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Stochastic finite element response

analysis using random eigenfunction

expansion

S E Pryse1 and S Adhikari1

1Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea
University, Swansea SA1 8EN, UK

Abstract

A mathematical form for the response of the stochastic finite element
analysis of elliptical partial differential equations has been established
through summing products of random scalars and random vectors. The
method is based upon the eigendecomposition of a system’s stiffness ma-
trix. The computational reduction is achieved by only summing the domi-
nant terms and by approximating the random eigenvalues and the random
eigenvectors. An error analysis has been conducted to investigate the ef-
fect of the truncation and the approximations. Consequently, a novel
error minimisation technique has been applied through the Galerkin error
minimisation approach. This has been implemented by utilising the or-
thogonal nature of the random eigenvectors. The proposed method is used
to solve three numerical examples: the bending of a stochastic beam, the
flow through a porous media with stochastic permeability and the bending
of a stochastic plate. The results obtained through the proposed random
eigenfunction expansion approach are compared with those obtained by
using direct Monte Carlo Simulations and by using polynomial chaos.

Keywords: Stochastic differential equations; eigenfunctions; Galerkin;
finite element; eigendecomposition; spectral decomposition; reduced meth-
ods.

1 Introduction

Uncertainties can substantially affect the analysis of physical structures. These
uncertainties can occur in the properties of the material, in the geometry or
boundary conditions of the structure or in the applied loads [1]. In order to
represent the uncertainties that occur in physical systems, a stochastic finite
element method [SFEM] can be applied. This method has been applied to
numerous problems including structural mechanics, fluid mechanics and heat
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transfer problems. Both static [2, 3] and dynamic [4, 5] scenarios can be repre-
sented through this method. In this work, a stochastic elliptic partial differential
equation is considered

−∇n[a(x, ω)∇nu(x, ω)] = p(x) x in D (1)

with the associated Dirichlet condition

u(x, ω) = 0; x on D (2)

In Equation (1), u refers to the governing variable and∇ refers to the differential
operator (for a single dimensional problem ∇ = ∂

∂x ) and n = 1, 2. The value
of n would depend on the physical problem under consideration. When dealing
with a flow through a porous media n would be equal to 1, and for the bending
of a beam or a plate n would be equal to 2. Both scenarios are discussed in this
paper. The spatial dimension under consideration is a bounded domain D ∈ Rd
with piecewise Lipschitz boundary ∂D where d is less than four. (Ω,F ,D) is
a probability space where ω ∈ Ω is a sample point from the sampling space
Ω, F is the complete σ-algebra over the subsets of Ω and P is the probability
measure. In Equation (1) a : Rd × Ω → R is a random field [6], which can be
viewed as a set of random variables indexed by x ∈ Rd. We assume the random
field a(x, ω) to be stationary, square integrable and non-negative. Following the
discretization of Equation (1) through the SFEM [7], this work aims to produce
a new solution approach through the use of random eigenfuncation.

Direct Monte Carlo Simulation [MCS] has been widely used in collaboration
with the SFEM [8]. Although this is a relatively simple method, using a large
number of realisations in conjunction with high dimensional matrices can make
this method computationally expensive. Numerous approaches have been pro-
posed in order to reduce the computational time. Multi-level Monte Carlo is
one such method where the variance of the Monte Carlo estimator is reduced
[9, 10, 11]. Other accelerating methods include centroidal Voronoi tessellations
[12, 13], Latin hypercube sampling [14] and quasi Monte Carlo [15, 16]. In
spite of the high computational cost linked with the direct MCS method, the
error and the computational cost associated with other methods are regularly
compared with the direct MCS method [17, 18].

Other methods are available to calculate functional statistics which avoids
the use of computationally expensive sampling methods. One such approach
is the perturbation method [19, 20, 21]. In such an approach, a Taylor series
expansion is used to approximate the structural response. By assuming that the
Taylor series converges, the greater the number of terms kept in the series, the
higher the accuracy of the response [22]; however publications using an order
greater than two are uncommon due to high computational cost. A considerable
disadvantage is that the coefficients of variation can’t exceed 15% of the mean
value of the variable under consideration [8]. Other approaches include Neu-
mann expansions [23, 24, 25] and linear algebra techniques [26]. The stochastic
Galerkin method is also popular [27, 28]. This method projects the response on
an orthogonal basis that spans the stochastic space.
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Another class of methods which have been widely used are spectral meth-
ods. This class originates from Wiener’s work [29] where the homogeneous
chaos method is initially defined. One of the first applications of the chaos
expansion for stochastic finite elements is contained in [7]. If the random vari-
ables are deemed Gaussian, a polynomial chaos approach can be considered.
This approach has been widely used to model different physical scenarios in-
cluding structural [7], flow [30] and heat transfer [31] problems. However, due
to the high computational cost of large systems, numerous reduction methods
have been suggested. These include [32] where a spectral decomposition of the
deterministic matrix is performed, and only the dominant eigenvalues and eigen-
vectors retained. [33] have designed an optimisation algorithm which makes the
polynomial chaos approximation computationally feasible. Other spectral meth-
ods include the Wiener-Askey chaos expansion [34, 35] and the reduced basis
method [36, 37].

In Section 2 an overview of the spectral stochastic finite element method
is presented. The random eigenfunction approach is proposed in Section 3,
whilst Section 4 discusses different ways of approximating random eigenvalues
and eigenvectors. Section 5 includes a novel error analysis which is followed by
a novel error minimising technique. The new approach is applied to a stochas-
tic Euler-Bernoulli beam, a flow through a stochastic porous media and to the
stochastic mechanics of a bending elastic plate in Section 6 and the major con-
clusions are presented in Section 7.

