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Casewell, José Marı́a Gutiérrez, Wolfgang Wüster, Syed A.
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Highlights 

 Saw-scaled vipers were shown to have a significant range in clotting times and cofactor dependence. 

 Phospholipid dependence was shown to be inversely correlated with clotting time, suggesting that the 

more effective the enzyme was at using phospholipid, the facter prothrombin was activated 

 Antivenom efficacy was strongly associated with taxonomy, with very little cross-reactivity to venoms 

from more distant species. 

 African antivenom was unable to neutralise non-African species, while Indian antivenom was not able 

to neutralise African species 

Abstract  

Saw-scaled vipers (genus Echis) are one of the leading causes of snakebite morbidity and mortality in 

parts of Sub-Saharan Africa, the Middle East, and vast regions of Asia, constituting a public health burden 

exceeding that of almost any other snake genus globally. Venom-induced consumption coagulopathy, owing 

to the action of potent procoagulant toxins, is one of the most relevant clinical manifestations of envenomings 

by Echis spp. Clinical experience and prior studies examining a limited range of venoms and eected 

antivenoms have demonstrated for some antivenoms an extreme lack of antivenom cross-reactivity between 

different species of this genus, sometimes resulting in catastrophic treatment failure. This study undertook the 

most comprehensive testing of Echis venom effects upon the coagulation of human plasma, and also the 

broadest examination of antivenom potency and cross-reactivity, to-date. 10 Echis species/populations and 

four antivenoms (two African, two Asian) were studied. The results indicate that the venoms are, in general, 

potently procoagulant but that the relative dependence on calcium or phospholipid co-factors is highly variable. 

Additionally, three out of the four antivenoms tested demonstrated only a very narrow taxonomic range of 

effectiveness in preventing coagulopathy, with only the SAIMR antivenom displaying significant levels of 

cross-reactivity. These results were in conflict with previous studies using prolonged preincubation of 

antivenom with venom to suggest effective cross-reactivity levels for the ICP Echi-Tab antivenom. These 



findings both inform upon potential clinical effects of envenomation in humans and highlight the extreme 

limitations of available treatment. It is hoped that this will spur efforts into the development of antivenoms 

with more comprehensive coverage for bites not only from wild snakes but also from specimens widely kept 

in zoological collections. 

Introduction 

Envenoming and deaths resulting from snakebite represent an important public health concern, 

particularly throughout rural areas of South Asia and Sub-Saharan Africa in which access to sufficient 

medical facilities and antivenoms can be limited (Gutiérrez et al., 2006; Kasturiratne et al., 2008; 

Maduwage and Isbister, 2014). It is estimated that snakebite affects around 5 million people and 

accounts for more than 100,000 deaths annually (Chippaux, 1998; White, 2005; Kasturiratne et al., 

2008). However these numbers are dramatic underestimations due to poor or entirely absent 

epidemiological data in many regions. Most severe cases of envenoming are attributed to species 

belonging to the Elapidae and Viperidae families (Gutiérrez et al., 2006). Typically, venoms from 

elapid snakes induce neuromuscular paralysis and are thus classed as neurotoxic, whereas viperid 

snake venoms most commonly target haemostasis (e.g., coagulation dysfunction, fibrinolysis, 

thrombosis) and induce local tissue damage, and are thus broadly categorised as cytotoxic and 

haemotoxic (Boyer et al. 2015; Markland, 1998; Sajevic et al., 2011; Warrell, 2010; White, 2005). 

Coagulopathy, which contributes to sustained bleeding and consequent haemodynamic disturbances 

(Warrell, 2010), is considered to be one of the most common serious systemic clinical pathologies 

induced by snake envenoming (Isbister, 2010). Accordingly, the Viperidae family contains some of 

the most medically significant snake genera worldwide (Gutiérrez et al., 2006; Warrell, 2010). 

Among them, saw-scaled or carpet vipers (Viperidae: Echis) are thought to be responsible for causing 

more snakebite deaths annually than any other genus (Warrell and Arnett, 1976).  

Currently, the genus Echis is thought to comprise at least nine species, distributed across four 

main clades: E. carinatus E. coloratus, E. ocellatus, and E. pyramidum (Pook et al., 2009; Alencar et 

al. 2016). They can be found across the semi-arid and seasonal climate regions of Sub-Saharan Africa 

north of the Equator, Arabia, Iran, Afghanistan and Uzbekistan, and in Pakistan, India and Sri Lanka, 

often in relative abundance. These areas are typically remote, rural, with absent or inadequate medical 

facilities, and with inhabitants of low socio-economic status. This, in conjunction with yielding highly 

toxic venom, renders Echis a common cause of injurious or fatal snakebite in the regions they occupy 

(Habib and Warrell, 2013). Though accurate statistics are sometimes difficult to ascertain due to poor 

documentation of bite cases in such developing nations, Echis ocellatus is responsible for as many as 

95% of snake bites in northern Nigeria, for example (Meyer et al., 1997; WHO 2010a).  Victims are 

most commonly young males, a result of higher encounter rates arising from land cultivation or 

walking (Warrell and Arnett, 1976). In the absence of effective antivenom, case fatality rates 

following envenomation can be as high as 20% even with supportive medical treatment (Warrell and 

Arnett, 1976; Pugh and Warrell, 1980; Visser et al., 2008), and those who survive are often left with 

permanent disability and disfiguring sequelae (Abubakar et al., 2010). Local effects of Echis viper 

envenoming typically include pain, swelling, blistering, and haemorrhage, which, in severe cases, can 

lead to necrosis and amputation. In such cases, the long-term socio-economic impact upon both bite 

victims and their families can be severe and is an often-overlooked consequence of snakebite 

(Vaiyapuri et al., 2013). 

In addition to localised effects, Echis toxins also induce dysfunctions of haemostasis, and 

mortality following envenomation is typically a result of systemic haemostatic disruption, which 

often leads to systemic haemorrhage (Warrell et al., 1977; Boyer et al. 2015). Of the three main 

processes involved in haemostasis (vasoconstriction, platelet plug formation and coagulation (Jin and 

Gopinath, 2016), the majority of snake venoms affecting haemostasis, including those of Echis, target 

the coagulation cascade. The coagulation cascade, whereby blood forms a clot following the stepwise 

activation of multiple clotting factors, requires the presence of Ca2+ ions and platelet-phospholipids. 

These molecules act as co-factors to clotting proteins present in plasma, ultimately inducing the 

proteolytic cleavage of prothrombin to thrombin (Berny et al., 2010; Davie et al., 1991; Jackson and 

Nemerson 1980; Munnix et al., 2007). Then, soluble fibrin monomers are formed by the cleavage of 



fibrinogen by the activated thrombin, and these monomers subsequently form an insoluble fibrin 

meshwork, resulting in a clot (Jin and Gopinath, 2016).  

The snake venom components responsible for perturbing haemostasis are variable, although the 

majority can be classified into four categories according to the part of the coagulation pathway upon 

which they act: factor V activators, factor X activators, prothrombin activators, and thrombin-like 

enzymes (TLEs) or fibrinogenases (Lu et al., 2005; Kini and Koh, 2016; Slagboom et al. 2017). 

Within the genus Echis, the presence of prothrombin activators in species from each of the four main 

clades have been demonstrated (Gillissen et al., 1994; Mann, 1978; Mion et al., 2013; Porath et al., 

1992; Warrell et al., 1977; Yamada et al., 1996). Prothrombin activators found within the genus are 

categorised into two subgroups according to their calcium dependence: ‘ecarin-like’ (Ca2+-

independent) and ‘carinactivase-like’ activators (Ca2+-dependent), classified into groups A and B of 

snake venom prothrombin activators (Kini, 2005). Those belonging to the ‘ecarin-like’ group are 

named so following the discovery of a prothrombin activator (ecarin) with an unprecedented Ca2+-

independent activity, isolated from Echis carinatus venom (Morita and Iwanaga, 1978). In contrast, 

‘CA-like’ activators exhibit Ca2+-dependent activity, e.g., the prothrombin activator carinactivase, 

isolated from Echis leucogaster venom (Yamada et al., 1996). These toxins are responsible for the 

catalysis of prothrombin into thrombin. In natural prey items, this results in rapid subjugation through 

intravascular coagulation leading to cardiovascular collapse. However, in humans, the dilution of the 

venom into a much larger blood volume results in the formation of millions of microthrombi. In and 

of themselves, microthrombi are not lethal, but their formation consumes the majority of available 

essential clotting factors. Clinically, this leads to low or undetectable concentrations of fibrinogen 

(Isbister, 2010) and to multiple blood factor deficiencies, a potentially lethal condition known as 

venom-induced consumption coagulopathy (VICC) (Gillissen et al., 1994; Mann, 1978; Mion et al., 

2013; Porath et al., 1992; Warrell et al., 1977). Coagulopathy also contributes to the generation of 

additional systemic pathologies in human bite victims, including internal haemorrhage, such as 

cerebrovascular accident (Boyer et al. 2015; Warrell et al., 1977). 

