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On the advantages of using the first-order generalised-alpha scheme for structural
dynamic problems

C. Kadapa∗, W. G. Dettmer, D. Perić

Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Fabian Way, Swansea, SA1 8EN, Wales, UK.

Abstract

The advantages of using the generalised-alpha scheme for first-order systems for computing the numerical solutions

of second-order equations encountered in structural dynamics are presented. The governing equations are rewritten so

that the second-order equations can be solved directly without having to convert them into state-space. The stability,

accuracy, dissipation and dispersion characteristics of the scheme are discussed. It is proved through spectral analysis

that the proposed scheme has improved dissipation properties when compared with the standard generalised-alpha

scheme for second-order equations. It is also proved that the proposed scheme does not suffer from overshoot. To-

wards demonstrating the application to practical problems, proposed scheme is applied to the benchmark example of

three degrees of freedom stiff-flexible spring-mass system, two-dimensional Howe truss model, and elastic pendulum

problem discretised with non-linear truss finite elements.

Keywords: Structural dynamics; Time integration; Generalised-alpha scheme; Numerical dissipation;

Overshoot

1. Introduction

Obtaining stable and accurate solutions of second-order dynamical systems encountered in science and engineer-

ing has been one of the important areas of research on numerical schemes for initial value problems (IVPs). In

literature, there are several time integration schemes forsolving structural dynamic problems. Several classifications

exist for such schemes:implicit or explicit andsingle-step or multi-step being the most prominent ones. The detailed

discussion of such schemes is beyond the scope of this paper and any standard book on numerical schemes for initial

value problems, e.g. [1–7], may be consulted for this purpose.

Implicit schemes generally possess better stability characteristics than explicit schemes. An implicit scheme al-

lows using large steps for obtaining numerical solutions, hence, such schemes require less time and effort. However,

it is now an established fact that use of large time steps, in implicit schemes, results in undesirable numerical dis-

sipation in the low-frequency range. On the other hand, for structural dynamics problems discretised with finite
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elements, it is advantageous to be able to control the amountof numerical damping so that adverse effects of spu-

rious higher-frequency modes on the numerical solution canbe avoided. Therefore, a time integration scheme with

controllable numerical damping for high-frequency modes and at the same time with less numerical dissipation in the

low-frequency range is desirable. Following Hilber and Hughes [7, 8], a competitive numerical scheme for structural

dynamic problems should possess the following important characteristics:

1. Unconditional stability when applied to a linear problem.

2. No more than one set of implicit equations should have to besolved at each time step.

3. Second-order accuracy.

4. Controllable algorithmic dissipation in the higher modes.

5. Self-starting.

6. The scheme should not suffer fromovershoot behaviour.

A considerable amount of research has gone into developing implicit schemes which possess the above-listed

attributes. Newmark-β scheme [9], Wilson-θ scheme [10], HHT-α scheme [11], Collocation scheme [8], WBZ-α

scheme [12], HP-θ1 scheme [13], CH-α scheme [14] and G-α scheme [15] are few such schemes which satisfy some

or all of the above listed criteria. Though all these schemesare unconditionally stable, implicit, single-step and

second-order in nature, their differences are in the amountof numerical dissipation and whether or not they suffer

from overshoot. HHT-α, CH-α and WBZ-α schemes have been proven to suffer from overshooting, see [15] and

references therein. Erlicher et al. [16] have proven the overshoot behaviour of CH-α scheme in the context of non-

linear dynamic problems. KaiPing [15] has improved upon CH-α scheme and devised a new family of generalised-α

schemes without overshoot. Though NOHHT-α and NOWBZ-α schemes, proposed by [15], are without overshoot

and have better dissipation properties when compared with their counterparts with overshoot, the amount of numerical

dissipation of NOCH-α remained exactly same as that of the CH-α scheme. On the similar lines, Kuhl and Crisfield

[17] developed energy conserving generalised energy-momentum methods based on CH-α scheme.