2 Discretization of the stochastic PDE

The random process a(x, ω) seen in Equation (1) can be expanded by a gener-
alised Fourier expansion known as the Karhunen-Loève expansion

a(x, ω) = a0(x) +

∞∑
i=1

√
λ̃iξ̃i(ω)φ̃i(x) (3)

Here a0 is the mean function and λ̃i and φ̃i(x) are the eigenvalues and eigen-
vectors that satisfy the integral equation∫

D

Ca(x1, x2)φ̃j(x1) dx1 = λ̃jφ̃j(x2) ∀ j = 1, 2, ... (4)

where Ca(x1, x2) is the covariance function. The ξ̃i(ω) seen in the Karhunen-
Loève expansion corresponds to random variables. If the random process is
deemed Gaussian, ξ̃i(ω) would be standard Gaussian random variables. For
other types of random processes, the random variables may possess other distri-
bution types. After truncating the series seen in Equation (3) to the Mth term,
the resulting equation can be substituted into the original stochastic elliptical
partial differential equation. By applying appropriate boundary conditions, the
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discretized equation takes the form[
A0 +

M∑
i=1

ξi(ω)Ai

]
u(ω) = f (5)

where A0 ∈ Rn×n represents a deterministic, positive definite, symmetric ma-
trix. Ai ∈ Rn×n are general symmetric matrices for i = 1, 2, ...M , u(ω) ∈ Rn
the response vector and f ∈ Rn the deterministic input force vector. The details
of obtaining the discretized equivalent of Equation (1) have been omitted, but
can be located in numerous textbooks including [7]. The method proposed in
this paper is general in nature, therefore the random variables seen in Equation
(5) are not restricted to any specific distribution.

3 Random eigenfunction expansion

3.1 Motivation behind the proposed approach

For simplicity, we express Equation (5) as

A(ω)u(ω) = f (6)

where the random matrix A(ω) = A0 +
∑M
i=1 ξi(ω)Ai. The matrix A(ω) can

be considered as a random stiffness matrix. As the system under consideration
is static, a mass matrix is not required. We will consider problems where the
value of M and the number of degrees of freedom in a system are sufficiently
large. For small values of M computational reduction can be achieved. However
when M is sufficiently large the solution of Equation (6) poses computational
challenges.

The exact solution to the set of stochastic linear equations given above can
be obtained through direct MCS. Convergence is guaranteed if the number of
realisations is sufficiently large and all realisations of A(ω) are positive definite.
However, direct MCS can be seen as a computationally expensive method [38],
especially if there is a large number of stochastic linear equations to be solved.
In order to avoid the use of direct MCS, alternative methods have been explored.
The response of Equation (6) can be represented through summing products of
random scalars and deterministic vectors

u(ω) =

M1∑
j=1

aj(ω)gj (7)

where aj(ω) ∈ R and gj ∈ Rn represent the random scalars and deterministic
vectors respectively. M1 corresponds to the number of terms in the summation.
Equation (7) can be considered as the polynomial chaos method

u(ω) =

P∑
k=1

Hk(ξ(ω))uk (8)
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where Hk(ξ(ω)) represents the polynomial chaoses (corresponding to the ran-
dom scalars), and uk represents unknown deterministic vectors that need to be
determined. The value of P is determined by a basic random variable M and by
the order of the Polynomial Chaos expansion p. In this instance, M corresponds
to the order of the Karhunen-Loève expansion. The value of P is determined
by the following expression

P =

p∑
j=0

(M + j − 1)!

j!(M − 1)!
(9)

It is evident that P increases rapidly when either the order of the Karhunen-
Loève expansion or the order of the Polynomial Chaos expansion is increased.
The unknown vector uk can be obtained by using a Galerkin error minimising
approach [7]. This approach leads to a system of linear equations of size nP×nP .
A possible drawback to this approach is the high computational cost if either n
or P is large.

Another possibility is acquiring a solution that is of a similar form to Equa-
tion (7) where both the scalars and vectors are deemed random

u(ω) =

M2∑
j=1

aj(ω)gj(ω) (10)

where aj(ω) ∈ R and gj(ω) ∈ Rn represent the random scalars and vectors
respectively. M2 corresponds to the number of terms in the summation. Due
to the vector terms in Equation (7) being deterministic, only Equation (10) can
incorporate the full stochastic nature of Equation (6). The aim of this paper
is to obtain an expression for the response of Equation (6) that is of the same
form as Equation (10).

3.2 Derivation of the response vector

The random eigenvalue problem is initially considered

A(ω)φk(ω) = λk(ω)φk(ω); k = 1, 2, . . . n (11)

For convenience, the matrices of the random eigenvalues and eigenvectors of
A(ω) are defined as follows

Λ(ω) = diag [λ1(ω), λ2(ω), . . . , λn(ω)] ∈ Rn×n and

Φ(ω) = [φ1(ω),φ2(ω), . . . ,φn(ω)] ∈ Rn×n
(12)

The random eigenvalues are arranged in ascending order so λ1(ω) < λ2(ω) <
. . . < λn(ω) and the corresponding eigenvectors are arranged in the same order.
Due to the orthogonal property of Φ(ω) it is apparent that Φ(ω)−1 = Φ(ω)T .
Thus the following identities can be defined (ω has been omitted for notational
convenience)

ΦTAΦ = Λ; A = Φ−TΛΦ−1 and A−1 = ΦΛ−1ΦT (13)
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Using these identities, the response of Equation (6) can be expressed as

u(ω) = A(ω)−1f (14)

or

u(ω) = ΦΛ−1ΦT f =

n∑
j=1

φTj (ω)f

λj(ω)︸ ︷︷ ︸
aj(ω)

φj(ω)︸ ︷︷ ︸
gj(ω)

(15)

Equation (15) is of the same form as Equation (10) where
φT

j (ω)f
λj(ω)

corresponds

to the scalar term aj(ω), φj(ω) corresponds to the vector term gj(ω) and n cor-
responds to M2. In this particular method, φj(ω) forms a complete orthogonal
basis. Therefore, it can be concluded that the response of Equation (6) can be
expressed in the same form as Equation (10).

