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On the advantages of using the first-order generaliseckapheme for structural
dynamic problems

C. Kadapa, W. G. Dettmer, D. Perit
Zienkiewicz Centre for Computational Engineering, College of Engineering, Svansea University, Fabian Way, Svansea, SA1 8EN, Wales, UK.

Abstract

The advantages of using the generalised-alpha schemedivofiter systems for computing the numerical solutions
of second-order equations encountered in structural digssame presented. The governing equations are rewritten so
that the second-order equations can be solved directhowithaving to convert them into state-space. The stability,
accuracy, dissipation and dispersion characteristidse$theme are discussed. It is proved through spectralssmaly
that the proposed scheme has improved dissipation prepertien compared with the standard generalised-alpha
scheme for second-order equations. It is also proved tegbithposed scheme does not suffer from overshoot. To-
wards demonstrating the application to practical problgmmgposed scheme is applied to the benchmark example of
three degrees of freedom stiff-flexible spring-mass systeim-dimensional Howe truss model, and elastic pendulum
problem discretised with non-linear truss finite elements.

Keywords: Structural dynamics; Time integration; Generalised-alpha scheme; Numerical dissipation;

Overshoot

1. Introduction

Obtaining stable and accurate solutions of second-ordeamical systems encountered in science and engineer-
ing has been one of the important areas of research on nwahecisemes for initial value problems (IVPs). In
literature, there are several time integration schemesdlwng structural dynamic problems. Several classificeti
exist for such schemesamplicit or explicit andsingle-step or multi-step being the most prominent ones. The detailed
discussion of such schemes is beyond the scope of this pag@ng standard book on numerical schemes for initial
value problems, e.g. [1-7], may be consulted for this pugpos

Implicit schemes generally possess better stability aftaristics than explicit schemes. An implicit scheme al-
lows using large steps for obtaining numerical solutiomside, such schemes require less time and effort. However,
it is now an established fact that use of large time stepanplicit schemes, results in undesirable numerical dis-

sipation in the low-frequency range. On the other hand, fiarctural dynamics problems discretised with finite
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elements, it is advantageous to be able to control the amafunimerical damping so that adverse effects of spu-
rious higher-frequency modes on the numerical solutionteaavoided. Therefore, a time integration scheme with
controllable numerical damping for high-frequency modwd at the same time with less numerical dissipation in the
low-frequency range is desirable. Following Hilber and Heg[7, 8], a competitive numerical scheme for structural

dynamic problems should possess the following importaatatteristics:
1. Unconditional stability when applied to a linear problem
2. No more than one set of implicit equations should have tedbeed at each time step.
3. Second-order accuracy.
4. Controllable algorithmic dissipation in the higher msde
5. Self-starting.
6. The scheme should not suffer fravershoot behaviour.

A considerable amount of research has gone into developiptidit schemes which possess the above-listed
attributes. Newmarls scheme [9], Wilsor¢ scheme [10], HHTa scheme [11], Collocation scheme [8], WBZ-
scheme [12], HR: scheme [13], CHx scheme [14] and Grscheme [15] are few such schemes which satisfy some
or all of the above listed criteria. Though all these schearesunconditionally stable, implicit, single-step and
second-order in nature, their differences are in the amotintimerical dissipation and whether or not they suffer
from overshoot. HHTa, CH-o and WBZ« schemes have been proven to suffer from overshooting, &eaft
references therein. Erlicher et al. [16] have proven theshaot behaviour of CHr scheme in the context of non-
linear dynamic problems. KaiPing [15] has improved upon &klcheme and devised a new family of generalised-
schemes without overshoot. Though NOHHTB&Nnd NOWBZ« schemes, proposed by [15], are without overshoot
and have better dissipation properties when compared héih¢ounterparts with overshoot, the amount of numerical
dissipation of NOCHa remained exactly same as that of the @ldeheme. On the similar lines, Kuhl and Crisfield
[17] developed energy conserving generalised energy-mtmemethods based on Cidscheme.

