
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in:

Applied Mathematical Modelling

                                          

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa34757

_____________________________________________________________

 
Paper:

Chen, J., Zheng, J., Zheng, Y., Si, H., Hassan, O. & Morgan, K. (2017).  Improved Boundary Constrained Tetrahedral

Mesh Generation by Shell Transformation. Applied Mathematical Modelling

http://dx.doi.org/10.1016/j.apm.2017.07.011

 

 

 

 

 

 

 

_____________________________________________________________
  
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

 

Permission for multiple reproductions should be obtained from the original author.

 

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

 

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 

http://cronfa.swan.ac.uk/Record/cronfa34757
http://dx.doi.org/10.1016/j.apm.2017.07.011
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 


 

 

Accepted Manuscript

Improved Boundary Constrained Tetrahedral Mesh Generation by
Shell Transformation

Jianjun Chen , Jianjing Zheng , Yao Zheng , Hang Si ,
Oubay Hassan , Kenneth Morgan

PII: S0307-904X(17)30449-3
DOI: 10.1016/j.apm.2017.07.011
Reference: APM 11861

To appear in: Applied Mathematical Modelling

Received date: 10 December 2015
Revised date: 21 June 2017
Accepted date: 3 July 2017

Please cite this article as: Jianjun Chen , Jianjing Zheng , Yao Zheng , Hang Si , Oubay Hassan ,
Kenneth Morgan , Improved Boundary Constrained Tetrahedral Mesh Generation by Shell Transfor-
mation, Applied Mathematical Modelling (2017), doi: 10.1016/j.apm.2017.07.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1 

Highlights 
 A new flip is designed to reduce the usage of Steiner points in boundary recovery. 

 Shell transformation searches for a local optimal mesh among more possibilities. 

 The recursive scheme of shell transformation can perform flips on a large element set.  

 Meshing examples for surface inputs mainly composed of stretched triangles are tested. 

 Difficult boundary constrained meshing tasks in industrial applications are demonstrated. 

  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2 

Improved Boundary Constrained Tetrahedral Mesh 

Generation by Shell Transformation 

Jianjun Chen
a,b*

, Jianjing Zheng
a
, Yao Zheng

a
, Hang Si

c
, Oubay Hassan

b
, Kenneth Morgan

b
 

a 
Center for Engineering and Scientific Computation, and School of Aeronautics and Astronautics, Zhejiang 

University, Hangzhou 310027, China 
b 
Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, 

Swansea SA2 8PP, Wales, U.K. 
c 
Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, 10117 Berlin, Germany 

SUMMARY 

An excessive number of Steiner points may be inserted during the process of boundary 

recovery for constrained tetrahedral mesh generation, and these Steiner points are harmful in 

some circumstances. In this study, a new flip named shell transformation is proposed to 

reduce the usage of Steiner points in boundary recovery and thus to improve the performance 

of boundary recovery in terms of robustness, efficiency and element quality. Shell 

transformation searches for a local optimal mesh among multiple choices. Meanwhile, its 

recursive callings can perform flips on a much larger element set than a single flip, thereby 

leading the way to a better local optimum solution. By employing shell transformation 

properly, a mesh that intersects predefined constraints intensively can be transformed to 

another one with much fewer intersections, thus remarkably reducing the occasions of Steiner 

point insertion. Besides, shell transformation can be used to remove existing Steiner points by 

flipping the mesh aggressively. Meshing examples for various industrial applications and 

surface inputs mainly composed of stretched triangles are presented to illustrate how the 

improved algorithm works on difficult boundary constrained meshing tasks. 

KEY WORDS: mesh generation; boundary recovery; shell transformation; Delaunay 

triangulation; Steiner points; tetrahedral meshes  

1. INTRODUCTION 

1.1 Reducing the usage of Steiner points in boundary recovery: why? 

The Delaunay criterion provides a reasonable method to triangulate a given point set. 

However, boundary constraints may be lost in the resulting mesh, and either conforming or 

constrained methods are required to recover the lost constraints. For the conforming recovery 

method, Steiner points are inserted on the constraints and are not removed in the resulting 

meshes; thus, some of the lost constraints are recovered as concatenations of sub-constraints. 

For the constrained recovery method, the constraints are the same as the prescribed ones, and 

no Steiner points can remain on the constraints.  

