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SUMMARY

In this paper, we present a two-dimensional computational framework for the simulation of fluid-structure
interaction problems involving incompressible flexible solids and multiphase flows, further extending the
application range of classical immersed computational approaches to the context of hydrodynamics. The
proposed method aims to overcome shortcomings such as the restriction of having to deal with similar
density ratios among different phases or the restriction to solve single-phase flows. First, a variation
of classical immersed techniques, pioneered with the Immersed Boundary Method [1], is presented by
rearranging the governing equations which define the behaviour of the multiple physics involved. The
formulation is compatible with the ‘one-fluid’ formulation for two phase flows and can deal with large
density ratios with the help of an anisotropic Poisson solver. Second, immersed deformable structures and
fluid phases are modelled in an identical manner except for the computation of the deviatoric stresses.
The numerical technique followed in this paper builds upon the Immersed Structural Potential Method [2]
developed by the authors, by adding a Level Set based method for the capturing of the fluid-fluid interfaces
and an interface Lagrangian based meshless technique for the tracking of the fluid-structure interface.
The spatial discretisation is based on the standard Marker-and-Cell method used in conjunction with a
fractional step approach for the pressure/velocity decoupling, a second order time integrator and a fixed point
iterative scheme. The paper presents a wide range of two-dimensional applications involving multiphase
flows interacting with immersed deformable solids, including benchmarking against both experimental and
alternative numerical schemes.
Copyright c© 2015 Noboby & Nobody, Ltd.
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1. INTRODUCTION

Within the field of computational Fluid Structure Interaction (FSI), two families of methodologies
can be clearly identified, namely body fitted methods [3, 4, 5, 6, 7] and immersed methods
[1, 8, 9, 10, 11, 12, 13, 2, 14, 15, 16]. Schemes and algorithms within each family have some
strengths and weaknesses, which have been well documented over the years. Within the group of
body fitted methodologies, the main disadvantage is the computational cost related to the update of
the mesh and the possible need to resort to re-meshing algorithms. Immersed methods have recently
gained popularity as they help to address this specific shortcoming, however, they can suffer from
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numerically sub-optimality in the region around the interface (see [2], page 8628, Figures 9 and
10, for numerical evidence). Specifically, the use of a single polynomial interpolating function
to describe the velocity field across the interface can only render suboptimal results. Moreover,
the continuous nature of the pressure approximation across the interface can also compromise
global mass conservation. Traditionally, authors tend to alleviate this shortcoming by resorting to
fine discretisations near the interface. An alternative recent trend to completely overcome these
consistency issue is the combination of a local XFEM enrichment with a cut-FEM methodology
and a Lagrange multiplier (or a Nitsche’s method) treatment of the interface coupling [17, 18, 19].

The pioneering Immersed Boundary Method (IBM) was first introduced by Peskin [1] to simulate
the deformation of heart valves. The distinguishing feature of this method is the fact that the
simulation is carried out on a fixed Eulerian Cartesian grid, which does not conform to that of
the current geometry of the deformed immersed structure. A solid-to-fluid interpolated body force
is added to the fluid to account for the presence of any immersed deformable solid. Early versions
of the IBM were limited to the case of immersed solids made up of fibres satisfying the generalised
Hooke’s law [8, 9, 10, 20]. The original method was defined on the basis of the Finite Difference
Method and an approximation of the Dirac delta distribution was used to map information (i.e.
velocity and forces) between the Eulerian fluid and the Lagrangian immersed solid [21]. The
material properties of the immersed continuum have been recently extended to those of a viscoelastic
structure [22] or even to those of a fluid [23] or a dry foam [24]. Furthermore, adaptive re-meshing
techniques [25] were also introduced in order to improve the accuracy of the technique in the vicinity
of the interface between the different physics involved in the problem.

Due to a considerable revival of the IBM, the methodology is no longer restricted to modelling
simplified fibre-like solids. More realistic continuum-like structures can also be analysed due to
enhancements introduced on the original methodology, which have led to alternative approaches,
such as the Extended Immersed Boundary Method originally presented in [26] and the Immersed
Finite Element Method (IFEM) pioneered in [27] and fully exploited in [12]. In this approach, the
immersed structure is modelled by means of the Finite Element Method, where standard piecewise
polynomial shape functions are used to compute the deformation gradient tensor F within the
immersed structure domain. The nodal displacement field of the immersed Finite Element mesh
is computed after time integration of the nodal velocity field, which is obtained after suitable
interpolation of the velocity field from the background fluid domain with the help of interpolation
functions defined on the fluid. The force field at the nodes of the deformable solid Finite Element
mesh is computed as a result of the spatial integration of the stress tensor through the use of the
spatial gradient of standard nodal Finite Element shape functions.

In Reference [2], the authors introduced the Immersed Structural Potential Method (ISPM) for
the solution of single-phase FSI problems interacting with highly deformable structures in the
context of haemodynamic applications (i.e. low density ratios). This methodology is in line with
but distinct from approaches such as the Material Point Method [28] or the force-projection method
presented in [29]. The immersed structure is generalised to any continuum described by means of
a deviatoric strain energy functional, as in [22]. From the spatial discretisation point of view, the
structure is modelled as a collection of integration points which deform according to the kinematics
defined by the background fluid. Tailor-made kernel functions [14] were designed to compute the
velocity field and the spatial gradient velocity tensor l directly at an integration point level. A
structure preserving time integration scheme is then used to compute the deformation gradient tensor
F at every integration point, yielding improved accuracy and stability over previous immersed
based methodologies [14]. The update of F from l prevents the appearance of locking, which is
a problem often encountered when using low order approximations (see [15], Section 5.3, page 62,
for numerical evidence). A similar methodology in the context of fast solid dynamics has been used
by the authors [30, 31, 32, 33, 34, 35, 36].

For the simulation of multi-phase flows, some authors have opted for the Lagrangian Smoothed
Particle Hydrodynamics (SPH) method [37] and others for the Eulerian ‘one-fluid’ formulation [38].
The latter approach is followed in this paper, where the computational modelling is carried out in
a similar way to that of a single-phase flow, apart from the treatment of the interface evolution,
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which is considered dependent on the flow velocity field. There are two possible descriptions of the
interface kinematics, namely the interface can be explicitly ‘tracked’ in a Lagrangian fashion or be
‘captured’ with an implicit marker function. In the case of using an explicit description, a possible
way to follow the interface is through a cloud of interpolation points or particles, as in the case of
the front tracking method [39, 40, 41]. On the other hand, the most popular implicit descriptions
of the interfaces are established by the Volume Of Fluid (VOF) method [42, 43] and the Level Set
method [44, 45].

The solution of problems involving multiphase flows and immersed structures is a complex
problem, which still requires further research. Classical immersed computational techniques
struggle computationally when having to deal efficiently with problems between phases with large
density ratios, as typically encountered in hydrodynamic engineering applications. In this paper, a
unified one-fluid formulation will be presented aiming to address this shortcoming. In this work, the
Level Set method is favoured in order to capture the fluid interface, as it presents advantages when
dealing with topological changes. Moreover, Lagrangian particles or integration points are used to
describe the motion of the immersed flexible body, which facilitates the preservation of mass. It is
noteworthy to highlight that a unified Lagrangian formulation has been recently proposed in [46],
where both fluid and solid phases are solved in a similar Lagrangian fashion.

The outline of the paper is as follows. Section 2 introduces the classical Eulerian conservation
laws (conservation of linear momentum and conservation of mass) for multiphase continuum by
introducing well-known jump conditions. Constitutive models for the various phases in the form
of a Newtonian fluid and a hyperelastic deformable solid are also presented. Section 3 presents a
unified framework for the computational modelling of the multiphase continuum by making use
of a smooth representation of the indicator function. The proposed ‘one-fluid’ model is capable of
dealing with multiple fluids as well as structures. In addition, some of the available techniques
for the description of interfaces are briefly revisited, namely an Eulerian (capturing) Level Set
method and a Lagrangian (tracking) Particle Method. Section 4 discusses the details of the numerical
discretisation of the multiphase flow governing equations. An efficient second order finite volume
scheme set in a Cartesian staggered mesh is chosen for the spatial discretisation in conjunction with a
well established fractional step method for the fluid-pressure decoupling. The discrete representation
of the deformable immersed solid is carried out according with the ISPM and tension effects are
also incorporated. Section 5 presents some hydrodynamics problems which involve air, water and
immersed structures, illustrating the capability of the proposed method.

