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A corrosion investigation of friction stir linear lap welded AM60B joints used to fabricate an Mg 

alloy-intensive automotive front end sub-assembly was performed. The stir zone exhibited a 

slightly refined grain size and significant break-up and re-distribution of the divorced Mg17Al12 

(-phase) relative to the base material. Exposures in NaCl (aq) environments revealed that the 

stir zone was more susceptible to localized corrosion than the base material. Scanning vibrating 

electrode technique (SVET) measurements revealed differential galvanic activity across the joint. 

Anodic activity was confined to the stir zone surface and involved initiation and lateral 

propagation of localized filaments. Cathodic activity was initially confined to the base material 

surface, but was rapidly modified to include the cathodically-activated corrosion products in the 

filament wake. Site-specific surface analyses revealed that the corrosion observed across the 

welded joint was likely linked to variations in Al distribution across the surface film/metal 

interface. 

 

INTRODUCTION 

 

Lightweighting as a means to improve fuel economy to meet regulatory requirements is 

of considerable interest to the automotive industry.
1
 For example, a 7% improvement in fuel 

economy can be achieved for each 10% reduction in vehicle weight depending on the size of the 

powertrain.
2
 Despite the significant weight savings potential, Mg alloys remain under-utilized in 

multi-material structural applications due to challenges associated with processing (formability), 

assembly (joining) and in-service performance (corrosion).
3,4

 A multi-national Mg front end 

research and development (MFERD) project was established to address aspects of these key 

challenges.
5,6

 Mg alloy AM60B, produced by high pressure die casting (HPDC), and friction stir 

welding (FSW) were selected as a promising structural Mg alloy and joining technology, 

respectively, to fabricate both Mg-intensive and multi-material sub-assemblies for component-

level testing.
5-7

 A well-developed understanding of variations in the localized corrosion 

susceptibility across the friction stir welded is a critical step towards the utilization of FSW 

AM60B HPDC components in multi-material assemblies. 

Well-developed corrosion of multi-phase Mg-Al (AMxx and AZxx) alloys in aqueous 

chloride-containing solutions is strongly affected by the heterogeneous nature of the alloy 

microstructure; including the size, shape and distribution of secondary intermetallic phases.
8-15

 

Arguably, the Al distribution within the microstructure is the most important factor in controlling 

corrosion as regions deficient in Al corrode at significantly higher rates.
16-18

 The multi-phase 

microstructure is particularly susceptible to micro-galvanic corrosion with the more noble Al-

rich phases serving as local cathodes.
19-21

 Al-rich phases also can locally alter the surface film 
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and, thus, regulate the local cathodic activity as Al enrichment occurs.
16-18,22

 However, the ability 

of the sub-surface Al distribution and any associated Al enrichment layer to alter the surface film 

to avoid cathodic activation has not been investigated in a unified context. The scanning 

vibrating electrode (SVET) technique has eloquently revealed that breakdown of Mg
23,24

 and 

single phase Mg-Al alloys
25-27

 in NaCl (aq) electrolytes involves laterally-spreading focal anodes 

that leave behind cathodically-activated corrosion products. Thus, identifying microstructural 

features that can alter surface films to avoid cathodic activation is desirable from a corrosion 

performance perspective.     

Friction stir welding of AM60B castings has been shown to significantly alter the 

microstructure of the base material. The stir zone typically contains a recrystallized equiaxed stir 

zone within which the divorced eutectic -phase is broken-up and re-distributed, whereas the 

AlxMny phase remains virtually unchanged.
28-31

 Thus, the goal of the current work was to link 

critical aspects of microstructural variation on the intrinsic corrosion performance across a 

friction stir linear lap welded HPDC AM60B joints of interest to the automotive industry.  

 

EXPERIMENTAL PROCEDURES 

 

Friction stir linear lap welded AM60B joints were prepared from front end sub-

assemblies provided in the as-welded condition by General Motors Global Research and 

Development Center (Warren, Michigan, Fig. 1a). Specific details pertaining to the friction stir 

welding set-up and procedure used are published elsewhere.
32

 All samples were taken from 

welds joining the HPDC AM60B shock tower casting (3.2 mm at joint location) to the Mg alloy 

AM30 (3 mm) lower rail extrusion. Isolated cross-sectional base material and stir zone samples 

were cold-mounted in epoxy, prepared using standard metallographic procedures and examined 

using both light optical microscopy and scanning electron microscopy (JEOL 6610LV) equipped 

with X-ray energy dispersive spectroscopy (EDS) (Oxford Instruments with AZtecEnergy 

software). The imaging and EDS line profiles were acquired using a 12 keV acceleration voltage 

and a 10 mm working distance.   