There is no guarantee to recover an edge or face in a tetrahedral mesh without adding 

Steiner points [1]. The typical failing examples are Schönhardt polyhedron [2] and Chazelle 

polyhedron [3], which can only be tetrahedralized by adding Steiner points. Therefore, a 

robust three-dimensional boundary recovery algorithm must contain a main procedure that 

                                                 

* Corresponding author. E-mail: chenjj@zju.edu.cn 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3 

considers how to insert Steiner points [4-19]. For instance, Weatherill and Hassan [4] 

presented an algorithm for constructing 3D conforming triangulations, with Steiner points 

inserted on surface boundaries. Later, George et al. [5] and Du and Wang [6] presented a very 

similar point-splitting idea to attempt to remove all Steiner points from surface boundaries, 

which is successful in a large percentage (but < 100%) of application instances.  

In [15], we presented a boundary recovery algorithm that first inserts Steiner points at 

intersection positions between lost boundary constraints and the tetrahedral mesh to achieve a 

conforming recovery, and then removes these points from the surface to achieve the final 

constrained recovery. In the appendix of this paper, we provide the theoretical proofs to 

explain why this algorithm could output a constrained recovery result by calling a finite 

number of local operations on the tetrahedral mesh. Nevertheless, these proofs do not consider 

the round-off errors due to floating point numbers. Thus, the robustness of the algorithm 

presented in [15] could be challenged in the real world. It was observed that this algorithm 

likely fails when an excessive number of Steiner points are required during the boundary 

recovery procedure. This undesirable result occurs when the input surface contains a certain 

number of elements having high aspect ratios. In this circumstance, Steiner points are harmful 

to robustness and efficiency of boundary recovery and element quality. 

(1) Robustness. Predicates such as those proposed by Shewchuk [20] can enhance the 

robustness of boundary recovery remarkably. However, the positions of Steiner points 

stored with floating-point numbers are essentially inaccurate due to round-off errors. 

These errors can accumulate if an excessive number of Steiner points are inserted. 

Predicates with these positions as inputs may return an undesirable value and collapse 

the entire boundary recovery procedure.  

(2) Efficiency. For each Steiner point, massive time-consuming computations accompany 

with its creation, movement and suppression. Thus, the timing cost of a boundary 

recovery procedure is roughly proportional to the number of Steiner points.  

(3) Element quality. Steiner points destroy local mesh size specifications and introduce 

elements having volumes close to zero. Various schemes have been proposed to 

improve the local mesh quality [21], but these schemes may fail when many bad 

elements cluster in a local region where many Steiner points are located. This case 

usually happens near bad surface triangles, and the situation becomes worse under the 

combined influence of Steiner points and bad boundaries.  

In addition, the above issues have the locality nature: one stretched element or small angle 

in the surface may introduce many Steiner points in its neighborhood; if several stretched 

elements and/or small angles are adjacent to each other, an excessive number of Steiner points 

may be inserted locally. Therefore, although the input surfaces in practical applications are 

mainly composed of well-shaped triangles, the above issues may appear occasionally if 

undesirable geometry features are neighbored with each other. This sort of local imperfection 

may exist due to many reasons, for instance, when the geometry itself contains undesirable 

features, or when the mesh gradation is out of control locally. In parallel mesh generation [22-

24], the domain decomposition approach may introduce undesirable artificial features on the 

inter-domain interfaces. In hybrid mesh generation for viscous simulations [25-27], the 

boundary layer mesher may introduce low-quality faces that are parts of the inputs for the 

tetrahedral mesher. In simulations of moving boundary problems [28-30], mesh faces were 

stretched in the mesh movement process, and some of them may appear in the boundary of the 

hole to be remeshed. To tackle the issue of minimizing the usage of Steiner points during 

boundary recovery is undoubtedly beneficial for these applications. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4 

1.2 The role of mesh flip based schemes on boundary recovery 

It is NP complete to predict whether a polyhedron can be tetrahedralized without adding 

Steiner points [1], and the lower bound of the number of Steiner points is shown to be 

quadratic [3]. Due to these theoretical difficulties, many heuristic schemes are employed to 

reduce the number of Steiner points [4-19]. These schemes can be classified into the 

preprocessing scheme and the postprocessing scheme. The preprocessing schemes improve 

mesh topologies to reduce intersections between lost boundary constraints and mesh entities, 

before Steiner point insertion, while the postprocessing schemes suppress Steiner points 

directly after Steiner point insertion. For the same input, the numbers of Steiner points 

inserted by different boundary recovery algorithms may vary wildly.  

