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Abstract

Two novel control-volume methods are presented for flow in fractured media, and involve coupling the control-

volume distributed multi-point flux approximation (CVD-MPFA) constructed with full pressure support

(FPS), to two types of discrete fracture-matrix approximation for simulation on unstructured grids; (i)

involving hybrid grids and (ii) a lower dimensional fracture model. Flow is governed by Darcy’s law together

with mass conservation both in the matrix and the fractures, where large discontinuities in permeability

tensors can occur. Finite-volume FPS schemes are more robust than the earlier CVD-MPFA triangular

pressure support (TPS) schemes for problems involving highly anisotropic homogeneous and heterogeneous

full-tensor permeability fields. We use a cell-centred hybrid-grid method, where fractures are modelled by

lower-dimensional interfaces between matrix cells in the physical mesh but expanded to equi-dimensional

cells in the computational domain. We present a simple procedure to form a consistent hybrid-grid locally

for a dual-cell. We also propose a novel hybrid-grid for intersecting fractures, for the FPS method, which

reduces the condition number of the global linear system and leads to larger time steps for tracer transport.

The transport equation for tracer flow is coupled with the pressure equation and provides flow parameter

assessment of the fracture models. Transport results obtained via TPS and FPS hybrid-grid formulations

are compared with the corresponding results of fine-scale explicit equi-dimensional formulations. The results

show that the hybrid-grid FPS method applies to general full-tensor fields and provides improved robust

approximations compared to the hybrid-grid TPS method for fractured domains, for both weakly anisotropic

permeability fields and very strong anisotropic full-tensor permeability fields where the TPS scheme exhibits

spurious oscillations. The hybrid-grid FPS formulation is extended to compressible flow and the results

demonstrate the method is also robust for transient flow.

Furthermore, we present FPS coupled with a lower-dimensional fracture model, where fractures are strictly

lower-dimensional in the physical mesh as well as in the computational domain. We present a comparison

of the hybrid-grid FPS method and the lower-dimensional fracture model for several cases of isotropic and

anisotropic fractured media which illustrate the benefits of the respective methods.
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1. Introduction

A number of approaches have been proposed in the literature for coupling various finite-element and

finite-volume methods with discrete-fracture based methods (DFM) for modelling fluid flow through frac-

tured porous media. In the discrete-fracture method (DFM) see e.g. [1–13] actual orientation and location

of the fractures are honoured in the domain. Unlike the dual-porosity model [14–17], the effect of individual5

fractures on fluid flow can be determined and fluid transfer between the fracture and matrix is more straight-

forward and consistent. Generally, fractures are modelled by (n-1) dimensional elements in an n-dimensional

domain, for example in 2D, fractures are represented by lines which coincide with edges of polygonal matrix

elements. An unstructured grid is used to honour the explicit fracture geometry where grid cells can be

boundary aligned with fractures (see [18, 19]). Equi-dimensional representation of fractures [20], are not10

popular because of complexity and computational cost contributed by thin cells. Recently, different tech-

niques of flow approximation in a discrete-fracture-matrix system have been presented. Finite element and

extended-finite element (XFEM) methods for embedded fractures into non-conforming meshes are presented

in [21–23]. Mixed hybridized finite-element (MHFE) and discontinous Galerkin (DG) methods [10] are pre-

sented for multicomponent compressible flow in [24–27]. Other recent methods for discrete fracture model15

simulations include the mimetic finite-difference method [28] and the vertex-approximate-gradient (VAG)

method [29, 30].

Recently, Sandve et. al. [31] presented discrete-fracture and matrix simulations based on the hybrid-grid

approach [6] using a multi-point flux approximation (MPFA) [32]. In the hybrid-grid method, fractures are

(n-1)D in the physical mesh and are expanded to nD in the computational domain, resulting in efficient20

gridding of fractures. The nD pressure equation is solved by the default CVD-MPFA method in both matrix

and fractures in the computational domain. The main difference in computational efficiency between the

equi-dimensional model and the hybrid-grid model is the treatment of intermediate cells between intersecting

fractures. In the hybrid-grid method of [31], the intermediate cell is assumed to be of small size so that

pressure variation is zero in that cell to avoid the complexity that would be incurred by the small size of the25

intermediate cell in the equi-dimensional model.

In the work presented here, CVD-MPFA full pressure support (FPS) schemes are coupled with (i) the hybrid-

grid method and (ii) a lower-dimensional fracture model for fracture-matrix simulations, leading to two novel

FPS based formulations for modelling flow in fractured media. Coupling of CVD-MPFA triangle pressure

support (TPS) schemes with lower-dimensional fracture models is presented in [33, 34].30

TPS finite-volume methods are presented in [35, 36], with the TPS default quadrature case (q = 1) corre-

sponding to MPFA methods, [32] on triangles and [37] on quads and with related methods [38, 39]. The TPS

methods have proven effective for problems with lower anisotropies. However, the TPS methods can yield

results with strong spurious oscillations for challenging non-linear test cases involving strongly anisotropic
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full-tensor fields. The TPS methods have been shown to permit decoupled solution modes for such cases,35

and while both the TPS and FPS methods are shown to violate M-matrix conditions in such cases and

indeed all such linear methods have an M-matrix condition dependent local discrete maximum principle

(LDMP), the FPS methods prevent decoupled modes and yield well resolved pressure fields that are free of

the accompanying grid level spurious oscillation modes [40–42]. Alternative related approaches are presented

in [43, 44], however only non-linear finite-volume methods [45, 46] have the facility for ensuring a discrete40

maximum principle for such problems, but these methods require solution via additional iterative techniques.

In contrast FPS results in a classical linear algebraic system to be solved for discrete pressures and therefore

does not involve the additional computational complexity associated with non-linear methods.

Details of coupling the FPS formulation to both hybrid grids and lower dimensional fracture models are

presented here together with results comparing the earlier TPS and FPS fracture formulations. The hybrid45

grid FPS formulation is also extended to compressible flow and the result demonstrates that the method is

also robust for transient flow.

The outline of the paper is as follows. We start with a description of flow equations for single-phase fluid

flow through porous media in section 2. We briefly describe the CVD-MPFA schemes for porous media in50

section 3. The hybrid-grid TPS and FPS methods for fractured porous media are described in section 4.

Numerical results are presented in section 5 where the hybrid-grid TPS and FPS methods are compared.

We present FPS coupled with a lower-dimensional fracture model and its comparison with hybrid-grid FPS

method in section 6 before concluding in section 7.

2. Flow equations55

In this work we consider approximation of both elliptic and parabolic equations for pressure. The

parabolic case arises for compressible flow and is considered in section 5.7. Our main focus here is on

the discretisation of an elliptic partial differential equation for pressure. The pressure equation arises from

Darcy’s law and mass conservation (∇ · v = qc) for an incompressible single phase flow, (a similar method is

also applicable to multiphase flow). The resulting elliptic pressure equation60

−∇ · k
μ
∇φ = qc (1)

is solved on a domain Ω, where qc is any known source term. As usual in single phase flow we let K = k
μ

denote the (abbreviated) possibly heterogeneous spatially varying, symmetric permeability tensor, which

can be full or diagonal and is generally expressed as: K =
(
K11 K12

K12 K22

)
with respect to Cartesian axes.

Equation (1) is solved here subject to Dirichlet and/or Neumann boundary conditions where φ = h(x) and

(K∇φ) · n = g(x) respectively on the domain boundary δΩ, where h and g are scalar fields defined on65

specified boundaries and n is the normal vector at the boundary.
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The general permeability tensor of a fracture is written in Cartesian axes as Kf =
(

Kf 11
Kf 12

Kf 12
Kf 22

)
. When the

fracture permeability tensor is locally aligned with the fracture tangential and normal axes, this is written

as Kf =
(

Kf,t 0.0
0.0 Kf,n

)
. Usually, the local cubic law (LCL) is used i.e. the diagonal tensor with Kf,t ≤ a2h/12

which is the maximum tangential permeability of the region, of width ah, representing flow between two70

parallel plates without tortuosity or cementation.

Tracer transport equation

The mass conservation equation for tracer transport ignoring dispersion is written as the advection

equation below:

ϕ
∂c

∂t
+∇ · (vc) = qc (2)

where, c is the tracer concentration and ϕ is the porosity which can be taken as unity here for simplicity.75

3. CVD-MPFA Formulation Overview

The CVD-MPFA formulation overcomes the deficiency of standard reservoir simulation finite-volume

methods which depend on a two-point flux approximation (TPFA) and are only consistent if the grid is K-

orthogonal [32, 35]. The CVD-MPFA formulation depends on a single degree of freedom per control-volume,

maintaining the optimal number of degrees of freedom as in standard reservoir simulation, and is comprised80

of families of flux-continuous locally-conservative finite-volume methods, that are consistent for full-tensor

fields on general structured and unstructured grids. Cell-centred and cell-vertex CVD-MPFA formulations

involve multiple families of schemes defined by the local flux quadrature point parameterization on each

control-volume face [41]. Cell centred methods are considered here and a single family is parameterized by a

dimensionless variable q. There are two basic types of CVD-MPFA formulation determined by the choice of85

basis functions: a) Triangle Pressure Support (TPS) with linear basis functions over subcell triangles leading

to pointwise pressure continuity on control-volume sub-faces [35, 36]. b) Full Pressure Support (FPS) with

subcell bilinear basis functions, leading to full pressure continuity over control-volume sub-faces [40–42].