Despite envenomation by all Echis species manifesting similar clinical symptoms, previous 

studies have documented considerable inter- and intraspecific variations in their venom composition 

(Barlow et al., 2009; Casewell et al., 2009, 2014; Schaeffer, 1987), apparently driven at least in part 

by natural selection for different diet spectra between the clades (Barlow et al., 2009; Richards et al., 

2012, Savanur et al., 2014). This suggests that variation in the molecular mechanisms inducing these 

pathologies also exists. Such interspecific variation in toxin expression, and therefore in venom 

antigenicity, can greatly affect the ability of an antivenom to neutralise a given venom (Bénard-Valle 

et al. 2015; Fry et al., 2003; Harrison et al., 2003). Antivenoms consist of polyclonal antibodies 

purified from the serum or plasma of animals hyperimmunised with the target species’ venom 

(Bénard-Valle et al. 2015; Heard et al., 1999; Theakston and Warrell, 1991). Due to their polyclonal 

nature, antivenoms are able to neutralise multiple venom components (Gutiérrez et al., 2003; 

Gutiérrez et al 2014); however, the antibodies are specific to the venoms from which they were 

developed (Bénard-Valle et al. 2015). Consequently, while antivenoms are typically marketed as a 

therapeutic treatment for envenomation by a given species, intraspecific venom variation can reduce 

antivenom efficacy, dependent upon the difference between the venom composition of the individuals 

which were used for antivenom manufacture and the individual which delivered the bite (Bénard-

Valle et al. 2015; Boyer et al. 2015). It is well documented that the success rates achieved by different 

antivenoms in treating Echis snakebites can vary significantly depending on the geographical location 

of the bite due to regional variation of the species’ venom (Abubakar et al., 2010; Calvete et al., 2016; 

Casewell et al., 2010), which can translate into catastrophic treatment failure and case fatality rates 

increased by an order of magnitude in a tropical clinical setting (Alirol et al. 2015; Visser et al., 2008; 

Warrell and Arnett, 1976; Warrell et al. 1980).  

In light of the complications associated with Echis envenomings, from a clinical perspective, 

there is a distinct need to characterise the coagulant activity of venoms of this genus, with particular 

reference to geographical variation, and to explore the implications this may have for antivenom 

cross-reactivity. In this study, a comparative analysis of the venoms of six representative species 



belonging to the four main clades of Echis was conducted. Coagulation assays were used to explore 

the interspecific and intraspecific variations of coagulopathic toxicity within Echis. Antivenom cross-

reactivity was investigated by comparing the neutralising capacity of four Echis antivenoms. This 

research has been conducted to provide the first comprehensive reference framework for Echis venom 

coagulopathic effects and differential response to antivenoms.  

Materials and Methods 

Venom samples 

A total of ten Echis pooled-venom samples were included in this study, comprising six 

representative species belonging to the four main clades of the genus and from across its geographical 

distribution. The venoms were sourced from the cryogenic venom collection of the Venom Evolution 

Lab, University of Queensland and that of the Alistair Reid Venom Research Unit, Liverpool School 

of Tropical Medicine. Species and localities were as follows: E. carinatus (India), E. c. sochureki 

(Mithi, Tharparkar District, Sindh Province, Pakistan), E. c. sochureki (United Arab Emirates), E. 

coloratus (Saudi Arabia), E. jogeri (Bandafassi, Kédougou Region, Senegal), E. leucogaster (Mali), 

E. ocellatus (Ghana), E. ocellatus (Mali), E. ocellatus (Nigeria), and E. pyramidum leakeyi (Kenya). 

Pooled samples were used to account for any potential venom variation between individuals due to 

such variables as sex and age. Working stock solutions from freeze-dried venom were reconstituted 

to a concentration of 1mg/ml in 50% deionised water / 50% glycerol (Sigma-Aldrich) to prevent 

freezing and thus reduce enzyme degradation and preserve enzymatic activity. Working stocks were 

stored at -20°C and used for all subsequent analyses. 

Human plasma  

Human plasma was provided by the Australian Red Cross (44 Musk Street, Kelvin Grove, 

Queensland 4059). Three batches of pooled plasma (Lot#4456062 (Rhesus A+), Lot#4439715 

(Rhesus A-), Lot#4439719 (Rhesus O-)) were further pooled and aliquoted. The plasma aliquots were 

then flash frozen in liquid nitrogen and stored at -80°C until use. For all coagulation analyses, plasma 

aliquots were defrosted in an Artic refrigerated circulator SC150-A40 for 5 minutes (min) at 37°C 

and immediately used for experimentation.  

Coagulation analyses  

Coagulation analyses were performed on a Stago STA-R Max® automated coagulation 

analyser (Stago, Asnières sur Seine, France) using Stago Analyser software v0.00.04 (Stago, Asnières 

sur Seine, France). To check the quality of the plasma, positive and negative controls were conducted 

and compared to pre-established plasma clotting parameters in the presence and absence of an 

activator (49-51 seconds (s) and 450-550 s respectively). The positive control was conducted by 

performing a standardised activated Partial Thromboplastin Time (aPTT) test (Stago Cat#T1203 

TriniCLOT APTT HS). 50 µL Kaolin (STA C.K.Prest standard kit, Stago Cat#00597), a coagulation 

activator, was added to 50 µL plasma and incubated for 120 seconds. 50 µL CaCl2 (0.025 M, Stago 

Cat#00367) was then added, and time until clot formation was measured. As a negative control, test 

conditions in the absence of venom were replicated. 50 µL buffer solution (30 µL 50% deionised H2O 

/ 50% glycerol in 270 µL Owren-Koller (OK) buffer) was added to 50 µL CaCl2, 50 µL phospholipid 

and 25 µL OK buffer, and then incubated for 120 s at 37°C. 75 µL plasma was then added and clotting 

time measured. Both controls were run in triplicate before commencing any venom analyses.  

In order to determine clotting times effected by the addition of varying venom concentrations, 

venom working stock solution was diluted with Owren Koller (OK) Buffer (Stago Cat# 00360) as 

appropriate in order to perform 10-point dilution series (µg/ml: 20, 10, 5, 2.5, 1.33, 0.66, 0.4, 0.2, 0.1, 

and 0.05). 50 µL of CaCl2 with 50 µL phospholipid (cephalin prepared from rabbit cerebral tissue 

from STA C.K Prest standard kit, Stago Cat# 00597, solubilised in OK Buffer) were added to 50 µL 

of the diluted venom. An additional 25 µL of OK Buffer was added to the cuvette and incubated for 

120 seconds at 37°C before adding 75 µL human plasma (total volume 250 µL /cuvette). Time until 

clot formation was then immediately monitored by the automated analyser. Tests were conducted in 

triplicate, with plasma and venom being replaced every 15-30 minutes to minimise enzyme 

degradation.  



Phospholipid and calcium dependence  

In order to test for co-factor dependence of the venoms, the aforementioned coagulation 

analyses were run both with and without CaCl2 and/or phospholipid. The experimental protocol was 

identical, with the exception that 50 µL OK Buffer was added as a substitute for the removed co-

factor to ensure consistency in final test volumes (250 µL). Tests were conducted in triplicate, with 

plasma and venom being replaced every 15-30 minutes to minimise enzyme degradation.  

Antivenom tests 

The relative efficacy of four polyvalent and monovalent antivenoms were investigated in this 

study. The previously measured whole plasma clotting times for each venom were used as a guide 

for antivenoms effects. Four antivenoms were assessed; three polyvalent: (a) EchiTAb-Plus-ICP, 

from Instituto Clodomiro Picado, Costa Rica (Lot 5620715PALQ), (b) Sii Polyvalent Anti-snake 

Venom Serum from Serum Institute Of India LTD, India (Lot 045D0004), and (c) Snake Venom 

Antiserum I.P. from VINS Bioproducts LTD, India (Lot 1081); and one monovalent: SAIMR Echis 

antivenom provided by South African Vaccine Producers (SAVP) (South Africa – Lot 2147)  (Table 

1). 