2. GOVERNING EQUATIONS

2.1. Kinematics of a continuum

Let us consider the motion of a continuum from its undeformed (or material) configuration Ω0 ⊂ Rd
with boundary ∂Ω0 and outward unit normal N , into its deformed (or spatial) configuration
Ωt(t) ⊂ Rd at time t, with boundary ∂Ωt(t) and outward unit normal n, where d represents the
number of spatial dimensions (d = 2 for the examples included in this paper). The motion is
described by a time t ∈ [0, T ] dependent mapping field Φ which links a material particle from
material configuration X to spatial configuration x according to x(t) = Φ(X, t) (see Figure 1).

The following well-known strain measures can be introduced as follows. The two-point
deformation gradient tensor or fibre-map F , which relates a fibre of differential length from the
material configuration dX to the spatial configuration dx, namely dx = F dX , is defined as the
material gradient ∇0 of the spatial configuration, namely

F = ∇0x =
∂Φ(X, t)

∂X
. (1)

In addition, the Jacobian J or volume-map of the deformation relates differential volume elements
in the material configuration dΩ0 and the spatial configuration dΩ as dΩ = JdΩ0, defined as

J = detF . (2)
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 X1, x1X1, x1

 X3, x3X3, x3

 X2, x2X2, x2

 

 Time = 0= 0

 Time = t= t

 dXdX

 dv = JdVdv = JdV

 dVdV

 dAdA

 da = HdAda = HdA

 dx = F dXdx = F dX

 x = �(X, t)x = �(X, t)

Figure 1. The general deformation of a continuum and kinematic strain measure {F ,H, J}.

Finally, and for completeness, the two-point co-factor or adjoint tensorH can be introduced to map
the element area vector from material configuration dA (colinear with N ) to spatial configuration
da (colinear with n) as da = HdA, defined as

H =
1

2
F F . (3)

where use has been made of the cross product between two second order tensors as presented in
[47]. Apart from the fundamental strain measures {F ,H, J} introduced above, the velocity field
u of the continuum is defined as the material time derivative of the mapping Φ as u = ∂Φ(X,t)

∂t .
Finally, another kinematic entity of interest is the velocity gradient tensor l, which is defined as
the spatial gradient ∇ of the velocity field, namely l = ∇u. As it is well known, the evaluation of l
requires the use of the inverse mapping relationship, that is, l = ∂u(Φ−1(x,t),t)

∂x [48]. This relationship
can be alternatively written as

dF

dt
= lF , (4)

which relates the material derivative d
dt of the deformation gradient tensor F with the velocity

gradient tensor l and F itself.
In the particular case of an incompressible continuum, the Jacobian of the deformation satisfies

J = 1 (Lagrangian description) or, alternatively in an Eulerian description,

l : I = ∇ · u = 0, (5)

where the operator ∇· represents the spatial divergence and I is the second order identity tensor.
For the examples presented in this paper, this kinematic constraint will always apply.

In general, the continuum can contain internal interfaces separating different subdomains or
phases (i.e. fluid-fluid, solid-solid, fluid-solid). In this case, suitable jump conditions can be
introduced on every interface. In the special case of non-slip conditions (of interest in this paper)
and in the absence of shock waves, the jump conditions for the mapping Φ can be defined (in terms
of Φ or in terms of the velocity field u) as

[[Φ]] = 0; [[u]] = 0, (6)

where the operator [[·]] represents the jump in the variable of interest across the interface. Similar
jump conditions can be defined for the strain measures F and H , but will not be explored any
further in this paper (see References [49, 34] for specific details on these jump conditions).
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2.2. Conservation of mass

The principle of conservation of mass for the continuum in an arbitrary spatial domain Ω (of
boundary ∂Ω with spatial outward normal n) can be expressed in an Eulerian integral form as
follows

d

dt

∫
Ω

ρ dΩ = 0, (7)

where ρ is the mass density defined per unit of spatial volume, namely ρ = ρ(x, t). Upon the use of
the Reynolds transport theorem, the differential (or local) form of the above expression (7), in the
case of smooth solutions, becomes

∂ρ

∂t
+ ∇ · (ρu) = 0, (8)

together with the jump conditions (in the case of non-smooth solutions) [50, 34]

U [[ρ]] = [[ρu]] · n (9)

across a discontinuity surface defined by a normal n and speed U in the spatial or Eulerian space.
As expected, substitution of the non-slip condition (6) into (9) yields U = u · n, which defines the
normal speed of the discontinuity front across a sudden change of density. Furthermore, substitution
of the incompressibility constraint (5) into (8) results in dρ

dt = 0 which confirms that the density must
remain constant throughout the deformation.

2.3. Conservation of linear momentum

The conservation of linear momentum for the continuum in an arbitrary spatial domain Ω (of
boundary ∂Ω with spatial outward normal n) can be expressed in an Eulerian integral form as
follows

d

dt

∫
Ω

ρu dΩ =

∫
Ω

ρg dΩ +

∫
∂Ω

t da (10)

where t = σn is the traction vector, g represents a force per unit of mass (i.e. gravitational
acceleration) and σ is the (symmetric) Cauchy stress tensor. It is customary (for incompressible
and nearly incompressible materials) to establish an additive decomposition of this tensor in terms
of a deviatoric contribution σ′ (e.g. σ′ : I = 0) and a volumetric contribution defined by −pI (with
p being the scalar pressure field). Upon the use of the Reynolds transport theorem, the differential
(or local) form of the above expression (10), in the case of smooth solutions, becomes

∂(ρu)

∂t
+ ∇ · (ρu⊗ u+ pI − σ′) = ρg, (11)

together with the jump conditions (for non-smooth solutions) defined as

U [[ρu]] = [[ρu⊗ u+ pI − σ′]]n (12)

across a discontinuity surface defined by a normal n and speed U in the spatial or Eulerian space.
Proceeding in a similar manner to above Section 2.2, by means of the substitution of the non-slip
condition (6) into (12) and making use of the fact that U = u · n, it yields

[[p]] = n · [[σ′]]n, (13)

which states that, in the absence of shock waves, the jump in pressure across a discontinuity must
be balanced by the normal component of the deviatoric contribution to the traction vector.

Copyright c© 2015 Noboby & Nobody, Ltd. Journal name (2015)
Prepared using fldauth.cls DOI: 10.1002/fld



6

2.4. Conservation of deformation gradient

In the case of deformable solids, References [34, 35] provide additional conservation laws
and jump conditons for the fundamental strain measures {F ,H, J} which, in conjunction with
equations (8) and (11), can render an enhanced system of conservation laws†. The introduction
of additional geometric conservation laws have proven to be very efficient circumventing the
drawbacks of traditional low order displacement based formulations in the context of solid dynamics
[51, 33, 34, 35, 52]. This can be straightforwardly translated to the case of FSI applications
[2, 14, 15].

For instance, the Total Lagrangian conservation law for the deformation gradient F can be written
as ∂F

∂t −∇0 · (u⊗ I) = 0 (refer to [34, 35] for further details). When this law is re-expressed by
using a mixed Lagrangian-Eulerian formalism, it reduces to above equation (4). All in all, in the
case of incompressible materials (of interest in this paper), the three equations (4), (5) and (11)
constitute the final system of equations to be solved in terms of the unknown variables u, p, σ′ and
F (or l).

2.5. Constitutive equations

For closure of the above system of equations defined in the domain Ω, and in the case of
incompressible materials, it is necessary to introduce appropriate constitutive models to relate σ′

with F (or l), obeying the principles of objectivity [48] and thermodynamic consistency (via the
Colemann-Noll procedure)[53].