In the cell-centred CVD-MPFA method, primal cells act as control-volumes, which are assigned rock proper-

ties, and discrete pressures are located at the primal cell centres as illustrated by the bold nodes numbered90

1, 2, 3 in Fig. 1a. Following the finite-volume method procedure, the first step is to integrate the flow

equation (1) over each control-volume and apply the Gauss divergence theorem to obtain:

−
∮
δΩi

(K∇φ) · ndS =

∫
Ωi

qc dV (3)

where, δΩi denotes the boundary of an arbitrary control-volume Ωi and n is a normal vector at the boundary

δΩi. The discrete scheme of Eq. (3) for CVD-MPFA is written as:

2Ne∑
k=1

Fk = q̄c (4)
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(b) Triangular pressure supports for sub-cells of cells
1 and 2 illustrated by filled blue triangles.
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(c) Full pressure support for sub-cells of cells 1 and
2 illustrated by filled blue quadrilaterals.
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(d) FPS fluxes are illustrated for sub-cells of cells
1 and 2. Points of flux computation are chosen by
quadratures q1 and q2 for right and left sub-interfaces
respectively, of the sub-cell
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(e) Auxiliary dual-cell is illustrated by dashed poly-
gon for full pressure support scheme

Figure 1: Cluster and dual-cell of three triangular cells.

where, Fk is the flux over one half of an edge (sub-interface) of a cell with Ne number of edges and q̄c =95 ∫
Ωi

qc dV . Now we discuss the CVD-MPFA procedure to determine the fluxes on the edges of a cell.

Flux approximations are built using continuous flux and pressure constraints which are imposed locally with

respect to each cluster of cells that are attached to a common grid vertex. A dual-cell is introduced which is
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defined by connecting grid points (cell-centres) of cells with the mid-points of the edges which are attached

to the cluster vertex. The resulting polygon around the cluster vertex is called a dual-cell. A sub-cell is the100

quadrilateral formed when dual-cells overlay the primal cell. Each sub-cell is defined by the anticlockwise

loop starting from the grid point (centroid) of a cell, then to the right-edge midpoint, cluster vertex, left-edge

midpoint, then back to the cell centroid. The edge mid-point divides the cell interface into two segments;

referred to as a sub-interface. In the CVD-MPFA method, normal flux continuity and pressure continuity

are fulfilled for every sub-interface. A cluster and dual-cell are shown in Fig. 1a.105

3.1. Triangular pressure support (TPS) scheme

In the triangular pressure support (TPS) scheme, an auxiliary interface pressure is introduced on each

sub-interface to ensure point-wise pressure continuity. For a given dual-cell, the position of continuity can

be chosen at any point between the edge mid-point and the common grid vertex (but not at the (singular)

vertex) of the cluster of cells [36]. The continuity point is defined by the parametric variation in [0 < q ≤ 1]110

along the sub-interface, which leads to the family of schemes depending on the choice of quadrature q. The

singular point q = 0 corresponds to the cluster vertex (which is avoided) and q = 1 corresponds to the edge

midpoint and is the standard default method. In this work, a symmetric positive definite scheme is used with

q = 2/3 [36]. In this scheme, pressure is assumed piecewise linear over subcell triangles, an example triangle

is defined by joining the cell centre with the right-edge interface continuity point and left-edge interface115

continuity point Fig. 1b, where pressure in the triangle of cell 1 is written in terms of barycentric coordinates

(ξ, η) where

φ = (1− ξ − η)φ1 + ξφA + ηφC (5)

A piecewise constant pressure gradient vector is formed over each sub-cell from the pressure field, from which

the Darcy velocity vector can be determined in each sub-cell. The Darcy velocity is resolved along the two

outward sub-interface normals of the sub-cell. The normal flux at the left hand side of sub-interface IA is120

obtained by velocity resolution along the normal vector dLh = 0.5((yV − yVA
),−(xV − xVA

)) outward to

cell 1 where,

F 1
IA = vh · dLh = −(T 1

11φξ + T 1
12φη)|1A (6)

where, T = T (q) is an approximation of the general Piola tensor (in physical space) and defines the co-

efficients of (φξ, φη)
tr. For the full definition of the general tensor we refer to [36]. Similarly, fluxes are

determined on other sub-interfaces as well. Flux continuity is imposed on every sub-interface e.g, for IA flux125

continuity is written as,

F 1
IA = −F 2

IA

−(T 1
11φξ + T 1

12φη)|1IA = (T 2
21φξ + T 2

22φη)|2IA (7)
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A system of flux continuity conditions results for each cluster. For the cluster of Fig. 1b flux continuity

conditions are written in matrix form as

F = A3×3
L Φm +B3×3

L ΦI = A3×3
R Φm +B3×3

R ΦI (8)

where Φm = (φ1, φ2, φ3)
tr and ΦI = (φA, φB , φC)

tr. Using condition (8), ΦI is eliminated to yield the fluxes

in terms of Φm written as,130

F = (AL +BL(BR −BL)
−1(AL −AR))Φm (9)

In this way, fluxes are determined on all the sub-interfaces related to a given cell in terms of primal grid-cell

pressures only. The discrete scheme of Eq. (3) is then defined by the summation of assembled fluxes on all

sub-interfaces of the triangular control-volumes.

3.2. Full pressure support (FPS) scheme

The full pressure support scheme retains sub-interface pressures at the midpoint of the primal interfaces135

together with an additional auxiliary pressure introduced at the vertex of the cluster, which gives rise to full

pressure continuity along each sub-interface in the cluster [42]. A piecewise bilinear pressure approximation

is defined over each sub-cell by connecting the four corner pressures, which involve one primal cell-centred

pressure, two sub-interface pressures at the midpoints of the corresponding primal interfaces and the auxiliary

pressure at the vertex of the cluster. Referring to Fig. 1c, the bilinear pressure over the illustrated sub-cell140

of cell 1 is given by

φ = (1− ξ)(1− η)φ1 + ξ(1− η)φA + ξηφV + (1− ξ)ηφC (10)

The Darcy velocity vector is determined in each sub-cell from the pressure field and is resolved along the

normal to each of the sub-interfaces. The Flux for cell 1 on the sub-interface IA is then expressed in the form

of expression (6). Here, the flux is expressed in terms of the (auxiliary) interface pressures and the additional

auxiliary vertex pressure. The definition of the general tensor for FPS is given in [42]. For FPS, the tensor145

T = T (q1, q2) depends on the two quadratures 0 < q1 ≤ 1 and 0 < q2 ≤ 1 which define the points of the flux

computation on the right sub-interface and left sub-interface respectively of the sub-cell. Consequently each

sub-cell can have its own multi-family quadrature values. q1 = 0 corresponds to the point on the common

vertex of the cluster and is avoided, while q1 = 1 corresponds to the midpoint of the primal interface and

is the default quadrature value, q2 has a similar definition. Referring to the Fig. 1d, q11 and q12 are the150

quadratures for sub-cell of cell 1 on the interfaces IA and IC . Similarly, q21 and q22 are the quadratures for

sub-cell of cell 2 on the interfaces IB and IA. Here we use a single family quadrature value with q = q1 = q2

for the computations. Fluxes are defined on both sides of each sub-interface and imposed to be continuous

as expressed in Eq. (7) for the interface IA, analogous to the TPS formulation. Continuity of fluxes on the

sub-interfaces are used to eliminate the pressures at the midpoints of the primal interfaces. To eliminate155
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the auxiliary pressure at the vertex an additional equation is needed. For this purpose, the divergence

free condition of the partial differential equation over an auxiliary dual-cell is utilized (Fig. 1e) written as

− ∮
∂Ω̃iAUX

(T ∇̃φ) ·ndS = 0 for the auxiliary control-volume Ω̃iAUX
in the auxiliary dual-cell surrounding the

vertex of the cluster. The size of the auxiliary dual-cell is controlled by the parameter 0 < cAUX ≤ 1, where

cAUX = 1 corresponds to the size which matches the actual dual-cell. A very small value (10−5) of cAUX160

is optimum for the computations [42]. The flux continuity conditions and the divergence free condition are

written, for the cluster shown in Fig. 1c, are combined in the form;

F = A4×3
L Φm +B4×4

L ΦI = A4×3
R Φm +B4×4

R ΦI (11)

where Φm = (φ1, φ2, φ3)
tr and ΦI = (φA, φB , φC , φV )

tr. Using condition (11), we can eliminate ΦI to obtain

the fluxes in terms of Φm expressed in an analogous form to Eq. (9).

The motivation for extending the FPS formulation to discrete fracture-matrix modelling is the robustness of165

the FPS formulation, which is illustrated in the results section by comparisons with the TPS formulation.

The TPS formulation can yield results with strong spurious oscillations for challenging test cases involving

strongly anisotropic full-tensor fields, with e.g. injector/producer wells (or source/sinks) present. In con-

trast FPS methods overcome the TPS limitation and yield well resolved pressure fields that are free of strong

spurious oscillations [40–42], where M-matrix conditions are also presented. While both the TPS and FPS170

formulations are shown to violate M-matrix conditions in such cases (i.e. for full-tensor fields where TPS

induces oscillations) and therefore lack a discrete maximum principle, it is also shown that the TPS formu-

lation permits decoupled solution modes for such cases, and conversely that the FPS formulation prevents

such modes and thus prevents their accompanying spurious oscillations at grid resolution level, allowing the

full multi-family quadrature range for flux approximation [40–42].175

4. Hybrid-grid CVD-MPFA for fractured media

The simplest and the most straightforward modelling of a discrete-fracture matrix system is achieved

by using the equi-dimensional model where thin fractures are gridded by small grid cells and are assigned

fracture permeability. The numerical method (e.g. CVD-MPFA) is employed to solve the problem on a

given mesh just as in the case of a heterogeneous medium. Because of the small apertures of fractures,180

grid generation is complicated and numerical simulation is costly, specifically in the case of intersecting

fractures. The intermediate cells between the intersecting fractures have dimensions of fracture aperture

which increases the condition number of the global linear system and reduces the time-step size limit for

transport problems when using an explicit method, thus increasing the overall computational cost. To address

the problems associated with equi-dimensional fracture modelling, the hybrid-grid method was introduced185

for the cell-centred finite-volume method with a two-point flux approximation (TPFA) for the discrete-

fracture model [47]. The TPFA scheme has an O(1) error when the grid is not K-orthogonal. Sandve
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et. al. [31] presented a hybrid-grid method using the multi-point flux approximation, (equivalently TPS

with default q = 1), for single-phase fluid flow simulations in a fractured porous medium. In the hybrid-

grid method, fractures are modelled by lower-dimensional entities in the geometric mesh but are expanded190

to equi-dimensional cells in the computational domain. In 2D, the mesh is conforming with fractures on

cell edges, which are expanded to rectangular cells in the computational domain leading to a hybrid-mesh.

