanzania.

the meadow. In Tanzania, the site is located in the mesotidal Unguja Ukuu (6°19’S 39°22/E) on the southwestern
side of Unguja Island of Zanzibar, with five seagrass species present (Cymodocea rotundata, Halodule uninervis,
Halophila ovalis, Thalassia hemprichii, Thalassodendron ciliatum) and patches of unvegetated pools, mud and
sand flats. Seagrass plots contained a mixture of species and control plots were placed in the bare patches within
the mixed meadows. Whilst the seagrasses occur on top of the small sediment mounds in the Firth of Forth, the
seagrasses in Gazi Bay and Unguja Ukuu generally occur in shallow pools between unvegetated mounds. In Saudi
Arabia, the site is located in the mesotidal lagoon of Al Qadeimah, near the King Abdullah Economic City, north
of Jeddah (22°23'N 39°7’E). The dominant species here is Enhalus acoroides (shoot density: 38 + 4.8; mean + SE)
with minor occurrence of Halodule uninervis and Cymodocea serrulata. Unvegetated control plots were located
1 km away (southward) at 22°22'N 39° 7E.

Sediment Surface Elevation measurements- Establishment of Surface Elevation Change Pins
(SECPs). Ten1 x 2m plots, five treatment plots (with seagrass) and five control plots (no seagrass), were estab-
lished in May and June of 2014 in Scotland and Kenya respectively, and March and May of 2015 in Saudi Arabia
and Tanzania respectively. Each plot consisted of six stainless steel bar rods (5 mm diameter, 1.2 m length) pro-
truding ~20 cm above the sediment. At the Scottish site, we also deployed longer rods of 2 m length adjacent to
the standard rods (1.2m) at a control (no seagrass) plot in order to test whether subsidence of rods would occur.
The layout of a sampling plot is presented in Fig. 5. Elevation measurements were collected monthly in Scotland,
Kenya and Tanzania and seasonally in Saudi Arabia, placing a light plastic washer (ID: 1.5cm, OD: 4cm) over the
rod so that it rested gently on the sediment and measuring upwards from this to the tip of the exposed rod as an
integrated measure of sediment surface.

Marker horizons (MHs) were also deployed, two on each plot, to quantify sediment surface deposition.
Different materials were used depending on the specific settings of each site. For the intertidal sites (Scotland,
Kenya and Tanzania), feldspar clay was used; a material that forms a cohesive layer once it gets wet and is easily
distinguishable from the surrounding sediment. A polysterene trashcan with the bottom cut off was used to
define the borders of the marker horizon plot (20 cm x 20 cm) and the feldspar clay was laid on the sediment
surface to a thickness of 1 cm. In Kenya, dyed sand was also used in addition to feldspar clay. For the subtidal site
(Saudi Arabia), plastic louvers (or eggcrates) of the same dimensions (20 cm x 20 cm) were used as an alternative
to feldspar clay and dyed sand, anchored in the sediment with long pegs. Despite the use of different materials,
MHs proved to be difficult to sample, as they were washed rapidly away in the case of feldspar clay/dyed sand or
displaced by burrowing animals in the case of plastic louvers.
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Surface Elevation Change Pins serve here as a modified design of the previously developed, Shallow RSETs*,
which if used on our four study sites would be cost-prohibitive, highly visible (and thus at risk of interference)
and bulky, and therefore potentially influencing the processes we aimed to measure. More specifically, Shallow
RSETs make use of a firm base with four legs installed to more shallow depths than standard RSETs in order to
represent surface elevation change relative to the root zone and shallow geomorphological processes dominant in
seagrasses®. Originally, the Shallow RSET was configured by Cahoon et al.>* for insertion to 35 cm to canvass the
root zone of focal emergent wetlands. In our design, we canvass a full metre of sediment to relate to standard Blue
Carbon assessment depths in seagrasses® and to prevent eddy influences that might result from Shallow RSET
platform-associated erosion during peak ebb and flow tidal events in seagrasses. Pin networks have been used
experimentally as cost-effective means to measure wetland soil surface elevation change in remote locations in
Micronesia, Sri Lanka and Kenya®->" and have been especially critical in disentangling the influences of root zone
versus surface depositional processes in those focal wetlands.