Antivenoms which were provided in lyophilised form were reconstituted in sterile water (if 

indicated by the manufacturer), aliquoted, and stored at 4°C. In order to ascertain the potency, as each 

antivenom vial contained the same final volume (10ml) equal volumes of each antivenom were used 

for testing. For antivenom testing, all test conditions replicated that of the coagulation analyses, with 

the exception that 25µl of antivenom working solution (50 µL reconstituted antivenom in 950 µL OK 

buffer) used in place of 25µl of OK Buffer: 50 µL venom, 50 µL calcium, 50 µL phospholipid, 25 

µL antivenom, 120 s incubation time, 75 µL plasma. Time until clot formation was then immediately 

measured. Experiments were conducted in triplicate, with plasma and venom being replaced every 

15-30 minutes to minimise enzyme degradation.  
Statistical analysis 

Coagulation times (seconds) for each of the venoms and antivenoms were graphed using Prism 7.0 software 

(GraphPad Software Inc, La Jolla, CA, USA) to produce concentration response curves. Calculation of EC50 

(concentration of venom at which 50% of the effect is observed) values for the venom and antivenom 

concentration curves for each dataset were performed using Prism 7.0 software (GraphPad Software Inc, La 

Jolla, CA, USA). Data is expressed as mean ± SD. After EC50s were calculated, the relative antivenom efficacy 

was calculated using the formula: 

x=abc/def-1 with a= antivenom EC50 x-axis, b= antivenom EC50 y-axis, c= antivenom starting clotting time, 

d= venom EC50 x-axis, e= venom EC50 y-axis and  f= venom starting clotting time. 

The phylogenetic tree used was based upon a previously published species tree (Pook et al., 2009; Alencar et 

al. 2016) and created using Mesquite software (version 3.2), which was then imported into Rstudio using the 

APE package (Paradis et al., 2004). Ancestral states were estimated for all traits (including the proportional 

shift of the relative co-factor dependence and relative antivenom efficacy) using maximum likelihood as 

implemented in the contMap function of the R package phytools (Revell, 2012). We then fit pGLS models 

(Symonds and Blomberg, 2014) in caper (Orme et al., 2015) to test for relationships. Specific scripts for each 

step in R are as follows: 

PHYTOOLS CODE 

>library(ape) 

>library(maps) 

>library(phytools) 

> # senci.contMap is a slight modification of errorbar.contMap that trims 95% CIs of ancestral state reconstructions to a 

sensible range, e.g. for traits bound between 0 and 1 

# Example of code for implementing it would be as follows (lines separated by semicolons): pasr<-

contMap(tree,mapdat,plot=F,lims=c(0,1)) ; plot(setMap(pasr,invert=T)) ; 

senci.contMap(setMap(pasr,invert=T),mini=0,maxi=1) 

senci.contMap<-function(obj,...){ 

if (hasArg(x))  

        x <- list(...)$x 



    else x <- setNames(sapply(1:Ntip(obj$tree), function(x, obj) { 

        ii <- which(obj$tree$edge[, 2] == x) 

        ss <- names(obj$tree$maps[[ii]][length(obj$tree$maps[[ii]])]) 

        obj$lims[1] + as.numeric(ss)/(length(obj$cols) - 1) *  

            diff(obj$lims) 

    }, obj = obj), obj$tree$tip.label) 

    if (hasArg(scale.by.ci))  

        scale.by.ci <- list(...)$scale.by.ci 

    else scale.by.ci <- TRUE 

    if (hasArg(lwd))  

        lwd <- list(...)$lwd 

    else lwd <- 14 

    tree <- obj$tree 

    aa <- fastAnc(tree, x, CI = TRUE) 

if (hasArg(min))#added lines here 

for (i in 1:length(aa$CI95[,1])){ #added lines here 

    aa$CI95[i,1]<-ifelse(aa$CI95[i,1]<list(...)$min,list(...)$min,aa$CI95[i,1]) #added lines here 

    } #added lines here 

else aa$CI95[,1]<-aa$CI95[,1] #added lines here 

if (hasArg(max)) #added lines here 

for (i in 1:length(aa$CI95[,2])){ #added lines here 

    aa$CI95[i,2]<-ifelse(aa$CI95[i,2]>list(...)$max,list(...)$max,aa$CI95[i,2]) # added lines here 

    } #added lines here 

else aa$CI95[,2]<-aa$CI95[,2] #added lines here 

    xlim <- range(aa$CI95) 

    if (xlim[2] > obj$lims[2] || xlim[1] < obj$lims[1]) { 

        cat(paste("  -----\n  The range of the contMap object, presently (",  

            round(obj$lims[1], 4), ",", round(obj$lims[2], 4),  

            "), should be equal to\n  or greater than the range of the CIs on ancestral states: (",  

            round(xlim[1], 4), ",", round(xlim[2], 4), ").\n",  

            sep = "")) 

        cat(paste("  To ensure that your error bars are correctly plotted, please recompute your\n",  

            "  contMap object and increase lims.\n  -----\n",  

            sep = "")) 

    } 

    d <- diff(obj$lims) 

    if (scale.by.ci) { 

        v <- aa$CI95[, 2] - aa$CI95[, 1] 

        v <- v/max(v) 

    } 

    else v <- rep(0.5, tree$Nnode) 

    n <- length(obj$cols) - 1 

    lastPP <- get("last_plot.phylo", envir = .PlotPhyloEnv) 

    h <- max(nodeHeights(tree)) 

    for (i in 1:tree$Nnode) { 

        ii <- round((aa$CI95[i, 1] - obj$lims[1])/d * n) 

        jj <- round((aa$CI95[i, 2] - obj$lims[1])/d * (n + 1)) 

        cols <- obj$cols[ii:jj] 

        add.color.bar(leg = 0.1 * h * v[i], cols = cols, prompt = FALSE,  

            x = lastPP$xx[i + Ntip(tree)] - 0.05 * h * v[i],  

            y = lastPP$yy[i + Ntip(tree)], title = "", subtitle = "",  

            lims = NULL, lwd = lwd) 

    } 

} 

>data<-read.csv(file.choose())  

>dat<-data 

>mapvar<-dat$var 

>names(mapvar)<-dat$species 

>tree<-read.tree(file.choose())  

>tree<-chronos(tree) 



>asr<-contMap(tree,mapvar,plot=F) 

For red (warmer) zone for the higher numbers (eg antivenom shifts) the below was used.  

>plot(setMap(asr,col=c(1,4,5,3,7,2,6,8))) 

>senci.contMap(setMap(asr,col=c(1,4,5,3,7,2,6,8)),min=x,max=y) 

For red (warmer) zone for smaller numbers (eg clotting time and co factors) the below was used 

>plot(setMap(asr,col=c(8,6,2,7,3,5,4,1)),lwd=10) 

>senci.contMap(setMap(asr,col=c(8,6,2,7,3,5,4,1)),min=x,max=y) 

In both cases, the x and y for senci were the low and high numbers (respectively) for the particular dataset. 

PHYLOGENETIC GENERALISED LEAST SQUARES REGRESSION (PGLS) STEP 

>library(caper)  

>data<-read.csv(file.choose())  

>tree<-read.tree(file.choose())  

>com<-comparative.data(tree,data,species)  

For values of variable range in the responder column, these steps were used 

>mod<-pgls(var1~var2,com,lambda="ML")  

>summary(mod) 

For 0 to 1 values in the responder column 

>mod<-pgls(57.295*asin(sqrt(var1))~var2,com,lambda="ML") 

>summary(mod) 

Results and Discussion 

Procoagulant activity was revealed to be a dynamic feature without a strong phylogenetic pattern, and 

also without any obvious relationship with the diet spectra of the clades, despite diet-specific differences in 

venom lethality to prey (Barlow et al., 2009), therefore suggesting this is a dynamic ancestral functional 

phenotype in Echis spp. Testing revealed all venoms to follow a similar dilution curve trajectory. However, 

clotting times at maximal venom concentration (20 µg/mL) varied from 19.53+/-1.30s for E. pyramidum 

leakeyi to 40.13+/-1.20s for E. carinatus (India), though most venoms induced a clot in around 20-25 seconds 

(Figure 1, Table 2). Only E. carinatus (India) and E. leucogaster (Mali) venoms took longer than 30 s to 

generate a clot (Figure 1). There was significant variation in clotting time within each of the three major clades. 

E. carinatus (India) was significantly slower than the two other venoms in the E. carinatus clade (E. c. 

sochureki (Pakistan) and E. c. sochureki  (UAE), but with E. c. sochureki (Pakistan) and E. c. sochureki (UAE) 

not differing significantly from each other. E. leucogaster was also significantly slower than its closest 

relatives in this study (E. coloratus and E. pyramidum leakeyi), with E. coloratus and E. pyramidum leakeyi 

also being significantly different in their clotting times relative to each other. Within the E. jogeri/E. ocellatus 

clade all venoms differed significantly from each other, with coagulant activity for the four venoms ranging 

from 19.63s (E. jogeri (Senegal)) to 27.0s (E. ocellatus (Ghana)). 

The interspecific variation in calcium cofactor dependence showed a strong phylogenetic pattern and 

varied from the almost independent E. carinatus (India locale), with a clotting time shift of only 0.42 +/- 0.02-

fold in the absence of calcium, to total dependence in E. coloratus (Saudi Arabia), which was unable to induce 

a clot in the instrument’s maximum measurement time range (999 s) and thus has a clotting time shift of at 

least 17.5-fold (Figure 2, Table 2). The basally split E. carinatus clade ranged from strong to moderate calcium 

independence. The E. jogeri/E. ocellatus clade displayed consistent strong calcium-independence. In contrast, 

all venoms from the E. pyramidum clade exhibited a high degree of calcium dependence. Taken in the context 

of the phylogeny (Figure 2) this suggests that low levels of calcium dependence is the plesiotypic condition of 

the Echis genus.   