The main difference between the hybrid-grid method and the equi-dimensional method is in the treatment

of adjusted geometry and intermediate cells. In [31], computations are performed without adjusting the

actual area of the neighbouring matrix cells when fracture cells are expanded from the physical mesh to the195

computational domain. In the hybrid-grid, unknowns are associated with the centroids of matrix cells and

lower-dimensional fracture cells. During computations the fracture is given an area which is equal to the

length of the edge between matrix cells, multiplied by the aperture of the fracture. The hybrid cells are

represented by insertion of midpoints on the edges of the fracture cell, which are a half-aperture away on both

sides of the fracture centroid. When compared to the equi-dimensional method, in the hybrid-grid method,200

intermediate cells at the intersection of fracture cells are assumed to be so small that pressure variation is

zero and pressure associated with intermediate cells is eliminated locally, thus reducing the global degrees

of freedom and also the computational cost.

The CVD-MPFA formulation determines the fluxes locally over each dual-cell. We present the local hybrid-

grid formation and the respective dual-cell formulation in the following sub-section. We then review the205

TPS scheme for hybrid-grids followed by the more robust full pressure support (FPS) scheme, formulated

using the new hybrid-grid for fractured porous media.

Figure 2: Cluster involving fracture edges, depicted by bold edges. The centroids of the cells are also shown.

4.1. Hybrid-grid formation

Here, we present a consistent and novel hybrid grid formation, generated locally with respect to a dual-

cell, involving fracture cells and applies to fractures of general shape trajectory and allows for intersection.210

We form the hybrid-grid within the concerned dual-cell, adjusting the geometry of the neighbouring sub-

cells to maintain consistent approximation of fluxes on sub-interfaces, while circumventing conventional

equi-dimensional mesh generation issues that arise when using the equi-dimensional model.
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(a) (b)

(c) (d)

(e)

Figure 3: Process of hybrid sub-cells formation. “Squares” depict the new geometry points inserted and “dots” are the primal
centroids of the physical cells. (a)-(e) are the steps of the determination of consistent hybrid-faces and hybrid sub-cells. Dashed
lines are the new hybrid half-faces.

Consider a cluster of five matrix cells and three fracture cells, represented by edges in between the 2D

matrix cells, in Fig. 2. The process of formation of the hybrid-grid for the concerned cluster of cells is also215

represented in Fig. 3. We start using any edge common to the vertex of the cluster, and loop through all

NDe edges of the cluster in anticlockwise fashion.

For edges 1 : NDe

10



• Step 1: Check if the edge is a fracture cell. If the edge is a fracture cell go to the next step otherwise

move to the next edge in the anticlockwise direction.220

• Step 2: Compute the edge midpoint. Project the midpoint and dual vertex in an anticlockwise normal

direction to a distance of a half-aperture to define a ghost line. Go to next step.

• Step 3: Find the next edge, in the anticlockwise loop, which is a fracture cell. Compute the midpoint,

project the midpoint and dual-vertex in clockwise normal direction to a distance of half-aperture to

make another ghost line. Go to the next step.225

• Step 4: Find an intersecting point of the two ghost lines. Store the new point, in the database, as the

new vertex for all the matrix cells in between the concerned fracture cells. Store the new midpoints as

well. Move to next edge in loop and go to Step 1.

The above process, yields the modified sub-cells for the matrix cells and the fracture cells which are defined

by newly added points depicted by squares in Fig. 3. Physical areas of the modified sub-cells are computed230

and added to the corresponding global cell areas. The centroids of the cells are unchanged and are the

centroids of the original cells in the mesh.

The final sub-cells and the dual-cell for computations with the TPS scheme are shown in Fig. 4a. We reiterate

here that this process is local to the dual-cell for flux approximation, without changing the whole physical

mesh. By the above process, flux approximation on hybrid grids is consistent.

(a) The hybrid dual-cell for the cluster (Fig. 2) for
TPS formulation

q

1 2
3

q

(b) Triangular pressure support is illustrated for a
hybrid-grid. Pressure points on the interfaces and
hybrid faces are depicted by circles and primal pres-
sures are depicted by dots

Figure 4: Dual cell and hybrid sub-cells for TPS.

235

4.2. Hybrid-grid TPS

The CVD-MPFA triangular pressure support (TPS) scheme is now applied to the set of modified sub-

cells that are obtained by the above process. Pressure points on the edges between matrix-matrix cells

11



and matrix-fracture faces are eliminated by imposing continuity of flux on each edge. Continuity of fluxes

is imposed at the matrix-matrix and matrix-fracture sub-interface pressure points, to eliminate interface240

pressures on the sub-interfaces. To eliminate pressures on the hybrid faces of an intermediate cell between

intersecting fractures, two conditions are imposed. First, pressures on all hybrid faces of an intermediate

cell are continuous and second, summation of fluxes on these faces is zero. For a dashed-line triangular

intermediate cell of the cluster shown in Fig. 4b, the conditions can be written as:

φk = φv k = 1, 2, 3 and
∑3

k=1 Fk = 0245

Note that, the condition of zero accumulation of mass in the small cell at intersection (
l∑

k=1

Fkck = cfo
3−l∑
k=1

Fk)

is also used for transport solutions, to avoid the local cell CFL condition cf. [31].

The flux continuity conditions and the divergence condition over the intermediate cell are written in a

combined form for the cluster shown in Fig. 4b as:

A9×8
L Φc +B9×9

L ΦI = A9×8
R Φc +B9×9

R ΦI (12)

where, Φc is a vector of pressures associated with the cell centres (5 matrix and 3 fracture cells) and ΦI is250

a vector of interface pressures associated with the sub-interfaces and the intermediate cell (8 sub-interfaces

and an intermediate cell). Eliminating ΦI , by the flux continuity conditions and the divergence condition

over the intermediate cell, we obtain all the fluxes (8 on sub-interfaces and 3 on hybrid-faces of intermediate

cell) required for the matrix and fracture cells in terms of only the cell-centred pressures with:

F = (Ā
11×8
L + B̄

11×9
L (B9×9

R −B9×9
L )−1(A9×8

L −A9×8
R ))Φc (13)

Consequently, after assembly, the finite-volume approximation yields a linear system of equations with so-255

lution vector comprised of a global cell-centred pressure field. This process leads to consistent flux approx-

imation on hybrid grids, which is equi-dimensional with the exception of intersecting fracture cells, which

are treated by the special local approximation described above.

4.3. Hybrid-grid FPS

The CVD-MPFA full pressure support (FPS) scheme (which is reviewed in the previous section) has260

proven to be robust with improved convergence behaviour for both pressure and velocity, when compared

to the point-wise continuous TPS scheme. In particular, for very highly anisotropic strong full-tensor per-

meability fields, cell-centred TPS violates the M-matrix conditions and induces spurious oscillations at grid

level due to decoupling, which are prevented by the FPS formulation [40, 42]. Here, we present the FPS

formulation for modelling fractured media with the hybrid-grid method.265

As FPS has full pressure continuity along each sub-interface, achieved by using an additional vertex pressure,

we do not apply FPS on the hybrid dual-cell, shown in Fig. 4a, that is used for the hybrid-grid TPS method.

Instead we propose a new hybrid dual-cell by collapsing the intermediate cell and extending the fracture
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(a) The hybrid dual-cell for the cluster (Fig. 2) for
FPS formulation

(b) Full pressure support for some of the cells are
shown for hybrid-grid. Auxiliary pressure nodes on
the interfaces, hybrid faces and vertices are depicted
by hollow circles and primal pressures are depicted
by full circles (dots)

q12

qf2

qf1

1 2

3

q11

(c) Fluxes and quadratures are shown for a matrix
and a fracture cell for FPS formulation

(d) Auxiliary dual-cell for the fracture cells is shown
to eliminate the vertex pressure between fracture
cells

Figure 5: Dual cell and hybrid sub-cells for FPS formulation.

cells. The proposed hybrid dual-cell for FPS is shown in Fig. 5a. Pressure in each of the resulting sub-cells of

Fig. 5a has full pressure support, constructed by the pressures at the midpoint of interfaces, the vertices and270

the cell-centres. In this way, we have full pressure continuity along the matrix-matrix, the matrix-fracture

and the fracture-fracture sub-interfaces. Fluxes on the sub-interfaces of all the sub-cells are determined from

the Darcy velocity for given quadrature values for the sub-cells. Full pressure support for some of the matrix

and fracture cells of the dual-cell are shown in Fig. 5b. Fluxes on the sub-interfaces of a matrix sub-cell and

a fracture sub-cell are also shown in Fig. 5c. The quadrature ranges in a sub-cell of a primal matrix cell275

are defined by 0 < q11 ≤ 1 and 0 < q12 ≤ 1 on the right sub-interface and the left sub-interface, respectively,

Fig. 5c. The quadrature ranges in a sub-cell of a fracture cell are defined by 0 < qf1 < 1 and 0 < qf2 ≤ 1

on the right sub-interface and the left sub-interface, respectively, see Fig. 5c. Note that, qf1 = 1 is excluded

as the corresponding sub-interface is the fracture-fracture hybrid-face, see [42]. We determine the fluxes on

13



both the sides of the sub-interfaces via resolving respective sub-cell Darcy velocities normal to the interface280

where each Darcy velocity is a function of the local sub-interface pressures, the vertex interface pressures

and the cell-centred pressures.

For the cluster shown in Fig. 5b, we have 8 cell-centred pressures (5 matrix cells and 3 fracture cells), 8

(auxiliary) pressures on the sub-interfaces, 1 (auxiliary) pressure associated with the primal vertex between

the fracture cells and three additional auxiliary vertex pressures which connect to the matrix as well as the285

fracture cells. The three additional vertex pressures are indicated by the numbered hollow circles in Fig. 5c.

We impose flux continuity on the sub-interfaces between matrix-matrix cells and between the matrix and

fracture cells to eliminate the pressures associated with the midpoints of the primal interfaces. We require

four additional conditions to eliminate the auxiliary pressures at the junction primal vertex and the three

additional vertices. For this purpose we impose the zero divergence condition over an auxiliary dual-cell sur-290

rounding the primal vertex joining the fracture cells, to eliminate the auxiliary vertex pressure, see Fig. 5d.