Water motion. To evaluate the wave reducing effect of seagrass patches, we compared weight loss of Plaster
of Paris blocks, ‘clod cards, deployed at the ten plots (seagrass and unvegetated) described above at the Scottish
site. Relative weight loss by dissolution of the plaster is a proxy for hydrodynamic forcing and integrates effects
from tidal currents and waves*®-%. The blocks were moulded using Plaster of Paris and made in ice cube trays.
They were attached to plastic rings with silicon, which was applied to the base of each block, and then the
block-ring complex was fastened with cable ties onto wooden sticks. The sticks were inserted in the sediment
(with plaster of paris blocks just above the sediment surface) and left in situ for 24 hours (2 tides) and 48 hours
(4 tides) in August 2015. The blocks were weighed before and after each deployment, after drying at 40 degrees
Celsius until constant weight.

Sediment elevation and accretion rates of seagrasses globally. We compiled published data avail-
able on sediment elevation and accretion rates in seagrass meadows and adjacent unvegetated sediments where
available. The data were collated from the literature by conducting a Boolean search in Web of Knowledge and
Google Scholar using the word combinations “seagrass’, “elevation rate” and “accretion rate”. From each study,
the method used, geographic area, habitat type and species present, length of study and the source are reported.

Statistical Analysis. We quantified changes in sediment height through time using Generalised Linear
Models (GLMs) and Generalised Additive Models (GAMs). Height (cm) of exposed rod was fitted as the response
variable, with ‘treatment’ (presence or absence of seagrass) included as a categorical explanatory variable. Time
was modelled as a continuous explanatory variable using smoothing splines (GAMs) at all study sites. Where
non-linear trends through time were identified, we also fitted statistically linear sinusoidal functions (GLMs) to
assess seasonal effects. In all cases, variation due to the replication structure of the experimental design was fitted
as nested random effects in a mixed-effects modelling framework, with replicate rods nested within replicate
plots. Finally, we modelled temporal autocorrelation between monthly sampling points as a first order autore-
gressive process (AR1). Gaussian error distribution was confirmed by visual inspection of residual Q-Q plots and
we tested for heteroscedasticity of residuals using Breusch-Pagan tests. Where either assumption was not met, we
refitted models on natural logarithm-transformed absolute height values (since logarithms of negative numbers
are invalid) and assumptions were met.
All statistical analysis was performed using R v3.3.2, with additional functions within the ‘mgcv’ package®!.

Data availability. The datasets generated and analysed during the current study are available from the cor-
responding author®-55,

References
1. Dayton, P. K. Toward an understanding of community resilience and the potential effects of enrichments to the benthos at McMurdo
Sound, Antarctica. In Proceedings of the Colloquium on Conservation Problems in Antarctica (ed. Parker, B. C.), pp. 81-95 (1972).
2. Green, E. P. and Short, E T. World Atlas of Seagrasses. University of California Press (2003).
3. Short, E T, Carruthers, T., Dennison, W. & Waycott, M. Global seagrass distribution and diversity: A bioregional model. Journal of
Experimental Marine Biology and Ecology 350, 3-20 (2007).
4. Beck, M. K. et al. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates.
BioSciences 51, 633-641 (2001).
. Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecological Monographs 81, 169-193 (2011).
6. Barbier, E. B., Leslie, H. M. & Micheli, F. Services of Marine Ecosystems: A Quantitative Perspective. In Marine Community Ecology
and Conservation (ed. Sunderland, M. A.), pp. 403-425 (2014).
7. Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in
sequestering CO,. Front. Ecol. Environ. 9, 552-560, https://doi.org/10.1890/110004 (2011).
8. Krauss, K. W. et al. How mangrove forests adjust to rising sea level. New Phytologist 202, 19-34, https://doi.org/10.1111/nph.12605
(2014).
9. Mclvor, A. L., Moller, I, Spencer, T. & Spalding, M. Reduction of Wind and Swell Waves by Mangroves. In Natural Coastal Protection
Series: Report 1. (The Nature Conservancy, University of Cambridge, and Wetlands International, Cambridge, UK), p. 27 (2012).
10. Mclvor, A.L., Spencer, T., Moller, I. & Spalding, M., 2012b. Storm Surge Reduction by Mangroves. In Natural Coastal Protection
Series: Report 2. (The Nature Conservancy, University of Cambridge, and Wetlands International, Cambridge, UK), p. 36 (2012).
11. Hemminga, M. A. & Duarte, C. M. Seagrass Ecology: An Introduction. (Cambridge University Press, UK) (2000).
12. Ondiviela, B. et al. The role of seagrasses in coastal protection in a changing climate. Coastal Engineering 87, 158-168 (2014).
13. Gacia, E. et al. Sediment deposition and production in SE-Asia seagrass meadows. Estuarine, Coastal and Shelf Science 56, 909-919
(2003).
14. Chen, S. N. et al. A nearshore model to investigate the effects of seagrass bed geometry on wave attenuation and suspended sediment
transport. Estuaries and Coasts 30, 296-310 (2007).
15. Hendriks, L. E., Bouma, T. J., Morris, E. P. & Duarte, C. M. Effects of seagrasses and algae of the Caulerpa family on hydrodynamics
and particle-trapping rates. Marine Biology 157, 473-481 (2010).