Two prototypical cases will be considered in this paper, although the approach pursued hereafter
could be generalised to other constitutive models. First, for any time-varying Newtonian fluid
occupying the domain Ωf (t) ⊂ Ω, the deviatoric component of the Cauchy stress tensor σ′ can
be written as

σ′ = 2µI ′ : d; I ′ = I − 1

3
(I ⊗ I); d =

1

2

(
l+ lT

)
, (14)

where µ denotes the shear viscosity of the fluid and d the so-called strain rate tensor. Above equation
(14) can be further reduced for incompressible fluids (velocity divergence free) to σ′ = 2µd. This
constitutive model will be used for the numerical simulation presented in this paper to describe
the behaviour of all fluid phases occupying the domain Ωf (t) ⊂ Ω (e.g. air, water). Similarly,
for deformable solid phases occupying the time-varying domain Ωs(t) = Ω \ Ωf (t), a hyperelastic
incompressible solid will be considered. Specifically, for the numerical simulations presented in
this paper the well-known incompressible neo-Hookean constitutive law will be employed, which
is defined as

σ′ = GJ−5/3I ′ : b; b = FF T , (15)

where G represents the shear modulus of the material and b is the left Cauchy-Green deformation
tensor [48]. In this case, it is interesting to remark that the evaluation of σ′ requires the knowledge of
the deformation gradient tensor F , which can be related to the spatial velocity field via equation (4).
Following previous work developed by the authors, this will be the approach pursued in this paper
[2, 14, 15]. Traditionally, in immersed computational methodologies, the deformation gradient F is
obtained from equation (1) directly, after time integration of the velocity field u yields the spatial
geometry x [26, 12]. However, in the case of using a low order discretisation scheme, this approach
can lead to the appearance of locking behaviour, as reported in [14, 15], which is the reason why
the additional equation (4) is solved in a mixed-type manner.

2.6. Eulerian governing equations

We are now in a position to combine all the equations presented above for the case of an
(Eulerian description) comprised of ‘possibly’ multiple time-varying n-subdomains (i.e. air, water,

†This can be useful in order to define a generalised convex entropy function necessary for the derivation of an alternative
system of conservation laws in terms of entropy conjugates [34, 35].
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solid), namely, ∪na=1Ωa(t) = Ω, where the sets Ωa(t), a = 1, . . . , n are pairwise disjoint (e.g.
Ωa(t) ∩ Ωb(t) = ∅ for two different phases a 6= b) (refer to Figure 2).

(a) (b)

Figure 2. Possible distribution of phases within the spatial Eulerian domain Ω. (a) Ωs(t) denotes solid
and Ωf (t) fluid; (b) Ωa(t), a = 1, 2, 3, represent various phases; in this case, Ω1(t)

⋃
Ω2(t) = Ωf (t) and

Ω3(t) ≡ Ωs(t).

With respect to the governing equations, the only difference between the various phases stems
from the constitutive model under consideration, which results in different expressions for the
spatial divergence of the deviatoric stress tensor (11) (introduced herein as a new force field f ).
Specifically, for a time-varying phase defined by a subdomain Ωa(t) ⊂ Ω, the deviatoric force field
f can be obtained from equations (14)-(15) as

f(x) =

 ∇ · (2µad) in Ωa(t) ∩ Ωf (t)

∇ ·
(
GaJ

−5/3I ′ : b
)

in Ωa(t) ∩ Ωs(t).
(16)

where µa or Ga represent the phase material properties. For the complete definition of the Initial
Boundary Value Problem (IBVP), initial and boundary (i.e. essential ∂ΩD and natural ∂ΩN )
conditions must be specified (∂ΩD ∪ ∂ΩN = ∂Ω and ∂ΩD ∩ ∂ΩN = ∅). Following is the set of
balance equations that model the fluid-structure interaction problem

∂(ρu)

∂t
+ ∇ · (ρu⊗ u) = −∇p+ f + ρg in Ω× [0, T ] (17a)

∇ · u = 0 in Ω× [0, T ] (17b)
dF

dt
= lF in Ωs(t) (17c)

dx

dt
= u in Ωs(t) (17d)

u = ū on ∂ΩD × [0, T ] (17e)
−pI + σ′n = t̄ on ∂ΩN × [0, T ] (17f)

u = u0 in Ω̄× {0} (17g)
[[u]] = 0 on ∂Ωa(t) ∩ ∂Ωb(t) (17h)
[[p]] = n · [[σ′]]n on ∂Ωa(t) ∩ ∂Ωb(t), (17i)

where u0 represents the initial velocity field and ū and t̄ are prescribed boundary velocity and
traction vectors, respectively. The force field f in (17a) is defined according to (16), where equations
(17c)-(17d) are only solved in the presence of a solid phase. The above set of equations (16)-(17)
define the IBVP expressed in a ‘nearly’ complete Eulerian description, apart from equations (17c)-
(17d), which are expressed in a mixed Lagrangian-Eulerian description. The unknown fields of this
set of equations are {u, p} in Ω× [0, T ] and {F ,x} in Ωs(t). The explicit consideration of the
jump conditions (17h)-(17i) requires the use of classical boundary fitted FSI schemes in order to
accurately track the evolution of the interface and fit the computational mesh accordingly [6, 7].
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3. ‘ONE-FLUID’ MODELLING

3.1. ‘One-fluid’ formulation

In the case of immersed computational methodologies, the explicit use of the jump conditions (17h)-
(17i) is avoided by means of a ‘smooth regularisation’ of the interface. For instance, for the n-phase
incompressible fluid-solid continuum Ω (Eulerian description) defined above, the ‘smooth’ density
field ρ can be described as

ρ(x, t) =

n∑
a=1

ρaHa(x, t), (18)

where ρa is the density of the a-phase Ωa(t) (assumed constant for simplicity) and Ha(x, t) is
a smooth representation of the ‘sharp’ indicator function for the a-phase‡. It is thus possible to
construct an n-dimensional vector fieldH§ comprised of all smooth indicator functionsHa, namely,
[H]a = Ha. The use of the vector field H , allows the smooth ‘capturing’ of the transition between
the different phases comprising the continuum. A similar ‘smooth’ representation to that of (18) can
be written for the fluid viscosity field µ as

µ(x, t) =

n∑
a=1

µaHa(x, t), µa = 0 in Ωa(t) ∩ Ωs(t) (19)

where µa is the viscosity of the a-phase Ωa(t) (assumed constant for simplicity). Notice that µa = 0
in the case of a solid phase. The use of the ‘smooth’ representations (18)-(19) in (17a), replaces the
need to use the jump conditions (17h)-(17i), as they end up inherently included into the formulation
(through the spatial gradient of the indicator function) [54]. This approach is classically known as
the ‘one-fluid’ formulation in the context of multiphase flows [54] and is pursued in this paper. This
formulation is named ‘one-fluid’ due to the fact that the underlying governing equations follow a
similar pattern to those of the single-phase Navier-Stokes equations, yet allow for the possibility of
multiple phases including deformable solids. The formulation can be understood as a combination
of the multi-phase equations into a single ‘one-fluid’ equation.

The ‘one-fluid’ formulation relies on the correct identification of the interface between the
different phases of the continuum so as to evaluate correctly the vector field H . In order to
identify the motion of an interface, two well-known techniques can be used, namely, the Lagrangian
(tracking) particle method [39, 40] and the Eulerian (capturing) Level Set method [55, 56]. For
instance, for a particle placed initially at locationXs, its spatial position xs at time t can be obtained
after time integration of the velocity field u, noticing that

dxs(Xs, t)

dt
= u(Xs, t) = u(Φ−1(xs, t), t). (20)

This approach, suitable to monitor interfaces without topological changes, will be preferred in this
paper for the tracking of immersed solid phases. Notice that for the evaluation of (20), a suitable
interpolation technique is necessary to transfer the velocity field from the Eulerian description to
the Lagrangian description, which will be presented in a subsequent section.

On the other hand, for fluid-fluid interfaces, this paper will employ the well-known Level Set
method of Osher and Sethian [55], later explored in Reference [56] in the context of multiphase
flows. In this Eulerian-based method, a scalar level set function φa = φa(x, t) is introduced for the
a-phase Ωa(t) as a signed distance function to the time-varying interface Γta between this and the
rest of phases comprising the continuum, namely

φa(x, t) = sgn
(
d(x,Γta)

)
, (21)

‡The sharp indicator function Ha(x, t) would be defined as Ha(x, t) =

{
1 if x ∈ Ωa
0 elsewhere .