SVET measurements of the friction stir linear lap welded joint surface were carried out 

using instrumentation of in-house construction, described in detail elsewhere.
23

 The vibrating 

probe consisted of a 125 m diameter platinum wire encased in a glass sheath such that the 

electrode at the probe tip comprised a Pt micro-disc. The vertically orientated probe was held at a 

height of 100 m over the corroding surface of interest and vibrated at an amplitude of 10 m 

at a frequency of 140 Hz. The-derived SVET peak-to-peak voltage (Vpp) signal was converted to 

values of current flux density along the axis of probe vibration (jz) after galvanostatic calibration 

using a two compartment cell containing 5% w/v NaCl (aq).
23,33

 By rastering the probe over the 

corroding surface and logging values of Vpp at user-defined co-ordinates, a spatially resolved 

map of jz values was compiled. 

The joint sample used for this purpose was abraded to produce a completely flat, polished 

surface, starting with coarse grit SiC paper and working through to a fine 2400 grit finish. 

Finally, the surface was washed with an aqueous surfactant and rinsed with distilled water 

followed by ethanol. A working electrode area consisting of the base material and stir zone was 

isolated by masking the sample with 90 μm thick extruded PTFE tape (3M 5490), such that a 27 

mm × 4 mm region comprising equal areas of the base material and stir zone was exposed. The 

sample was subsequently immersed, exposed area uppermost, in room temperature 5 wt.% NaCl 

(aq) electrolyte. The working surface was scanned immediately following immersion, and at 
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approximately 1-h intervals thereafter during the 18 h exposure. Open-circuit potential (OCP) 

measurements were also recorded on isolated surface areas (10 mm × 10 mm) of the base 

material and stir zone upon exposure to the 5 wt.% NaCl (aq) electrolyte. 

Isolated base material and stir zone samples (10 mm × 10 mm) were mechanically 

abraded using 2400 grit SiC paper and rinsed with ethanol in preparation for exposure to room 

temperature 3.5 wt.% NaCl (aq) electrolyte for 24 h. After exposure, the base material and stir 

zone samples were rinsed with distilled water to remove excess electrolyte and then ethanol (to 

promote fast drying). A Zeiss NVision 40 dual beam focused ion beam (FIB)-SEM was used to 

prepare thin foil cross-sections of the intact surface film for subsequent examination using 

transmission electron microscopy (TEM). A protective W layer was deposited at the site of 

interest prior to  FIB milling. The resultant foils were examined at cryogenic temperatures in a 

FEI Titan 80-300 LB TEM operating at an acceleration voltage of 200 keV. EDS maps were 

acquired in scanning TEM (STEM) mode using an Oxford Inca Si(Li) EDS detector. Images 

were collected using the Gatan Digital Micrograph software and EDS data was analyzed using 

Oxford’s INCA software 

 

RESULTS 

 

A macroscopic cross-sectional image of the overlapping welded joint (Fig. 1b) shows a 

sound stir zone with sufficient penetration through the AM60B casting into the AM30 extrusion 

The cross-sectional images of the base material (Fig. 1c) and stir zone (Fig. 1d) shows that 

friction stir welding significantly modified the starting AM60B microstructure. The base material 

exhibited the fully divorced eutectic morphology with the grain boundaries consisting of -phase 

(Mg17Al12) particles surrounded by a network of Al-enriched eutectic -phase.
34

 Not shown in 

the image are the casting porosity and the randomly distributed AlxMny intermetallic particles. 

The stir zone (Fig. 1d) appears to be a single phase structure comprised of recrystallized grains, 

which have been refined relative to the base material. The casting porosity originally present in 

the base material was effectively eliminated. The bulk composition (major alloying elements) of 

the base material and stir zone listed in Fig. 1c and 1d, as determined using inductively coupled 

plasma - mass spectroscopy (ICP-MS), showed essentially no dilution of the Al and Mn 

concentration in the stir zone. Although not reported here, the (mechanically-abraded) surface of 

the base material and stir zone was analyzed using both X-ray photoelectron spectroscopy (XPS) 

and Auger electron spectroscopy (AES). Heavy metal (Fe) contamination was not found on 

either surface, thus discounting this as being a possible factor affecting the relative corrosion 

across the joint. 