It is important to note that all the schemes listed above m@esstep schemes for second-order IVPs. To the
knowledge of the authors, there are only a few direct mt#pschemes for second-order IVPs. Two-step composite
scheme by Bathe and Baig [18] and the three-step scheme byeiidn [19] are two such multi-step schemes for
structural dynamic problems. We refer to a recent articl&lbgng et al. [20] for a comprehensive numerical analysis
of such composite schemes. Though these multi-step schéonest contain any adjustable parameter, their main
disadvantage is that for the same time step size, they arputationally expensive when compared with single-step
schemes. For example, for a linear problem, and for a givea step, the computational cost of Bathe’s two-step
scheme is twice that of a single-step scheme; and for the-$tepp scheme by Wen et al. [19] the computational cost
is three times that of a single-step scheme. In additiortasleof book-keeping and storing variables for intermediat
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steps in multi-step schemes adds to unnecessary commatladieerheads. Furthermore, the cost and complexity of
the algorithm of multi-step schemes increase many foldadorlinear problems.

In this paper, we propose to use the generalisestheme for the first-order dynamic systems, proposed by
Jansen et al. [21] and referred as JWHrom this point onwards, for obtaining the numerical sauos of structural
dynamic problems. Recently, this scheme has been applieebtty incompressible elasticity by Rossi et al. [22] and
viscoelasticity by Zeng et al. [23]. This work is motivateglthe need for a consistent time integration scheme for
fluid-structure interaction (FSI) problems. GHand JWHe schemes have been extensively used as time integration
schemes for fluid and solid sub-problems, respectivelypimerical schemes for coupled fluid-structure interaction,
see [24-30]. Investigation of time integration schemedlfidds [24] showed the excellent performance of the JWH-
scheme. Dettmer and Peri€ [31] used Gtand JWHea schemes, respectively, for fluid and solid sub-solvers tainb
second order accurate unconditionally stable weakly @aipblution scheme for FSI with small to moderate added
mass effects. All of these motivate the development of thiéaghframework proposed in present work in which a
single time integration scheme is used for both fluid andisalb-problems.

The outline of the paper is as follows. The governing equatend proposed scheme are presented in Section 2.
Stability and accuracy analysis are carried out in SectioDi8sipation and dispersion characteristics of the scheme
are studied in Section 4. In Section 5, it is proved that tleppsed scheme does not suffer from overshoot behaviour.
Finally, the algorithm is applied to three multi-degreereifdom (MDOF) examples in Section 6 and the performance

of the proposed scheme is compared againsiCihd Bathe's schemes. Conclusions are drawn in Section 7.

2. Governing equations and the proposed time integration scheme

The governing equation for the general linear structurakatyic problem can be written in matrix-vector form as,

Md+Cd+Kd=F (1)
d(t=0)=d, (2)
d(t =0) =d, (3)

where, M, C andK are the mass, damping and stiffness matrices, respectivétythe vector of displacements
(including rotational degree of freedom) add= dd/dt, d= d2d/dt? are the velocity and acceleration vectdrss
the vector of external nodal forced; andd, are the initial displacement and velocity, respectivetyotder for the

formulation to be consistent and balance total energytitialiacceleration should be computed as,

do =M~ F(t:O)—CdO—KdO} (4)



In order to apply the JWHx scheme, the second-order equation Eq. (1) is first convarted system of first-
order equations. By introducing an auxiliary variable= d, the equivalent first-order system can be written in the

matrix form as,

M of|d 0o -M| |d 0
+ = (5)
0 M| |V K C v F
By applying the JWH=« scheme to Eq. (5), the following first-order system is ol#din
M 0| |dnia, |0 M| Jduia, [ _ ] 0 )
0 M| |Vita, K C | |Vita, Foia,
with,
dnstan, = @mdpsr + (1 —ap)d, (7)
Vitam = Om Vil + (1 — am) Vi (8)
dinta; =apdpir + (1 —ayf)d, (9)
Vita; = @f Vol + (1 —ay) vy (10)
Froja,=afFnpi+(1—ap)Fy (11)
dpi1 = d, + At [7 dpit +(1—9)d, (12)
Voi1 = Vi + At [y Ve + (1 —7) vy (13)
For convenience, Egs. (12) and (13) are rewritten as,
Qi = 7 [ =, + T=d, (14)
G =~ [ = vl + 2 4, (15)

Now, using the Egs. (7)-(13), the first-order matrix system &) can be solved fofd,,+1 v,+1}7. However,
this is not a wise choice as this would require solving a mayistem which is twice as large as the original one.
Even though the resulting overhead might be insignificansifoall problems, the cost would increase substantially
for large problems, especially when the matrix system nézthe solved at every iteration of every time step for a
non-linear problem. Therefore, in the present work, we itevthe Eq. (6) so that we only need to solve a matrix
system that is exactly the same size as that of the origis&sy.