In contrast to the extreme effect seen with regard to calcium cofactor dependence, relative shifts in 

clotting time in the absence of additional phospholipid cofactor were substantially less than those of calcium, 

and also lacked the strong phylogenetic pattern evident for calcium dependence (Figure 2, Table 2). Relative 

phospholipid dependence ranged from 0.04 +/- 0.01-fold for E. carinatus (India) through to 0.90 +/- 0.07-fold 

for E. c. sochureki (Pakistan). The third member of this clade, E. sochureki (UAE locale; 0.48 +/- 0.03-fold) 

demonstrated intermediate dependence. The other clades were also variable. Thus, while phospholipid 

dependence in general was less pronounced, the lack of phylogenetic consistency suggests that it is a labile 

character relative to that of calcium dependence.  

A higher relative degree of calcium dependence predicted increased relative phospholipid dependence 

(PGLS: t=2.2734, p=0.03851), but the reverse was not true in that the relative degree of phospholipid 

dependence did not predict that of calcium dependence (PGLS: t=1.6467, p=0.13824). This may suggest that 

changes in calcium dependence subsequently lead to changes in phospholipid dependence, but this directional 

suggestion remains tentative. Higher relative degree of phospholipid dependence was associated with faster 

clotting times, though this effect was marginally non-significant (PGLS: t=-2.1562, p=0.063160) (Figure 3). 

In contrast, the relative calcium dependence did not predict clotting time (PGLS: t=-1.7817, p=0.11266). Thus 

there appears to be a positive correlation between the ability of the enzymes to use phospholipid and their 

ability activate prothrombin, which is consistent with neofunctionalisation of these enzymes for such an 

activity relative to their ancestral protease activity. Thus the more the enzymes are able to utilize phospholipid 

for the newly evolved prothrombin activation activity, the faster the reaction proceeds. The structural features 

responsible for this phospholipid utilisation are unknown and thus represent a rich area of future research. The 

dynamic nature of this in relationship to the phylogeny of the snakes themselves is a particularly fascinating 

riddle (Figure 2). Additional studies are required however to confirm this directionality and the biochemical 

mechanisms behind it. 

The four antivenoms tested using equal volumes of each antivenom had extremely variable results both 

in potency and species targeted (Figures 4-7, Tables 3 and 4). EchiTAb-Plus-ICP antivenom had the strongest 

effect of all the antivenoms tested in this study, being for example twice as effective as SII in relation each 

antivenom’s best neutralised venom but not to the 6.6-fold ratio that may be anticipated from the package 

insert details (Table 1). Consistent with E. ocellatus venom being used in the immunising mixture, this 

antivenom demonstrated strong selectivity for the West African species E. ocellatus venoms and, to a lesser 

extent, the E. jogeri venom. The strongest effect was seen for E. ocellatus (Ghana) venom which had the 

clotting curve proportionally shifted with an effect of 65-fold. The other E. ocellatus populations were also 

well neutralised, but to a lesser extent. Unexpectedly, of the E. ocellatus samples tested, the population from 

Nigeria was the least affected by the EchiTab-ICP, despite the antivenom being manufactured from pooled 

venoms of E. ocellatus collected from Nigeria (Gutiérrez et al., 2005). While the precise locality of the 

Nigerian sample used in this study was not known, the results never-the-less indicative of geographical or 

individual variation within the region and follow-up studies should investigate this matter further. The 

antivenom also significantly shifted the clotting curve of E. jogeri. However, despite showing good efficacy 

for this clade, the EchiTab-ICP had little effect upon the other venoms thus demonstrating a narrow taxonomic 

range of efficiency.  

In discordance with these findings (Figures 4-7, Tables 3 and 4), a previous study described the ability 

of the ICP antivenom to neutralise coagulant activity of the venoms of E. pyramidum and E. leucogaster 

(Segura et al., 2010). This discrepancy is likely to be attributable to differences in experimental protocol. 

Segura et al. (2010) used a more prolonged incubation time (30 minutes incubation) as compared to the 

protocol used in the present study (2 minutes incubation). Longer incubation times would likely conceal 

differences in efficacy between venom/antivenom pairs as slower, weaker binding combinations would have 

time to reach the levels more quickly obtained by faster, stronger binding combinations. The traditional 

protocols to assess the neutralizing ability of antivenoms at the preclinical level involve the incubation of 

venom and antivenom for 30 min or even for one hour before testing [see for example Christensen 1955, 

Bolaños 1977, and WHO 1981]. Moreover, the 30 min incubation protocol at 37 °C is indicated in the current 

version of the official WHO guidelines for antivenom production and quality control (WHO, 2010).  In 

contrast, the new protocol used in this study introduces a more rigorous evaluation of the neutralizing capacity 

of antivenoms by reducing the incubation time to 2 min, thus demanding high affinity antibodies for the 



neutralization while also ascertaining the ability of the antivenoms to neutralise the coagulopathic enzymatic 

activity. 

Consistent with E. pyramidum (Ethiopia/Eritrea) and E. ocellatus (Nigeria) venoms being used in the 

immunising mixture, the SAIMR antivenom had the strongest selectivity for the species within the E. 

pyramidum clade but also displayed significant cross-reactivity for E. ocellatus venoms as well as the E. jogeri 

venom from the same clade (Figures 4-7, Tables 3 and 4). Thus our results confirm that the SAIMR antivenom 

is effective against both East and West African Echis species and while it may require more antivenom for the 

treatment of West African species it clearly has the broadest coverage of African Echis species (Figures 4-7).  

Neither Indian antivenom was able to neutralise the Indian-locale venom samples included in this study 

(Figures 4-7, Tables 3 and 4). While both antivenoms use the Chennai population of E. carinatus in the 

immunising mixture, the geographical locality within India for the venom used in this study is unknown. 

However, this clearly points to potential intra-country clinical issues and this disparity should be the focus of 

an urgent follow-up study as this country is notable for such variation (Kochar et al. 2007). The SII antivenom 

performed well against the Pakistan E. c. sochureki population and to a lesser but still significant extent, the 

UAE E. c. sochureki population. Despite having a package insert stated potency equivalent to that of SII (Table 

1), the VINS antivenom performed comparatively poorly with values comparable with the low-level cross-

reactivity of EchiTAb-Plus-ICP and SAIMR for the Pakistan and UAE E. c. sochureki populations. Both the 

SII and VINS antivenoms give the same stated neutralising ability against the lethal effect of venoms when 

tested through the historical method of 30 min preincubation of antivenom with venom and then injection of 

the mixture into mice (Table 1). However, their performance was markedly different in this study regarding 

ability to neutralize the coagulant activity (Tables 3 and 4). Thus the VINS antivenom can be predicted to have 

little or no likely clinical usefulness against the South Asian or African venoms tested in this study without 

requiring extremely large doses relative to the other antivenoms studied. These findings agree with a previous 

study showing that VINS antivenom is highly inefficient in the neutralisation of E. ocellatus from Cameroon 

(Calvete et al., 2016). 

Our findings demonstrate that there is gradated calcium dependence throughout the genus (Figure 2). 

This presents an intriguing example of venom variability and one with profound clinical implications. As the 

procoagulant activity of Echis spp. venoms is driven by prothrombin activating SVMPs, the calcium 

dependency (Figure 2) may shed light on the type of predominant type in each. Prothrombin activating SVMP 

are divided into Class A (calcium independent) and Class B (calcium dependent) (Casewell et al. 2015; Kini 

and Koh, 2016). These functional/structural divisions are sometimes referred to as ecarin-like or carinativase-

like based upon the first of each type described for each. These functional classes are also reflective of 

structural differences, with the monomeric P-IIIa SVMP making up Class A while Class B is a P-IIIa SVMP 

non-covalently linked to a lectin dimer (with the two lectin subunits covalently linked to each other) (Yamada 

et al. 1996; Casewell et al. 2015). This trimer differs from the classical P-IIId SVMP which are covalently 

linked to a lectin dimer (Casewell et al. 2015). As low levels of calcium dependence is the plesiotypic state 

(Figure 2), this suggests that the evolution of a monomeric calcium independent P-IIIa SVMP preceded the 

evolution of the apotypic trimeric calcium dependent P-III. The reasons for the requirement for calcium due 

to the structural derivation in the P-III SVMPs remains to be elucidated and highlights an area for future 

research. However, due to the structural differences in the two functional classes, the venoms used in the 

antivenom immunising mixture may bias the antivenom efficacy towards dependent or independent venom 

types and thus may be responsible in part for the extreme clade-specific antivenom effects in combination with 

diversification of the physico-chemical properties of the prothrombin activating SVMP toxins responsible for 

the lethal effects.  