However, calculating the exact values of aj(ω) and gj(ω) could prove dif-
ficult, and this could consequently take longer than directly solving Equation
(14). This has motivated a new reduced approach which would give an efficient
and accurate representation of the response. The computational cost of evalu-
ating Equation (15) can be improved in two ways. The number of terms in the
summation could be reduced or aj(ω) and gj(ω) could be evaluated efficiently
by suitable approximations.

The series given in (15) could be truncated after a certain amount of terms.
The higher order terms of the summation have a relatively low value due to
the eigenvalues being ordered ascendingly; this allows the low valued terms to
be discarded whilst retaining the dominant terms in the series. The number of
terms retained in Equation (15) can either be predefined or determined by

λ10
λt0

> εtrunc (16)

where λ10 corresponds to the first, and therefore the smallest deterministic
eigenvalue. λt0 corresponds to the largest deterministic eigenvalue that satisfies
the above inequality. The value of t would correspond to the number of terms
kept in the truncation. The deterministic eigenvalues arising in the inequality
can be computed from the corresponding deterministic system and the value of
εtrunc is to be selected appropriately. Hence Equation (15) can be truncated as
follows

u(ω) ≈
t∑

j=1

φTj (ω)f

λj(ω)
φj(ω) (17)

where λj(ω) and φj(ω) represent the random eigenvalues and the random eigen-
vectors and t < n � nP . The full response for u(ω) can be obtained by per-
forming a MCS on each sample.
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4 Approximating the random eigensolutions

Approximating the random eigenvalues and eigenvectors may also improve the
calculation cost and there are numerous methods of doing so. Direct MCS
can by used in collaboration with the random eigenvalue problem in order to
calculate the exact values of the random eigenvalues and eigenvectors; however
this method is computationally expensive. Numerous papers have proposed
improvements to the direct MCS method. Ref. [39] uses a subspace iteration
scheme with carefully selected start-vectors, whilst [40] compares the subspace
iteration method with an approach that uses component mode synthesis. [41]
proposes a method of obtaining the random eigenvalues and random eigenvectors
through expanding the random eigenvalues and eigenvectors by a polynomial
chaos approach. However this method is computationally expensive. Due to its
low computational cost, a first-order perturbation approach for obtaining the
random eigenvalues and eigenvectors has been explored.

Solutions of different perturbation methods are obtained by truncating the
Taylor series expansion. Due to its efficiency and ease, the first-order perturba-
tion method has been used. The j th random eigenvalue and its corresponding
random eigenvector is given by

λj ≈ λj0 +

M∑
k=1

(
∂λj
∂ξk

)
ξk(ω) (18)

and φj ≈ φj0 +

M∑
k=1

(
∂φj
∂ξk

)
ξk(ω) (19)

where λj0 and φj0 are the jth deterministic eigenvalue and eigenvector and ξk(ω)
represents a set of Gaussian random variables with mean zero and unit variance.
By differentiating the eigenvalue equation with respect to ξk, pre-multiplying
with φT and utilising that φTj0φj0 = 1, ∂λ

∂ξk
can be expressed as

∂λj
∂ξk

= φTj0
∂A

∂ξk
φj0 (20)

In the instance of Equation (20), ∂A
∂ξk

= Ak.

The derivative of φj with respect to ξk can be calculated by expanding
∂φj

∂ξk

as a linear combination of the deterministic eigenvalues and eigenvectors [42, 43]

∂φj
∂ξk

=

N∑
i=16=j

αjkiφi where αjki =
φTi0

∂A
∂ξk

φj0
λj0 − λi0

(21)

For completeness it can be noted that αjkiφi = 0 when i = j. In the instance

of the above equation, ∂A
∂ξk

= Ak. This method requires all the deterministic
eigenvalues and eigenvectors to be known. A simplified approach is proposed
in [44] where only a limited number of eigenvalues and eigenvectors are needed.
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For the case of repeated eigenvalues, the general method of approximating the
response of Equation (6) continues to be valid. However a different approach
would be needed whilst approximating the eigenvectors to that given in this
section. This case is beyond the scope of this paper.

Other approaches based on the perturbation method have been proposed to
approximate random eigensolutions. An approach based on the perturbation
method and the Rayleigh quotient is presented in [45]; this method results in an
improvement in the accuracy of the eigensolution. However [46] reports that the
accuracy of the approximations obtained by the first-order perturbation method
and the method presented in [45] deteriorates if the uncertainty in the system
is sufficiently large. Ref. [46] proposes numerous methods to overcome this
problem. One way of doing so is by implementing a Padé approximation which
is seen in [47].

5 Error minimisation and analysis

5.1 Error analysis

The error associated with the random eigenfunction expansion method can be
defined in numerous ways. The solution vector obtained through the random
eigenfunction expansion method can be directly compared with the true solu-
tion, or the solution obtained through the random eigenfunction expansion can
be reintroduced into Equation (6). Initially, the error vector arising from a sin-
gle realisation has been defined by comparing the solution vectors of the random
eigenfunction expansion and the direct MCS method

εα = uREFE − uMCS (22)

where uREFE ∈ Rn denotes the solution vector obtained through the random
eigenfunction expansion method and uMCS ∈ Rn the solution vector obtained
through the direct MCS method. The mean squared error [MSE] arising from
the proposed method can be derived from the trace of the covariance matrix. By
taking all the realisations needed to execute the random eigenfunction expansion
and the direct MCS methods into account, the MSE can be expressed as

MSE
{
εα
}

= E
{

Trace
{[

uREFE − uMCS

][
uREFE − uMCS

]T}}
(23)

The errors arising due to the truncation of Equation (17), and due to the ap-
proximation of the eigenvalues and eigenvectors are discussed separately.