wu

SCIENTIFICREPORTS|7:11917 | DOI:10.1038/s41598-017-12354-y 9



www.nature.com/scientificreports/

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.
50.

51.

52.

53.
54.

55.

56.

Paul, M., Bouma, T. & Amos, C. Wave attenuation by submerged vegetation: combining the effect of organism traits and tidal
current. Marine Ecology Progress Series 444, 31-41 (2012).

Mateo, M. A., Romero, J., Perez, M., Littler, M. M. & Littler, D. S. Dynamics of millenary organic deposits resulting from the growth
of the Mediterranean seagrass Posidonia oceanica. Estuarine Coastal Shelf Science 44, 103-110 (1997).

Macreadie, P. L, Allen, K., Kelaher, B. P,, Ralph, P. J. & Skilbeck, C. G. Paleoreconstruction of estuarine sediments reveal human-
induced weakening of coastal carbon sinks. Global Change Biology 18, 891-901 (2012).

Callaway, J. C., Nyman, J. A. & DeLaune, R. D. Sediment accretion in coastal wetlands: A review and a simulation model of processes.
Current Topics in Wetland Biogeochemistry 2,2-23 (1996).

Bos, A. R., Bouma, T. ], de Kort, G. L. J. & van Katwijk, M. M. Ecosystem engineering by annual intertidal seagrass beds: Sediment
accretion and modification. Estuarine, Coastal and Shelf Science 74, 344-348 (2007).

Ganthy, E, Sottolichio, A. & Verney, R. Seasonal modification of tidal flat sediment dynamics by seagrass meadows of Zostera noltii
(Bassin d’Arcachon, France). Journal of Marine Systems 109-110, 233-240 (2013).

Paquier, A. E., Meulé, S., Anthony, E. J. & Bernard, G. Sedimentation and erosion patterns in a low shoot-density Zostera noltii
meadow in the fetch-limited Berre lagoon, Mediterranean France. Journal of Coastal Research, 563-567 (2014).

Orem, W. H. et al. Geochemistry of Florida Bay sediments: nutrient history at five sites in eastern and central Florida Bay. Journal
Coastal Research 15,1055-1071 (1999).

Lo Iacono, C. et al. Very high-resolution seismo-acoustic imaging of seagrass meadows (Mediterranean Sea): implications for
carbon sink estimates. Geophysical Research Letters 35, L18601, https://doi.org/10.1029/2008 GL03477 (2008).

Serrano, O., Mateo, M. A, Renom, P. & Brugues, J. R. Chracterization of soils beneath a Posidonia oceanica meadow. Geoderma
185-186, 26-36 (2012).

Serrano, O., Lavery, P. S., Rozaimi, M. & Mateo, M. A. Influence of water depth on the carbon sequestration capacity of seagrasses.
Global Biogeochemical Cycles, 301-314 (2014).

Miyajima, T. et al. Geographic variability in organic carbon stock and accumulation rate in sediments of East and Southeast Asian
seagrass meadows. Global Biogeochemical Cycles 29, doi:https://doi.org/10.1002/2014GB004979 (2015).

Serrano, O. et al. Seagrass sediments reveal the long-term deterioration of an estuarine ecosystem. Global Change Biology. doi:
https://doi.org/10.1111/gcb.13195 (2016).

Gacia, E. & Duarte, C. M. Sediment retention by a Mediterranean Posidonia oceanica meadow: The balance between deposition and
resuspension. Estuarine, Coastal and Shelf Science 52, 505-514 (2001).