This study has demonstrated that the antivenoms were highly variable not only in comparative potency 

in neutralising procoagulant activity, but also in relative species selectivity (Figures 4-7, Tables 3 and 4). The 

most potent antivenom (EchiTAb-Plus-ICP) also displayed the extremely narrow species selectivity. Although 

procoagulant activity is not the sole mode of action of Echis venoms it does play a key role in lethality. Our 

results indicate that the different Echis antivenoms tested are of greatest usefulness for neutralisation of this 

activity within the clade of venoms from which the immunising venom was drawn, with limited regional cross-

reactivity. This suggests that, in at least the case of Echis, phylogenetic affinities can be used as a roadmap for 

the selection of antivenoms to test for effectiveness for unstudied populations, and, in an emergency, for the 

treatment of bites by captive specimens, although other factors may also play a role (e.g., Gillissen et al., 1994). 



This underscores the importance of phylogenetic and systematic studies as a guide for antivenom design and 

testing in this genus (Fry et al., 2003; Williams et al., 2011).    

The results of this study demonstrating very narrow taxonomic efficacy ranges (Figure 7) are in conflict 

with previous studies, which suggested much broader efficacy ranges but involved much longer (15x) 

incubation times of antivenom-venom mixtures and a protocol that selected for ability to impede lethality 

rather than directly measuring impedence of lethality  (Warrell et al. 1980; Casewell et al., 2010; Segura et al. 

2010). Future work should be undertaken to investigate whether the prolonged venom:antivenom pre-

incubation times used as standard in preclinical testing (WHO, 2010b) are actually predictive of clinical 

efficacy. Venom binding by the antivenom under such idealised circumstances may not necessarily reflect 

what occurs in a clinical setting. Venom and antivenom interactions in the body are due to opportunistic 

encounters in a dynamic system. Thus the longer incubation times historically used in preclinical testing would 

allow time for low-affinity antibodies to bind as they are in forced proximity with the venom for biologically 

unrealistic period of time. Conversely the shorter incubation times used in this study may in fact better reflect 

the real-world opportunity for venom binding by the high affinity antibodies in the antivenom. Such 

considerations will however require rigorous future studies to resolve these important questions. 

In conclusion, this study has revealed extreme cross-reactivity issues for Echis antivenoms (Figures 4-

7) and highlights the urgent need for the development of cost-effective, pan-regional antivenoms for Africa 

and Asia that cover all the Echis venom clades in their corresponding continents. Moreover, the Mid-East 

region and Arabian Peninsula contain species from three of the four Echis clades, including the south Asian 

carinatus group (E. carinatus sochureki), the Arabian coloratus group (E. coloratus, E. omanensis) and the 

African pyramidum clade (E. borkini, E. khosatzkii). Consequently, there is a clear need to test antivenoms 

used in the region for efficacy against all relevant venoms using the biologically relevant incubation times in 

the protocol of this study. Further, there may be also a need for a combined African/Asian Echis antivenom. It 

is hoped that these results will stimulate such life-saving efforts. The results of our study are of particular 

immediate concern as some manufacturers are selling their products outside the region from which the 

immunising venom was obtained and this unscrupulous marketing of non-regional specific antivenoms has 

resulted, in some cases, in an over twenty-fold increase in fatality rate (Alirol et al. 2015; Visser et al., 2008; 

Warrell 2008). 

Conflict of interest statement: J.M. Gutiérrez works at Instituto Clodomiro Picado (University of Costa 

Rica), where the antivenom EchiTAb-Plus-ICP is manufactured. 

Acknowledgements: BGF was the recipient of a University of Queensland Major Equipment and 

Infrastructure grant. BODB was the recipient of an Australian Postgraduate Award. DD and CZ were the 

recipients of Ph.D. scholarships from the University of Queensland. SAA was the recipient of postdoctoral 

fellowship (PDRF Phase IIBatch-V) from Higher Education Commission (HEC Islamabad) Pakistan. NRC 

acknowledges the support of a Sir Henry Dale Fellowship (200517/Z/16/Z) jointly funded by the Wellcome 

Trust and the Royal Society. NRC and WW acknowledge the support of J.F. Trape and Y. Mané for the 

collection of venom from specimens of E. jogeri. 

References: 

Abubakar IS, Abubakar SB, Habib AG, Nasidi A, Durfa N, Yusuf PO, Larnyang S, Garnvwa J, 

Sokomba E, Salako L, Theakston RD, Juszczak E, Alder N, Warrell DA; Nigeria-UK EchiTab 

Study Group. (2010) Randomised controlled double-blind non-inferiority trial of two 

antivenoms for saw-scaled or carpet viper (Echis ocellatus) envenoming in Nigeria. PLoS Negl. 

Trop. Dis. 4(7):e767.  

Abubakar SB, Habib AG, Mathew J. (2010) Amputation and disability following snakebite in 

Nigeria. Trop Doct. 40(2):114-6.  

Alencar L.R., Quental T.B., Grazziotin F.G., Alfaro M.L., Martins M., Venzon M and H. Zaher. 

(2016) Diversification in vipers: Phylogenetic relationships, time of divergence and shifts in 

speciation rates. Mol. Phylogenet. Evol., 105: 50-62. 

Alirol, E., Lechevalier, P., Zamatto, F., Chappuis, F., Alcoba, G. and Potet, J. (2015) Antivenoms for 

snakebite envenoming: what is in the research pipeline? PLOS Negl. Trop. Dis. 9(9): e0003896. 
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. 

J. Mol. Evol. 215, 403–410. 



Barlow A., Pook C.E., Harrison R.A. and Wüster W. (2009) Co-evolution of diet and prey-specific venom 

activity supports the role of selection in snake venom evolution. Proc. R. Soc. B., 276: 2443-2449. 

Bénard-Valle M, Neri-Castro EE, Fry BG, Boyer L, Cochran C, Alam M, Jackson TNW, Paniagua, D, Olvera-

Rodríguez F, Koludarov I, Sunagar K, Alagón A (2015) Antivenom research and development. In 

Venomous reptiles and their toxins: Evolutionary, pathophysiological and biodiscovery implications. 

Fry BG editor. Oxford University Press, New York. 61-72. 

Benson, D.A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., and Sayers, E.W. 

(2013). GenBank. Nucleic Acids Res. 41, D36-42. 

Berny M.A., Munnix I.C., Auger J.M., Schols S.E., Cosemans J.M. Panizzi P., Bock P.E., Watson S.P., 

McCarty O.J.T., and J.W.M Heemskerk. (2010) Spatial distribution of factor Xa, thrombin, and 

fibrin(ogen) on thrombi at venous shear. PloS One. 5(4):e10415. 

Bolaños, R. (1977) Antivenenos. In: Manual de Procedimientos. Producción y Pruebas de Control en la 

Preparación de Antisueros Diftérico, Tetánico, Botulínico, Antivenenos y de la Gangrena Gaseosa. 

Organización Panamericana de la Salud, Washington, D.C., USA, pp. 104-141. 

Boyer L, Alagón A, Fry BG, Jackson TNW, Sunagar K, Chippaux J-P (2015) Signs, symptoms and treatment 

of envenomation. In Venomous reptiles and their toxins: Evolutionary, pathophysiological and 

biodiscovery implications. Fry BG editor. Oxford University Press, New York. 32-60. 

Calvete JJ, Arias AS, Rodríguez Y, Quesada-Bernat S, Sánchez LV, Chippaux JP, Pla D, Gutiérrez JM. (2016) 

Preclinical evaluation of three polyspecific antivenoms against the venom of Echis ocellatus: 

Neutralization of toxic activities and antivenomics. Toxicon. 119:280-8.  

Campbell  J.A. and  Lamar W.W. (2004) The Venomous Reptiles of the Western Hemisphere. Ithaca, NY: 

Cornell University Press 

Casewell, N.R., D.A.N. Cook, S.C. Wagstaff, A. Nasidi, N. Durfa, W. Wüster & R.A. Harrison (2010) Pre-

clinical assays predict pan-African Echis viper efficacy for a species-specific antivenom. PLoS 

Neglected Tropical Diseases, 4: e851.  

Casewell N.R., Harrison R.A., Wüster W. and Wagstaff S.C. (2009) Comparative venom gland transcriptome 

surveys of the saw-scaled vipers (Viperidae: Echis) reveal substantial intra-family gene diversity and 

novel venom transcripts. BMC Genomics, 10: 564.  

Casewell, N.R., Wagstaff, S.C., Harrison, R.A., Renjifo, C. and Wüster, W. Domain loss facilitates accelerated 

evolution and neofunctionalization of duplicate snake venom metalloproteinase toxin genes. Mol. Biol. 