 Fig. 2 shows backscatter electron (BSE) images documenting typical the fine-scale 

microstructure of the base material and stir zone. Also included are associated EDS 

compositional profiles corresponding to the lines superimposed onto the BSE images. The Al 

content in the base material varied significantly along the profile, which reflects Al depletion 

(relative to the bulk) in the center of the grains and Al enrichment (relative to the bulk) on the 

grain boundaries. The grain boundary Al enrichment corresponds to the fully divorced eutectic 

structure: -phase (Mg17Al12) particles connected by a network of Al-enriched eutectic -phase 

(light grey network in Fig. 2a). Several of the Al enrichment spikes coincided with significant 

Mn enrichment (relative to the bulk), indicating the presence of an AlxMny particle at that 

location (bright particles in Fig. 2a). The Al content in the stir zone showed a more uniform 

distribution along the profile. The single Al enrichment spike in the profile coincided with 
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significant Mn enrichment (relative to the bulk), indicating the presence of an AlxMny particle at 

that location (bright particles in Fig. 2b). Fig. 3 shows a set of elemental maps acquired from the 

stir zone at higher magnification. The Al content (Fig. 3c) showed some variation in the stir zone 

as local regions of depletion (relative to the bulk) are evident. The bright particles in Fig 3a 

coincided with both Al (Fig 3c) and Mn (Fig. 3d) enrichment, indicating AlxMny particles at 

those locations.   

 Fig. 4 shows a series of SVET-derived jz distribution maps recorded from the surface of 

the welded joint sample over an 18 h immersion period in the 5 wt.% NaCl (aq) electrolyte, 

along with a photographic image of the post-corrosion surface. Localized corrosion was initiated 

as filaments that propagated laterally across the surface. Repeated immersion experiments 

showed that the localized (dark) filament corrosion always initiated on the stir zone material with 

the adjoining base material surface being largely unaffected. The jz distributions associated with 

propagating corrosion filaments showed that a strongly anodic leading edge (jz = ca +50 A m
-2

) 

left behind a cathodically-activated region (jz = ca. -2 A m
-2

) as it traversed the exposed surface 

of the stir zone. The estimated rate of filament propagation was 0.2 mm h
-1

 over the stir zone 

surface. The jz distributions associated with the exposed base material surface showed consistent 

cathodic activity. 

The predisposition of the stir zone to undergo breakdown in preference to the base 

material was checked by measuring the OCP transient following initial immersion. The point of 

breakdown of Mg and selected alloys in NaCl (aq) electrolytes can be identified by a local 

maximum in the OCP transient following immersion, marking the breakdown potential (Eb).
35

 It 

was further demonstrated that the Eb is highly dependent upon chloride ion concentration and 

that the value of Eb can be used as a measure of the resistance of Mg to localized corrosion 

initiation and subsequent cathodic activation [ref]. The OCP transients of the isolated base 

material and stir zone following immersion in 5 wt. % NaCl (aq) electrolyte are shown in Fig. 5 

along with photographic images of the samples after 24 h immersion in a 3.5 wt.% NaCl (aq) 

electrolyte. While each transient clearly exhibited a characteristic local maximum at the point of 

breakdown, the value of Eb was 20 mV more negative for the stir zone in comparison with the 

base material, signifying a greater tendency to undergo breakdown under the same conditions. 

The time to achieve Eb was shorter for the stir zone, also signifying a greater tendency to 

undergo breakdown under the same conditions. Post exposure images (Fig. 5c and 5d) show that 

corrosion on both surfaces involved the initiation and propagation of localized dark filaments. 

 Fig. 6a and 6b show a bright field image of the intact film formed on the base material 

and stir zone surface, respectively, in cross-section after 24 h immersion in 3.5 wt.% NaCl (aq). 

The intact film formed on both materials is relatively thin (~400 nm) and reasonably compact, 

relative to the much thicker and more defective corrosion product that is the dark corrosion 

product filament on Mg-Al alloys.
26,36

 Although not shown here, selected area diffraction (SAD) 

patterns collected from the both intact surface films are consistent in part with crystalline MgO. 

Typical EDS maps associated with the intact film of the base material and stir zone is shown in 

Fig. 6c and 6d, respectively. Both films are comprised largely of Mg and O, consistent with the 

SAD results. Regions of significant Al enrichment are observed sub-surface in both materials. 

The single Al-enriched region in the base material is not concomitantly enriched with Mn, which 

signifies the presence of a -phase particle near the metal/film interface. Similarly, two of the 

three Al-enriched regions in the stir zone are not concomitantly enriched with Mn, signifying the 

presence of -phase particles. Noting the difference in scale, the -phase particles in the stir zone 

were significantly smaller versus the base material, but present nonetheless. 
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 A typical EDS line profile of the Al content across the film/metal interface of each 

material (Fig. 7a and 7b) is presented in Fig. 7c. Care was taken to ensure the line profiles did 

not include -phase particles. Far removed from the interface within the bulk material, the Al 

intensity is similar for both materials. However, as the metal/film interface is approached, there 

is a significant Al enrichment zone in the base material that does not exist in the stir zone. There 

may be a narrow Al enrichment zone in the stir zone as indicated by the small intensity peak, but 

it is relatively insignificant in comparison to the bulk material. Al was also incorporated into the 

intact film formed on the base material, but was not as significantly incorporated into the stir 

zone intact film.        