In addition, we impose flux continuity on the interfaces (hybrid-faces) between the fracture cells to eliminate

pressures associated with the three additional vertices (numbered hollow circles in Fig. 5c) thus avoiding

qf1 = 1 on the hybrid-face and the associated singularity. The divergence condition and eleven continuity

conditions for cluster shown in Fig. 5b are written in the form:295

A12×8
L Φc +B12×12

L ΦI = A12×8
R Φc +B12×12

R ΦI (14)

where, Φc is the vector of cell-centred pressures (5 matrix and 3 fracture cells) and ΦI is the vector of auxiliary

pressures associated with the 8 sub-interfaces and 4 vertices. Eliminating ΦI , fluxes on all sub-interfaces

involved in the cluster are expressed in terms of primal cell-centred pressures as:

F = (Ā
11×8
L + B̄

11×12
L (B12×12

R −B12×12
L )−1(A12×8

L −A12×8
R ))Φc (15)

The procedure leads to consistent flux approximation with full pressure continuity on hybrid grids. After

assembly of the fluxes the resulting finite-volume approximation yields a linear system of equations for the300

global cell-centred pressures.

In this work, we present a description of the method in 2D. The above method can be extended to 3D but

involves further complexities because of the additional dimension. Pressure variation is defined by a tri-linear

variation in each hexahedral sub-cell of a grid-cell. FPS involves a higher number of local degrees of freedom

in a dual-cell compared to 2D, which enables the scheme to apply to full-tensor permeability fields in 3D.305

Construction of a general polyhedral dual-cell that arises in the hybrid-grid method involving various cases

of intersecting fractures is complex and challenging in 3D. We will present details of the 3D method in future

work.
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5. Numerical results

We present numerical results in this section, to assess the performance of the FPS scheme applied to a310

fractured porous medium. We start with the convergence behaviour of the FPS scheme for a domain with a

single fracture. In the subsequent sub-sections, we compare transport results obtained by the hybrid-grid TPS

scheme and the FPS scheme with the results obtained using refined 2D fractures for single and intersecting

fractures with diagonal isotropic and anisotropic full-tensor permeability fields. We also present results for a

fractured domain with zigzag discontinuous and anisotropic full-tensor permeability field. Furthermore, we315

compare the condition number of the linear systems obtained by the hybrid-grid FPS and the 2D gridded

fracture method. A transient pressure simulation of compressible gas flow is also presented for a complex

discrete fracture-matrix system.

a/2

−a/2

y

x
−1/2

1/2

1/2

Figure 6: Case 1: Square domain with single fracture in the middle

5.1. Case 1: Convergence test

We perform convergence tests for both the hybrid methods with TPS and FPS for a domain with a single320

fracture as used in [20, 31]. Fig. 6 shows a domain with a single fracture of aperture a. Permeability of the

domain is isotropic with that of the fracture being a constant multiple of the matrix.

K(x, y) =

⎧⎨
⎩

Km(x, y) (x, y) ∈ Ωm

kfKm(x, y) (x, y) ∈ Ωf

where, Km =

⎛
⎝1 0

0 1

⎞
⎠ mD and kf is the permeability ratio of the fracture to that of the matrix. Exact

pressure for the domain (Fig. 6) can be calculated analytically, and is given by:

325

φ(x, y) =

⎧⎨
⎩

kfcos(x)cosh(y) + (1− kf )cos(x)cosh(a/2) (x, y) ∈ Ωm

cos(x)cosh(y) (x, y) ∈ Ωf
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for the source:

qc(x, y) =

⎧⎨
⎩

(1− kf )cos(x)cosh(a/2) (x, y) ∈ Ωm

0 (x, y) ∈ Ωf

Dirichlet boundary conditions are imposed on all the external boundaries of the domain. We discretise the

domain into N × N regular quadrilateral elements where the fracture is initially represented by interfaces

between the elements. We compute normalised error norms for pressure as defined in [31]. In Fig. 7,

normalised error norms of pressure are plotted against aperture to cell length ratio a/Lh for a series of330

N × N elements where N = 10, 20, ..., 100. For comparison, we show convergence plots of the hybrid-grid

TPS method (continuous lines) and hybrid-grid FPS method (broken lines), for different values of aperture a

and permeability contrast kf . As shown in Fig. 7, the L2 errors of the hybrid-grid TPS and the hybrid-grid
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Figure 7: Case 1: Normalised error vs a/Lh for different aperture values and for different permeability contrast ratios kf . Lh

is the cell length of the Cartesian grid. Continuous lines show convergence for the hybrid-grid TPS method while broken lines
show convergence of the hybrid-grid FPS method. Plots of TPS and FPS overlap each other for each of the values of kf .

FPS are almost identical to each other. L2 errors of the hybrid-grid FPS method are similar to the errors

of the hybrid-grid TPS for all the cases with homogeneous permeability (kf = 1.0) as well as heterogeneous335

permeabilities where the fracture has higher (kf = 104) and lower (kf = 10−4) permeabilities compared
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to the permeability of the matrix. Convergence of the hybrid-methods is the same for all the values of

aperture considered. Note that the convergence of the hybrid-grid methods discussed here is comparable

to the convergence of the equi-dimensional method [31, 33] (for this single fracture problem) in contrast to

the convergence results shown for hybrid-grid TPS method in [31] and for the TPS coupled with a lower-340

dimensional fracture model [33]. Plots for the hybrid-grid TPS method in [31] show divergence away from

the straight plots of the equi-dimensional method for kf = 1 and kf = 104 when a = 10−3 and a = 10−4.

The improvement in the hybrid-grid method shown here, when compared to [31], is primarily attributed to

the newly introduced consistent hybrid-grid formation, locally in the dual-cell.

5.2. Case 2: Comparison of transport solution with reference solution345

In this section, we compare the transport solutions obtained by the hybrid-grid TPS and hybrid-grid

FPS methods with the reference solutions. We solve problems on the refined mesh where the fractures are

explicitly gridded by 2D triangular cells and the solutions define the reference in each case. A sequence of

problems is considered: a problem of a domain with a single fracture, a problem with multiple intersecting

fractures, and we consider both diagonal and full-tensor permeability fields. 2D fracture problems are solved350

using both CVD-MPFA TPS and FPS schemes, with default quadrature value of (q = 1). Grids used for

the tests have been generated by using the Triangle [48] unstructured mesh generator.

5.3. Case 2a: Single fracture

We consider a domain with a single fracture along the diagonal of the square domain. The aperture of

the fracture is a = 1 mm and the ratio of the fracture permeability to the matrix permeability is kf = 104.355

Length and height of the domain is Lx = Ly = 1 m. The meshes are shown in Fig. 8. We consider

two different cases of permeability fields. For both the cases, zero-flux Neumann boundary conditions are

imposed on the whole external boundary of the domain. Fluid is injected through an injector I with rate

0.3114 pore volumes (PV) per year and pressure φ = 0 bar is specified at the diagonally opposite producer.

Concentration of the tracer is determined by solving the transport equation for each time step, using the360

first order upwind scheme.

1. Diagonal tensor field: First of all, we consider a diagonal isotropic permeability tensor in the whole

domain. The fracture has a higher permeability increased by a factor kf multiplying the permeability

of the matrix i.e. Km = ( 1.0 0.0
0.0 1.0 ) mD and Kf = kf ×Km. Pressure plots obtained by the CVD-

MPFA schemes on the reference mesh and the hybrid-grid are shown in Fig. 9. Contours of tracer365

concentration at the producer at pore-volumes-injected (PVI)= 0.9337 are shown in Fig. 10. Plots of

tracer concentration at the producer for reference pressure solutions and pressure solutions computed

by the hybrid-grid TPS and FPS methods are shown in Fig. 13a. Tracer concentrations resulting from

the TPS and the FPS schemes, applied on the reference refined mesh, are very close to each other and

plots overlay each other. Tracer plots for the hybrid-grid TPS and FPS are very close to each other370

and follow the behaviour of the reference solution.
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P

I

(a) Reference mesh with explicit 2D fracture cells.
No. of cells = 48225

P

I

(b) Mixed-dimensional mesh: 3096 2D matrix cells
+ 26 1D fracture cells

(c) Close up view of the explicit 2D fracture mesh

Figure 8: Case 2a: (a) Explicit grid representation of fracture and (b) mixed-dimensional grid for domain with single fracture.
Injector is marked by I and producer is marked by P.

2. Full-tensor field: Now, we consider a relatively weak anisotropic full permeability tensor (10 : 1 at an

angle 30o) in the whole domain. Matrix permeability tensor is defined by Km = ( 0.7750 0.38971
0.38971 0.3250 ) mD

and the fracture permeability tensor is defined by Kf = kf ×Km. Pressure solutions are shown in

Fig. 11 and concentration contours are shown in Fig. 12. Some discrepancy is observed in the pressure375

solution of the hybrid-grid TPS method when compared to the reference solutions. Tracer concentration

plots versus time are shown in Fig. 13b which show that hybrid-grid FPS yields more accurate tracer

concentration values, clearly closer to the reference plots compared to the results obtained by the

hybrid-grid TPS, indicating that FPS is beneficial compared to TPS for the relatively low anisotropy

ratio of 10 : 1 at 30o.380
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Figure 9: Case 2a: Reference pressure solutions by the TPS and FPS in first row and pressures computed by hybrid-grid TPS
and FPS in second row for a diagonal isotropic field over a domain with a single fracture.
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Figure 10: Case 2a: Tracer concentration contours at PVI= 0.9337 corresponding to the reference pressure solutions in first
row and hybrid-grid TPS and FPS in second row for a diagonal isotropic field over a domain with a single fracture.

5.4. Case 2b: Multiple intersecting fractures

In this section, a domain with six intersecting fractures is considered. The aperture of the fractures

is a = 1 mm and the fracture to matrix permeability ratio is kf = 106. The dimensions of the domain is
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Figure 11: Case 2a: Reference pressure solutions by TPS and FPS in first row and pressures computed by hybrid-grid TPS and
FPS in second row for an anisotropic (10 : 1 at 30o) field over a domain with a single fracture.
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Figure 12: Case 2a: Tracer concentration contours at PVI= 0.9337 corresponding to the reference pressure solutions in first
row and hybrid-grid TPS and FPS in second row for an anisotropic (10 : 1 at 30o) full-tensor field over a domain with a single
fracture.