Evol. 28: 2637-2649. 

Casewell NR, Sunagar K, Takacs Z, Calvete JJ, Jackson TNW, Fry BG (2015) Snake venom metalloprotease 

enzymes (SVMP). In Venomous reptiles and their toxins: Evolutionary, pathophysiological and 

biodiscovery implications. Fry BG editor. Oxford University Press, New York. 347-363. 

Casewell, N.R., S.C. Wagstaff, W. Wüster, D.A.N. Cook, F.M.S. Bolton, S.I. King, D. Pla, L. Sanz, J.J. 

Calvete & R.A. Harrison (2014) Medically important differences in snake venom composition are 

dictated by distinct post-genomic mechanisms. PNAS, 111: 9205-9210. 

Chippaux JP (1998) Snake-bites: appraisal of the global situation. Bull World Health Organ. 76(5):515-24.  

Christensen, P.A. (1955) South African Snake Venoms and Antivenoms. South African Institute for Medical 

Research, Johannesburg, South Africa. 

Davie E.W., Fujikawa K. and Kisiel W. (1991) The coagulation cascade: initiation, maintenance, and 

regulation. Biochemistry, 30: 10363-10370. 

Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic 

Acids Res 32, 1792–1797. 

Fry B.G., Winkel K.D., Wickramaratna J.C., Hodgson W.C. and Wüster W. (2003) Effectiveness of snake 

antivenom: species and regional venom variation and its clinical impact. J Toxicol Toxin Rev,. 22: 23-

34. 

Gillissen A., Theakston R.D., Barth J., May B., Krieg M. D. Warrell. (1994) Neurotoxicity, haemostatic 

disturbances and haemolytic anaemia after a bite by a Tunisian saw-scaled or carpet viper (Echis 

‘pyramidum’ complex): failure of antivenom treatment. Toxicon, 32: 937-944. 

Gutiérrez J.M., Leon G. and Lomonte B. (2003) Pharmacokinetic-pharmacodynamic relationships of 

immunoglobulin therapy for envenomation. Clin Pharmacokinet., 42: 721-741. 



Gutiérrez J.M., Rojas E., Quesada L., León G. and Núñez J. (2005) Pan-African polyspecific antivenom 

produced by caprylic acid purification of horse IgG: an alternative to the antivenom crisis in Africa. 

Trans. R. Soc. Trop. Med. Hyg., 99: 468–475. 

Gutiérrez J.M., Theakston R.D. and Warrell D.A. (2006) Confronting the Neglected Problem of Snake Bite 

Envenoming: The Need for a Global Partnership. PLoS Med., 3(6): e150. 

Gutiérrez J.M., Lomonte B., Sanz L., Calvete J.J. and Pla D. (2014) Immunological profile of antivenoms: 

preclinical analysis of the efficacy of a polyspecific antivenom through antivenomics and neutralization 

assays. J Proteomics., 105: 340-350.  

Habib AG and Warrell DA. (2013) Antivenom therapy of carpet viper (Echis ocellatus) envenoming: 

effectiveness and strategies for delivery in West Africa. Toxicon. 69:82-9.  

Harrison R.A., Wüster W. and Theakston R.D. (2003) The conserved structure of snake venom toxins confers 

extensive immunological cross-reactivity to toxin specific antibody. Toxicon, 41: 441-449. 

Heard K., O’Malley G.F. and Dart R.C. (1999) Antivenom therapy in the Americas. Drugs, 58: 5-15. 

Isbister G.K. (2010) Snakebite doesn’t cause disseminated intravascular coagulation: coagulopathy and 

thrombotic microangiopathy in snake envenoming. Semin Thromb Hemost., 36: 444-451. 

Jackson C.M. and Nemerson Y. (1980) Blood coagulation. Annu Rev Biochem., 49: 765-811. 

Jin N.Z. and Gopinath S.C. (2016) Potential blood clotting factors and anticoagulants. Biomed & 

Pharmacotherapy, 84: 356-365. 

Kasturiratne A., Wickremasinghe A.R., de Silva N., Gunawardena N.K. , Pathmeswaran A. Premaratna R., 

Savioli L., Lalloo D.G., de Silva H.J. (2008) The global burden of snakebite: a literature analysis and 

modelling based on regional estimates of envenoming and deaths. PLoS Med., 5(11): e218. 

Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., and Sternberg, M.J.E. (2015). The Phyre2 web portal for 

protein modeling, prediction and analysis. Nat. Protocols 10, 845–858. 

Kini R.M. (2015) The intriguing world of prothrombin activators from snake venom. Toxicon. 45(8):1133-45.  

Kini RM and Koh CY (2016) Metalloproteases Affecting Blood Coagulation, Fibrinolysis and Platelet 

Aggregation from Snake Venoms: Definition and Nomenclature of Interaction Sites. Toxins. 8(10). pii: 

E284.  

Kochar D. K. Tanwar P. D., Norris R.L. Sabir M., Nayak K.C., Agrawal T.D., Purohit V.P., Kochar A., 

Simpson I.D. (2007) Rediscovery of severe saw-scaled viper (Echis sochureki) envenoming in the Thar 

desert region of Rajasthan, India. Wilderness and Environmental Medicine.18:75-85. 

Larsson, A. (2014). AliView: a fast and lightweight alignment viewer and editor for large datasets. 

Bioinformatics 30, 3276–3278. 

Lu Q., Clemetson J.M. and Clemetson K.J. (2005) Snake venoms and hemostasis. J Thomb Haemost., 3: 1791-

1799. 

Maduwage K. and Isbister G.K. (2014) Current Treatment for Venom-Induced Consumption Coagulopathy 

Resulting from Snakebite. PLoS Negl Trop Dis., 8(10):e3220. 

Mann G. (1978) Echis colorata bites in Israel: an evaluation of specific antiserum use on the base of 21 cases 

of snake bite. Toxicol Eur Res., 1: 365-369. 

Markland F.S. (1998) Snake venoms and the hemostatic system. Toxicon, 36(12): 1749-1800. 

Meyer W.P., Habib A.G., Onayade A.A., Yakubu A., Smith D.C., Nasidi A., Daudu I.J., Warrell D.A., and 

R.D. Theakston. (1997) First clinical experiences with a new ovine Fab Echis ocellatus snake bite 

antivenom in Nigeria: randomized comparative trial with Institute Pasteur Serum (Ipser) Africa 

antivenom. Am J Trop Med Hyg., 56(3): 291-300. 

Mion G., Larreche S., Benois A., Petitjeans F. and Puidupin M. (2013) Hemostasis dynamics during 

coagulopathy resulting from Echis envenomation. Toxicon, 76: 103-109. 

Morita T. and Iwanaga S. (1978) Purification and properties of prothrombin activator from the venom of Echis 

carinatus. J Biochem., 83(2): 559-570. 

Munnix I.C., Kuijpers M.J., Auger J., Thomassen C.M., Panizzi P., van Zandvoort M.A., Rosing J., Bock P.E., 

Watson S.P., and J.W. Heemskerk. (2007) Segregation of platelet aggregatory and procoagulant 

microdomains in thrombus formation: regulation by transient integrin activation. Arterioscler Thromb 

Vasc Biol., 27(11): 2484-2490. 



Murrell, B., Moola, S., Mabona, A., Weighill, T., Sheward, D., Pond, K., L, S., and Scheffler, K. (2013). 

FUBAR: A Fast, Unconstrained Bayesian AppRoximation for Inferring Selection. Mol Biol Evol 30, 

1196–1205. 

Murrell, B., Wertheim, J.O., Moola, S., Weighill, T., Scheffler, K., and Pond, S.L.K. (2012). Detecting 

Individual Sites Subject to Episodic Diversifying Selection. PLOS Genetics 8, e1002764. 

Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., Isaac, N., Pearse, W. (2015) Caper: Comparative 

Analyses of Phylogenetics and Evolution in R, R Package Version 0.5.2, 2015. Available online: 

https://CRAN.R-project.org/package=caper (accessed on 101/02/17) 

Paradis, E., Claude, J., Strimmer K (2004). APE: Analyses of Phylogenetics and Evolution in R language. 

Bioinformatics, 20: 289-290. 

Pei, J., and Grishin, N.V. (2001). AL2CO: calculation of positional conservation in a protein sequence 

alignment. Bioinformatics 17, 700–712. 

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. 

(2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of 

Computational Chemistry 25, 1605–1612. 

Pond, S.L.K., Frost, S.D.W., and Muse, S.V. (2005). HyPhy: hypothesis testing using phylogenies. 

Bioinformatics 21, 676–679. 

Pook C.E., Joger U., Stümpel N. and Wüster W. (2009) When continents collide: Phylogeny, historical 

biogeography and systematics of the medically important viper genus Echis (Squamata: Serpentes: 

Viperidae). Mol. Phylogenet. Evol., 53: 792-807. 