A close observation of Eq. (6) reveals that, its first equatian be simplified to an equation involving only

vectors. Accordingly, we get,



dnJram = VnJraf (16)

which, using Egs. (7) and (10) in Eq. (6), can be rearranged as
1-— (6257 af — 1

QO -
Vip41 = Oé_f dn+1 + ay dn + ay Vn (17)

Now, using Egs. (14), (15) and (1%),+1 andv,,.1 become,

(v —am) ;

Vil T AL (dn+s )+ Yoy T e 1
\.’n-i-l = aim (dn+1 - dn) - ! Vn + - ! Vn ('Y — am) dn (19)
afy2At? apyAt 5 afy2At

Finally, using Egs. (8), (9), (10), (18) and (19), the seceqdation of Eq. (6),

M\lfnJram + C VnJraf + K dn+af = FnJraf (20)

can be solved fod,,; ; from,

Kd, ., =F (21)

where, the effective stiffness matrik,, and the effective force vectd¥, are given as,

a2

. a
K=—" _M+—2C K 22
apy?At? * ~yAt toaf (22)

P = Fria, — (1= am)MV, — (1 —af)Cv, — (1 —ay)Kd,

_ ) -1
s [ Om_ g (v — am) a, - (g )vn]
apyAt yor of

Xm 1 y—1. ('Yam)'}

M d v
L [afVQAtQ ol apyAt " vt apy?At

(23)

Onced,, ;1 is obtaineddnH, v,+1andv,, 1 can be computed from Eqgs. (14), (18) and (19), respectiretiis
way, we will only solve a matrix system whose size is same atsafhthe original system (1). The only additional cost
involved is storage memory for a single new variafble and scalar-vector computations in evaluatinlgl from Eq.
(14).



2.1. The algorithm for non-linear problems

Assuming that mass and damping are linear, the governingtieqs for a non-linear structural dynamic problem

can be written as,

M‘.fn+am +C VnJraf + GnJraf = Fn+af (24)

where,G, 1, is the vector of internal forces, and it is decomposed as,

Gn+af =a;Gui1+ 1 —ay) G, =arG(dpt1) + (1 — ay) G(dy) (25)

As the system of equations (24) is non-linear, Newton-Rapissheme is used in the present work. The vector of

residuals, at iteratiofk + 1) of time stept,, 11, for Eq. (24) can be written as,
k+1 k+1 - (k41 k+1 k+1
R(dgzj_l )> = ngj_aj? - vaz:ajl -C ngj—af) - ng:af) (26)

Applying Newton-Raphson scheme to solve the non-lineanfseuations (26), it follows,

K@) ad = -R(@%),) (27)

Where,f{(dfﬁzl) and R(dfﬁzl) are the effective stiffness matrix and residual vector extation (% + 1), and

Ad = dff:ll) - dﬁl is the incremental displacement vector. The effectivéngds matrix is computed as,

2

Cm M+ L C+agK!(dh ) (28)

K=—™m_
afy?At? ~yAt

Here,Kt(dfszl) is the tangent stiffness and it consists of geometric an@mahparts which are associated with
the choice of finite element discretisation, see [32, 33k pveudo code for the application of the present scheme to

non-linear problems is given in Algorithm 1.

3. Stability and accuracy analysis

For the purpose of stability and accuracy analysis, we denghe standard single degree of freedom (SDOF)
spring-mass-damper system. The governing equation fatémelard spring-mass-damper system, without any exter-

nal force acting on it, is given by,

d+2¢wd+w?d=0 (29)
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Algorithm 1 Algorithm for non-linear problems

1:

2:

3:

10:

11:

12:

13:

14:

15:

16:

17:

18:

Set: poo, to, ty, At and tolerance e
Compute: ayy,, oy and vy

Compute: vo(= Eio) from do and d.