 

DISCUSSION 

 

Immersion of friction stir welded AM60B joint samples in NaCl (aq) electrolytes 

revealed two key aspects that will affect their corrosion performance in multi-material 

assemblies: galvanic corrosion across the welded joint and the corrosion propagation 

morphology. Formation of the dark cathodically-activated filaments that initiate and propagate 

laterally across exposed surfaces is consistent with the behavior exhibited by other Mg-Al alloys 

immersed in similar electrolytes.
Error! Bookmark not defined.-27

 The more surprising aspect is that 

localized filament corrosion was restricted to the stir zone surface, at least for the immersion 

conditions studied. Both the OCP and Eb of the isolated stir zone are more negative (active) than 

the isolated base material (Fig. 4). Thus, the stir zone would serve as a cathode when in galvanic 

contact with the base material (as is the case for the friction stir welded joint studied herein). The 

resultant galvanic cell-induced anodic polarization of the stir zone would be sufficient to fix the 

mixed potential just above the associated Eb (stir zone), whereas the associated cathodic 

polarization of the base material would be sufficient to fix the mixed potential just below Eb 

(base material) for the immersion conditions studied. Cathodic activity is believed to have been 

initially confined to the base material surface, but quickly included the dark cathodically-

activated corrosion products in the filament wake. The predisposition of the base material to 

continue to serve as a cathode after localized filament corrosion initiated on the stir zone was 

verified by SVET measurements on isolated base material (not reported here). Localized 

corrosion filaments were observed to initiate after ca. 10 minutes of immersion. The fact that 

localized corrosion did not initiate on the base material of the welded joint samples indicates that 

it was effectively cathodically-protected during immersion.  

The tendency for the stir zone to serve as the anode is believed to be controlled by the 

increased tendency (more active Eb) of the intact film to break down (i.e. cathodically activate). 

A significant difference in the Al distribution across the film/metal interface of the two materials 

was revealed by the TEM-EDS analysis. Consequently, it is believed that the Al distribution 

across the interface altered the ability of the intact film to avoid breakdown. The incorporation of 

chloride ions into the intact film on Mg
Error! Bookmark not defined.,39

 and Mg-Al alloys
40

 is believed to 

be an important precursor step to breakdown: formation of more soluble hydroxy-chloride 

complexes.
Error! Bookmark not defined.,41

 The low Al content in the stir zone film suggests the film is 

consistent with a simple MgO/(Mg(OH)2 mixture
39

 rather than a Mg-Al-type layered double 

hydroxide (LDH) compound such as meixerite [Mg6Al2(OH)18·4H2O] or hydrotalcite 

[Mg6Al2CO3(OH)16·4H2O].
42

 It follows from the more active stir zone film Eb that the presumed 

MgO/(Mg(OH)2 intact film has a stronger tendency to form more soluble hydroxy-chloride 

complexes. Studies of the solubility of MgO/Mg(OH)2 relative to Mg-Al-type LDH supports this 
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theory.
43

 Al enrichment across the film/metal interface requires incongruent dissolution to occur 

prior to breakdown. Surface analysis of films formed on Mg-Al alloys during immersed in pure 

water have shown this to be the case.
42,44-46

 It is believed that the Al distribution across the intact 

film/metal interface is controlled by the sub-surface microstructure. However, this link has not 

yet been investigated in a unified context. The -phase morphology in the two microstructures 

differs significantly: micro-scale grain boundary particles in the base material versus nano-scale 

matrix particles in the stir zone. A similar change in -phase morphology from micro-scale 

plates to nano-scale particles (produced by heat treatment) has been shown to affect the localized 

corrosion susceptibility of Mg alloy AZ91 in dilute NaCl (aq).
12 

 However, thus far, such 

assertions have tended to focus on the propensity for micro-galvanic corrosion based on local 

microstructure, without consideration of broader welded assemblies. The work herein, 

particularly in the context of welded assemblies, identified that local potentials are important in 

the determination of anodic and cathodic sites overall, whilst the ‘propagation’ of corrosion was 

dictated by the ability of corrosion to spread – which requires consideration of the critical 

breakdown of surface film and the extent of cathodic activation of the propagating localized 

corrosion products. 