It is important to note that all the schemes listed above are single-step schemes for second-order IVPs. To the

knowledge of the authors, there are only a few direct multi-step schemes for second-order IVPs. Two-step composite

scheme by Bathe and Baig [18] and the three-step scheme by Wenet al. [19] are two such multi-step schemes for

structural dynamic problems. We refer to a recent article byZhang et al. [20] for a comprehensive numerical analysis

of such composite schemes. Though these multi-step schemesdo not contain any adjustable parameter, their main

disadvantage is that for the same time step size, they are computationally expensive when compared with single-step

schemes. For example, for a linear problem, and for a given time step, the computational cost of Bathe’s two-step

scheme is twice that of a single-step scheme; and for the three-step scheme by Wen et al. [19] the computational cost

is three times that of a single-step scheme. In addition, thetask of book-keeping and storing variables for intermediate
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steps in multi-step schemes adds to unnecessary computational overheads. Furthermore, the cost and complexity of

the algorithm of multi-step schemes increase many folds fornon-linear problems.

In this paper, we propose to use the generalised-α scheme for the first-order dynamic systems, proposed by

Jansen et al. [21] and referred as JWH-α from this point onwards, for obtaining the numerical solutions of structural

dynamic problems. Recently, this scheme has been applied tonearly incompressible elasticity by Rossi et al. [22] and

viscoelasticity by Zeng et al. [23]. This work is motivated by the need for a consistent time integration scheme for

fluid-structure interaction (FSI) problems. CH-α and JWH-α schemes have been extensively used as time integration

schemes for fluid and solid sub-problems, respectively, in numerical schemes for coupled fluid-structure interaction,

see [24–30]. Investigation of time integration schemes forfluids [24] showed the excellent performance of the JWH-α

scheme. Dettmer and Perić [31] used CH-α and JWH-α schemes, respectively, for fluid and solid sub-solvers to obtain

second order accurate unconditionally stable weakly coupled solution scheme for FSI with small to moderate added

mass effects. All of these motivate the development of the unified framework proposed in present work in which a

single time integration scheme is used for both fluid and solid sub-problems.

The outline of the paper is as follows. The governing equations and proposed scheme are presented in Section 2.

Stability and accuracy analysis are carried out in Section 3. Dissipation and dispersion characteristics of the scheme

are studied in Section 4. In Section 5, it is proved that the proposed scheme does not suffer from overshoot behaviour.

Finally, the algorithm is applied to three multi-degree of freedom (MDOF) examples in Section 6 and the performance

of the proposed scheme is compared against CH-α and Bathe’s schemes. Conclusions are drawn in Section 7.

2. Governing equations and the proposed time integration scheme

The governing equation for the general linear structural dynamic problem can be written in matrix-vector form as,

M
..
d+C

.
d+Kd = F (1)

d(t = 0) = d0 (2)

.
d(t = 0) =

.
d0 (3)

where,M, C andK are the mass, damping and stiffness matrices, respectively; d is the vector of displacements

(including rotational degree of freedom) and
.
d = dd/dt,

..
d = d2d/dt2 are the velocity and acceleration vectors;F is

the vector of external nodal forces;d0 and
.
d0 are the initial displacement and velocity, respectively. In order for the

formulation to be consistent and balance total energy, the initial acceleration should be computed as,

..
d0 = M−1

[

F(t = 0)−C
.
d0 −Kd0

]

(4)
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In order to apply the JWH-α scheme, the second-order equation Eq. (1) is first convertedinto a system of first-

order equations. By introducing an auxiliary variablev =
.
d, the equivalent first-order system can be written in the

matrix form as,





M 0

0 M











.
d

.
v







+





0 −M
K C











d

v







=







0

F







(5)

By applying the JWH-α scheme to Eq. (5), the following first-order system is obtained.