Cahoon, D. R. & Lynch, J. C. Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, U.S.A.
Mangroves and Salt Marshes 1, 173-186 (1997).

Lovelock, C. E. et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526, 559-563, https://doi.
org/10.1038/nature15538 (2015).

Webb, E. L. et al. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nature Climate Change
3,458-65 (2013).

Cahoon, D. R. et al. High-precision measurements of wetland sediment elevation: II. The Rod Surface Elevation Table. Journal of
Sedimentary Research 72, 734-739 (2002).

Rumrill, S. S. & Sowers, D. C. Concurrent assessment of eelgrass beds (Zostera marina) and salt marsh communities along the
estuarine gradient of the south slough, Oregon. Journal of Coastal Research, Special Issue 55, 121-134 (2008).

Kairis, P. A. & Rybczykb, J. M. Sea level rise and eelgrass (Zostera marina) production: A spatially explicit relative elevation model
for Padilla Bay, WA. Ecological Modelling 221, 1005-1016 (2010).

Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. PNAS 106, 12377-12381 (2009).
Pendleton, L. et al. Estimating global Blue Carbon emissions from conversion and degradation of vegetated coastal ecosystems. PLoS
ONE 7, doi: https://doi.org/10.1371/journal.pone.0043542. t001 (2012).

Macreadie, P. . et al. No detectable impact of small-scale disturbances on ‘blue carbon’ within seagrass beds. Marine Biology 161,
2939-2944 (2014).

Sasmito, S. D., Murdiyarso, D., Friess, D. A. & Kurnianto, S. Can mangroves keep pace with contemporary sea level rise? A global
data review. Wetlands Ecology and Management 24, 263-278, https://doi.org/10.1007/s11273-015-9466-7 (2016).

Koch, E. W. Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat
requirements. Estuaries 24, 1-17 (2001).

Koch, E. W,, Ackerman, J. D., Verduin, J. & van Keulen, M. Fluid dynamics in seagrass ecology-from molecules to ecosystems. In
Seagrasses: Biology, Ecology and Conservation (ed. Larkum, A. W. D. et al.), Springer, pp 193-225 (2006).

Bouma, T. J. et al. Trade-offs related to ecosystem engineering: A case study on stiffness of emerging macrophytes. Ecology 86,
2187-2199 (2005).

Fonseca, M. S. & Cahalan, J. A. A preliminary evaluation of wave attenuation by four species of seagrass. Estuarine. Coastal and Shelf
Science 35(6), 565-576 (1992).

Fonseca, M. S. et al. Transplanting of the seagrasses Zostera marina and Halodule wrightii for sediment stabilization and habitat
development on the east coast of the United States. US Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS,
Tech. Rep. EL-85-9 (1985).

Fonseca, M. S. The role of seagrasses in nearshore sedimentary processes: a review. In Estuarine Shores: Evolution, Environments and
Human Alterations (eds Nordstrom, K. F. and Roman, C. T.), Wiley, pp. 261-286 (1996).

Christianen, M. J. A. et al. Low-canopy seagrass beds still provide important coastal protection services. PLoS One, 8. doi:https://doi.
org/10.1371/journal.pone.0062413 (2013).

Cahoon, D. R, Reed, D. J. & Day, J. W. Jr. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States:
Kaye and Barghoorn revisited. Marine Geology 128, 1-9 (1995).

Duarte, C. M., Losada, 1. ]., Hendriks, I. E., Mazarrasa, I. & Marba, N. The role of coastal plant communities for climate change
mitigation and adaptation. Nature Climate Change 3, 961-968 (2013).

Orth, R.J. et al. A global crisis for seagrass ecosystems. BioScience 56, 987-996 (2006).

Waycott, M. et al. Vulnerability of seagrasses in the Great Barrier Reef to climate change. In Climate Change and the Great Barrier
Reef (eds Johnson, J. E. & Marshall, P. A.) pp. 44 (2007).

Fourqurean, J. W. et al. Seagrass ecosystems as a globally significant carbon stock. Nature Geosciences 5, 505-509, https://doi.
org/10.1038/NGEO1477 (2012).

IPCC Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change [Core Writing Team, R. K. Pachauri and L. A. Meyer (eds)], pp. 151 (2014).