1×1 m2. A mesh for reference solution with explicit 2D gridded fractures and two mixed-dimensional meshes

(coarse and fine) for the hybrid-grid method are shown in Fig. 14. We show pressure solutions computed by385
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(b) Anisotropic 10 : 1 at 30o

Figure 13: Case 2a: Tracer concentrations at producer versus time (years) for the reference pressure solutions by the TPS and
FPS and hybrid-grid pressure solutions for the domain with a single fracture.

the hybrid-grid method for the coarse mesh shown in Fig. 14c. We consider three different permeability fields

for this domain. Zero-flux boundary conditions are imposed on the whole external boundary of the domain.

Fluid is injected through an injector I (with rate 0.1 PV per year) and pressure φ = 0 bar is specified at the

diagonally opposite producer. Concentration of tracer is determined by solving the transport equation for

each time step, using the first order upwind scheme.390

1. Diagonal tensor field: A diagonal isotropic permeability tensor field is considered for the whole domain.

Permeability of the matrix and the fractures is defined as Km = ( 1.0 0.0
0.0 1.0 ) mD and Kf = 106 ×Km.

We solve the problem on the refined (reference) mesh by both the TPS and FPS schemes for reference

solutions. The problem is solved on the mixed-dimensional mesh by the hybrid-grid method with

TPS and FPS schemes. The pressure solutions obtained by the respective methods are shown in395

Fig. 15. Tracer concentration contours at PVI= 0.3 resulting from transport corresponding to the

respective pressure solutions, are shown in Fig. 16. Plots shown in Fig. 19a show behaviour of the tracer

concentration at the producer with respect to time for the respective reference solutions and hybrid-

grid methods. For the diagonal isotropic tensor case, both the hybrid-grid TPS and FPS methods

yield similar solutions with tracer concentrations in close agreement. Moreover, the behaviour of both400

solutions is in excellent agreement with the reference solutions.

2. Full-tensor field: Now, we consider an anisotropic full-tensor permeability field of relatively weak

anisotropy ratio (10 : 1 at an angle 30o) for the whole domain. Matrix and fracture permeabilities

can be written as Km = ( 0.7750 0.38971
0.38971 0.3250 ) mD and Kf = 106 ×Km. Fig. 17 shows both the reference

pressure solutions and the hybrid-grid pressure solutions. The hybrid-grid TPS method shows some405

discrepancy in the pressure contours when compared to the hybrid-grid FPS which is in agreement

with the reference solution, again showing the benefit of the FPS. Tracer concentration contours at

PVI= 0.3 is shown in Fig. 18. Plots of tracer concentration at the producer with respect to time are

21



(a) Reference mesh with explicit 2D fracture cells.
No. of cells = 61300

(b) Close up view of a part of the explicit 2D fracture
mesh 14a

(c) Coarse mixed-dimensional mesh: 3281 2D matrix
cells + 185 1D fracture cells

(d) Fine mixed-dimensional mesh: 6332 2D matrix
cells + 223 1D fracture cells

Figure 14: Case 2b: A mesh with 2D discretised fractures for reference solutions (a,b) and mixed-dimensional meshes, with 1D
fractures, for hybrid-grid method for a domain with multiple intersecting fractures (c,d). Injector is marked by I and producer
is marked by P.

given in Fig. 19b. The hybrid-grid FPS method yields a concentration profile at the producer which

is in in excellent agreement with the reference solution. The hybrid-grid TPS concentration profile is410

also close to the FPS profile for this case where kf = 106.

3. Very strong full-tensor field: Now, we consider a very strong anisotropic full-tensor permeability

field (3000 : 1 at an angle 25o) for the whole domain. Matrix permeability is defined by Km =

( 0.246436 .114868
.114868 0.053664 ) mD and fracture permeability is defined by Kf = kf ×Km with kf = 105. Injection
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Figure 15: Case 2b: Reference pressure solutions computed by the TPS and FPS in first row and pressures computed by the
hybrid-grid TPS and FPS in second row for the diagonal isotropic field over a domain with intersecting fractures.

rate is 0.1 PV per year. Fig. 20 shows reference pressure solutions and the hybrid-grid pressure solu-415

tions. Both the TPS calculations (Ref. and the hybrid-grid) yield spurious oscillations in the respective

pressure solutions whereas hybrid-grid FPS is in agreement with the reference FPS solution, and both

of the FPS pressure fields are free of spurious oscillations. Tracer concentrations contours at PVI= 0.1

are shown in Fig. 21. The tracer concentration solution obtained by the hybrid-grid FPS method

improves with refinement in the mesh and converges towards the reference solution (Fig. 21) as also420

indicated by the concentration versus time plots given in Fig. 22. The observed tracer concentration

field requires refinement of the matrix mesh for improvement when compared to the reference field.

The results presented, show that the hybrid-grid FPS method produces comparable results to those produced

by the hybrid-grid TPS method for cases with diagonal isotropic permeability tensor fields. In cases of

anisotropic full-tensor permeability fields, comparison with reference solutions show that the hybrid-grid425

FPS method yields improved results in contrast to the TPS scheme. The transport solution produced

by the hybrid-grid FPS method for intersecting fractures, is in excellent agreement with the behaviour of

the reference solution while the TPS scheme shows some discrepancy in the results for full-tensor fields.

Moreover, the TPS scheme yields spurious oscillations in the pressure solution for highly anisotropic full-
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Figure 16: Case 2b: Tracer concentration contours at PVI= 0.3 corresponding to the reference pressure solutions in first row
and the hybrid-grid TPS and FPS in second row for the diagonal isotropic field over a domain with intersecting fractures.

tensor permeability fields.430

5.5. Case 3: Discontinuous strong full-tensor (zigzag) field

Now, we apply the hybrid-grid FPS method to a problem that involves discontinuous and anisotropic

full-tensor permeability fields over a fractured domain. The permeability tensor is in a zigzag pattern for

the domain that consists of three rock-types as shown in Fig. 23. The anisotropy ratio is 1000 : 1 and the

principal axes are oriented at angles of 30o, 120o and 60o for the rock-types from left to right of the concerned435

domain. There is a horizontal well in the middle of the domain, with fixed pressure φ = 300 bars. The domain

consists of various orthogonal intersecting fractures with high permeability of Kf = 104×Km. The fractures

add another local discontinuity to the already discontinuous field. The vertical fractures also intersect with

the well. The external boundary of the domain is specified with a low pressure of φ = 100 bar. A boundary-

aligned grid is used as shown in Fig. 23. We solve the problem with the FPS scheme (q1 = q2 = 1.0) for the 2D440

discretised fractures, to determine a reference solution. We obtain pressure solutions using the TPS (q = 2/3)

and hybrid-grid FPS (q1 = 1.0; q2 = 0.9) for comparison. Pressure fields are shown in Fig. 24. The pressure

field computed using the hybrid-grid FPS method is in good agreement with the FPS reference solution.

There are some oscillations in the TPS pressure field, although the pattern of the pressure field is similar to
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Figure 17: Case 2b: Reference pressure solutions computed by TPS and FPS in first row and pressure fields computed by the
hybrid-grid TPS and FPS in second row for the anisotropic (10 : 1 at 30o) full-tensor field over a domain with intersecting
fractures.

the FPS method. The test case demonstrates the robustness of the hybrid-grid FPS method. This test case445

provides further evidence of the robustness of FPS [42], now applied to a problem with a discontinuous and

strong anisotropic full-tensor permeability field together with fractures and an unstructured grid.

5.6. Case 4: Condition number comparison with 2D gridded fractures

In this section, we compare the condition numbers of the linear system resulting from the hybrid-grid

FPS method with the fully gridded equi-dimensional fracture FPS method for a discrete-fracture matrix450

system. A mesh with gridded 2D fractures and a mesh with 1D fractures is given in Fig. 25. There are two

disconnected fracture networks i.e. a large network of four fractures and a second network consisting of two

fractures. We solve a channel flow problem with applied horizontal pressure gradient from left to right and

no-flow conditions on horizontal outer boundaries. We solve the flow problem for three cases of combinations

of conductive fractures and barriers (very low permeable fractures) (i) large network consists of conductive455

fractures and smaller network consists of barriers (fractures & barriers) (ii) both networks consist of barriers

(all barriers) and (iii) both networks consist of conductive fractures (all fractures). Permeabilities of the

fractures and the barriers (of aperture a = 1 mm) are Kf 1 = kfI and Kf 2 = (1/kf
)I. Matrix permeability
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Figure 18: Case 2b: Tracer concentration contours at PVI= 0.3 corresponding to the reference pressure solutions in first row
and the hybrid-grid TPS and FPS in second row for the anisotropic (10 : 1 at 30o) full-tensor field with intersecting fractures.

is Km = I, where I is the identity matrix. The pressure fields computed using the 2D fracture model and

the hybrid-grid method for three test cases are presented in Fig. 26. The hybrid-grid FPS method solution460

is in excellent agreement with the 2D fracture method. The condition numbers for the global linear systems

resulting from both methods are given in table 1. Because of the special treatment of cells at junctions of

intersecting fractures, the hybrid-grid method yields better conditioned linear systems compared to the 2D

fracture method, where fractures are gridded with small cells at the junctions. The condition numbers for

the hybrid-grid method are remarkably lower than the 2D fracture method for the cases where barriers are465

considered.

Fracture model Frac. & Barr. Barr. & Barr. Frac. & Frac.
Hybrid-grid (physical 1D fracture) 2.06e07 1.80e05 4.93e06
2D tris. fracture 4.72e17 2.79e09 2.55e12
2D tris. fracture (square junction cell) 3.34e17 1.49e09 3.39e12
2D quads fracture 2.00e12 2.23e09 1.31e07

Table 1: Case 4: Condition numbers for the hybrid-grid FPS and the equi-dimensional 2D gridded fractures using FPS for a
fracture/barrier system with a = 1 mm and kf = 106. (Condition number of a sparse matrix G is computed by the Matlab
command condest(G,4)).
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(a) Isotropic
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(b) Anisotropic 10 : 1 at 30o
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(c) Isotropic
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(d) Anisotropic 10 : 1 at 30o

Figure 19: Case 2b: Tracer concentration at producer versus time (years) corresponding to the reference pressure solutions of
the TPS and FPS and the hybrid-grid TPS and FPS pressure solutions for a domain with intersecting fractures. Results of
hybrid-grid method in (a) & (b) are for coarse mesh (Fig. 14c) and results of hybrid-grid method in (c) and (d) are for fine
mesh (Fig. 14d).