M 0

0 M











.
dn+αm

.
vn+αm







+





0 −M
K C











dn+αf

vn+αf







=







0

Fn+αf







(6)

with,

.
dn+αm

= αm

.
dn+1 + (1 − αm)

.
dn (7)

.
vn+αm

= αm
.
vn+1 + (1− αm)

.
vn (8)

dn+αf
= αf dn+1 + (1 − αf )dn (9)

vn+αf
= αf vn+1 + (1− αf )vn (10)

Fn+αf
= αf Fn+1 + (1 − αf )Fn (11)

dn+1 = dn +∆t
[

γ
.
dn+1 + (1− γ)

.
dn

]

(12)

vn+1 = vn +∆t [γ
.
vn+1 + (1 − γ)

.
vn] (13)

For convenience, Eqs. (12) and (13) are rewritten as,

.
dn+1 =

1

γ∆t
[dn+1 − dn] +

γ − 1

γ

.
dn (14)

.
vn+1 =

1

γ∆t
[vn+1 − vn] +

γ − 1

γ

.
vn (15)

Now, using the Eqs. (7)-(13), the first-order matrix system Eq. (6) can be solved for{dn+1 vn+1}T . However,

this is not a wise choice as this would require solving a matrix system which is twice as large as the original one.

Even though the resulting overhead might be insignificant for small problems, the cost would increase substantially

for large problems, especially when the matrix system needsto be solved at every iteration of every time step for a

non-linear problem. Therefore, in the present work, we rewrite the Eq. (6) so that we only need to solve a matrix

system that is exactly the same size as that of the original system.

A close observation of Eq. (6) reveals that, its first equation can be simplified to an equation involving only

vectors. Accordingly, we get,
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.
dn+αm

= vn+αf
(16)

which, using Eqs. (7) and (10) in Eq. (6), can be rearranged as,

vn+1 =
αm

αf

.
dn+1 +

1− αm

αf

.
dn +

αf − 1

αf

vn (17)

Now, using Eqs. (14), (15) and (17),vn+1 and
.
vn+1 become,

vn+1 =
αm

αfγ∆t
(dn+1 − dn) +

(γ − αm)

γαf

.
dn +

(αf − 1)

αf

vn (18)

.
vn+1 =

αm

αfγ2∆t2
(dn+1 − dn)−

1

αfγ∆t
vn +

γ − 1

γ

.
vn +

(γ − αm)

αfγ2∆t

.
dn (19)

Finally, using Eqs. (8), (9), (10), (18) and (19), the secondequation of Eq. (6),

M
.
vn+αm

+Cvn+αf
+Kdn+αf

= Fn+αf
(20)

can be solved fordn+1 from,

K̂ dn+1 = F̂ (21)

where, the effective stiffness matrix,̂K, and the effective force vector,̂F, are given as,

K̂ =
α2
m

αfγ2∆t2
M+

αm

γ∆t
C+ αfK (22)

F̂ = Fn+αf
− (1− αm)M

.
vn − (1 − αf )Cvn − (1− αf )Kdn

+ αfC

[

αm

αfγ∆t
dn −

(γ − αm)

γαf

.
dn −

(αf − 1)

αf

vn

]

+ αmM

[

αm

αfγ2∆t2
dn +

1

αfγ∆t
vn −

γ − 1

γ

.
vn −

(γ − αm)

αfγ2∆t

.
dn

]

(23)

Oncedn+1 is obtained,
.
dn+1, vn+1and

.
vn+1 can be computed from Eqs. (14), (18) and (19), respectively.In this

way, we will only solve a matrix system whose size is same as that of the original system (1). The only additional cost

involved is storage memory for a single new variable
.
dn, and scalar-vector computations in evaluating

.
dn+1 from Eq.

(14).
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2.1. The algorithm for non-linear problems

Assuming that mass and damping are linear, the governing equations for a non-linear structural dynamic problem

can be written as,

M
.
vn+αm

+Cvn+αf
+Gn+αf

= Fn+αf
(24)

where,Gn+αf
is the vector of internal forces, and it is decomposed as,

Gn+αf
= αf Gn+1 + (1− αf )Gn = αf G(dn+1) + (1− αf )G(dn) (25)

As the system of equations (24) is non-linear, Newton-Raphson scheme is used in the present work. The vector of

residuals, at iteration(k + 1) of time steptn+1, for Eq. (24) can be written as,

R(d
(k+1)
n+1 ) = F

(k+1)
n+αf

−M
.
v
(k+1)
n+αm

−Cv
(k+1)
n+αf

−G
(k+1)
n+αf

(26)

Applying Newton-Raphson scheme to solve the non-linear setof equations (26), it follows,