5.1.1 Error arising from the truncation

We initially consider the case of Equation (17) being truncated to give only the
first t terms. We assume that the exact values of the eigenvalues and eigenvectors
are know for each realisation. For each realisation, the full random eigenvalue
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and eigenvector matrices can be partitioned as follows

Λ(ω) = [Λb(ω)|Λc(ω)] and Φ(ω) = [Φb(ω)|Φc(ω)] (24)

where Λb(ω) ∈ Rt×t and Φb(ω) ∈ Rn×t denote the blocks that include the
random eigenvalues and eigenvectors that are used in the proposed method.
Λc(ω) ∈ R(n−t)×(n−t) and Φc(ω) ∈ Rn×(n−t) denote the blocks that include the
unused random eigenvalues and eigenvectors. For notational convenience, (ω)
has been omitted for the remainder of this sub-section. By using the relationship
given in Equation (15) and the partitions given in Equation (24), the exact
response of a single realisation can take the following form

u = [ΦΛ−1ΦT ]f

=
(
[Φb|Φc][Λb|Λc]

−1[Φb|Φc]
T ]
)
f

=
[
ΦbΛ

−1
b ΦT

b

]
f︸ ︷︷ ︸

β

+
[
ΦcΛ

−1
c ΦT

c

]
f︸ ︷︷ ︸

γ

(25)

β corresponds to the response when Equation (17) is truncated to include the
initial t terms. Therefore, the error arising due to the truncation can be con-
tributed to γ. The error of a single realisation can be given by

εγ =
[
ΦcΛ

−1
c ΦT

c

]
f (26)

By taking into account the realisations needed to calculate the random eigen-
values and eigenvectors, the expected mean squared error can be expressed as

MSE{εγ} = E

{
Trace

{([
ΦcΛ

−1
c ΦT

c

]
f
)([

ΦcΛ
−1
c ΦT

c

]
f
)T}}

= E

{
Trace

{
ΦcΛ

−1
c ΦT

c ffTΦcΛ
−1
c ΦT

c

}} (27)

Due to the cyclic nature of traces [48], and due to ΦT
c Φc being equal to the

identity matrix, the above expression can be simplified

MSE{εγ} = E

{
Trace

{
Λ−2c ΦT

c ffTΦc

}}
(28)

The error arising from the truncation of Equation (17) will be small if the unused
eigenvalues are significantly large. However, as finding the expected value is a
linear operator, the Λ−2c term introduces an extra degree of difficulty. This may
be overcome by expanding Λc by the perturbation method. Due to the sparse
nature of Λc, its inverse can be expressed as

Λ−1c =



1
λt+1

0 · · · 0 0

0 1
λt+2

· · · 0 0
...

...
. . .

...
...

0 0 · · · 1
λn−1

0

0 0 · · · 0 1
λn

 (29)
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By applying the perturbation method, Λ−1c can be expressed as

Λ−1c = Λ−1c0 + ∆c (30)

where Λ−1c0 is the inverses of the deterministic eigenvalues of block c and ∆c

a matrix that captures the random nature of the eigenvalues. The square of
Equation (30) is given by

Λ−2c = (Λ−1c0 + ∆c)(Λ
−1
c0 + ∆c)

= Λ−2c0 + 2Λ−1c0 ∆c + ∆2
c

(31)

If the eigenvalues are significantly large and the coefficients of variation not
excessively large, ∆2

c will be small. Consequently, Equation (31) can be approx-
imated by

Λ−2c ≈ Λ−2c0 + 2Λ−1c0 ∆c (32)

Therefore Equation (28) can be approximated by

MSE{εγ} ≈ E

{
Trace

{
{Λ−2c0 + 2Λ−1c0 ∆c}ΦT

c ffTΦc

}}
= Trace

{
Λ−2c0 E

{
ΦT
c ffTΦc

}
+ 2Λ−1c0 E

{
∆cΦ

T
c ffTΦc

}} (33)

where the expected values arising in the above equation can be calculated
through applying a MCS. It is apparent that identifying the dominant term
in Equation (33) depends on the characteristics of the governing discrete equa-
tion. As the eigenvalues incorporated in Λc are generally large, it can be easily
deduced that Λ−2c0 < Λ−1c0 . Under the assumption of small randomness it can

also be deduced that E
{

ΦT
c ffTΦc

}
> E

{
∆cΦ

T
c ffTΦc

}
due to the small nature

of ∆c. Therefore to determine the dominant term, the relationships between

Λ−2c0 and E
{

∆cΦ
T
c ffTΦc

}
, and between 2Λ−1c0 and E

{
ΦT
c ffTΦc

}
are important

to consider. Therefore Equation (33) gives an intuitive account of the factors
which contribute towards the error induced by the truncation. However if all
the eigenvalues and eigenvectors are retained in the original summation, the ex-
pected mean squared error arising due to the truncation would naturally equate
to zero.

5.1.2 Error arising from approximating the random eigenvalues and
eigenvectors

As calculating the exact random eigenvalues and eigenvectors through solving
the random eigenvalue problem is computationally expensive, approximating
these values can be beneficial. However approximating the random eigenvalues
and eigenvectors can lead to an increased error. Whilst investigating the er-
ror arising from approximating the eigenvalues and eigenvectors, Equation (17)

10



has not been truncated. The error arising when approximating the random
eigenvalues and eigenvectors of a single realisation is given by

εδ =
[(

ΦrΛ
−1
r ΦT

r

)
f−
(
ΦtΛ

−1
t ΦT

t

)
f
]

(34)

where Λr ∈ Rn×n and Φr ∈ Rn×n denote the approximated random eigenvalues
and eigenvectors and Λt ∈ Rn×n and Φt ∈ Rn×n denote the exact values of the
random eigenvalues and eigenvectors obtained by solving the random eigenvalue
problem. By taking into account the realisations needed to calculate the random
eigenvalues and eigenvectors, the expected mean squared error can be expressed
as