Porath A., Gilon D., Schulchynska-Castel H., Shalev O., Keynan A., and J. Benbassat. (1992) Risk indicators 

after envenomation in humans by Echis coloratus (mid-east saw scaled viper). Toxicon., 30: 25-32. 

Pugh, R.N.H. and Theakston, R.D.G. (1980) Incidence and mortality of snake bite in savanna Nigeria. Lancet 

2(8205): 1181–1183. 

Revell, L.J (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods 

in Ecology and Evolution, 3: 217-223. 

Richards, D.P., A. Barlow & W. Wüster. (2012) Venom lethality and diet: Differential responses of natural 

prey and model organisms to the venom of the saw-scaled vipers (Echis), Toxicon, 59: 110-116. 

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, 

M.A., and Huelsenbeck, J.P. (2012). MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and 

Model Choice Across a Large Model Space. Syst Biol 61, 539–542. 

Rosing J. and Tans G. (1992) Structural and functional properties of snake venom prothrombin activators. 

Toxicon, 30(12): 1515-1527 

Sajevic T., Leonard A. and Križaj I. (2011) Haemostatically active proteins in snake venoms. Toxicon, 57(5): 

627-645. 

Savanur A, Ali SA, Munir I, Abbasi A, Alam M, Shaikh HA. (2014) Pharmacological and biochemical studies 

on the venom of a clinically important viper snake (Echis carinatus) of Pakistan. Toxicon. 80: 47-57. 

Schaeffer R.C. Jr (1987) Heterogeneity of Echis venoms from different sources. Toxicon, 25: 1343-1346. 

Segura A, Villalta M, Herrera M, León G, Harrison R, Durfa N, Nasidi A, Calvete JJ, Theakston RD, Warrell 

DA, Gutiérrez JM. (2010) Preclinical assessment of the efficacy of a new antivenom (EchiTAb-Plus-

ICP) for the treatment of viper envenoming in sub-Saharan Africa. Toxicon. 55(2-3):369-74.  

Slagboom, J., Kool, J., Harrison, R.A. and Casewell, N.R. (2017) Haemotoxic snake venoms: their functional 

activity, impact on snakebite victims and pharmaceutical promise. Br. J. Haematol. 177: 947-959. 

Symonds, M.R.E., Blomberg, S.P (2014) A primer on phylogenetic generalised least squares (PGLS). In: 

Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology: Concepts 

and Practice (ed. LZ Garamszegi), Chapter 5, pp 105-130. Springer, Berlin 

Theakston R.D. and Warrell D.A. (1991) Antivenoms: a list of hyperimmune sera currently available for the 

treatment of envenoming by bites and stings. Toxicon, 29: 1419-1470. 

Vaiyapuri S Vaiyapuri R, Ashokan R, Ramasamy K, Nattamaisundar K, Jeyaraj A, Chandran V, Gajjeraman 

P, Fazil Baksh M.F., Gibbins JM and Hutchinson EG (2013) Snakebite and its socio-economic impact 

on the rural population of Tamil Nadu, India. PLoS One. 8(11): e80090.  



Visser L.E., Kyei-Faried S., Belcher D.W., Geelhoed D.W., van Leeuwen J.S. and J. van Roosmalen. (2008) 

Failure of a new antivenom to treat Echis ocellatus snake bite in rural Ghana: the importance of quality 

surveillance. Trans R Soc Trop Med Hyg., 102: 445-450 

Warrell DA (2010) Snakebite. Lancet. 375(9708):77-88.  

Warrell DA and Arnett C (1976). The importance of bites by the saw-scaled or carpet viper (Echis carinatus): 

epidemiological studies in Nigeria and a review of the world literature. Acta Tropica 33(4):307-341 

Warrell D.A., Davidson N.McD. and Greenwood B.M. (1977) Poisoning by bites of the saw scaled or carpet 

viper (Echis carinatus) in Nigeria. Quart. J. Med., 46(181): 33-62. 

Warrell D.A., Warrell M.J., Edgar W., Prentice C.R., Mathison J. (1980) Comparison of Pasteur and 

Behringwerke antivenoms in envenoming by the carpet viper (Echis carinatus), Br. Med. J., 280: 607–

609. 

Warrell D.A. (2008) Unscrupulous marketing of snake bite antivenoms in Africa and Papua New Guinea: 

choosing the right product--‘what’s in a name?’. Trans R Soc Trop Med Hyg., 102: 397-399. 

WHO (1981) Progress in the Characterization of Venoms and Standardization of Antivenoms. World Health 

Organization, Geneva. http://apps.who.int/iris/bitstream/10665/37282/1/WHO_OFFSET_58.pdf 

Accessed 26 June 2017 

WHO (2010a) Guidelines for the prevention and clinical management of snakebite in Africa. Geneva, WHO. 

http://www.afro.who.int/en/essential-medicines/edm-publications/2731-guidelines-for-the-prevention-

and-clinical-management-of-snakebite-in-africa.html Accessed June 16, 2017. 

WHO (2010b) WHO Guidelines for the Production, Control and Regulation of Snake Antivenom 

Immunoglobulins. Geneva, WHO. 

http://www.who.int/bloodproducts/snake_antivenoms/snakeantivenomguideline.pdf. Accessed 26 June 

2017. 

White J. (2005) Snake venoms and coagulopathy. Toxicon, 45(8): 951-967. 

Williams, D.J., J.-M. Gutiérrez, J.J. Calvete, W. Wüster, K. Ratanabanangkoon, O. Paiva, N.I. Brown, N.R. 

Casewell, R.A. Harrison, P.D. Rowley, M. O’Shea, S.D. Jensen, K.D. Winkel & D.A. Warrell (2011) 

Ending the drought: new strategies for improving the flow of affordable, effective antivenoms in Asia 

and Africa. J. Proteomics, 74: 1735-1767. 

Yamada D., Sekiya F. and Morita T. (1996) Isolation and characterization of Carinactivase, a novel 

prothrombin activator in Echis carinatus venom with a unique catalytic mechanism. J Biochem., 271(9): 

5200-5207. 

Table 1: Antivenoms studied 

Antivenom 

 

Stated species coverage. Stated neutralising 

capacity (per mL 

antivenom) 

EchiTAb-Plus-ICP, 

Instituto Clodomiro Picado, 

Costa Rica; Lot 

5620715PALQ.  

Equine whole IgG; specific Echis 

ocellatus, Bitis arietans and Naja 

nigricollis (Nigerian locality) 

No less than 3.0 mg E. 

ocellatus venom 

Sii Polyvalent Anti-snake 

Venom Serum, Serum 

Institute Of India LTD, 

India; Lot 045D0004. 

Equine F(ab’)2; specific Echis 

carinatus, Daboia russelli, Naja 

naja and Bungarus caeruleus. 

No less than 0.45 mg of E. 

carinatus venom 

Snake Venom Antiserum 

I.P., VINS Bioproducts 

LTD, India; Lot 1081. 

Equine F(ab’)2; specific Echis 

carinatus, Daboia russelli, Naja 

naja and Bungarus caeruleus. 

No less than 0.45 mg of E. 

carinatus venom 



SAIMR Echis pyramidum 

leakeyi antivenom, South 

African Vaccine Producers 

(SAVP), South Africa; Lot 

NO2147. Note the insert 

says E. carinatus but this is 

reflective of outdated 

taxonomy. Immunising 

venom mixture has been a 

combination Echis 

pyramidum specimens from 

Ethiopia/Eritrea and E. 

ocellatus from Nigeria 

(Priscilla Fleisher, SVAP 

personal communication) 

Equine F(ab’)2; specific Echis 

carinatus, paraspecific Echis 

coloratus 

Not stated 

 
  



Table 2: clotting times and co-factor influence 

Species 

20µg/ml clotting 

time (seconds) 

Calcium 

dependence* 

Phospholipid 

dependence* 

Echis carinatus carinatus (India) 40.13+/-1.20 0.42+/-0.02 0.04+/-0.01 

Echis carinatus sochureki (Pakistan) 20.83+/-0.77 4.07+/-0.01 0.90+/-0.07 

Echis carinatus sochureki (UAE) 21.60+/-0.96 3.4+/-0.04 0.48+/-0.03 

Echis coloratus (Saudi Arabia) 26.86+/-0.15 >17.5 0.70+/-0.19 

Echis jogeri (Senegal) 19.63+/-0.32 1.05+/-0.01 0.32+/-0.08 

Echis leucogaster (Mali) 38.77+/-1.8 9.67+/-0.04 0.29+/-0.05 

Echis ocellatus (Ghana) 27.90+/-1.30 1.01+/-0.01 0.33+/-0.02 

Echis ocellatus (Mali) 22.83+/-1.79 0.80+/-0.04 0.17+/-0.05 

Echis ocellatus (Nigeria) 24.67+/-1.36 1.18+/-0.07 0.44+/-0.03 

Echis pyramidum leakeyi (Kenya) 19.53+/-1.30 7.73+/-0.36 0.63+/-0.07 

 

*Co-factor dependence is the proportional shift in 20µg/ml clotting time without the presence of the co-

facor.   