K̂(d
(k)
n+1)∆d = −R(d

(k)
n+1) (27)

where,K̂(d
(k)
n+1) andR(d

(k)
n+1) are the effective stiffness matrix and residual vector at iteration(k + 1), and

∆d = d
(k+1)
n+1 − d

(k)
n+1 is the incremental displacement vector. The effective stiffness matrix is computed as,

K̂ =
α2
m

αfγ2∆t2
M+

αm

γ∆t
C+ αfK

t(dk
n+1) (28)

Here,Kt(d
(k)
n+1) is the tangent stiffness and it consists of geometric and material parts which are associated with

the choice of finite element discretisation, see [32, 33]. The pseudo code for the application of the present scheme to

non-linear problems is given in Algorithm 1.

3. Stability and accuracy analysis

For the purpose of stability and accuracy analysis, we consider the standard single degree of freedom (SDOF)

spring-mass-damper system. The governing equation for thestandard spring-mass-damper system, without any exter-

nal force acting on it, is given by,

..
d+ 2 ξ ω

.
d+ ω2 d = 0 (29)
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Algorithm 1 Algorithm for non-linear problems

1: Set: ρ∞, t0, tf , ∆t and tolerance ǫ

2: Compute: αm, αf and γ

3: Compute:
.

v0(=
..

d0) from d0 and
.

d0.

4: Set: v0 =
.

d0

5: for t = t0 to t = tf do

6: Predict: d
(1)
n+1 = dn

7: for k=1 to max-iter do

8: Compute: v
(k)
n+1 and

.

v
(k)
n+1, respectively, from (18) and (19)

9: Compute: K̂(dk
n+1) and R(dk

n+1)

10: if |R(dk
n+1)| ≤ ǫ then

11: Converged, exit iteration loop

12: end if

13: Solve: K̂(d
(k)
n+1)∆d = −R(d

(k)
n+1)

14: Update: d
(k+1)
n+1 = d

(k)
n+1 +∆d

15: end for

16: Compute:
.

dn+1 from (14)

17: (dn,
.

dn,vn,
.

vn)← (dn+1,
.

dn+1,vn+1,
.

vn+1)

18: end for
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where,ω =
√

k/m is the undamped natural frequency andξ = c/(2
√
km) is the damping ratio. The natural

time period of oscillations is defined as,T = 2π/ω. Using equations (7)-(19), the complete solution to equation to

Eq. (29) may be written in the form,

Xn+1 = AXn, ∀n ∈ [0, 1, ..., N − 1] (30)

where,N is the number of time steps,Xi = {di, vi∆t,
.
di∆t,

.
vi∆t2}T andA is termed the amplification matrix

which is used to assess the performance characteristics of the scheme. It is important to note that the matrixA for the

proposed scheme is of size4× 4 while the amplification matrix for other similar schemes is of size3× 3.

The parameter that aids in the analysis of numerical schemesfor stability, accuracy and dissipation properties is

spectral radius, which is defined as,

ρ = max(|λ1|, |λ2|, |λ3|, |λ4|) (31)

where,λ1, λ2, λ3 andλ4 are the eigenvalues of the amplification matrixA. It can be verified that, as expected,

the parametersαf , αm andγ need to be chosen as defined in Jansen et al. [21] in order to guarantee second order

accuracy, unconditional stability and user controlled high frequency damping. Thus,

αf =
1

1 + ρ∞
; αm =

(3 − ρ∞)

2(1 + ρ∞)
; γ =

1

2
+ αm − αf (32)

where, the parameterρ∞ corresponds to the spectral radius at an infinite time step and must be chosen such that

0 ≤ ρ∞ ≤ 1.

4. Numerical dissipation and dispersion analysis

We now present thenumerical dissipation andnumerical dispersion properties of the present scheme using the

spectral analysis and make comparisons with CH-α and Bathe’s schemes. The CH-α scheme is already proven to

have better dissipation properties when compared with Newmark-β, HHT-α, WBZ-α and HP-θ1 schemes, see [14].