MSE{εδ} = E
{

Trace
{[(

ΦrΛ
−1
r ΦT

r

)
f−
(
ΦtΛ

−1
t ΦT

t

)
f
][(

ΦrΛ
−1
r ΦT

r

)
f−
(
ΦtΛ

−1
t ΦT

t

)
f
]T}}

= E
{

Trace
{

ΦrΛ
−1
r ΦT

r ffTΦrΛ
−1
r ΦT

r −ΦrΛ
−1
r ΦT

r ffTΦtΛ
−1
t ΦT

t

−ΦtΛ
−1
t ΦT

t ffTΦrΛ
−1
r ΦT

r + ΦtΛ
−1
t ΦT

t ffTΦtΛ
−1
t ΦT

t

}}
(35)

This expression can be simplified due to the cyclic nature of traces. It can be
noted that ΦT

t Φt is equal to the identity matrix. However as Φr refers to the
matrix containing the approximated eigenvectors, ΦT

r Φr is not exactly equal to
the identity matrix. As the value of product of ΦT

r and Φr is extremely close to
the identity matrix, for the reminder of this section we will approximate ΦT

r Φr

by the identity matrix. The following equation has used this approximation,
however if ΦT

r Φr were to be re-introduced into the equation, the accuracy of
the MSE would improve

MSE{εδ} ≈ Trace

{
E
{

Λ−2r ΦT
r ffTΦr −ΦrΛ

−1
r ΦT

r ffTΦtΛ
−1
t ΦT

t

−ΦtΛ
−1
t ΦT

t ffTΦrΛ
−1
r ΦT

r + Λ−2t ΦT
t ffTΦt

}} (36)

Similarly to the case seen in Equation (33), the Λ−2r , Λ−2t , Λ−1r and Λ−1t
terms arising in Equation (36) can be approximated by a perturbation method.
However introducing all the additional perturbation terms does not necessarily
improve the intuitive understanding. The expected values arising in Equation
(36) can be computed by applying a MCS for each sample.

The formulae seen thus far in this section could be applied, for example, to
compare the effect of keeping additional terms in the truncation. The mean
squared error could be computed for t and t + 1 terms in order to identify
the effect of discarding the additional term. However the formulae are pre-
dominantly given to gain an insight into the nature of the error. As the time
needed to compute the expectation operators arising in Equations (33) and (36)
is high, computing the errors for practical problems may not be feasible. This
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has motivated further discussion in order to lower the errors without the need of
explicitly computing the expectation values given in this section. Consequently
a technique has been suggested to lower the error through utilising a Galerkin
approach.

5.2 Error minimisation using the Galerkin approach

In Sections 3.2 and 4, through utilising approximations for the random eigen-
values and eigenvectors and by truncating Equation (17), an expression for the
response of Equation (6) has been derived. The approximation of the random
eigenvalues and eigenvectors, in addition to the truncations has motivated an
error minimising technique. Thus we are proposing a variant of the approxima-
tion proposed in Equation (17) by introducing an error minimisation technique.
In order to implement this, the error vector arising from a single realisation of
the random eigenfunction expansion method has been defined as

εζ(ω) = A(ω)u(ω)− f (37)

where u(ω) represents the solution vector obtained with Equation (17). A
Galerkin approach is proposed where the error is made orthogonal to the ran-
dom eigenvectors. For this new approach, the solution vector has been modified
to take the following form

ũ(ω) =

t∑
j=1

(
φTj (ω)f

λj(ω)
+ cj

)
φj(ω) (38)

where λj ∈ R and φj ∈ Rn represent the random eigenvalues and eigenvectors,
f ∈ Rn the deterministic applied force and cj ∈ R are unknown constants to be
determined. The error vector is now given by

ε̃ζ(ω) = A(ω)ũ(ω)− f (39)

The unknown constants cj can be obtained through using a Galerkin approach
where the error is made orthogonal to the random eigenvectors

< φk(ω), ε̃ζ(ω) >= 0 ∀ k = 1, 2, ...t (40)

where < u,v >= E{uTv} is the inner product. By using this condition and the
expression for ε̃ζ(ω) obtained in Equation (39), one has

E

φTk

A

 t∑
j=1

(
φTj f

λj
+ cj

)
φj

− f

 = 0

∀ j = 1, 2, ...t and k = 1, 2, ...t (41)

where E{•} denotes the expected value. For notational convenience, (ω) has
been omitted. It can be shown that the unknown coefficients arising in Equation
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(41) can be expressed in a closed-form

E


t∑

j=1

(
φTkAφj

)(φTj f

λj

)
+

t∑
j=1

(
φTkAφj

)
cj − φTk f

 = 0

∀ j = 1, 2, ...t and k = 1, 2, ...t (42)

E


t∑

j=1

(
φTkAφj

)
cj

 = E
{
φTk f

}
− E


t∑

j=1

(
φTkAφj

)(φTj f

λj

)
∀ j = 1, 2, ...t and k = 1, 2, ...t (43)

ck =

E


t∑
j=1

φTkAφj


−1 E{φTk f

}
− E


t∑

j=1

(φTkAφj)(φ
T
k f)

λj




∀ j = 1, 2, ...t and k = 1, 2, ...t (44)

Equation (44) gives an explicit closed form for the unknown coefficients ck where
λj ,φj and φk correspond to approximated random eigenvalues and eigenvectors.
The expected values arising in Equation (44) can be computed by using low-
order MCS. Thus by reintroducing the unknown coefficients ck into Equation
(38), one can assume that Equation (38) is a re-analysis of the solution obtained
in Equation (17). The error minimisation approach presented is not unique.
Rather than appearing as additive factors, the unknown constants could appear
as multiplicative factors. If multiplicative factors were to be used, the Galerkin
approach would be implemented in a similar manner.

6 Application examples

The Gaussian nature of the random variables is not a pre-requisite for the
method proposed in the paper. However for the numerical examples consid-
ered here, Gaussian random variables are used to compare the results with the
polynomial chaos approach. For each sample it has been ensured that the matrix
A(ω) is non singular and positive definite. Although numerous cost effective
methods for calculating the random eigenvalues and eigenvectors are available,
as the aim of this paper is to express a viable solution for Equation (1) in the
form of Equation (10), for its efficiency and ease the first-order perturbation
method has be used in all examples.