§Not to be confused with the co-factor of the deformation, the latter not to be used henceforth.
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where d(x,Γt) denotes the distance from x to Γta. In other words, the interface Γta coincides with
the zero-contour of the level set function (i.e. Γta ≡ x such that φa(x, t) = 0). For an incompressible
continuum¶, the advection of the level set is achieved by solution of the evolution or transport
equation

∂φa
∂t

+ ∇ · (uφa) = 0. (22)

The evaluation of a-phase smooth indicator function Ha follows naturally as Ha(x, t) =
H(φa(x, t)), where H is a smooth presentation of the Heaviside step function. In the same manner
as the vector field H was previously introduced, it is also possible to define φ as the vector field
containing the set of n level set functions φa as [φ]a = φa. It is now possible to present the complete
set of equations governing the ‘one-fluid’ formulation for an arbitrary control volume Ω as∫

Ω

∂(ρu)

∂t
dΩ +

∫
∂Ω

(ρu⊗ u+ pI)nda−
∫

Ω

(f + ρg)dΩ = 0 in Ω× [0, T ] (23a)

∇ · σ′ = ∇ · µ
(

1

2

(
∇u+ (∇u)T

))
=: f in Ω× [0, T ] (23b)∫

∂Ω

u · n da = 0 in Ω× [0, T ] (23c)

dF

dt
= lF in Ωs(t) (23d)

dx

dt
= u in Ωs(t) (23e)

∇ · σ′ = ∇ ·
(
Gs (detF )

−5/3 I ′ :
(
FF T

))
=: f in Ωs(t) (23f)

∀a = 1 . . . n

∫
Ω

∂φa
∂t

dΩ +

∫
∂Ω

φa (u · n) da = 0 in Ω× [0, T ] (23g)

u = ū on ∂ΩD × [0, T ] (23h)
−pI + σ′n = t̄ on ∂ΩN × [0, T ] (23i)

u = u0 in Ω̄× {0} (23j)
φa = [φ0]a in Ω̄× {0}, (23k)

where the smooth fields ρ (23a) and µ (to be used for the computation of f in (23b)) are defined in
(18)-(19) and the essential (23h) and natural (23i) boundary conditions are incorporated into (23a)
wherever necessary. Finally, equation (23k) represents the initial conditions for the level set vector
field φ. The unknown fields of this set of equations are {u, p,φ} in Ω× [0, T ] and {F ,x} in Ωs(t).
The use of the integral form representation in (23a), (23c) and (23g) is convenient as, firstly, will
become the starting point of the spatial discretisation technique presented in the following Section
and secondly, it is usually preferred in case of using sharp indicator functions for every phase as it
avoids their definition in the sense of a distribution.

In traditional immersed computational methodologies (including the pioneering IBM) [1, 8, 9,
10, 11, 12, 13, 2, 14, 15], the immersed body force f IBM is evaluated as

f IBM = ∇ · (σ′s − σ′f )︸ ︷︷ ︸
fµ

+ (ρs − ρf )g − (ρs − ρf )
du

dt︸ ︷︷ ︸
fρ

in Ωs(t), (24)

which is comprised of the following two contributions. Firstly, fµ denotes the difference between
the deviatoric stresses of the deformable solid and those of the underlying fluid. The fluid stress
contribution −σ′f is necessary to counterbalance the ‘fictitious’ viscous effects introduced by the
underlying fluid in the overlapping area between solid and fluid. Secondly, fρ gathers the inertial

¶The original level set equation reads ∂φa
∂t

+ u ·∇φa = 0.
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and body force differences of the solid with the underlying fluid due to non-matching densities.
Notice that both force contributions fµ and fρ are computed in a fully Lagrangian manner in Ωs(t),
requiring appropriate interpolation-spreading operators.

In the case of the ‘one-fluid’ formulation pursued in this paper, it is noteworthy to observe that
‘only’ the deviatoric stress force component stemming from the presence of solid deformable phases
in Ωs(t), namely ∇ · σ′s, is computed via a mixed Lagrangian-Eulerian approach (refer to equations
(23d)-(23f)); elsewhere a fully Eulerian approach is used. For instance, the use of an indicator
function approach in order to reconstruct a smooth representation of the density field enables the
modelling of both inertial and gravity effects in a fully Eulerian manner.

For most FSI problems, large values of fµ and fρ can limit the ‘efficient’ use of explicit time
stepping schemes, which is the case of immersed solids with a large shear modulus or immersed
phases with large density ratios (e.g. hydrodynamic applications), respectively. In this paper, we
have adopted the approach followed in [2, 14], where a fixed point iteration strategy was used for
the tracking of the deformable solid (23d)-(23e) and the evaluation of its deviatoric force term (23f),
whilst the rest of the terms are treated in a fully implicit Eulerian manner. This strategy has been
shown to be appropriate for the numerical examples presented in this paper. However, for stiffer
problems, a fully implicit approach could also be adopted [57].

4. NUMERICAL TECHNIQUE

4.1. Multi-phase Eulerian background solver

The space-time discretisation technique used in this paper is that of References [2, 14], but expanded
hereafter in order to incorporate the transport of the level set function φa(x, t) for each a-phase and
the definition of the smooth Heaviside function H(φa). The formulation is briefly described for
completeness.

A two dimensional Cartesian discretisation of the incompressible Eulerian continuum is adopted
in conjunction with a staggered low (second) order finite volume approach. Let ΩAx and ΩAy be
two families of control volumes associated with the Cartesian components of the velocity uAx and
vAy , with an arrangement similar to that of a Marker-And-Cell (MAC) grid. Harlow & Welch [58]
proposed the use of a special grid for incompressible flow computations. This especially defined
grid decomposes the computational domain into cells with velocities defined on the cell faces and
scalar pressure defined at cell centres (see Figure 3). Here, Ax and Ay denote the fluid cell edges
perpendicular to the ox and oy Cartesian axes, respectively, and uAx and vAy their corresponding
normal edge velocities (refer to Figure 3(a)-(b)).

 u
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 uAxuAx

 u
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EuAx

E
 pAx
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E pAx

WpAx
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 p
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 vAyvAy
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(a) (b) (c)

Figure 3. The notation used for a standard staggered MAC mesh. (a) Control volume ΩAx for velocity u; (b)
Control volume ΩAy for velocity v; (c) Control volume ΩA for level set φ.
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Consideration of arbitrary internal control volumes ΩAx and ΩAy and following a standard
staggered control volume approach, permits to split the conservation of linear momentum equation
(23a) into

d(ρuAx)

dt
ΩAx +

∫
∂ΩAx

Fu · n da− (fAxx + ρgAxx )ΩAx = 0, (25a)

d(ρvAy )

dt
ΩAy +

∫
∂ΩAy

Fv · n da− (f
Ay
y + ρg

Ay
y )ΩAy = 0, (25b)

where {gAxx , g
Ay
y } represent the edge Cartesian components of the body force g, {fAxx , f

Ay
y }

represent the edge Cartesian components of the body force f and ΩAx and ΩAy denote the size
of the corresponding control volumes. In addition, {Fu,Fv} represent numerical interface fluxes
defined as

Fu = ρuu+ pex, Fv = ρvu+ pey, u = [u, v]T , (26)

with {ex, ey} the standard Cartesian basis and where the convective components of the numerical
fluxes (26) are obtained using an appropriate stabilised convective approximation (i.e. SMART [59],
HLPA [60] or QUICK [61]) which minimises numerical diffusion, avoids the creations of spurious
oscillations and reduces the total variation of the solution by accounting for the transportive nature
of the fluid.