Hence, it suffices to use the CH-α scheme as the reference for single-step schemes. In order tocompare with the

state-of-the-art, we use Bathe’s two-step scheme as another reference. For numerical calculations, we takem = 1 and

T = 1 and the value ofc is adjusted depending upon the value of damping ratioξ. The initial conditions are:d0 = 1

and
.
d0 = 0.

We compute spectral radius (ρ), time period (̄T = 2π/ω̄) and damping ratio (̄ξ) of the numerical solution in order

to assess the amount ofnumerical damping andnumerical dissipation. The magnitude of spectral radius indicates the

amount of numerical dissipation: the smaller the spectral radius the higher the numerical dissipation. The amount of
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numerical dissipation and dispersion are measured by the damping ratio (̄ξ) and relative period error (T̄−T
T

), respec-

tively.

Fig. 1 shows the values of spectral radius, period elongation error and damping ratio error for the case without

damping,ξ = 0.0, and with damping,ξ = 0.1. From these graphs, it can be observed that, for the entire range

ρ∞ ∈ [0, 1), the proposed scheme has better numerical dissipation and dispersion properties when compared with

CH-α scheme. The reduction in dissipation and dispersion errorsis more pronounced asρ∞ → 0. For the purpose

of comparison with Bathe’s scheme, two graphs are presentedin each figure, one with the same time step as that of

the proposed scheme and the second one with twice the time step. This is due to the fact that, for a given time step,

Bathe’s scheme is computationally twice as expensive as theproposed scheme. From Fig. 1 it is clearly evident that,

for the same computational cost, and forρ∞ ≥ 0.5, CH-α and the proposed schemes have lower period elongation and

damping ratio errors when compared with Bathe’s scheme. These observations have been confirmed by computing

numerical solutions of the model problem, as presented in Figures 2 and 3. It is important to mention that the time

step used for Bathe’s scheme is twice that used for CH-α and present schemes. As shown, solutions obtained with the

present scheme converge to the reference solution as∆t → 0, illustrating the convergence of the scheme. It can be

observed that forρ∞ = 0.5 and∆t = T/10, the results obtained with the proposed scheme are slightlybetter than

the ones obtained with Bathe’s scheme and match well with those obtained with CH-α scheme; and forρ∞ = 0.0

and∆t = T/10, the solutions obtained with the present scheme are poor when compared with Bathe’s scheme but

still better than the ones obtained with CH-α scheme. Therefore, when the spectral radius (ρ∞) value is chosen high

enough then, for the same computational cost, the present scheme yields better results than Bathe’s scheme and when

ρ∞ → 0, the present scheme, although poorer that the Bathe’s scheme, yields better results than CH-α scheme.
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Figure 1: Spectral radius, period elongation error and algorithmic damping versus ∆t/T . Graphs for the case ξ = 0.0 are on

the left side and the ones for ξ = 0.1 are on the right side. Dashed lines are for the CH-α scheme and solid lines for the present

scheme.
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(d) ρ∞ = 0.5, ∆t = T/100

Figure 2: Model problem: displacement obtained for ξ = 0.0.
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(c) ρ∞ = 0.0, ∆t = T/100
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(d) ρ∞ = 0.5, ∆t = T/100

Figure 3: Model problem: displacement obtained for ξ = 0.1.

5. Analysis for overshoot

The overshoot behaviour of the scheme is assessed by studying the solution of the model problem at the first time

step. Absolute errors in displacement and velocity for the case without physical damping (ξ = 0) for ρ∞ = 0.0 and

ρ∞ = 0.5 are shown, respectively, in Figs. 4 and 5. The correspondingplots for the case with physical damping

(ξ = 0.1) are shown in Figs. 6 and 7. These graphs indicate that the present scheme and the Bathe’s scheme do not

suffer fromovershoot, while the CH-α scheme shows significant overshoot, particularly for the velocity values.
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Figure 4: Overshoot analysis: absolute errors at first time step for ξ = 0.0 and ρ∞ = 0.0.
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Figure 5: Overshoot analysis: absolute errors at first time step for ξ = 0.0 and ρ∞ = 0.5.
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Figure 6: Overshoot analysis: absolute errors at first time step for ξ = 0.1 and ρ∞ = 0.0.
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Figure 7: Overshoot analysis: absolute errors at first time step for ξ = 0.1 and ρ∞ = 0.5.