: Set: Vo = (;l()

for t =1ty tot =1ty do
Predict: d'), = d,
for k=1 to max-iter do
Compute: vfﬁzl and \7;’21, respectively, from (18) and (19)
Compute: K(d*, ) and R(dE, ;)
if |[R(d%, )| < e then
Converged, exit iteration loop
end if
Solve: K(d¥),)Ad = ~R(d")))
Update: dff:ll) = dff_&l +Ad
end for
Compute: dy11 from (14)
(dn,dn, Vi, V) = (dngt, Ao, Va1, Vos1)

end for




where,w = /k/m is the undamped natural frequency &ne: ¢/(2vkm) is the damping ratio. The natural
time period of oscillations is defined &B,= 27 /w. Using equations (7)-(19), the complete solution to eaqurettd

Eqg. (29) may be written in the form,

X1 =AX,, Vnel0,1,..,N—1] (30)

where,N is the number of time stepX,; = {d;, v;At, d'z-At, 0;At?}T andA is termed the amplification matrix
which is used to assess the performance characteristibe sEheme. It is important to note that the mafifor the
proposed scheme is of sizex 4 while the amplification matrix for other similar schemesfisiae3 x 3.

The parameter that aids in the analysis of numerical schéonasability, accuracy and dissipation properties is

spectral radius, which is defined as,

p:maX(|)\1|7|)\2|;|)‘3|7|)‘4|) (31)

where,\1, A2, A3 and )\, are the eigenvalues of the amplification matiix It can be verified that, as expected,
the parametersy, o, and~y need to be chosen as defined in Jansen et al. [21] in order targea second order

accuracy, unconditional stability and user controllechHigquency damping. Thus,

1 (3 — poc) 1

af

where, the parameter,, corresponds to the spectral radius at an infinite time stepnaust be chosen such that

0<poo <L

4. Numerical dissipation and dispersion analysis

We now present thaumerical dissipation andnumerical dispersion properties of the present scheme using the
spectral analysis and make comparisons with € Hhd Bathe’s schemes. The GHscheme is already proven to
have better dissipation properties when compared with Nenkerfi, HHT-oo, WBZ-o and HP#; schemes, see [14].
Hence, it suffices to use the Cilscheme as the reference for single-step schemes. In ordentpare with the
state-of-the-art, we use Bathe’s two-step scheme as arrefeeence. For numerical calculations, we take- 1 and
T = 1 and the value of is adjusted depending upon the value of damping r@atibhe initial conditions aredy = 1
anddo =0.

We compute spectral radiug)( time period " = 27 /@) and damping ratiog) of the numerical solution in order
to assess the amountmimerical damping andnumerical dissipation. The magnitude of spectral radius indicates the

amount of numerical dissipation: the smaller the spec#@ius the higher the numerical dissipation. The amount of
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numerical dissipation and dispersion are measured by timpidag ratio €) and relative period error—T%T), respec-
tively.

Fig. 1 shows the values of spectral radius, period elongatioor and damping ratio error for the case without
damping,¢ = 0.0, and with damping¢ = 0.1. From these graphs, it can be observed that, for the entigera

€ [0,1), the proposed scheme has better numerical dissipationiapérsion properties when compared with
CH-a scheme. The reduction in dissipation and dispersion eisarsore pronounced as,, — 0. For the purpose
of comparison with Bathe’s scheme, two graphs are presémteach figure, one with the same time step as that of
the proposed scheme and the second one with twice the time®tés is due to the fact that, for a given time step,
Bathe's scheme is computationally twice as expensive agriippsed scheme. From Fig. 1 itis clearly evident that,
for the same computational cost, andfgr > 0.5, CH-« and the proposed schemes have lower period elongation and
damping ratio errors when compared with Bathe’s schemesd&bbservations have been confirmed by computing
numerical solutions of the model problem, as presentedgnres 2 and 3. It is important to mention that the time
step used for Bathe's scheme is twice that used fordCaihd present schemes. As shown, solutions obtained with the
present scheme converge to the reference solutidktas: 0, illustrating the convergence of the scheme. It can be
observed that fop., = 0.5 andAt = T'/10, the results obtained with the proposed scheme are sligbthgr than
the ones obtained with Bathe’s scheme and match well withetlobtained with CHr scheme; and fop,, = 0.0
andAt = T'/10, the solutions obtained with the present scheme are poon whi@pared with Bathe’s scheme but
still better than the ones obtained with GHscheme. Therefore, when the spectral radius)(value is chosen high
enough then, for the same computational cost, the preseatrsryields better results than Bathe’s scheme and when

Peo — 0, the present scheme, although poorer that the Bathe’s s;héetds better results than Chdscheme.
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the left side and the ones for £ = 0.1 are on the right side. Dashed lines are for the CH-a scheme and solid lines for the present

scheme.
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Figure 2: Model problem: displacement obtained for & = 0.0.
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Figure 3: Model problem: displacement obtained for £ = 0.1.