6.1 Euler-Bernoulli beam with stochastic properties

6.1.1 Model

The computational method has been applied to a cantilever beam clamped at
one end i.e. the displacement at the clamped end is zero. A deterministic
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vertical point load is applied at the free end of the beam, where P = 1.00 N.
The length of the beam under consideration is 1.00 m, and its cross-section is a
rectangle of length 0.03 m and height 0.003 m. Figure 1 illustrates the system.

Figure 1: Beam system

The system has been discretized into a 100 elements by using SFEM. Details
of the discretization can be found in numerous books such as [49]. Consequently,
the dimension of the corresponding determinant matrix is 200 × 200. For the
deterministic case, the Young’s modulus is E = 69 × 109 Nm−2 thus corre-
sponding to an aluminium beam [50]. The deterministic second moment of area
(moment of inertia) of the beam is

I =
0.03× 0.0033

12
= 6.75× 10−11 m4 (45)

The bending rigidity of the beam, EI, can be assumed to be a stationary Gaus-
sian random field of the form

EI(x, ω) = EI(1 + a(x, ω)) (46)

where EI = 4.66 Nm2. The function a(x, ω) represents a stationary Gaussian
field with zero mean, with x being the coordinate direction of the length of the
beam. The standard deviation is given by 0.2EI, and the covariance function
by

Ca(x1, x2) = σ2
ae

(|x1−x2|)/µa (47)

where µa is the correlation length and σa the standard deviation. In this in-
stance, the correlation length is set as 1.00 m in order to correspond with the
length of the beam. The non-differentiability of the covariance model at the
origin does not significantly affect our results due to the displacement at the
origin being zero. However if we were to assess the stress at the origin instead
of the displacement, the model chosen would need to be reassessed [51]. The
Karhunen-Loève expansion of the stiffness matrix, given by Equation (3), has
been truncated and two terms have been kept. The solution for the displace-
ment of the beam has been obtained through different methods. The methods
being:

• Direct Monte Carlo Simulation applied through directly solving Equation
(14) (MCS)

• Random eigenvalue eigenfunction expansion (REFE)
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• Random eigenvalue eigenfunction expansion including the Galerkin error
minimising method (REFEG)

• Polynomial Chaos of order four (PC)
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Figure 2: Ratio of eigenvalues and the first five eigenvectors of the beam problem

All the methods have been simulated 10,000 times and the performances of
the approximation methods compared with that of the direct MCS approach.
For both the REFE and REFEG methods, Equations (17) and (38) have been
truncated to include the first 5 terms.

Figure (2) illustrates the ratio between the first and the jth eigenvalue of
the deterministic system and the first five eigenvalues have been highlighted.
Figure (2) also illustrates the first five eigenvectors of the deterministic system.

6.1.2 Results and error analysis

The displacement of the beam can be normalised by

h =
f0L

3

3EI
(48)
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Figure 3: The mean and the standard deviation of the normalised vertical displace-
ment of the beam and a comparison of the percentage error of the mean and the
standard deviation of the normalised vertical displacement between the MCS and
REFE methods

A detailed reference to this value is give in [52]. This normalisation value
ensures that the deterministic vertical displacement has a value of 1 at the
tip. Figures (3a) and (3b) illustrate the mean and standard deviation of the
normalised vertical displacement at all the nodes of the beam. The percentage
error arising when using the REFE and the PC methods in place of the direct
MCS is illustrated in Figures (3c) and (3d). The percentage error is represented
by

εpercentage = 100 ∗ |FMCS − COMP |
FMCS

(49)

where FMCS indicates the solution of the direct MCS, and COMP the solution

Method MCS REFE REFEG PC
CPU time (sec) 9.59 0.86 4.07 1.07

Table 1: The CPU times for calculating the response of the beam problem by using
the MCS, REFE, REFEG and PC methods

of the comparable methods. Barring the initial 0.10 m of the bar, the percentage
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Figure 4: The pdf of the vertical displacement at the tip of the beam obtained with
the MCS, REFE, REFEG and PC methods. Percentage errors of the mean and the
standard deviation of the tip displacement using REFE and REFEG with different
truncation values in Equations (17) and (38)

error of the mean and standard deviation of the REFE method is considerably
lower than the PC method. Table (1) contains the CPU times for the four
methods attempted. The computational cost was calculated on a standard 24
GB RAM computer with a 3.60 GHz processor. The pdf of the vertical displace-
ment at the tip for the MCS, REFE, REFEG and PC methods is illustrated in
Figure (4a). The error of the vertical tip displacement when using the REFE
and REFEG methods instead of the direct MCS method is shown in Figures
(4b) and (4c) for different values of t i.e. the number of terms in Equations (17)
and (38). The percentage error of the standard deviation at the tip of the beam
is similar for both the REFE and REFEG methods for all truncation values.
However a clear, albeit small reduction is seen in the percentage error of the
mean when the REFEG method is used instead of the REFE method.
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6.2 Flow through a stochastic porous media

6.2.1 Method

In the previous example, the Euler Bernoulli beam was modelled as a one-
dimensional object. The porous media in this example has a higher spatial
dimension, where the two-dimensional domain is a rectangle of width W = 0.60
m and Length L = 1.00 m. In this instance, the response measurement is the
head of the system. Using the stochastic finite element method, the domain
has been divided into an uniform mesh of 60 × 36 square elements. A constant
flux q = 1 cm s−1 enters the media along its boundary at y = −0.3 m and
x ∈ [0.3, 0.5] m. In order to obtain a static state, the head is fixed at h = 0
cm along the boundary of the media at x = −0.5 m and y ∈ [0.17, 0.30] m.
The coordinate (0.0, 0.0) is located at the centre of the rectangle. The flux
has been set to zero along the remaining boundaries. Figure (5) illustrates the
configuration.