6. Numerical examples

In this section, we apply the proposed scheme for structuraldynamic problems with multiple degrees of freedom

(MDOF). For this purpose, we consider a three-dof spring-mass problem, a two-dimensional Howe truss model, and an

elastic pendulum modelled with non-linear truss element. Solutions obtained with the present schemes are compared

with those obtained with the CH-α and Bathe’s two-step schemes. As the accuracy of the computed solution(s) and

the computational cost incurred are the two most important criteria when solving large-scale problems discretised

with finite elements, we investigate the accuracy of the solutions obtained for the same computational cost. Here, the

computational cost refers to the cost oflinear equations solver only, ignoring level-1 and level-2 BLAS operations.

Since the computational cost of Bathe’s scheme, for a given time step, is twice that of CH-α and the present schemes,

time step used for Bathe’s scheme is chosen to be twice that ofCH-α and present schemes.

6.1. Three DOF stiff-flexible spring problem

This example, adopted from Bathe and Noh [34], is shown in Fig. 8. The values of stiffness and mass are:

k1 = 107, k2 = 1, m1 = 0 andm2 = m3 = 1. Prescribed displacement at mass 1 isd1 = sin 1.2 t. With

two springs whose stiffnesses differ by several orders of magnitude, this example represents a simplified model of

complex structural dynamical systems. The left spring withvery high stiffness can either represent a rigid link or

be viewed as a physical representation of penalty scheme forimposing constraint/boundary conditions. Due to the

presence of high-frequency components in the solution, this problem serves as a good example to assess thenumerical

damping characteristic of a time integration technique.
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Figure 8: 3-dof example by Bathe and Noh [34].

The effective system of equations for this problem, in matrix form, is given as,





m2 0

0 m3











..
d2
..
d3







+





k1 + k2 −k2
−k2 k2











d2

d3







=







k1 d1

0







(33)

The initial displacement and velocity of masses 2 and 3 are zero. A time step of∆t = 0.2618 is considered. The

reference solution is computed using the mode superposition technique [35]. Solutions obtained withρ∞ = 0.5 and

ρ∞ = 0.0 are presented in Fig. 9 and Fig. 10, respectively. Forρ∞ = 0.5, the solution obtained with present scheme

matches well the solution obtained with CH-α scheme and is better than the one obtained with Bathe’s scheme. The

difference is more pronounced in the acceleration of the node 2; and forρ∞ = 0.0, the response of node 2 obtained

with the present scheme is better than that of CH-α and Bathe’s scheme. While the response of node 3, obtained with

ρ∞ = 0.0, is poor when compared with Bathe’s scheme, it is still better than the one obtained with CH-α scheme.

These observations are in-line with those made for the SDOF model problem.
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Figure 9: 3-dof example: solution obtained with ρ∞ = 0.5 for CH-α and present schemes.
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Figure 10: 3-dof example: solution obtained with ρ∞ = 0.0 for CH-α and present schemes.

6.2. Howe truss model in 2D

This example is adopted from Rostami et al. [36]. Geometry and boundary conditions of the problem are as

shown in Fig. 11. All the truss elements are assumed to be of uniform cross-section along their length. Area (A),

density (ρ) and Young’s modulus (E) considered for the analysis are:A = 5 in2, ρ = 0.289 lb/in3 andE = 3 × 107

lb/in2. The reference solution is obtained with Bathe’s scheme using a time step of∆t = 0.001. A spectral radius of

ρ∞ = 0.5 is chosen for CH-α and present schemes. The short-term response of Y-displacement of node 8 obtained
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with ∆t = 0.02, and presented in Fig. 12, shows that the solution obtained with the present scheme match well with

ones obtained with other two schemes as well as the referencesolution. However, the long-term response, shown in

Fig. 13, illustrates that the solution obtained with the present scheme is closer to the reference solution than those

obtained with CH-α and Bathe’s schemes. This is a direct consequence of the factthat the period error of the proposed

scheme, for the same computational cost, is smaller than that of the other two schemes, as demonstrated already in

Section 4.
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0
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Figure 11: Howe truss model in 2D: geometry and boundary conditions.
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Figure 12: Howe truss model: short-term response obtained with ∆t = 0.02.
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Figure 13: Howe truss model: long-term response obtained with ∆t = 0.02.
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6.3. Elastic pendulum

As the last example, we consider the pendulum example presented in Kuhl and Crisfield [17]. The problem

consists of a pendulum with stretchable cord and is modelledwith a single non-linear truss element, as shown in Fig.