In addition to the two families of control volumes defined above, another family, namely ΩA,
is associated with the level set fields φAa describing the interface of each a-phase. These variables
are stored, in conjunction with the pressure field pA, at the cell centroids (see Figure 3(c)). The
discretisation of the level set equation (22) for the a-phase yields

∀a = 1 . . . n
dφAa
dt

ΩA +

∫
∂ΩA

φa(u · n)da = 0, (27)

where |ΩA| denote the size of the control volume and the numerical flux is also (consistently)
discretised using any of the stabilised schemes listed above (i.e. SMART, HLPA, QUICK). The
accurate transport of the level set vector field φ is necessary in order to correctly evaluate the
indicator function vector fieldH in above equations (25a)-(25b) when evaluating the smooth density
(18) and viscosity (19) fields. Wherever necessary, re-initialisations strategies for the level set fields
can be employed as in [56] to guarantee the distance function property of the level set fields.
Knowledge of the discrete level set field φAa permits the evaluation of the discrete indicator function
field HA

a and thus, evaluation of the discrete density field ρA (18) as ρA =
∑n

a=1 ρaH
A
a and the

discrete viscosity field µA (19) as µA =
∑n

a=1 µaH
A
a .

Finally, and as presented in [2], the divergence free integral constraint (23c) is enforced in every
control volume ΩA following a fractional step approach [62]∫

∂ΩA
u · n da = 0, (28)

so that the discrete pressure field pA can thus be obtained.

4.2. Indicator function

As stated above, the evaluation of the smooth fields ρ and µ require the computation of the indicator
vector field H . This can be done in two different manners, depending on the way in which the
interface is followed (refer to equations (20) and (22)). Firstly, following the work of Sussman [56],
the components of H (e.g. [H]a = Ha) can be defined in terms of a smooth representation of the
Heaviside function H as

Ha(x, t) = H(φa(x, t)) =


1
2

(
1 + φa

ε + 1
π sin(π φaε )

)
if |φaε | ≤ 1

0 if φa
ε < −1

1 if φa
ε > 1

(29)
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where ε is the parameter representing the smearing bandwidth and φa denotes the corresponding
a-phase level set value. The approximation of the indicator function sharply changes from zero to
one over the smearing interface, describing a smooth transition zone from one phase to the next.
Evaluation of the indicator function for the control volume ΩA can be straightforwardly obtained as
HA
a = H(φAa ) combining equations (27) and (29).
Alternatively, a smooth indicator function Hs defined for an ‘immersed’ phase Ωs contained

within Ω can also be constructed from the ‘spreading’ operation S to the underlying Eulerian grid
of a unit constant field f = 1 defined on Ωs. Provided the phase Ωs is tracked via integration points
(or material particles) xap , the indicator function Hs can then be evaluated at the Eulerian control
volume ΩA as

HA
s = S(f = 1)|AΩs '

1

|ΩA|
∑
ap

W ap δ̂A(xap), (30)

where δ̂A(xap) is a smooth interpolation kernel functions centred in the centroid of the control
volume ΩA and evaluated at the integration point ap. For the examples presented in this paper, the
smooth kernel functions used are those defined in [2, 14]. Figure 4 illustrates the construction of
the indicator function for the specific case of a circle using both a Level Set approach (29) and a
material particle approach (30). The circle is centred at [0, 0] and has a radius of 1. The cross section
of the constructed indicator function is depicted in Figure 4 (in green).

(a) Constructed from level set φ = x2 + y2 − 1 (b) Constructed via integration points and smooth
kernel functions

Figure 4. Illustration of construction of the indicator function for a circle, centred at [0, 0] with radius r = 1
and representation of the cross section of the indicator function.

4.3. Solid Cauchy stresses via Immersed Structural Potential Method

The solid phases defined by Ωs are modelled in a Lagrangian manner as a collection of integration
points ap, moving from an initial positionXap to the spatial position xap at time t (20). The velocity
of every solid integration point is obtained after suitable definition of an interpolation operator from
the background Eulerian fluid (edges) to the Lagrangian solid (integration points). Specifically, the
velocity u at any integration point ap is evaluated as

uap = [uap , vap ]T ; uap =
∑
Ax

uAx δ̂Ax(xap); vap =
∑
Ay

vAy δ̂Ay (xap), (31)

where δ̂Ax(xap) and δ̂Ax(xap) are smooth interpolation kernel functions as defined in [2, 14]. Time
integration of above equation yields the current geometry xap .

As stated above, in conventional immersed methodologies [13, 63], the fibre map F is obtained
upon material differentiation of the spatial configuration, namely F := ∇0x. Unfortunately, this
leads to lower spatial resolution of structural stresses, the non-compliance with the kinematic
constraint J = 1 and the possible appearance of locking behaviour (see [15], Section 5.3, page
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62, for numerical evidence). In order to overcome these shortcomings, the deformation gradient F
is obtained after time integration of equation (17c) is carried out. With that in mind, the velocity
gradient tensor l can be defined in ap as

lap =

∑
Ax

uAx∇δ̂Ax(xap),
∑
Ay

vAy∇δ̂Ay (xap)

T , (32)

by taking advantage of the interpolating kernel functions. Finally, a tailor-made structure preserving
time integration scheme for equation (17c) is presented in References [2, 14] in order to obtain the
deformation gradient at ap, namely F ap . After evaluation of the deviatoric stress at the integration
point σ′ap via (15), a variationally consistent procedure to obtain the body forces {fAxx , f

Ay
y } in

(25a)-(25b) is derived in [2, 14] and written below as

fAxx =
1

ΩAx

∑
ap

W apσ′ap∇δ̂Ax(xap); f
Ay
y =

1

ΩAy

∑
ap

W apσ′ap∇δ̂Ay (xap), (33)

where the details regarding the determination of the weight W ap can be found in [2, 14]. This
approach enables the direct computation of immersed solid body forces at the Eulerian grid from
the solid integration points, without having to resort to the use of an intermediate mesh describing
the solid phase. In contrast, conventional immersed methodologies employ a two step approach
to evaluate the immersed body forces which relies on the existence of a classical Finite Element
discretisation of the immersed solid phase in terms of nodes and elements, as presented in Zhang et
al. [13] or Bardenhagen et al. [64].

4.4. Surface tension

Accurate computation of surface tension effects is one of the most important aspects in the numerical
simulation of small scale multiphase problems [54]. Surface tension effects require the modification
of the jump conditions (12)-(13) accordingly. In methods based on the ‘one-phase’ formulation, the
surface tension is usually added as a body force concentrated in a band around the interface at the
discrete level [54], defined for the interface of the a-phase as

f = γκ(φa)n(φa)δ̂(φa) (34)

where κ is the surface curvature, n is the outward unit normal across the interface, δ̂ is a smooth
representation of the Dirac delta distribution and γ is the so-called surface tension coefficient
(physical property). Above magnitudes {κ,n, δ̂} are typically evaluated taking advantage of the
level set function, namely

n =
∇φa
||∇φa||

; κ = −∇ ·
(

∇φa
||∇φa||

)
, (35)

and in the numerical examples presented in the paper, δ̂(φa) is defined consistently with (29) [56]
as

δ̂(φ) =


1
2ε (1 + cos(π φε )) if |φε | ≤ 1

0 if |φε | > 1

, (36)

where above equations (34)-(35) can be straightforwardly adapted to the specific spatial
discretisation presented above.

4.5. Algorithm

For completeness, the set of discrete equations of the overall ‘one-fluid’ methodology employed in
this paper is presented below. Upon the use of a simple fixed point iterative scheme, the coupled
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fluid-structure interaction equations can be solved to advance from time step n to n+ 1 in an
iterative fashion to ensure the complete coupling of the fluid and solid equations. By computing
a residual norm based upon the difference between the divergence of the deviatoric Cauchy stress
tensor in two successive iterations k and k + 1, namely ‖fn+1

k+1 − f
n+1
k ‖/‖fn‖, a convergence

criterion can be easily established in order to progress to the following iteration k + 2 (if not yet
converged) or time step n+ 2 (if convergence is accomplished). As in [2, 14], the Navier-Stokes
equations are solved via a fractional step approach, where the unknown pressure field is obtained
through an efficient preconditioned conjugate gradient anisotropic Poisson solver from the Hypre
Library [65].