Figure 5: Flow system
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Figure 6: Ratio of eigenvalues for the flow through porous media problem
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A Gaussian hydraulic conductivity (k) with a 2D exponential covariance
function is considered. In order to obtain the 2D covariance function, two 1D
exponential covariance functions have been multiplied together. One has a cor-
relation length of bx = L/5 and depends on x, whilst the other has a correlation
length of by = W/5 and depends on y. In both the 1D exponential covariance
functions, two terms of the Karhunen-Loève expansion are kept. Thus the full
Karhunen-Loève expression is calculated by summing a deterministic matrix
with four random matrices. The mean and standard deviation of the hydraulic
conductivity are given by k = 1 cm s−1 and σ = 0.2k. Full details of the finite
element method used can be obtained in numerous textbooks including [53].
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Figure 7: First four eigenvectors of the stiffness matrix for the flow through porous
media problem

Similarly to the previous example, the response has been obtained using
different methods. The direct Monte Carlo Simulation (MCS) has been applied
with 10,000 samples. For both the REFE and REFEG approaches, Equations
(17) and (38) have been truncated to include the first 12 terms. Figure (6)
shows the ratio between the first and the jth deterministic eigenvalue; the first
12 eigenvalues are highlighted. Figure (7) illustrates the first four eigenvectors
of the deterministic system. The PC used is of order four. This implies that
70 polynomials are used whilst expanding the response. Consequently, a linear
system of size 71,330 needs to be solved.

6.2.2 Results and error analysis

Figures (8) and (9) are contour plots of the mean and standard deviation of the
head for the different methods. The contour plots obtained from the PC method
seem to reflect the results obtained by the MCS method slightly better than the
contour plots obtained from the REFE and REFEG methods. A considerable
portion of the error from REFE and REFEG methods can be asserted to the
region close to the entry point of the flux i.e. at y = −0.3 m and x ∈ [0.3, 0.5]
m. This is depicted in more detail in Figure (10) where the mean and standard
deviation of the percentage error arising from the REFE and REFEG methods
are illustrated. Table (2) contains the CPU times for the four methods.
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Figure 8: Contour plots of the mean of the head (cm) obtained with the MCS, REFE,
REFEG and PC methods. The x and y axis are respectively the positions in the x
direction with x ∈ [−0.5, 0.5] m and in the y direction with y ∈ [−0.3, 0.3] m
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Figure 9: Contour plots of the standard deviation of the head (cm) obtained with the
MCS, REFE, REFEG and PC methods. The x and y axis are respectively the positions
in the x direction with x ∈ [−0.5, 0.5] m and in the y direction with y ∈ [−0.3, 0.3] m
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Figure 10: Contour plots of the percentage error (εp) of the mean (µp) and standard
deviation (σp) of the REFE and REFEG methods compared to the MCS method. The
x and y axis are respectively the positions in the x direction with x ∈ [−0.5, 0.5] m
and in the y direction with y ∈ [−0.3, 0.3] m

Method MCS REFE REFEG PC
CPU time (sec) 2.06 ×103 13.10 71.71 123.73

Table 2: The CPU times for calculating the response of the flow problem by using
the MCS, REFE, REFEG and PC methods

The pdf of the response at coordinates (0.0, 0.0) and (0.5,−0.2) have been
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calculated by using the four different methods. The pdfs are plotted in Figure
(11). There is no significant difference between the pdfs obtained by the REFE
and REFEG methods even though the computational times differ significantly.
The mean and standard deviation obtained through the MCS and the random
eigenvalue and eigenvector methods are similar at coordinate (0.0, 0.0). The
coordinate (0.5,−0.2) corresponds to a pocket of high percentage error for both
the mean and standard deviation when using the REFE and REFEG methods.
This is seen in Figure (10) and is further exemplified in Figure (11b). In this
instance, for both the REFE and REFEG methods, the pdf of the head does
not mimic that of the MCS method very well. However if more terms are
kept in the truncations, the pdf of the approximation methods will get much
closer to that of the MCS method. The total mean squared error [MSE] arising
from the REFE and REFEG methods is illustrated in Figure (11c) for different
truncation values of Equations (17) and (38). Although a decrease in the MSE
is seen as the number of terms in the expansions increase, the introduction of
the error minimising approach does not decrease the error significantly.
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error of the whole system when using REFE and REFEG for different truncation
values of Equations (17) and (38).
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Figure 12: Plate system

6.3 Bending of an elastic plate with stochastic properties

6.3.1 Model

The plate bending problem can often be considered as an extension to the Eu-
ler Bernoulli beam scenario [54]. By using the proposed methods, a numerical
example of a thin bending plate is given where the underlying equations of the
bending plate is governed by the Kirchhoff-Love plate theory. The rectangular
plate under consideration has a length (L) of 1.00 m and a width (W) of 0.60 m.
As in the previous example, the centre of the plate has coordinates (0.0, 0.0).
The plate is clamped along its width (x = −0.30 m), and an uniformly dis-
tributed deterministic load of value P = 1.00 Nm−1 is applied at x = 0.30 m.
Figure (12) illustrates the configuration. By using an uniform mesh, the plate
has been divided into 25 elements in the x direction and 15 elements in the y
direction. This leads to a deterministic stiffness matrix of dimension 1200. The
bending rigidity of the plate, D, can be assumed to be a stationary Gaussian
random field of the form

D(x, y, ω) = D(1 + a(x, y, ω)) (50)

where a(x, y, ω) is a stationary Gaussian field with zero mean and x and y
represent the coordinate directions of the length and width of the plate. The
mean value of D can be expressed by

D =
Eh3

12(1− µ2)
(51)

where E is the Young’s Modulus, h the thickness of the plate and µ the Pois-
son’s ratio of the plate material. For the given example E = 200 × 109 Nm−2,
h = 0.003 m and µ = 0.3 thus resulting in D = 494.51 Nm. The values used
imply that the plate is made of steel. The standard deviation of D is given
by σ = 0.2D. The covariance function for D is obtained by multiplying two
1D exponential covariance functions together; one of the 1D functions has a
correlation length of bx = L/5 and depends on x, whilst the other has a correla-
tion length of by = W/5 and depends on y. Two terms in the Karhunen-Loève
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Figure 13: Ratio of eigenvalues for the bending of an elastic plate problem

expansion (see Equation (3)) have been kept in both the 1D functions. Thus
the full Karhunen-Loève expression is calculated by summing a deterministic
matrix with four random matrices. A detailed account of the finite elements
method used can be found in numerous textbooks including [49].