14. All physical dimensions and material parameters are same as those used in [17]. The initial length isl0 = 3.0443

m and mass per unit length is,ρ0 A0 = 6.57 kg/m. In this example, we consider the elastic version of thependulum.

For this case,EA0 = 104 N, and the initial velocity and acceleration of the free nodeare
.
d0 = 7.72 m/s and

..
d0 = 0

m2/s, respectively.

The spectral radius for CH-α and present schemes is selected asρ∞ = 0.5. The solution obtained with∆t =

0.0002 with Bathe’s scheme is used as the reference solution. Fig. 15 shows the solution obtained with∆t = 0.2.

These graphs illustrate the same trend as the one observed with the single-dof model problem and previous two

MDOF examples, indicating that the solution obtained with the present scheme provides better solution results than

those obtained with CH-α and Bathe’s schemes for the same computational cost. In order to investigate the behaviour

of the solution further, simulations are carried out with a smaller time step of∆t = 0.01 and the solution is presented

in Figs. 16 and 17. The short-term responses of displacementand velocity obtained with the present scheme match

well with those of CH-α and Bathe’s schemes, and the acceleration obtained with thepresent scheme is the best

of all the three schemes considered. Moreover, the long-term response presented in Fig. 17 shows that, for the

same computational effort, the solution obtained with the present scheme is better than those obtained with other two

schemes.

X

Y

(a) Physical model

ḋ0

d̈0

l0

1

2

(b) Truss model

Figure 14: Pendulum: problem description, boundary and initial conditions.
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Figure 15: Elastic pendulum: solution obtained with ∆t = 0.2.
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Figure 16: Elastic pendulum: short-term response obtained with ∆t = 0.01.
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Figure 17: Elastic pendulum: long-term response obtained for the same parameters used in Fig. 16.

7. Concluding remarks

In this paper, the advantages of using the generalised-α scheme for the first-order systems, JWH-α scheme [21],

for computing numerical solutions of second-order IVPs encountered in structural dynamics is presented. The govern-

ing equations are rewritten so that the proposed scheme can be easily implemented in the existing structural dynamics

codes without having to convert the whole formulation into state-space. The scheme is single-step, implicit, uncon-

ditionally stable and second-order accurate. It is shown bymeans of spectral analysis and by studying numerical

examples that the proposed scheme has improvednumerical dissipation anddispersion properties when compared

with the CH-α scheme. It is also demonstrated, with the SDOF model problem, that the proposed scheme does not

suffer fromovershoot.

The proposed scheme is applied to study three MDOF examples usually encountered in structural dynamics: stiff-

flexible spring, Howe truss model discretised with linear truss finite elements and elastic pendulum discretised with

non-linear truss elements. With these practical examples,it is illustrated that, for the same computational cost and

when an appropriate value ofρ∞ is used, the proposed scheme yields improved results, both in the case of short-term

and long-term responses, when compared with CH-α and Bathe’s schemes.
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[33] E. A. de Souza Neto, D. Perić, and D. R. J. Owen.Computational Methods for Plasticity, Theory and Applications. John Wiley and Sons,

United Kingdom, 2008.

[34] K. J. Bathe and G. Noh. Insight into an implicit time integration scheme for structural dynamics.Computers and Structures, 98-99:1–6, 2012.

[35] K. J. Bathe.Finite Element Procedures. Prentice Hall Inc., New Jersey, 1996.

[36] S. Rostami, S. Shojaee, and H. Saffari. An explicit timeintegration method for structural dynamics using cubic B-spline polynomial functions.

Scientia Iranica Transactions A: Civil Engineering, 20:23–33, 2013.

25