The results have two key implications associated with the use of friction stir welded liner 

lap joints to join HPDC AM60B components in multi-material assemblies. The first is the 

galvanic interaction that occurs across the welded joint, with the base material serving as the 

cathode and the stir zone serving as the anode. The stir zone will preferentially corrode, which 

will likely result in enhanced degradation of thin-walled HDPC components. The second is the 

corrosion propagation morphology, which involves laterally spreading filaments. As a protective 

coating scheme would be applied in practice, these laterally-spreading corrosion filaments will 

likely cause coating delamination. More research focused on understanding the risk of coating 

delamination from filament corrosion and subsequent galvanic activity of friction stir linear lap 

welded AM60B joints is warranted. 

 

CONCLUSIONS 

 

1. Friction stir linear lap welding of Mg alloy AM60B significantly altered the base material 

microstructure. The major alteration reported in this study was the change in the-phase 

morphology: micro-scale grain boundary network in the base material versus distributed 

nano-scale particles in the stir zone. This change in local microstructure led to a change in 

the unique local potential, lowering the potential of the stir zone and rendering it a local 

anode in the context of the overall weld assembly.  

 

2. Scanning vibrating probe measurements revealed that the stir zone was more susceptible to 

corrosion, which occurred in this case as laterally spreading localized filaments. The relative 

values of the open-circuit and breakdown potentials validate a galvanic interaction between 

the base material (cathode) and stir zone (anode) that accelerated localized corrosion of the 

stir zone. 

 

3. This work reveals that conventional wisdom in first order consideration of dissimilar metal or 

weld metal induced corrosion are not the only (or key) factor in the case of corrosion of Mg-

alloy assemblies. The corrosion propagation morphology and attendant rate are of particular 

importance, as indicated herein. 
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4. The tendency for the stir zone to serve as the anode is believed to be controlled by the 

increased tendency (more active Eb) for the intact film to break down (cathodically activate). 

The Al distribution across the film/metal interface, influenced by the sub-surface micro-

structure, is believed to alter the ability of an intact film to avoid breakdown. Key micro-

structure features include both -phase morphology and solute distribution within the matrix 

phase.  
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Fig. 1. (a)  Photograph (courtesy of United States Automotive Materials Partnership LLC) of a 

front end shock tower sub-assembly. Arrows identify the friction stir linear lap welded AM60B 

joints of interest to this study. The length of the AZ31B sheet upper rail and the extruded AM30 

lower rail are 46 cm and 84 cm, respectively. Light optical microscopy images of (b) welded 

joint in cross-section, (c) base material (BM) in cross-section and (c) stir zone (SZ) in cross-

section.  



Page | 9  

 

 

 
 

Fig. 2. SEM cross-sectional images of the microstructure and associated EDS line scans 

corresponding to the line superimposed on the image: (a) backscattered image of the base 

material and (b) secondary electron image of the stir zone. EDS Al and Mn compositional 

profiles in (c) base material and (d) stir zone. 
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Fig. 3. SEM-EDS analysis of stir zone at higher magnification: (a) secondary electron image of 

mapped region, (b) Mg map, (c) Al map and (d) Mn map. 
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Fig. 4. (a-d) Series of SVET-derived jz distribution maps recorded from the surface of the welded 

joint sample over an 18 h immersion in a 5 wt.% NaCl (aq) electrolyte, (e) along with a 

photographic image of the post-corrosion surface. 
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Fig. 5. (a) Open-circuit potential transients of isolated base material and stir zone samples 

recorded during exposure in 5 wt.% NaCl (aq). SEM image showing the filament corrosion 

formed on isolated (b) base material and (c) stir zone samples after 24 h exposure in 3.5 wt.% 

NaCl (aq) and associated sites of TEM sample extraction via FIB milling.  

 

 

(a)

FIB
Sample

FIB
Sample

(b) (c)
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Fig. 6. Bright-field TEM cross-sectional image of intact film formed on the (a) base material and 

(b) stir zone after 24 h exposure in 3.5 wt.% NaCl (aq). Associated set of EDS maps of the 

film/metal interface of the (c) base material and (d) stir zone. The set of EDS maps in (d) 

correspond to the framed area in (b). 

 

  



Page | 14  

 

 

 
 

Fig. 7. Bright-field TEM cross-sectional image of intact film formed on the (a) base material and 

(b) stir zone after 24 h exposure in 3.5 wt.% NaCl (aq). (b) Plot of the associated EDS Al 

concentration profiles across film/metal interface. 
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