Table 3: Relative potency for each antivenom. Values indicate x–fold shift in clotting curves 

Species ICP SAIMR SII VINS 

Echis carinatus carinatus (India) 0.34+/-0.01 0.91+/-0.02 1.36+/-0.041 0.42+/-0.04 

Echis carinatus sochureki (Pakistan) 6.97+/-0.17 9.09+/-0.29 29.91+/-0.19 8.74+/-0.28 

Echis carinatus sochureki (UAE) 3.71+/-0.04 6.57+/-0.22 16.08+/-1.10 4.67+/-0.21 

Echis coloratus (Saudi Arabia) 1.39+/-0.29 21.75+/-2.61 2.21+/-0.21 1.21+/-0.42 

Echis jogeri (Senegal) 25.95+/-0.13 7.52+/-0.03 3.35+/-0.01 1.85+/-0.01 

Echis leucogaster (Mali) 2.07+/-0.55 22.58+/-0.40 1.55+/-0.24 0.35+/-0.01 

Echis ocellatus (Ghana) 64.40+/-1.16 14.35+/-0.50 0.75+/-0.05 0.50+/-0.07 

Echis ocellatus (Mali) 44.48+/-1.34 11.27+/-0.081 0.52+/-0.04 0.52+/-0.11 

Echis ocellatus (Nigeria) 34.28+/-0.56 14.40+/-0.26 2.13+/-0.08 1.71+/-0.66 

Echis pyramidum leakeyi (Kenya) 1.04+/-0.11 21.54+/-0.57 7.16+/-0.50 2.38+/-0.08 

 

  



Table 4: Pairwise comparison in antivenom efficacy*. 

Antivenom pairs Eca-I Ecs-P Ecs-U Eco-S Ejo-S 

ICP vs. SAIMR <0.0001 <0.0001 0.0012 <0.0001 <0.0001 

ICP vs. SII <0.0001 <0.0001 <0.0001 0.8708 <0.0001 

ICP vs. VINS 0.0169 <0.0001 0.24 0.9983 <0.0001 

SAIMR vs. SII <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

SAIMR vs. VINS <0.0001 0.3637 0.0151 <0.0001 <0.0001 

SII vs. VINS <0.0001 <0.0001 <0.0001 0.7943 <0.0001 

 

Antivenom pairs Ele-M Eoc-G Eoc-M Eoc-N Epl-K 

ICP vs. SAIMR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

ICP vs. SII 0.3659 <0.0001 <0.0001 <0.0001 <0.0001 

ICP vs. VINS 0.0017 <0.0001 <0.0001 <0.0001 0.0112 

SAIMR vs. SII <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

SAIMR vs. VINS <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

SII vs. VINS 0.0146 0.9594 >0.9999 0.3898 <0.0001 

* p-values from Tukey's multiple comparisons test 

Eca-I = E. carinatus (India), Ecs-P = E. c. sochureki (Pakistan), Ecs-U = E. c. sochureki (UAE), Eco-S = E. 

coloratus (Saudi Arabia), Ejo-S = E.jogeri (Senegal), Ele-M = E. leucogaster (Mali), Eoc-G = E. ocellatus 

(Ghana), Eoc-M = E. ocellatus (Mali), Eoc-N = E. ocellatus (Nigeria), Epl-K = E. pyramidum leakeyi (Kenya).  

  



Figure 1: A) Venom dose-response curves with values of means from N=3 with error bars indicating standard 

deviation (error bars at most concentrations are smaller than the symbols), and B). Ancestral state 

reconstruction of clotting times, where warmer colours represent faster clotting times. Bars indicate 95% 

confidence intervals for the estimate at each node. Note that due to the high dynamicity of venom evolution 

the ranges quickly become broad as one moves down the tree. Numbers at tips are means of N=3 maximum 

clotting times from (A) (Table 2). Phylogenetic tree is based upon (Pook et al., 2009; Alencar et al. 2016). 

  



Figure 2: Ancestral state reconstruction of relative co-factor dependence, where warmer colours represent 

greater cofactor dependence. Bars indicate 95% confidence intervals for the estimate at each node. Note that 

due to the high dynamicity of venom evolution the ranges quickly become broad as one moves down the tree. 

Numbers at tips are means from N=3 tests for x-fold shift in clotting time (Table 2). Phylogenetic tree is based 

upon (Pook et al., 2009; Alencar et al. 2016). 

 

  



Figure 3: Ancestral state reconstructions to show the inverse relationship between procoagulant activity 

(where warmer colours represent faster clotting times) and phospholipid cofactor dependence (where warmer 

colours indicate greater degree of dependence). Bars indicate 95% confidence intervals for the estimate at each 

node. Note that due to the high dynamicity of venom evolution the ranges quickly become broad as one moves 

down the tree. Numbers at tips are means from N=3 tests for x-fold shift in clotting time and phospholipid 

dependence (Table 2). Phylogenetic tree is based upon (Pook et al., 2009; Alencar et al. 2016). 

  



 

Figure 4: Coagulation dose-response curves. Blue lines represent venom in optimal conditions (i.e. with 

calcium and phospholipid) while red line represents the clotting activity remaining after 2 minute preincubation 

of venom with antivenom and then the same dilution series were run as for the blue line protocol. The 

antivenom remained a constant in the second protocol while the venom was diluted against it as per the X-axis 

concentrations (µg/ml). The y-axis is time (seconds). Values are means from N=3 with error bars indicating 

standard deviation. Eca-I = E. carinatus (India), Ecs-P = E. c. sochureki (Pakistan), Ecs-U = E. c. sochureki 

(UAE), Eco-S = E. coloratus (Saudi Arabia), Ejo-S = E.jogeri (Senegal), Ele-M = E. leucogaster (Mali), Eoc-

G = E. ocellatus (Ghana), Eoc-M = E. ocellatus (Mali), Eoc-N = E. ocellatus (Nigeria), Epl-K = E. pyramidum 

leakeyi (Kenya).  

 



Figure 5: Normalised logarithmic transformed views of clotting effects. Blue lines represent venom in optimal 

conditions (i.e. with calcium and phospholipid) while red line represents the clotting activity remaining after 

2 minute preincubation of venom with antivenom and then the same dilution series were run as for the blue 

line protocol. The antivenom remained a constant in the second protocol while the venom was diluted against 

it. Values are means from N=3 with error bars indicating standard deviation. Eca-I = E. carinatus (India), Ecs-

P = E. c. sochureki (Pakistan), Ecs-U = E. c. sochureki (UAE), Eco-S = E. coloratus (Saudi Arabia), Ejo-S = 

E.jogeri (Senegal), Ele-M = E. leucogaster (Mali), Eoc-G = E. ocellatus (Ghana), Eoc-M = E. ocellatus (Mali), 

Eoc-N = E. ocellatus (Nigeria), Epl-K = E. pyramidum leakeyi (Kenya).  

  



 

Figure 6: Comparison of the performance of each antivenom against a particular species. Equal volumes from 

each of the antivenoms was used as they all were of the same 10ml vial size. Thus the potency is relative to a 

consistent amount of antivenom used by volume not by stated protein content or efficacy claims. The data are 

thus direct head to head comparisons in this regard. Values are means of the ability to proportionally shift a 

curve, with the highest effect being ICP against Ghana which shifted the venom cuve of E. occelatus nearly 

sixty five times over (N=3 with error bars indicating standard deviation). Eca-I = E. carinatus (India), Ecs-P 

= E. c. sochureki (Pakistan), Ecs-U = E. c. sochureki (UAE), Eco-S = E. coloratus (Saudi Arabia), Ejo-S = 

E.jogeri (Senegal), Ele-M = E. leucogaster (Mali), Eoc-G = E. ocellatus (Ghana), Eoc-M = E. ocellatus (Mali), 

Eoc-N = E. ocellatus (Nigeria), Epl-K = E. pyramidum leakeyi (Kenya). 

  



 

Figure 7: Ancestral state reconstruction of relative species selectivity for each antivenom where warmer 

colours represent better antivenom cross-reactivity.  Values are normalised N=3 means within an antivenom. 

Bars indicate 95% confidence intervals for the estimate at each node. Note that due to the high dynamicity of 

venom evolution the ranges quickly become broad as one moves down the tree. Phylogenetic tree is based 

upon (Pook et al., 2009; Alencar et al. 2016). 

  



 



  



Figr-1  

 

  



Figr-2  

 

  



Figr-3  

 

  



Figr-4  

 

  



 

FIG5 



Figr-6  

 

  



Figr-7  

 

 