Here, the preprocessing scheme must be highlighted. It produces a topologically improved 

mesh for the main procedure. The robustness and efficiency of the main procedure are mainly 

determined by the quality of this mesh. In previous studies, tremendous efforts have been 

made to tackle the main procedure. With respect to the preprocessing scheme, most of 

boundary recovery algorithms rely on a simple procedure that iteratively conducts the basic 

flips, i.e., 2-3, 3-2 and 4-4 flips (the numbers in these names denote the number of tetrahedra 

removed and created by the flips, respectively, see Figure 1a and 1b) [31, 32]. Nevertheless, 

one single flip calling may fail because it only involves a small number of elements. In the 

context of mesh improvement, Joe suggested improving the performance of flips by 

composing multiple basic flips [31]. In fact, Joe identified nine combinational operations; 

however, as pointed out by Shewchuk [33], the most elaborate combinational operations can 

be expressed as one or two edge removal operations [33, 34]. Later, Liu and Baida [10] 

suggested adopting basic flips recursively for boundary recovery purposes. Although it was 

reported that their algorithm could perform robustly for some surface inputs described by 

highly stretched triangles, the numbers of inserted Steiner points were far more than 

minimally required.  

Differently, Liu et al. proposed to resolve the boundary recovery problem by using a small 

polyhedron reconnection (SPR) routine [14]. Given the outskirt of a polyhedron, the SPR 

routine attempts to fill in the polygon with an optimal tetrahedral mesh by searching and 

comparing all the possible mesh configurations. In [15, 35], the SPR based local 

transformation scheme is speeded up to handle a much bigger polyhedron than those managed 

by a single flip. Thus, it was reported that the SPR based boundary recovery algorithm could 

achieve better results than their flips based counterparts [14, 15]. The main issue of the SPR 

algorithm is its computing complexity, since the problem of meshing an empty polyhedron is 

NP hard. Thus, the size of the element set manageable by a single SPR calling is usually 

limited. In [14, 15], it was recommended to limit the number of surface triangles of the 

polyhedron input to the SPR routine below 40.  

1.3 Our contributions 

In this study, a new flip named shell transformation
†
 is proposed, which could be considered 

as an extension of the existing edge removal operation [33, 35]. The classic edge removal 

operation inputs a set of elements meeting at one edge, and attempts to remove this edge 

completely by triangulating the skirt polygon (see Figure 2, where the skirt polygon refers to 

the polygon p1p2p3p4p5p6). However, it is not uncommon that edge removal could not provide 

a covering mesh that better fits in the application purpose than the old one and thus fails to 

                                                 

†In the literature, a shell usually refers to a set of elements that meet at one edge, and the edge is referred to as the supporting 

edge, and the faces adjacent to this edge are referrred to as supporting faces. In this study, a shell refers to a polyhedron that 

can be filled up with a mesh composed of a set of elements that meet at one edge, and the mesh is called a covering mesh of 

the shell. Please keep the difference between the two definitions in mind while reading this article. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5 

remove e. In some cases, the one shown in the bottom of Figure 2 might be a better option, 

where a core referring to the unmeshed part of the skirt polygon exists in the resulting mesh. 

In this case, we say the shell of e is partially reduced
‡
. Evidently, the remaining supporting 

faces must be removed to reduce the shell further. We know a supporting face f is bounded by 

e and two other edges (referred to as link edges hereafter). Obviously, if one of the link edges 

that bound f is removed, f will be removed accordingly. For the case shown in the bottom of 

Figure 2, f could be the face abp5, and the link edge could be ap5 or bp5. If ap5 is picked up for 

removal, the above transformation is called again to reduce the shell of ap5. If the reduced 

shell of ap5 does not contain the face abp5 and any new supporting faces sharing ab, the shell 

of ab is reduced as well; otherwise, a process that attempts to remove the supporting faces 

around ap5 is repeated.  

Compared with Joe’s combinational flips [31] that only considers the combination of a 

limited number of basic flips, the proposed scheme combines shell transformations to reduce 

neighbouring shells in a recursive manner. In this aspect, it is more general and more 

aggressive than Joe’s approach. In real applications, hundreds of shells and thousands of 

elements could even be involved in one single calling of the recursive shell transformation 

routine, thereby leading the way to a better local optimum solution. 