5.7. Case 5: Compressible gas flow

In this case, we consider a isothermal compressible gas flow simulation. The general equation is written

in terms of the pressure as:

ct
∂φ

∂t
−∇ · (λ∇φ) =

RT

M
qc (16)

where M is the molecular weight of the gas, R is the ideal gas constant, T is the temperature of the gas470

and is assumed constant here. Z is the gas compressibility factor, ct =
ϕ

Z

(
1− φ

Z

dZ

dφ

)
, λ =

φ

μZ
k and

ϕ is porosity. As ct and diffusivity λ both depend on the pressure of the gas so that Eq. (16) is a non-

linear parabolic partial differential equation which has more complexity and computational cost for solution

compared to the previous linear pressure equation. We use the Peng-Robinson [49] equation of state for

the relationship between compressibility factor Z and the pressure φ that has also been used in [50]. The475

relationship is a cubic equation that can be solved for Z for the given φ of real-gas by Cardano’s method or
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Figure 20: Case 2b: Reference pressure solutions using TPS and FPS in first row and pressures computed by the hybrid-grid
TPS and FPS in second row for the anisotropic (3000 : 1 at 25o) full-tensor field over a domain with intersecting fractures.

by the Newton-Raphson method numerically [51, p. 19].

To compute the discrete solution of the non-linear transient pressure problem, governed by Eq. (16), we

use the above hybrid-grid FPS spatial discretisation (section 4.3) that is developed to approximate Eq. 1 in

fractured media, now with the diffusivity coefficient (kμ ) replaced by λ together with source term RT
M qc on480

the right hand side. We use a semi-implicit discretisation in time (with spatial hybrid-grid FPS discretisation

for fractured media) expressed as:

1

δt
Mn+1(Φn+1 − Φn) +GnΦn+1 = q̄c for time step n (17)

where, Mn+1 is a diagonal system of integrated coefficients ct(φ
n+1) over all matrix and fracture cells.

Eq. (17) is solved for all the unknown matrix and fracture pressures (Φn+1) at the new time-step. The

first part of Eq. (17) is a function of unknown Φn+1 where ct = ϕ
Z

(
1− φ

Z
dZ
dφ

)
while the second part is a485

function of the known Φn where λ = φ
μZk. To solve the non-linear equation in terms of Φn+1, we employ

the Newton-Raphson method at each time step. We use the PETSc [52] library for the solution of the linear

systems involved in the Newton-iteration. As the linear systems are in general non-symmetric, we solve the

systems via GMRES [53] preconditioned by incomplete LU factorization (iLU) or the algebraic multigrid
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Ref. solution using mesh with 2D fractures shown in Fig. 14a

Hybrid-grid method using coarse mesh shown in Fig. 14c
TPS FPS

Hybrid-grid method using fine mesh shown in Fig. 14d
TPS FPS

Figure 21: Case 2b: Tracer concentration contours at PVI= 0.1 for the reference pressure solutions in first row and for the
hybrid-grid TPS and FPS in second row for the anisotropic (3000 : 1 at 25o) full-tensor field over a domain with intersecting
fractures.

(gamg) provided in the PETSc library. Initial conditions and boundary conditions are given below.490

We consider a synthetic domain containing a fractured reservoir as shown in the Fig. 27 which represents

the 2D plane with a well along the left side wall. There are highly conductive interconnected and intersecting

fracture networks throughout the domain. The reservoir is full of methane gas, CH4 at the initial reservoir

pressure of φ(x, y, 0) = 20 bar and constant temperature of 330 K. The well at the left boundary of the
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Figure 22: Case 2b: Tracer concentration at producer versus time (years) for the reference pressure solutions and the hybrid-grid
pressure solutions over the coarse mesh shown in Fig. 14c (blue plot) and the fine mesh shown in Fig. 14d (green plot) for the
case of very strong anisotropic (3000 : 1 at 25o) full-tensor permeability field.

φ = 100 bars

φ = 300

1000 : 1 at 30o 1 : 1000 at 30o 1000 : 1 at 60o

Figure 23: Case 3: Fractured domain with discontinuous full-tensor (zigzag) permeability field. There is a horizontal well in
the middle intersecting with the fracture networks.

domain is at the low pressure of φ(0, y, t) = 3.39 bar and acts as the producing well for the reservoir. The495

other three boundaries are assigned no-flow boundary conditions. The properties of the methane gas [54]

are as follows:

Critical pressure and temperature: φcr = 45.99 bar, Tcr = 190.55 K

Ascentric-factor ω = 0.008; viscosity μ = 0.011 cP

The matrix has a strong anisotropic and heterogeneous permeability defined via km =
(

1+2x̃2+ỹ2 4x̃ỹ

4x̃ỹ 1+x̃2+2ỹ2

)
mD500

where, x̃ = x/670.56, ỹ = y/365.76. The non-linear relationship between the compressibility factor and the
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(a) Ref. pressure solution by the FPS with 2D discretised fractures. q1 = q2 = 1.0

(b) Pressure solution by the hybrid-grid TPS with 1D
physical fractures. q1 = 2/3

(c) Pressure solution by the hybrid-grid FPS with 1D
physical fractures. q1 = 1.0; q2 = 0.9

Figure 24: Case 3: Pressure solutions for the discontinuous full-tensor (zigzag) permeability field

pressure is given by the Peng-Robinson equation of state.

The fracture has the higher permeability with kf = 106×km. And, all the fractures are assigned an aperture

of a = 1 mm. The whole domain is discretised using a triangular mesh with fractures as lower-dimensional

internal boundary constraints. The boundary-aligned mesh of the fractured domain is shown in Fig. 28.505

The transient pressure problem is solved for 2 years of production by hybrid-grid FPS method, for the cases

of (i) the reservoir with fractures and (ii) the same reservoir without fractures.

The pressure contour plots at the intermediate times are shown in Fig. 29. Flow of methane propagates

rapidly through the highly conductive fractures, noticeably, in those fractures which are directly connected

to the low-pressure boundary (well). The behaviour of the pressure propagation is highly influenced by the510

heterogeneity of the matrix and the high permeability of fractures. The pressure plots show the influence

31



(a) Mesh with 2D gridded fractures. 8400 2D trian-
gular cells

(b) Mesh with 1D fractures. 7766 2D triangular cells
+ 320 1D cells

Figure 25: Case 4: (a) A mesh with 2D gridded fractures and (b) a mixed-dimensional mesh with 1D fractures. Fracture cell
length along the fracture in both meshes is equal.

of the presence of the fractures. Moreover, there is higher production from the fractured reservoir because

of the fractures compared to the reservoir without fractures. Fig. 30 shows the semi-log plots of average

reservoir pressure and the production rate with respect to time for the cases of the reservoirs with fractures

and without fractures. The average pressure of the fractured reservoir decreases rapidly with time and515

approaches the pressure of the producer, when compared to the reservoir without fractures, which takes a

longer period of time to approach to the low pressure of the producer. Moreover, we have higher production

rate with fractures compared to no fractures, where production rate declines sharply during early time then

approaches an equilibrium state. In our experience production of fractured reservoirs are highly dependent

on fracture network connectivity together with connectivity to producers. Note that, the computational cost520

of the compressible methane gas flow solution in the fractured reservoir is ∼ 2.56 times the computational

cost for computing flow in the reservoir without fractures. Finally, we note that in contrast to the FPS

simulation, the earlier TPS method yields spurious oscillations for this case, resulting in negative pressures

causing the simulation to fail, illustrating a further benefit of the new hybrid-grid FPS formulation.

6. FPS coupled with a lower-dimensional fracture model525

In the previous section, we have presented and analysed the hybrid-grid method for CVD-MPFA with

full pressure support (we denote by FPS). In the above method, the 2D pressure equation is solved in both

rock-matrix and fracture by the usual FPS formulation. In this section, we investigate and analyse an FPS

formulation coupled to a lower-dimensional fracture model, analogous to the formulation in the context of

the TPS presented in [33, 34] and the mixed finite-element presented in [10]. For the matrix domain an nD530

equation is solved while an (n-1)D equation is solved for fracture cells. The single phase conservation laws
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Figure 26: Case 4: Pressure solutions computed by the 2D fracture method and the hybrid-grid method for aperture a = 1 mm
and kf = 106 for three different cases of fractures and barriers.

are written as:

−∇ ·Km∇φ = qcm in Ωm (18)

−∇t ·Kf,t∇tφf + qf = qcf in Ωf (19)

where ∇t and Kf,t are the respective longitudinal (tangential) gradient operator and permeability of the

fractures. qcm and qcf are known source terms for the rock matrix and the fracture respectively. Transfer
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Figure 27: Case 5: Methane gas reservoir: [0, 670.56]× [0, 365.76] m2

Figure 28: Case 5: Boundary-aligned mesh of the fractured Methane reservoir.(19549 triangles + 2495 fracture edges)

function, qf , accounts for the net normal flux transfer between matrix and fracture cells, resulting from the535

dimensionality reduction to obtain (n-1)D equation (19). The matrix-fracture flux is also added naturally

in the formulation for the matrix cells. The flow equations (18) and (19) are integrated over the grid cell

control volumes using the Gauss divergence theorem to obtain,

−
∮
δΩmi

(Km∇φ) · nidS = q̄cm (20)

−
∮
δΩf j

(Kf,t∇tφf ) · njdS +Qf = q̄cf (21)

where q̄cm =
∫
Ωmi

qcm dV and q̄cf =
∫
Ωf j

qcf dV are respective specified source terms for the matrix and

fracture cells Ωmi, Ωf j . Moreover, Qf =
∫
Ωf j

qf dV , is the transfer function resulting from the net flux540

normal to the lower-dimensional fracture cell Ωf j . Note that as a consequence of the lower-dimensional
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Figure 29: Case 5: Transient pressure solutions of the compressible methane gas production from the fractured and non-fractured
reservoirs

(a) Reservoir average pressure (b) Production rate

Figure 30: Case 5: Plots of average pressure (φ̄ =
∑N

i=1 Viφi∑N
i=1 Vi

, where N is the total number of cells (matrix and fracture) in

the mesh, Vi is the volume of a cell i and φi is the pressure of a cell i) and production rate of the fractured and non-fractured
methane reservoirs with respect to time

fracture model, the model will only be consistent if the permeability tensor is diagonal in the frame of the

fracture (which corresponds to the geologically natural case). The effect of the lower-dimensional assumption
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is considered in a number of examples below.