Once the velocity field u|n+1
k+1 is known, the level set equations can be straightforwardly updated

though a Crank-Nicholson step leading to the evaluation of the smooth density and viscosity fields
as

ρA|n+1
k+1 =

n∑
a=1

ρaH
(
φAa |n+1

k+1

)
; µA|n+1

k+1 =

n∑
a=1

µaH
(
φAa |n+1

k+1

)
, (37)

which permit the evaluation of the force field {fAxx |n+1
k+1 , f

Ay
y |n+1

k+1} in the case of fluid phases, after
applying the discrete divergence operator to the deviatoric stress tensor obtained via equation (14).
Consideration of surface tension effects can also be incorporated at this stage.

Alternatively, in the case of solid phases, integration points are tracked in a Lagrangian manner
after suitable interpolation I of the Eulerian velocity field (and its spatial gradient) as

uap |n+1
k+1 = I

(
u|n+1
k+1

) (
xap |n+1

k

)
; lap |n+1

k+1 = ∇I
(
u|n+1
k+1

) (
xap |n+1

k

)
. (38)

The geometrical position of these integration points can be obtained via trapezoidal integration and
the deformation gradient tensor is evaluated through a structured preserving algorithm described in
[2, 14] and formulated below as

F ap |n+1
k+1 = e(∆t lap |n+1

k+1)F ap |n. (39)

Finally, deviatoric stresses (15) and immersed body forces can be computed as

σ′ap |n+1
k+1 = G(F ap |n+1

k+1) (40)

and

fAxx |n+1
k+1 =

1

|ΩAx |
∑
ap

W apσ′ap |n+1
k+1∇δ̂Ax(xap |n+1

k+1); (41a)

f
Ay
y |n+1

k+1 =
1

|ΩAy |
∑
ap

W apσ′ap |n+1
k+1∇δ̂Ay (xap |n+1

k+1). (41b)

At this stage, the new immersed body forces {fAxx |n+1
k+1 , f

Ay
y |n+1

k+1} are compared against those in
the previous iteration to establish convergence within the time step.

5. NUMERICAL EXAMPLES

In the following section, a series of two dimensional numerical examples will be examined in order
to assess the applicability and robustness of the proposed ‘one-fluid’ algorithm, benchmarking it
against available published numerical and experimental results.

5.1. Two-phase flow benchmark

The aim of this section is to validate the two-phase flow solver in the absence of an immersed
deformable structure.
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5.1.1. Classical dam break problem. The dam break problem is a well documented example
[66, 67, 68, 69, 70, 71] which simulates the sudden collapse of a (square shaped) column of water
onto a horizontal surface as a result of the effect of gravity. The general description of the problem
is presented in Figure 5. The main objective of this problem is the simulation of the transient
flow of two fluids (i.e. air and water) separated by a sharp interface, where surface tension effects
are disregarded. Insofar as the two-phase fluid solver is formulated following an immersed based
approach, the physical properties of the two fluids are smoothed across the sharp interface. This
problem has been thoroughly studied at experimental [66, 67] and numerical [68, 69, 70, 71] levels
and it is widely used by the scientific community for the benchmarking of new algorithms.

airwater
column

 aa

 aa

 gg

  bb
x

y
 u = 0u = 0

Figure 5. Schematics of the initial conditions for the dam break problem (a = 1m; b = 5m).

For the numerical results presented herein, the side of the (square) water domain is initially
prescribed as a = 1m (see Figure 5). The water phase is fully embedded inside a rectangular domain
of base length b = 5m. The height of the underlying rectangular domain must be chosen large
enough so as to not having an effect in the simulation. With that in mind, for the results presented in
this paper, this height was chosen as h = 1.25m. Non-slip boundary conditions are considered for
all the sides of the rectangular domain. The fluid properties of both phases (water and air will be
referred by the subscripts w and a, respectively) are listed in Table I below.

water density air density water viscosity air viscosity
ρw = 1000 kg/m3 ρa = 1 kg/m3 µw = 10−3 Pa s µa = 10−5Pa s

Table I. Physical properties of water and air for the classical dam break problem.

Figure 6 illustrates a sequence of snapshots of the free surface position as a function of time.
The predicted heights and the surge front location of the collapsed water are plotted against
the dimensionless time τ = t

√
h/g, as reported in [66]. In Figure 7, very good agreement

can be observed between the numerical simulation obtained using the proposed algorithm and
the experimental [67] and published numerical results [71] available in the literature. As can
be observed, with mesh refinement, the presented results converge extremely well to the latest
experimental data.

5.1.2. Bubble rising in a partially filled container. The second benchmark problem is described by
a fluid bubble placed inside a container partially filled with fluid of higher density. The initially
circular bubble of diameter D = 0.04m is placed inside a computational domain defined by a
rectangle Ω = [0, 3D]× [0, 3.5D]. Initially, a fluid layer of size D corresponding to the fluid of
lower density rests above the 2.5D deep higher density fluid. The bubble is immersed with its centre
located at a distance D below the free surface. The geometrical description of the problem can be
found in Figure 8. Non-slip boundary conditions are considered for all the sides of the rectangular
domain.

The bubble is considered to be made up of a fluid phase termed ‘fluid 2’ of density ρ2 which
progressively rises inside the container, which is partially filled with a fluid phase termed ‘fluid 1’
of density ρ1 (with density ratio ρ1 = 2ρ2). The upper section of the container, of height D=0.04 m,
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(d) τ = 3.0

Figure 6. Predicted free surface evolution at different dimensionless time steps τ obtained for a mesh of
512× 128 cells with dimensionless ∆τ = 2× 10−4. (a) τ= 0.0; (b) τ = 1.25; (c) τ = 2.5; (d) τ = 3.
The material parameters are as follows: water density ρw = 1000 kg/m3, air density ρa = 1 kg/m3, water

viscosity µw = 10−3 Pa s, air viscosity µa = 10−5Pa s (refer to Figure 5 and Table I).

is considered to be filled with the ‘fluid 2’ phase. The Reynolds number (Re) and the Weber number
(We) are defined in Reference [68] as

Re =
ρ1
√
gD1.5

µ1
, We =

ρ1gD
2

γ
, (42)

where ρ1(ρ2) is the density of ‘fluid 1’(‘fluid 2’), g is the gravitational acceleration,D is the diameter
of the bubble, µ1(µ2) is the dynamic viscosity of ‘fluid 1’(‘fluid 2’) and γ is the surface tension
coefficient. In the following, two test cases are considered, namely, test case 1 does not consider the
surface tension effect whilst test case 2 does.
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(a): surge front position
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(b): water column height

Figure 7. Comparison of the surge front location and the water column height with experimental data
and numerical results. The correspoding dimensionless time refinement is as follows: ∆τ = 8× 10−4,
∆τ = 4× 10−4 and ∆τ = 2× 10−4. The material parameters are as follows: water density ρw = 1000

kg/m3, air density ρa = 1 kg/m3, water viscosity µw = 10−3 Pa s, air viscosity µa = 10−5Pa s (refer to
Figure 5 and Table I).

 a = 0.12a = 0.12 m

 b
=

0.
14

b
=

0.
14

 m

 fluid 1

 fluid 2
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x
y

 gg

 fluid 2
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Figure 8. Schematic diagram of the two-dimensional container partially filled with fluid phases 1 and 2.
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Test case 1 ρ1/ρ2 µ1/µ2 Re We
1 1 : 2 1 : 2 200 −
2 1 : 2 1 : 2 200 10

Table II. Dimensionless physical properties of the two fluids for the test case of a bubble rising in a partially
filled container.

The time sequence of the rising bubble is shown in Figure 9, for the test case without surface
tension, and in Figure 10, for the test case with surface tension. In both Figures, numerical results
are compared against those reported in Reference [68]. In both simulations, a mesh of 120× 140
cells was used with ∆t = 5× 10−4s. As it can be observed, an excellent agreement with the results
in [68] is shown in both cases, where very noticeable differences are observed in the dynamics of
the interface.

5.1.3. Bubble rising in a fully filled container. In this dimensionless problem, we consider the case
of a fluid bubble (‘fluid 2’) rising inside a container fully filled with a fluid of higher density (‘fluid
1’). This quantitative validation for a two-phase problem was proposed in Reference [72]. The initial
configuration consists of a circular bubble of radius r = 0.25 centred at [0.5, 0.5] in a rectangular
domain Ω = [0, 1]× [0, 2]. The geometrical description of the problem is presented in Figure 11.