5. Analysisfor overshoot

The overshoot behaviour of the scheme is assessed by sgutigiisolution of the model problem at the first time
step. Absolute errors in displacement and velocity for geowithout physical damping & 0) for p, = 0.0 and
pPso = 0.5 are shown, respectively, in Figs. 4 and 5. The correspongliotg for the case with physical damping
(¢ = 0.1) are shown in Figs. 6 and 7. These graphs indicate that ttseprecheme and the Bathe’s scheme do not

suffer fromovershoot, while the CHer scheme shows significant overshoot, particularly for tHearsy values.
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Figure 7: Overshoot analysis: absolute errors at first time step for £ = 0.1 and p = 0.5.

6. Numerical examples

In this section, we apply the proposed scheme for structiynr@dmic problems with multiple degrees of freedom
(MDOF). For this purpose, we consider a three-dof springsyaoblem, a two-dimensional Howe truss model, and an
elastic pendulum modelled with non-linear truss elemealut®ns obtained with the present schemes are compared
with those obtained with the CH-and Bathe’s two-step schemes. As the accuracy of the coohpatetion(s) and
the computational cost incurred are the two most importdtera when solving large-scale problems discretised
with finite elements, we investigate the accuracy of thetgmis obtained for the same computational cost. Here, the
computational cost refers to the costliofear equations solver only, ignoring level-1 and level-2 BLAS operations.
Since the computational cost of Bathe's scheme, for a gives step, is twice that of Ckd-and the present schemes,

time step used for Bathe’s scheme is chosen to be twice tl@taf and present schemes.

6.1. Three DOF stiff-flexible spring problem

This example, adopted from Bathe and Noh [34], is shown in Fdg The values of stiffness and mass are:
k1 = 107, ks = 1, m;y = 0 andmy = ms = 1. Prescribed displacement at mass Hjs= sin1.2¢. With
two springs whose stiffnesses differ by several orders gjnitade, this example represents a simplified model of
complex structural dynamical systems. The left spring withy high stiffness can either represent a rigid link or
be viewed as a physical representation of penalty schemienfasing constraint/boundary conditions. Due to the
presence of high-frequency components in the solutios piiiblem serves as a good example to assessitherical

damping characteristic of a time integration technique.
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Figure 8: 3-dof example by Bathe and Noh [34].

The effective system of equations for this problem, in m&tyrm, is given as,

mo 0 d2 n ki+ky —ko do _ k1 dy (33)

0 ma| |ds ko ko | |ds 0

The initial displacement and velocity of masses 2 and 3 ai@ Zetime step ofA¢t = 0.2618 is considered. The
reference solution is computed using the mode superposghnique [35]. Solutions obtained with, = 0.5 and
Poo = 0.0 are presented in Fig. 9 and Fig. 10, respectively.&or= 0.5, the solution obtained with present scheme
matches well the solution obtained with GHscheme and is better than the one obtained with Bathe’s sehEhe
difference is more pronounced in the acceleration of theertychnd forp, = 0.0, the response of node 2 obtained
with the present scheme is better than that of &£BIRd Bathe’s scheme. While the response of node 3, obtairied wi
P = 0.0, is poor when compared with Bathe’s scheme, it is still vetian the one obtained with CH-scheme.

These observations are in-line with those made for the SD@defhproblem.
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Figure 9: 3-dof example: solution obtained with poc = 0.5 for CH-a and present schemes.
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Figure 10: 3-dof example: solution obtained with poo = 0.0 for CH-« and present schemes.