6.1. Flux approximation545

We present the FPS formulation for the reduced dimensional fractures in a cluster shown in Fig. 31a. The

dual-cell for the cluster is also shown in Fig. 31a by the dashed-line polygon. The sub-cells are not modified

in any way. Pressure unknowns are associated with the centroids of the nD matrix cells. Pressure points

are also defined for the sub-interfaces, on midpoints of the edges. An additional unknown pressure is also

defined at the cluster vertex that is common to all the cells in the cluster. Full pressure continuity is imposed550

on all the sub-interfaces between the matrix sub-cells. For each of the matrix sub-cells, full pressure support

is defined by the pressure points at the cell centre, the right-edge, the left-edge and the auxiliary pressure

at the vertex. The full pressure support of cells 1 and 2 is depicted in Fig. 31b. Discrete piecewise fluxes on

(a) Cluster of matrix cells involving fracture cells as
interfaces in between, depicted by bold lines. Fluxes
are discontinuous across fracture-interfaces, but pres-
sure is continuous.

(b) Dual cell with sub-cells of matrix cells. Full pres-
sure supports (FPS) are also shown for matrix cells
1 and 2.

(c) Auxiliary control-volume around the cluster ver-
tex is shown.

(d) Cluster of fracture cells only.

Figure 31: Cluster and dual-cell involving fracture cells as interfaces. A cluster of fractures is also shown.
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the sub-interfaces are determined in the same way as shown in sub-section 3.2. Flux on a sub-interface from

full pressure support in a sub-cell, is dependent on the (primal) cell-centre pressure, sub-interface auxiliary555

pressures and the vertex auxiliary pressure. If any of the sub-interfaces lies on a 1D fracture, then the (primal)

pressure of that fracture cell will be involved in the flux approximation. We assume that the fractures are

highly conductive so pressure is constant across the width of the fracture. Fluxes are discontinuous on the

sub-interfaces aligned with fractures. For the concerned cluster of cells, we require 3 (continuous) fluxes on

the left side of sub-interfaces which are not fractures and 6 fluxes corresponding to both the sides (right560

and left) of the sub-interfaces aligned with the fractures and are formulated in a combined simple form of

matrices, as:

F = A9×6Φm +B9×4ΦI + C9×3Φf (22)

where, Φm = (φm1 , φm2 , φm3 , φm4 , φm5 , φm6)
tr are pressures associated with the matrix cells, ΦI = (φA, φB ,

φC , φV )
tr are auxiliary pressures on the sub-interfaces which are not fracture cells and the cluster vertex

V , and Φf = (φf1 , φf2 , φf3)
tr are pressures associated with the involved fracture cells. As in the usual565

CVD-MPFA formulation, continuity of flux is imposed on each of the sub-interfaces that are not fractures.

In FPS, the divergence free condition of the partial differential equation over an auxiliary dual-cell is also

utilized (Fig. 31c) written as − ∮
∂Ω̃iAUX

(T ∇̃φ) ·ndS = 0 for a small auxiliary control-volume Ω̃iAUX
defining

the auxiliary dual-cell surrounding the vertex of the cluster. In this way, ΦI are eliminated by imposing

continuity of fluxes defined on both sides of the rock matrix sub-interfaces, and the divergence free condition570

over the auxiliary control-volume. As a result, the fluxes are now expressed in terms of primal unknowns

Φm and Φf only, as follows:

F = Ā9×6Φm + C̄9×3Φf (23)

Fluxes on the sub-interfaces of fractures, are retained as discontinuous. The sum of the negative of these

discontinuous fluxes on both sides of the fracture-interfaces form one half of the transfer functions for the

corresponding 1D fracture cells. At interface If1 , the sum of the negative of the discontinuous fluxes is575

defined as half of the transfer function for the fracture cell f1:

Qf1,1/2 = −F 1
If1
− F 2

If1
(24)

In the same way we can determine the half transfer functions for other fracture cells (as interfaces) involved

in the cluster. As the fluxes have already been determined in terms of Φm and Φf in an analogous form to

Eq. (23), so we can write the system of half transfer functions for the corresponding fracture cells in terms

of Φm and Φf as follows;580

Qf,1/2 = −FL − FR (25)
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which in the above case leads to

Qf,1/2 = D̄3×6Φm + Ē3×3Φf (26)

Fracture-fracture fluxes

A cluster of three 1D fracture cells is represented in Fig. 31d. Pressure is approximated at the midpoint of

the fractures. A discrete pressure is also added at the interface face (vertex in 1D) where fractures intersect

each other. The outgoing fluxes are determined for every 1D fracture at the vertex, e.g for fracture f1 we585

have,

F1
V = −Kf,t(φV − φf1)

a

Lf
(27)

where φf1 is the pressure associated with the mid-point of the fracture cell, φV denotes the pressure at the

common vertex of the fracture cells. a denotes the given aperture of the fracture and Lf is half of the length

of the fracture cell f1. Outgoing fluxes of the fracture cells f2 and f3 are defined in similar fashion. All the

fluxes can be formulated in combined form as follows:590

F = A3×3Φf +B3×1φV (28)

where, Φf = (φf1 , φf2 , φf3)
tr. The pressure at the intermediate vertex is eliminated by imposing the condition

of mass conservation at the vertex analogous to Kirchhoff’s current law with

3∑
k=1

Fk = 0 (29)

leading to

φV = (BV
1×1)

−1
AV

1×3Φf

Fluxes are then expressed in terms of fracture cell pressures and consequently

F = Ā3×3Φf (30)

Note that, the above fracture-fracture flux formulation can be easily generalized to a cluster with any number595

of fracture cells. For a cluster of only two fracture cells, condition (29) is equivalent to the continuity of

fluxes between two fracture cells.

Having determined the matrix fluxes, the fracture transfer functions and the fracture fluxes, we can complete

the discrete scheme to form the discrete divergence equation for every matrix cell and fracture cell. As a
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result, we obtain a coupled linear system of the form:600

⎛
⎝Gmm Gmf

GTm Ḡff

⎞
⎠

⎛
⎝Φm

Φf

⎞
⎠ =

⎛
⎝q̄cm

q̄cf

⎞
⎠ (31)

The above coupled system, (31) can be solved by iterative solution methods for matrix and fracture pressures.

It is noted that a smaller linear system is solved locally, for every cluster compared to the hybrid-grid method

because of the lower-dimensional fracture cells. Matrix-matrix fluxes and matrix-fracture fluxes in (23) and

fracture-fracture fluxes in (30) can be determined separately in parallel and assembled into the coupled linear

system (31).605

6.2. Case 6: Comparison between hybrid-grid FPS and FPS coupled with 1D fracture model

The pressure equation and the respective tracer transport equation are solved via FPS coupled with the

lower-dimensional (1D) fracture model. We compare FPS coupled with the lower-dimensional (1D) model

versus the hybrid-grid FPS method. We solve injector-producer problems for various cases of diagonal

isotropic and anisotropic full-tensor permeability fields. We solve problems, with multiple 1D fractures, over610

the meshed domain shown in Fig. 14c, that has been used in section 5.4 (Case 2b: Multiple intersecting

fractures). Zero-flux boundary conditions are imposed on all external boundaries of the domain. Fluid is

injected through an injector I (with rate 0.1 PV per year) and pressure φ = 0 bar is specified at the producer.

Concentration of tracer is determined by solving the transport equation for each time step, using the first

order upwind scheme.615

6.2.1. Case 6a: Diagonal tensor field

A diagonal isotropic permeability tensor field is considered for the whole domain. Permeability of the

matrix and the fractures is defined by Km = ( 1.0 0.0
0.0 1.0 ) mD and Kf = 106 × Km, respectively. Fig. 32

shows the pressure solutions obtained via the hybrid-grid FPS method and the lower-dimensional (FPS)

fracture model. Respective tracer concentration contours at PVI= 0.3 are also given. Plots of tracer620

concentration at the producer with respect to time are shown in Fig. 38a. The lower-dimensional fracture

model (1D fracture) yields results that are in excellent agreement with the hybrid-grid FPS method. The

lower-dimensional fracture model has less degrees of freedom and computational cost locally for a dual-cell

compared to the hybrid-grid method.

6.2.2. Case 6b: Full-tensor field (10 : 1 at 30o)625

The next case involves a full-tensor permeability field with relatively weak anisotropy ratio 10 : 1 at 30o

to the horizontal over the whole domain. The matrix and the fractures are assigned the permeability tensor

of Km = ( 0.7750 0.38971
0.38971 0.3250 ) mD and Kf = 106 ×Km, respectively. The results of the 1D fracture model

conform to the results produced by the hybrid-grid FPS method for this mild full-tensor case, as shown in

Fig. 33 and Fig. 38b.630
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Figure 32: Case 6a: Pressure solution and tracer concentration contours (PVI= 0.3) obtained by the hybrid-grid FPS and the
(FPS) 1D fracture model for a diagonal isotropic field with multiple intersecting fractures.