The density of the fluid bubble is smaller than that of the surrounding fluid (ρ2 < ρ1). The non-slip
boundary condition (u = 0) is used at the top and bottom boundaries, whereas the free slip condition
u · n = 0 is imposed on the vertical walls (being n the outward unit normal). Computations were
conducted until time t = 3. The Reynolds number and the Eotvos number are defined in Reference
[72] as

Re =
ρ1
√
g(2r)

2/3

µ1
, E0 =

4ρ1gr
2

γ
, (43)

where ρ1(ρ2) is the density of ‘fluid 1’(‘fluid 2’), g is the gravitational acceleration, r is the radius
of the bubble, µ1(µ2) is the dynamic viscosity of ‘fluid 1’(‘fluid 2’) and γ is the surface tension
coefficient. Two test cases are analysed and Table III summarises the physical properties considered
in both of them.

Test case ρ1 ρ2 µ1 µ2 g γ Re E0 ρ1/ρ2 µ1/µ2

Case 1 1000 100 10 1 0.98 24.5 35 10 10 10
Case 2 1000 1 10 0.1 0.98 1.96 35 125 1000 100

Table III. Dimensionless physical properties of the two fluids for the two test cases of a bubble rising in a
fully filled container.

In order to benchmark the numerical solution, a series of physical magnitudes of interest are
introduced in Reference [72], including the centre of mass of the bubble, its mean rising velocity
and the so-called circularity of the bubble (to be defined below).

- Centre of mass: The position of the centre of mass is used to track the translation of the bubble
as a function of time, and is defined as

xc =

∫
Ω2
x dv∫

Ω2
dv

. (44)

- Circularity: The so-called ‘degree of circularity’ of the evolving bubble can be defined as

C =
Pa
Pb

=
perimeter of the area-equivalent circle

perimeter of the bubble
=
πDa

Pb
, (45)

where Pa denotes the perimeter of a circular bubble with diameterDa, which has an area equal
to that of a deformed bubble with perimeter Pb. For the initial circular bubble, the circularity
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Figure 9. Time evolution of bubble rising inside a partially filled container. (Re = 200, We = 0). Left:
Reference solution [68]. Right: proposed method.
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Figure 10. Time evolution of bubble rising in a partially filled container. (Re = 200, We = 10) Left:
Reference solution [68]. Right: proposed method.
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Figure 11. Initial configuration and boundary conditions for the problem defined in Section 5.1.3.

is equal to one and it then decreases as the deformation of the bubble increases because the
initial circle encloses a larger area.

- Rising or terminal velocity defined as

uc =

∫
Ω2
u dv∫

Ω2
dv

. (46)

The above is the mean velocity with which a bubble is rising or moving. This value is
particularly interesting, because it measures not only the behaviour of the interface tracking
algorithm but also the quality of the overall solution.

Apart from the commercial software ANSYS CFX, COMSOL, ANSYS Fluent, three different
open-source computer codes are compared with the proposed method, namely: (a) the TP2D
(Transport Phenomena in 2D) code, developed in the Technical University of Dortmund [73], is
a Finite Element Method (FEM) based incompressible flow solver combined with a Level Set
Method used to describe the interface; (b) the FreeLIFE (Free-Surface Library of Finite Element)
software is a FEM based incompressible flow solver developed in EPFL Lausanne [72] and
(c) the MooNMD (Mathematics and object oriented Numerics in MagDeburg) is a FEM based
incompressible solver using the Arbitrary Lagrangian-Eulerian (ALE) approach developed in Otto-
von-Guericke University Magdeburg [74].

Case 1: The solution for test case 1 in comparison with the three open-source FEM based codes
(FreeLIFE, MooNMD, TP2D) is presented in Figure 12. The bubble, being initially circular, is
stretched horizontally and first develops a dimple as it rises, but after some time proceeds to assume
a more stable ellipsoidal shape. No significant differences can be observed from the proposed solver
and the other reference FEM solvers.

Case 2: Figure 13(b) shows the final shape of the bubble on a set of three mesh refinements.
Although the bubble in both test cases rises with approximately the same speed, the decrease in
surface tension causes this bubble to assume a more non-convex shape and develop thin filaments,
which might eventually break off. The benchmark results simulated using six different codes are
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(c) Circularity

Figure 12. Quantitative comparison for the centre of mass, circularity and rise velocity for the bubble rising
problem of case 1. The simulation is performed with three levels of refinement, 40× 80, 80× 160 and
160× 320. The corresponding time refinement is as follows: ∆t = 3.125× 10−4s, ∆t = 1.5625× 10−4s

and ∆t = 7.8125× 10−5s.
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taken from Reference [72] (see Figure 13). It can be seen that there is no agreement with respect to
the thin filamentary regions. The TP2D and FreeLIFE codes show a break up of the bubble, whilst
ANSYS CFX, COMSOL, ANSYS Fluent, MooNMD and the proposed method show that the long
thin trailing filaments remain intact. Figure 14 shows the quantitative comparison with other three
softwares under mesh refinement.

(a) Six different codes, reproduced from [72]
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80× 160
160× 320

(b) Final shape of the rising bubble

Figure 13. Numerical simulation of a two-dimensional rising bubble using (a) Six different codes; and (b)
Proposed methodology. The simulation is performed with three levels of refinement: 40× 80, 80× 160 and
160× 320. The corresponding time refinement is as follows: ∆t = 3.125× 10−4s, ∆t = 1.5625× 10−4s

and ∆t = 7.8125× 10−5s.
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(c) Circularity

Figure 14. Quantitative comparison for the centre of mass, circularity and rise velocity for the bubble rising
problem of case 2. The simulation is performed with three levels of refinement: 40× 80, 80× 160 and
160× 320. The corresponding time refinement is as follows: ∆t = 3.125× 10−4s, ∆t = 1.5625× 10−4s

and ∆t = 7.8125× 10−5s.
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5.2. Elastic solids with multiphase flow

The aim of this section is to validate the two-phase flow solver interacting with a flexible immersed
structure of very different density to that of the underlying fluid.

5.2.1. One flapping membrane. This problem has been extracted from previous work published by
the authors in [2] and will be extended to the case of different density ratios between the different
phases involved. Consider an idealised two-dimensional channel Ω = [0, 4]× [0, 1.61] filled with an
incompressible Newtonian viscous fluid with viscosity µ = 10 dyne/cm2 s and density ρf = 100
g/cm3. A leaflet is inserted into the channel, as seen in Figure 15. The top and bottom boundaries
of the channel are fixed, whereas a pulsatile non-reversible inflow is applied at the left boundary
using a time-varying amplitude A(t) = 5(sin(2πt+ 1.1)) (the right boundary is considered to be
an outflow). The leaflet is modelled using an incompressible neo-Hookean constitutive material
model with shear modulus G = 2.0× 107 dyne/cm2. This problem was analysed in [2] for a
leaflet density identical to that of the underlying fluid, which is a typical situation in biomedical
applications. However, here we will consider three test cases with different structure densities of
value ρs = 100, 500, 2500 g/cm3. The objective is to observe the different leaflet dynamics and flow
patterns that emerge as a result of this variation in density ratio, namely ρs/ρf = 1, 5, 25 (for the
case where ρs/ρf = 1, results where already reported in [2]).

For all simulations, the underlying fluid is discretised using a 160× 80 mesh whereas 4025
integration points are employed for the solid membrane. Regarding the time step discretisation,
a single time step was used for all the simulations, namely ∆t = 7.815× 10−4s.