Short, E. T. & Neckles, H. A. The effects of global climate change on seagrasses. Aquatic Botany 63, 169-196 (1998).

Bjork, M., Short, E, Mcleod, E. & Beer, S. Managing seagrasses for resilience to climate change. (IUCN, Gland, Switzerland) pp. 56
(2008).

Kumara, M. P, Jayatissa, L. P., Krauss, K. W., Phillips, D. H. & Huxham, M. High mangrove density enhances surface accretion,
surface elevation change, and tree survival in coastal areas susceptible to sea-level rise. Oecologia 164, 545-553, https://doi.
0rg/10.1007/s00442-010-1705-2 (2010).

Krauss, K. W,, Allen, J. A. & Cahoon, D. R. Differential rates of vertical accretion and elevation change among aerial root types in
Micronesian mangrove forests. Estuar. Coast. Shelf Sci. 56, 251-259, https://doi.org/10.1016/S0272-7714(02)00184-1 (2003).

SCIENTIFICREPORTS|7:11917 | DOI:10.1038/s41598-017-12354-y 10



www.nature.com/scientificreports/

57. Langat, J. K. et al. Species mixing boosts root yield in mangrove trees. Oecologia 172, 271-278, https://doi.org/10.1007/s00442-012-
2490-x (2013).

58. Muus, B. J. A field method for measuring exposure by means of plaster balls. Sarsia 34, 61-68 (1968).

59. Doty, M. S. Measurement of water movement in reference to benthic algal growth. Botanica Marina 14, 32-35 (1971).

60. Porter, E. T, Sanford, L. P. & Suttles, S. E. Gypsum dissolution is not a universal integrator of ‘water motion’ Limnology and
Oceanography 45, 145-158 (2000).

61. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria
(2016).

62. UNEP-WCMC, Short FT (2016) Global distribution of seagrasses (version 4.0). Fourth update to the data layer used in Green and
Short (2003). Cambridge (UK): UNEP World Conservation Monitoring Centre. http://data.unepwcmec.org/datasets/7.

63. Harlin, M. M., Thorne-Miler, M. B. & Boothroyd, J. C. Seagrass-sediment dynamics of a flood-tidal delta In Rhode Island (USA).
Aquatic Botany 14, 127-138 (1982).

64. Lund-Hansen, L. C. Sedimentation and sediment accumulation rates in a low-energy embayment. Journal of Coastal Research 7,
969-980 (1991).

65. Cann, J. H., Belpiero, A. P. & Murray-Wallace, C. V. Late Quaternary paleosealevels and paleoenvironments inferred from
foraminifera, northern Spencer Gulf, South Australia. Journal of Foraminiferal Research 30,29-53 (2000).

Acknowledgements

The inception of the current study was made possible through funding (grant reference SG178) received under
MASTS Small Grants Scheme (The Marine Alliance for Science and for Scotland), and its support is gratefully
acknowledged. MP was supported by the Natural Environment Research Council NE/K501207/1. MF and DD
were supported by DD baseline funding from King Abdullah University of Science and Technology (KAUST).
NMG was supported by the Coastal Ecosystem Services in East Africa (CESEA) NE/L001535/1 research project
and was funded with support from the Ecosystem Services for Poverty Alleviation (ESPA) programme. The
ESPA programme is funded by the Department for International Development (DFID), the Economic and Social
Research Council (ESRC) and the Natural Environment Research Council (NERC). The study was also supported
by the Global Environment Facility’s Blue Forests Project, an initiative of UN Environment, focused on harnessing
the values associated with coastal carbon and ecosystem services to achieve climate resilient communities around
the globe (www.gefblueforests.org). Any use of trade, firm, or product names is for descriptive purposes only and
does not imply endorsement by the U.S. Government.

Author Contributions

Conceived and designed the study: M.P., M.H., KW.K., H.AK,, ].C.B., K.D. Led the study and drafted the
manuscript: M.P., M.H., KW.K,, ].C.B. Contributed data from their experiments: M.N.G. in Kenya, M.M.M. in
Tanzania, M.F. and D.D. in Saudi Arabia, and M.P. in Scotland. Analyzed the data: ].C.B. and M.P. All co-authors
commented on and provided edits to the original manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-12354-y.

Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017

SCIENTIFICREPORTS|7:11917 | DOI:10.1038/s41598-017-12354-y 11