6.2.3. Case 6c: Strong full-tensor field (1000 : 1 at 30o)

In this case, we solve a problem with a strong full-tensor permeability field with anisotropy ratio of

1000 : 1 at 30o orientation, over the whole domain including the fractures. The matrix and the fractures are

assigned the permeability of Km = ( 0.75025 0.43258
0.43258 0.25075 ) mD and Kf = 106 ×Km, respectively. Fig. 34 shows

pressure solutions solved via the hybrid-grid FPS method and the (FPS) 1D fracture model. The respective635

tracer concentration profiles are also given. Variations of tracer concentration at the producer versus time,

for both the models, are shown in Fig. 38c. There is a significant discrepancy in the results obtained via

the (FPS) 1D fracture model, when compared with the hybrid-grid FPS method for this case. As noted

above, the 1D fracture model is consistent if the permeability tensor is diagonal in the local frame of the

fracture. Consequently having a strong anisotropic full-tensor permeability in the fractures leads to an O(1)640

error which explains the discrepancy in results.

6.2.4. Case 6d: Strong full-tensor (1000 : 1 at 30o) matrix field and diagonal tensor fracture field

The matrix is assigned a permeability tensor Km = ( 0.75025 0.43258
0.43258 0.25075 ) mD. The fractures are assigned a

diagonal isotropic permeability field of Kf = 106 × I mD. For this case the 1D fracture model is consistent

and results of the 1D fracture model conform to the results obtained by the hybrid-grid FPS method, as645
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Figure 33: Case 6b: Pressure solution and tracer concentration contours (PVI= 0.3) obtained by the hybrid-grid FPS and the
(FPS) 1D fracture model for an anisotropic (10 : 1 at 30o) full-tensor field over a domain with multiple intersecting fractures.

shown in Fig. 35 and Fig. 38d.

6.2.5. Case 6e: Very strong full-tensor field (3000 : 1 at 25o)

The next case considers a very strong anisotropic full-tensor permeability field (3000 : 1 at 25o) over the

whole domain. The matrix permeability tensor is defined by Km = ( 0.246436 .114868
.114868 0.053664 ) mD and the fracture

permeability is defined by Kf = 106 ×Km. Fig. 36 shows the pressure fields and the respective tracer650

concentration contours obtained via the hybrid-grid FPS method and the 1D fracture model. Variations of

concentration at producer with respect to time, for both the models, are shown in Fig. 38e. Again, there

is a significant difference in the results obtained via the (FPS) 1D fracture model and the hybrid-grid FPS

method which is due to the 1D fracture model being inconsistent when a very strong anisotropic full-tensor

permeability field is present in the fractures.655

6.2.6. Case 6f: Very strong full-tensor (3000 : 1 at 25o) matrix field and diagonal tensor fracture field

Lastly, we consider the matrix with a very strong anisotropic full-tensor permeability field (3000 : 1 at

25o) while the fractures are assigned an diagonal isotropic permeability field Kf = 106×I. Fig. 37 shows the

pressure solutions and the respective tracer concentration contours obtained via the hybrid-grid FPS method
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Figure 34: Case 6c: Pressure solution and tracer concentration contours (PVI= 0.3) obtained by the hybrid-grid FPS and the
(FPS) 1D fracture model for an anisotropic (1000 : 1 at 30o) full-tensor field over a domain with multiple intersecting fractures.

and the 1D fracture model. Fig. 38f shows the plots of tracer concentration at the producer with respect660

to time for both the models. For this case with diagonal isotropic permeability tensor in the fractures, the

1D model is again consistent and the results of the 1D fracture model conform to the results obtained via

the hybrid-grid FPS method as in the previous case of an anisotropic (1000 : 1 at 30o) matrix and diagonal

isotropic tensor in the fractures.

All of the above test cases involving the various permeability fields, for the injector-producer problem, show665

that FPS coupled with the lower-dimensional fracture model yields results that are in good agreement with

the hybrid-grid FPS method when the fracture permeability tensor is diagonal or even has a weak full-tensor

while the matrix can have a full-tensor of arbitrary strength.

Finally, we consider the channel flow problem of section 5.6 again, and solve using FPS coupled with the

lower-dimensional (1D) fracture model. We compute the computational cost of TPS and FPS coupled with670

1D fracture model compared to the hybrid-grid TPS and FPS methods for the channel flow problem using

the mesh as shown in Fig. 25b. Table 2 shows the computational costs of different methods used for the

problem of all fractures in the domain. There is no considerable difference in both the models with TPS and

FPS for the fracture system.
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Figure 35: Case 6d: Pressure solution and tracer concentration contours (at PVI= 0.3) obtained by the hybrid-grid FPS and
the (FPS) 1D fracture model for an anisotropic (1000 : 1 at 30o) full-tensor field over matrix with multiple intersecting fractures
with diagonal isotropic permeability.

Fracture model TPS FPS
Hybrid-grid model 1.11 1.15
1D fracture model 1.11 1.12

Table 2: Case 4: CPU time (sec) for the hybrid-grid TPS and FPS and the 1D fracture model with TPS and FPS for a fracture
system with a = 1 mm and kf = 106. The linear system is solved by GMRES preconditioned by algebraic multi-grid (gamg
provided in PETSc, rtol = 1e-10).

7. Conclusions675

Two novel control-volume methods are presented for flow in fractured media, and involve coupling the cell-

centred CVD-MPFA full pressure support formulation, to two types of discrete fracture-matrix approximation

for simulation on unstructured grids. First, we introduce the hybrid-grid FPS method for DFM simulations.

We present a novel and simple process to form a consistent hybrid-grid locally for a dual-cell. We also

present a novel hybrid-grid for the application of the FPS scheme to intersecting fractures, with full pressure680

continuity imposed along the matrix-matrix, matrix-fracture and fracture-fracture interfaces.

Convergence rates of the hybrid-grid FPS method overlay the hybrid-grid TPS scheme and are in excellent

agreement when hybrid-grid TPS is effective. Comparison of pressure and transport solutions computed by

both the TPS and FPS hybrid-grid methods are presented for diagonal and full-tensor permeability fields on
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Figure 36: Case 6e: Pressure solution and tracer concentration contours (PVI= 0.3) obtained by the hybrid-grid FPS and the
(FPS) 1D fracture model for an anisotropic (3000 : 1 at 25o) full-tensor field over a domain with multiple intersecting fractures.

unstructured meshes. When compared to the reference solutions, hybrid-grid FPS yields improved results685

for fractured domains in contrast to the hybrid-grid TPS scheme. The hybrid-grid FPS method is highly

beneficial for fractured domains with very strong anisotropic full-tensor permeability fields, and yields well

resolved pressure solutions. In contrast the TPS formulation yields pressure solutions with strong spurious

oscillations for such cases. A transient pressure simulation of compressible gas flow has also been presented

for a complex discrete fracture-matrix system. The hybrid-grid TPS simulation fails for this case, while690

the FPS results demonstrate the applicability of the newly developed hybrid-grid FPS method for transient

drainage of fractured zones involving compressible flow in complex fracture networks.

A lower-dimensional fracture model is efficiently coupled with FPS. A comparison of transport solutions

obtained via FPS coupled with the lower-dimensional fracture model and the hybrid-grid FPS method is

presented. FPS coupled with the lower-dimensional fracture model is consistent for an arbitrary general695

tensor (full or diagonal) in the matrix and a strictly diagonal tensor of arbitrary anisotropy ratio in the local

frame of the fracture. Results are computed for a range of full-tensor permeability fields in the matrix and

fractures, and contrasted with results for the same matrix properties, and with the same geometric fractures

assigned a locally diagonal permeability tensor field. For a strong full-tensor field in the fracture, the O(1)

error in the lower dimensional model approximation leads to an erroneous pressure field due to omission of700
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Figure 37: Case 6f: Pressure solution and tracer concentration contours (PVI= 0.3) obtained by the hybrid-grid FPS and the
(FPS) 1D fracture model for an anisotropic (3000 : 1 at 25o) full-tensor field over matrix with multiple intersecting fractures
with diagonal isotropic permeability.

the second dimension in the reduced dimensional fracture model. The O(1) error, due to the 1D fracture

assumption, reduces with reduction in strength of the full-tensor field in the fracture, restoring consistency

of the lower-dimensional method as the off-diagonal tensor coefficient reduces to zero in the fracture. The

results also show that FPS coupled with the lower-dimensional fracture model yields solutions comparable

to the hybrid-grid FPS method, when the permeability tensor of the conducting fractures is locally diagonal705

or even with a full-tensor having a weak off-diagonal coefficient.
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(b) Anisotropic 10 : 1 at 30o
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(c) Anisotropic 1000 : 1 at 30o
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(d) Anisotropic (1000 : 1 at 30o) matrix and isotropic
fractures
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(e) Anisotropic 3000 : 1 at 25o
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(f) Anisotropic (3000 : 1 at 25o) matrix and isotropic
fractures

Figure 38: Case 6: Tracer concentration at producer versus time (years) solved by the hybrid-grid FPS and the FPS coupled
with the (FPS) 1D fracture model
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Appendix A. Nomenclature

φ pressure

Φ vector of pressures

ϕ porosity

μ viscosity

a fracture aperture

c tracer concentration

ct total compressibility

CVD-MPFA control-volume distributed multi-point flux approximation

DFM discrete-fracture model

F flux

F 1D fracture-fracture flux

k permeability tensor

K k
μ

M molecular weight of a gas

Qf transfer function

q quadrature of CVD-MPFA schemes

qc known source term

R ideal gas constant

Z gas compressibility factor

Subscripts

m matrix

f fracture
710

Superscript

tr transpose
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[50] N. Böttcher, A.-K. Singh, O. Kolditz, R. Liedl, Non-isothermal, compressible gas flow for the simulation of an
enhanced gas recovery application, J. Comput. Appl. Math. 236 (18) (2012) 4933–4943.

[51] L. P. Dake, Fundamentals of reservoir engineering, Elsevier, 1983.

[52] S. Balay, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G.
Knepley, L. C. McInnes, K. Rupp, B. F. Smith, H. Zhang, PETSc Web page, http://www.mcs.anl.gov/petsc820

(2015).

[53] Y. Saad, M. H. Schultz, Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear
systems, SIAM J. Sci. Stat. Comput. 7 (3) (1986) 856–869.

[54] D. G. Friend, J. F. Ely, H. Ingham, Thermophysical properties of methane, J. Phys. Chem. Ref. Data 18 (2)
(1989) 583–638.825

50