Four different methods have been used to obtain the response of the system:
a direct MCS, REFE, REFEG and PC. All methods have used 10,000 samples.
For both the random eigenvalue and eigenvector approaches, Equations (17)
and (38) have been truncated to include the first 8 terms. Figure (13) shows
the ratio between the first and the jth eigenvalue; the first 8 eigenvalues are
highlighted. A PC of order four is used, thus a linear system of size 84,000
needs to be solved.

6.3.2 Results and error analysis

Figure (14) contains contour plots of the mean of the vertical displacement
of the plate. In a similar manner, Figure (15) contains contour plots of the
standard deviation of the vertical displacement. The contour plots of the mean
and standard deviation of the vertical displacement obtained by the REFE and
REFEG methods mimic those obtained by the MCS method pretty well. Figure
(16) contains the contour plots of the percentage error of the mean and standard
deviation of the vertical displacement for the REFE and REFEG methods. A
higher percentage of error is seen by the clamped end of the plate in both
instances. Table (3) contains the CPU times for the four methods; it’s apparent
that the REFE method is considerably faster than the other methods.

For all methods, the pdfs of the vertical displacement at coordinate (0.26,
-0.02) have been calculated and plotted in Figure (17). There is no significant
difference between the pdfs of the different methods. Figure (17) also illustrates
the mean and standard deviation of the vertical displacement along all nodes of
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Figure 14: Contour plots of the mean of the vertical displacement (m) of the plate
when applying the MCS, REFE, REFEG and PC methods. The x and y axis are
respectively the positions in the x direction with x ∈ [−0.5, 0.5] m and in the y
direction with y ∈ [−0.3, 0.3] m
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Figure 15: Contour plots of the standard deviation of the vertical displacement (m)
of the plate when applying the MCS, REFE, REFEG and PC methods. The x and y
axis are respectively the positions in the x direction with x ∈ [−0.5, 0.5] m and in the
y direction with y ∈ [−0.3, 0.3] m
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Figure 16: Contour plots of the percentage error (εp) of the mean and standard
deviation of the REFE and REFEG methods compared to the MCS method. The x
and y axis are respectively the positions in the x direction with x ∈ [−0.5, 0.5] m and
in the y direction with y ∈ [−0.3, 0.3] m

Method MCS REFE REFEG PC
CPU time (sec) 3.75 ×103 4.04 44.36 146.03

Table 3: The CPU times for calculating the response of the bending plate problem
by using the MCS, REFE, REFEG and PC methods

the plate at y = −0.02 m.
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Figure 17: The pdf of the vertical displacement of the plate at position (0.26,-0.02)
obtained when using the MCS, REFE, REFEG and PC methods. The mean and the
standard deviation of the vertical displacement along y = −0.02 m is also depicted.

7 Summary and conclusion

7.1 Summary

• It has been established that the mathematical form of the exact solu-
tion of discretized stochastic equations must be in the form of u(ω) =∑M2

j=1 aj(ω)gj(ω), where aj(ω) are random scalars and gj(ω) are random
vectors and M2 = n is the dimension of the problem.

• A random eigenfunction approach has been established in order to calcu-
late aj(ω) and gj(ω).

• Through approximating and truncating, the computational time of the
random eigenfunction approach has been reduced.
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• The error arising due to the approximation and truncation has been ad-
dressed by using a Galerkin approach.

• A closed-form expression for the unknown coefficients arising due to the
Galerkin approach has been obtained by exploiting the orthogonality prop-
erties of the random eigenfunctions.

• In comparison to direct Monte Carlo Simulations, the new approach pro-
duces accurate results in a faster computational time.

7.2 Conclusion

An approach has been suggested to calculate the response of discretized stochas-
tic elliptic partial differential equations. Through utilising the stochastic finite
element method and the random eigenvalue problem, it has been proven that the
solution can be represented by summing products of random scalars and ran-
dom vectors. Due to the high computational cost associated with calculating
the exact solution, a reduced approach is proposed where random eigenvalues
and eigenvectors are approximated and low valued terms are discarded from the
summation. An error analysis has been conducted to analyse the effect of the
truncation and the effect of the approximations. A novel Galerkin error min-
imisation approach is presented where the solution is projected onto random
eigenvectors. Consequently, the unknown constants are expressed in an explicit
closed form. Due to the nature of the proposed approach, the random variables
associated with the method are not confined to a particular distribution.

The proposed method has been used to solve three stochastic elliptic prob-
lems (1) the bending of a Euler-Bernoulli cantilever beam, (2) the flow through
a porous media, and (3) the bending of an elastic plate. The three systems
considered here are characterised by respective stochastic field properties. The
proposed method has been applied twice, once with and once without the error
minimisation technique. The solutions obtained through the proposed meth-
ods have then been compared with those obtained through direct MCS and
through the polynomial chaos method. The random variables used in the ap-
plications were Gaussian for the purpose of comparative studies. The solutions
obtained through the proposed methods are similar to those obtained through
direct MCS, however, localised errors are sometimes present if the truncation
of the proposed method is too severe. Although the Galerkin error minimisa-
tion approach slightly lowers the error, the computational time is significantly
longer than when the Galerkin error minimisation approach is not used. The
computational time of the proposed method is significantly lower than the corre-
sponding times obtained from the direct MCS and polynomial chaos approaches,
especially if the dimension of the discretized system is significantly large. Fur-
ther work to be carried out would focus on efficient ways of computing random
eigenfunctions and performing the model-order reduction.
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