1.
61

0.
8 0.0212

 u(t)u(t)

4

 u = 0u = 0

x
y

Figure 15. Geometry and boundary conditions for an idealised leaflet valve

Figure 16 shows the time evolution of both the pulsatile flow and the deformation of the
membrane for the case where ρs/ρf = 25. It is clear that these results differ dramatically, both
in terms of flow leaflet dynamics and flow patterns, with respect to those reported in [2, 15] where
a density ratio ρs/ρf = 1 was used. Figure 17 shows the x− and y− components of the top flap
tip position for the membrane for the three test cases. It is interesting to observe the important
differences registered as the density ratio changes from 5 to 25. It can be clearly seen that the
method is able to successfully model the inclusion of highly deformable structures into the fluid
with a large density ratio. The methodology avoids the need to resort to a prohibitively expensive
mesh moving/remeshing algorithm yet displays a robust treatment of the immersed structure.

5.2.2. Dam break with elastic obstacle. A water column of width a = 14.6 cm and height 2a is
placed in the left corner of a rectangular tank of size 4a × 2.5a. A geometrical representation of
the problem is presented in Figure 18. The density and viscosity of the water are taken as ρw = 1.0
g/cm3, µw = 10−2 Pa s and the density and viscosity of the surrounding air ρa = 1.0× 10−3 g/cm3,
µa = 10−5 Pa s.

A rectangular incompressible obstacle in the shape of a column of width b = 1.2 cm, height 20
3 b,

Young’s modulus E = 107 g/cm/s2 and ρs = 2.5 g/cm2 is fixed at the centre bottom of the tank. The
water column is left to freely move as a result of the gravity effect and the objective of the problem
is to simulate the interaction between the two-phase flow (e.g. air and water) and the immersed
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(a) t = 0.25 s (b) t = 0.5 s

(c) t = 0.75 s (d) t = 1.0 s

(e)t = 1.25 s (f) t = 1.5 s

(g)t = 1.75 s (h) t = 2.0 s

Figure 16. Time evolution of a flexible membrane under pulsatile flow and streamlines of the fluid. Density
ratio 1 : 25, fluid viscosity µ = 1 dyne/cm2 s, shear modulus of G = 2.0× 107 dyne/cm2, 4025 solid

integration points, underlying fluid mesh size 160× 80, ∆t = 7.815× 10−4s.

deformable structure. As there are no experimental results available for this particular problem,
the proposed methodology will be benchmarked against a variety of alternative numerical schemes
available in the literature. Specifically, the same problem has been analysed with a free surface
model by using a monolithic FSI method [75], a partitioned FSI method [76], the Particle Finite
Element Method (PFEM) [77] and the Smoothed Particle Hydrodynamics (SPH) method [78].

The time history of the displacement of the obstacle at the upper left corner is depicted and
compared in Figure 19 by using the various methodologies. In addition, results are displayed for
the proposed method by using a fluid mesh refinement study, with meshes of 64× 40, 128× 80
and 256× 160. The corresponding time refinement is as follows: ∆t = 1.25× 10−5s, ∆t = 6.25×
10−6s, and ∆t = 3.125× 10−6s. The elastic obstacle is modelled by using 245, 1032 and 4025
integration points, respectively. Results agree well with the different approaches [77].

The time history of the problem is displayed in Figures 20 and 21, where the fluid streamlines and
vorticity contours are also shown. These figures are obtained for the finest mesh. As it can be seen,
when the water column hits the obstacle, the left upper corner first deflects to the left and while the
water level rises, it progressively moves to the right. The maximum deflection is obtained at around
t = 0.2s when the water passes the top of the obstacle and is fully attached to the left side of the
structure. As it is expected, the impact of the water column against the elastic obstacle causes the
latter to oscillate.

5.2.3. Elastic wall under time-dependent water pressure effects. This problem was first presented
by Antoci et al. [79]. The problem consists of an elastic gate, clamped at its top end and free at its
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Figure 17. x− and y− components of the bottom left point of the membrane with different density ratio
1 : 1, 1 : 5 and 1 : 25. Fluid viscosity µ = 1 dyne/cm2 s, shear modulus of G = 2.0× 107 dyne/cm2, 4025

solid integration points, mesh size 160× 80, ∆t = 7.815× 10−4s.
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Figure 18. Schematics of the dam break problem interacting with an elastic obstacle.

bottom end, which interacts with a mass of water initially confined in a free-surface tank behind the
gate. Figure 22 shows a geometrical representation of the problem. The flexible gate, 5 mm thick, is
made of rubber with a density of 1100 kg/m3 and a constant 10MPa Young’s modulus.

The simulation is carried out by using a mesh of 288× 160 cells with the elastic gate modelled by
means of 4025 integration points. The time step used for the simulation was ∆t = 3.125× 10−6s.
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Figure 19. Dam break with elastic obstacle: history of the x-displacement of the upper left corner of the
obstacle. The corresponding time refinement is as follows: ∆t = 1.25× 10−5s, ∆t = 6.25× 10−6s, and

∆t = 3.125× 10−6s.

Figure 23 displays the time history of the number of fixed point iterations (for a tolerance of 10−6 in
the relative norm). As it can be observed, an average value of four fixed point iterations is depicted
per time step. In all the numerical examples presented in this paper, similar behaviour was observed.
This is the same approach adopted in former works [2, 14].

Comparison of a time sequence of snapshots between the numerical solutions obtained from the
proposed algorithm and the experimental results reported in [79] is illustrated in Figure 24.

The problem was also simulated numerically in Reference [79] by using the Smoothed Particle
Hydrodynamics (SPH) method. For comparison purposes between the different schemes, Figure 25
shows the time evolution of the horizontal displacement at the free end of the flexible gate. It is clear
that the maximum deformation occurs near the free end of the gate, showing excellent agreement
with the experimental results provided in Reference [79], outperforming the results obtained with
the SPH approach. The gate reaches its maximum deformation at time t = 0.15 s, after which the
difference between the various techniques increases due to the higher complexity of the physics of
the problem and the various modelling simplifying assumptions introduced.

6. CONCLUSIONS

This paper presents a unified ‘one fluid’ computational framework for the numerical analysis of
two-dimensional multi-phase incompressible fluid-structure interaction problems in the context of
hydrodynamics. The proposed method builds on the existing Immersed Structural Potential Method
developed by the authors [2, 14] in order to overcome the restriction of having to deal with
similar density ratios among different phases or the restriction to solve single-phase flows. For the
description of the various phases, a smooth representation of the sharp indicator function is used, in
conjunction with the Level Set method for the capturing of the fluid-fluid interfaces and an interface
Lagrangian based meshless technique for the tracking of the fluid-structure interface. The modelling
of fluid and solid phases only differs in the definition of the deviatoric contribution to the Cauchy
stress tensor. In terms of applicability and reliability, a wide range of benchmark and applications
have been presented in the numerical examples, including bubble dynamics, hydrodynamics and
fluid-structure interaction with free surfaces. These problems are assessed in order to prove the
robustness and flexibility of the proposed computational methodology. Extension of this framework
to a three-dimensional parallelised version in conjunction with a more efficient Runge-Kutta based
coupled time integrator along with a complete Eulerian description of the deformable solid via an
extended set of conservation laws are the next steps of our work.
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(a): t = 0.1 s (b): t = 0.15 s

(c): t = 0.2 s (d): t = 0.25 s

(e): t = 0.3 s (f): t = 0.35 s

Figure 20. Dam break with elastic obstacle: time history and streamlines of the fluid. Water density ρw = 1.0

g/cm3, air density ρa = 1.0× 10−3 g/cm3, structure density ρs = 2.5 g/cm3, water viscosity µw = 10−2

dyne/cm2 s, air viscosity µa = 10−5 dyne/cm2 s, Young’s modulus E = 107 g/cm/s2, mesh size 256× 160,
4025 integration points.
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(a): t = 0.1 s (b): t = 0.15 s

(c): t = 0.2 s (d): t = 0.25 s

(e): t = 0.3 s (f): t = 0.35 s

Figure 21. Dam break with elastic obstacle: time evolution and vorticity contours of the fluid, vorticity
contours (−100 < ω < 100). Water density ρw = 1.0 g/cm3, air density ρa = 1.0××10−3 g/cm3, structure
density ρs = 2.5 g/cm3, water viscosity µw = 10−2 dyne/cm2 s, air viscosity µa = 10−5 dyne/cm2 s,

Young’s modulus E = 107 g/cm/s2, mesh size 256× 160, 4025 integration points.
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