Based on shell transformation and its recursive scheme, we propose a preprocessing 

scheme and a postprocessing scheme for boundary recovery. Because the main procedure of 

boundary recovery inserts Steiner points in the intersections of lost boundary entities and 

mesh entities [13, 15], the preprocessing scheme attempts to minimize the number of these 

intersections. The postprocessing scheme is a Steiner point suppression procedure, which 

provides a second chance to reduce the number of Steiner points.  

We will choose surface inputs composed of many stretched elements to challenge the 

proposed boundary recovery algorithm and compare the resulting performance data with those 

of a commercial code and published results [5, 10]. The comparison reveals that the proposed 

algorithm not only achieves valid boundary constrained tetrahedral meshes for those failing 

examples of other algorithms, but also inserts much fewer Steiner points for those examples 

that other algorithms can also manage. Besides, the applicability of the developed algorithm 

for real simulations is demonstrated by various mesh generation tasks of computational 

aerodynamics simulations. In these tasks, the proposed preprocessing scheme recovers all 

boundaries without any Steiner points at negligible time costs.  

The recursive flips idea is also incorporated in an open-source tetrahedral mesher named 

TetGen (version 1.5 or above) and introduced in [19] briefly (named n-to-m flips). Basically, 

an n-to-m flip reduces a shell in an arbitrary manner, while some quality functions are defined 

in our algorithm to choose the optimal outcome among multiple choices. Meanwhile, the 

proposed strategy of using the recursive flips is more aggressive than that adopted in TetGen. 

Consequently, it was observed that the proposed algorithm could recover more boundary 

constraints when Steiner points are not allowed. Nevertheless, when Steiner points are 

allowed, the constrained recovery results of the proposed algorithm and TetGen are 

comparable in terms of the number of finally survival Steiner points. Further suppression of 

these remaining Steiner points might be difficult since indecomposable polyhedra are 

observed around these points, as reported in [36, 37].  

The remainder of this article is organized as follows. Section 2 illustrates the general 

concept and implementation of recursive shell transformations. Section 3 details how to 

                                                 

‡
Here, the degree of a covering mesh refers to the number of elements that share the supporting edge in this mesh. A shell is 

reduced if the degree of the new covering mesh is becoming smaller than that of the old mesh. In particular, if the degree of 

the new mesh becomes zero, the shell is completely reduced, and the new mesh is a completely reduced mesh; otherwise, the 

shell is partially reduced, and the new mesh is a partially reduced mesh. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

6 

reduce a shell optimally in the context of boundary recovery. Section 4 addresses the 

application of the proposed flips in a boundary constrained meshing algorithm. Section 5 

provides various examples of numerical experiments demonstrating the effectiveness and 

efficiency of the improved algorithm. Section 6 concludes with outcomes of the study. 

2. RECURSIVE SHELL TRANSFORMATIONS 

2.1 An illustrative example 

To help readers better understand the above recursive scheme, Figure 3 illustrates how the 

proposed scheme of recursive flips works on a local mesh composed of two shells (see Figure 

3a), aimed at removing the edge ab from the mesh. Firstly, shell transformation is called on 

the shell of ab. Since the shell cannot be completely reduced, ab still exists in the output mesh 

(see Figure 3b). Nevertheless, the degree of the shell is reduced from 5 to 4. To reduce the 

shell further, the link edge bh is picked and shell transformation is called on the shell of bh 

and reduces this shell completely. Besides, the degree of the shell of ab is reduced from 4 to 3 

after this step (see Figure 3c). Finally, shell transformation is called on the update shell of ab 

to remove ab by a single 3-2 flip (see Figure 3d. Note that the 3-2 flip is a special case of shell 

transformation). 

2.2 A general implementation 

Algorithm 1 presents a general implementation of the recursive shell transformations routine.  

Given an edge e, the calling recursiveST(e, , 0, lmax) attempts to remove e, where lmax limits 

the maximally allowed recursive level. Given a face f and one of its boundary edges e, the 

calling recursiveST(e, f, 0, lmax) attempts to remove f.  

Note that Algorithm 1 expands an edge tree, where the input edge e is the root of this tree, 

and those link edges (e′) inputted for further recursions are children of e. In this fashion, the 

tree is expanded recursively. If a tree node v1 is the ancestor of another tree node v2, we say 

the edge corresponding to v1 is the ancestor edge of the edge corresponding to v2. By this 

definition, the input edge e is the ancestor edge of all other edges.    