6.2. Howe truss model in 2D

This example is adopted from Rostami et al. [36]. Geomety laoundary conditions of the problem are as
shown in Fig. 11. All the truss elements are assumed to be idramcross-section along their length. Ared)(
density p) and Young’s modulusk) considered for the analysis ard:= 5in2, p = 0.289 Ib/in3 andE = 3 x 107
Ib/in?. The reference solution is obtained with Bathe’s schemegusitime step of\t = 0.001. A spectral radius of

P = 0.5 is chosen for CHx and present schemes. The short-term response of Y-dispéaxtef node 8 obtained
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with At = 0.02, and presented in Fig. 12, shows that the solution obtairiédtihe present scheme match well with
ones obtained with other two schemes as well as the refessheion. However, the long-term response, shown in
Fig. 13, illustrates that the solution obtained with thesprg scheme is closer to the reference solution than those
obtained with CHer and Bathe’s schemes. This is a direct consequence of thiaéat¢he period error of the proposed

scheme, for the same computational cost, is smaller thdroftihe other two schemes, as demonstrated already in

Section 4.
12000 Ib 12000 Ib
15000 Ib 15000 Ib
7 11

£

(@}

X

<t

-y N A\ A a

1 (2) 4 & 8 19 12 4 1§
8 X 100in

Figure 11: Howe truss model in 2D: geometry and boundary conditions.

18



Y-displacement

Y-displacement

_1'994 295 296 297 298 299 300

©
>

—— Ref —— CH-a

o
N
o
Q
-+
D
o
=
]
n
D
=]
+

° g
—
—_—

—

—
—

—

—

RARARAE

NAAAANAARN

-1.0
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Figure 13: Howe truss model: long-term response obtained with At = 0.02.

19



6.3. Elastic pendulum

As the last example, we consider the pendulum example pressém Kuhl and Crisfield [17]. The problem
consists of a pendulum with stretchable cord and is modell#da single non-linear truss element, as shown in Fig.
14. All physical dimensions and material parameters aressithose used in [17]. The initial lengthjs= 3.0443
m and mass per unit length igsg A9 = 6.57 kg/m. In this example, we consider the elastic version ofsxedulum.

For this caseF Ay = 10* N, and the initial velocity and acceleration of the free naded, = 7.72 m/s anddy = 0
m?/s, respectively.

The spectral radius for CH-and present schemes is selecteghas= 0.5. The solution obtained witth¢t =
0.0002 with Bathe’s scheme is used as the reference solution. FEighws the solution obtained witht = 0.2.
These graphs illustrate the same trend as the one obsertledhei single-dof model problem and previous two
MDOF examples, indicating that the solution obtained wiité present scheme provides better solution results than
those obtained with CHrand Bathe’s schemes for the same computational cost. Im rdevestigate the behaviour
of the solution further, simulations are carried out witaler time step ofA¢ = 0.01 and the solution is presented
in Figs. 16 and 17. The short-term responses of displaceamehvelocity obtained with the present scheme match
well with those of CHer and Bathe’s schemes, and the acceleration obtained witprdsent scheme is the best
of all the three schemes considered. Moreover, the long-tesponse presented in Fig. 17 shows that, for the
same computational effort, the solution obtained with trespnt scheme is better than those obtained with other two

schemes.

W

2
A
Y b
X do ! 1
do
(a) Physical model (b) Truss model

Figure 14: Pendulum: problem description, boundary and initial conditions.
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Figure 17: Elastic pendulum: long-term response obtained for the same parameters used in Fig. 16.

7. Concluding remarks

In this paper, the advantages of using the generatisecheme for the first-order systems, JWitscheme [21],
for computing numerical solutions of second-order IVPoemtered in structural dynamics is presented. The govern-
ing equations are rewritten so that the proposed schemesceadily implemented in the existing structural dynamics
codes without having to convert the whole formulation inimtes-space. The scheme is single-step, implicit, uncon-
ditionally stable and second-order accurate. It is showmieans of spectral analysis and by studying numerical
examples that the proposed scheme has imprave®rical dissipation anddispersion properties when compared
with the CH« scheme. It is also demonstrated, with the SDOF model prgltlesih the proposed scheme does not
suffer fromovershoot.

The proposed scheme is applied to study three MDOF examgpledly encountered in structural dynamics: stiff-
flexible spring, Howe truss model discretised with lineast finite elements and elastic pendulum discretised with
non-linear truss elements. With these practical examplésjllustrated that, for the same computational cost and
when an appropriate value pf, is used, the proposed scheme yields improved results, baltle icase of short-term

and long-term responses, when compared with«C&hd Bathe’s schemes.
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