Two external routines are employed in Algorithm 1, named shellTransformation and 

pickRecursiveLinkEdge, respectively. The routine shellTransformation attempts to reduce 

a shell and its implementation will be detailed in Section 3. Given a supporting face f in the 

shell of e, the routine pickRecursiveLinkEdge checks whether a further recursion is 

necessary. If yes, the routine returns a link edge between two possible candidates. To filter 

inefficient recursions, the implementation of this routine has been improved through the 

following guidelines: 

(1) Do not return a boundary edge. 

(2) If the tetrahedra sharing f overlap the shells of the ancestor edges of e, return nothing. 

(3) Return a reflex edge only. In Figure 4, the faces ap2p3 and ap3p4 form a reflex angle if 

viewed from the point b; correspondingly, ap3 is called a reflex edge of the face abp3. 

3. SINGLE CALLING OF SHELL TRANSFORMATIONS   

3.1 A general implementation 

3.1.1 Introduction and terms. The routine shellTransformation employed in Algorithm 1 

attempts to reduce a shell. Its key step is the optimal triangulation of the skirt polygon. In 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

7 

[33], Shewchuk presented a dynamic programming algorithm [38] to triangulate the skirt 

polygon completely and optimally. Nevertheless, the algorithm developed in this study finds a 

partial triangulation that corresponds to an optimal covering mesh.  

Algorithm 1. The routine of recursive shell transformation 

recursiveST(e, f, l, lmax) 

Inputs: 

the supporting edge, denoted e 

a face containing e that the routine attempts to remove, denoted f     

the recursive level with an initial value of zero, denoted l 

the maximally allowed recursive level, denoted lmax 

Variables: 

the ending nodes of an edge, denoted a(·) and b(·) 

the skirt polygon of the shell of an edge, denoted P(·) 

the set of elements containing an edge, denoted S(·)  

a set of link faces contained in S(·), denoted F(·) = { f1′, f2′, …, fm′}, where m = |F(·)| 

1. if | S(e)| <= 0 or (f !=  and f  F(S(e)))  

2.   return success 

3. shellTransformation(a(e), b(e), f, P(e), S(e))  

4. if | S(e)| <= 0 or (f !=  and f  F(S(e)))  

5.   return success 

6. if l >= lmax /* the recursive level is limited under lmax. */ 

7.   return fail 

8. m = |S(e) | /* record the size of the shell S(e) */   

9. for i = 1 to m 

10.   e′ = pickRecursiveLinkEdge(fi′) /* filters are set to avoid inefficient recursions */  

11.   if e′ !=   

12.     recursiveST(e′, fi′, l+1, lmax) /* recursive calling */ 

13.     if |S(e) | < m /* S(e) is reduced as well */ 

14.       return recursiveST(e, f, l, lmax) /* recursive calling */ 

15. return fail   
 

Let the skirt polygon be defined by a set of consecutive mesh nodes  

1 1 1{ , , }mmp p p p    . 

For each node (1 )ip i m  , i mp   is its alias. ,R i j  defines a ring of edges whose ending 

nodes are 

1

,

1

{ , , } if 1
P

{ , , , } if 1

i i j

i j

i i j m

p p p i j m

p p p j i m



 

   
 

  

. 

Assuming ,Ti j  is the triangulation of ,R i j , the part of covering mesh dual to ,Ti j  is 

defined by the set of elements 

, ,{conv( , ),conv( , ) | T }i j i jt a t b t    . 

where conv( )  refers to a tetrahedron formed by a face and a node. 

Figure 5 depicts a general case of the partial triangulation of a skirt polygon, in which the 

core is defined by the set of mesh nodes  

1 1 1{ , , }n nc c c c cp p p p   ,          



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

8 

and the triangulated part of the skirt polygon is depicted by 

1,T {T | 1,2, , }
j jc c j n


  . 

Consequently, the covering mesh that corresponds to this partial triangulation is 

1

1

1

K ,

{tetr( , , , ) | 1, 2, , }

j j

j j

t c

n

t c c
j

c c cp p a b j n







   

 

  

,           (1) 

where t  and c  refer to the sets of tetrahedra covering the triangulated region and the 

core region of the skirt polygon, respectively, and tetr( )  refers to the tetrahedral element 

formed by four specified nodes. 

  Let (K)Q  be the main quality index of a covering mesh K . (K) 0Q   for a valid 

covering mesh. (K)Q  is larger, the mesh is better. By defining (K)Q  properly (see Section 

3.3), we set up our problem to be a problem having optimal substructures such that an optimal 

solution can be constructed efficiently from optimal solutions of subproblems. Based on the 

partitioning of the covering mesh defined in Equation 1, shell transformation can thus be 

implemented as a routine including the following steps: 

(1) Compute optimal solutions of K , (1 ,  and )i j i j m i j    (denoted by ,K i j

opt ). 

(2) Enumerate all valid partial triangulations, and pick up the one with maximal covering 

mesh quality.  

3.1.2 Computing optimal solutions of K ,i j . We define a matrix qM  to record the quality of 

,K
i j

opt  (denoted by ( , )q i jM ). ( , 1)q l l  M  when 1 l m   and ( ,1)q m M . Selecting 

a node ,Pk i jp   other than ip  and jp , the triangulation of ,R i j  includes three parts (see 

Figure 6): 

, . , , ,T T T Ti j i k k j i k j   , where , ,T { }i k j i k jp p p  . 

Evidently, ,Ki j  is a function of k , denoted by  

, . , , ,K ( ) K K Ki j i k k j i k jk    , where , ,K {conv( ,a),conv( ,b)}.i k j i k j i k jp p p p p p    

We define a new function Qf  to compute the quality of a mesh K  by its subsets: 

  1 2(K) ( , (K ), (K ), , (K ))KQ K nQ f n Q Q Q .                                     (2) 

Here, K ( 1,2, , )i Ki n  are nonoverlapping subsets of K  and 

  
1

K
Kn

i
i

  . 

Thus,  

  
,

, ,
P , ,

( , ) max (3, ( , ), ( , ), (K ))
k i j k i j

q Q q q i k j
p p p p

i j f i k k j Q
 

M M M . 

Algorithm 2 presents a routine that fills in all useful elements of qM , which could be in 

either side of the main diagonal of qM . Besides, another matrix kM  is defined to record the 

values of k  that maximize ,(K ( ))i jQ k , and one diagonal of qM  and kM  is computed at a 

time in the increasing order of the size of ,R i j  (i.e., number of vertices).  

3.1.3 Enumerating all valid partial triangulation cases. Firstly, we introduce the concept of 

triangulation graph. It is a directed graph defined on a polygon that is bounded by a set of 

nodes 1 2{ , , }mp p p  . A graph node corresponds to a polygon node, and a graph edge 

,i jp p   exists if ( , ) 0q i j M , illustrating that a valid triangulations exists for the ring 

,R i j . Evidently, the core of the skirt polygon corresponds to a simple cycle of the 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

9 

triangulation graph. The remaining issue is how to evaluate the quality of a simple cycle such 

that we could find an optimal one among all possible choices. 

For a simple cycle denoted by 1 1 1{ , , }n nc c c c cp p p p   , its dual covering mesh K  

could be reconstructed by Equation 1. In this study, a quality vector including three quality 

indices of K  is introduced to evaluate the quality of c .  

The first quality index is (K)Q , which is computed by 

1 2 1, ,

1 2 1

(K) (2, (K ), (K ))

        ( +1, (K ), (K ), , (K ))

         = ( +1, (K ), ( , ), , ( , )

n

opt
Q c t

opt opt
Q c c c c c

Q c q q n

Q f Q Q

f n Q Q Q

f n Q c c c c





M M ）

.        (3) 

In recursive shell transformations, a major goal of shell transformation is to remove a face 

adjacent to the parent of the present supporting edge. Denoting this face by f, the second 

quality index is   

1 K does not include 
(K)

0 K includes 

f
Q

f


  


. 

The third quality index reflects the preference over a covering mesh with a smaller degree 

value, computed by  

  ( K ) b i gQ N n   , 

where n  is the size of the simple cycle (i.e., number of vertices), and bigN  is a big enough 

value such that (K) 0Q   always. 

The priority of (K)Q , (K)Q  and (K)Q  in the quality vector may vary. To be general, 

the quality vector is denoted by 

c(P ) ( (K), (K), (K))v Q Q Q Q V .           (4) 

To choose an optimal simple cycle, the quality vectors of different cycles are compared 

lexicographically. 

Algorithm 2. Filling in 
qM  and kM  

fillInMatrices(a, b, P, Mq, Mk) 

Inputs:  

a and b: the ending nodes of the supporting edge  

P = {p1, p2, …, pm}: the skirt polygon of a shell  

1. for d = 2 to m - 1  

2.   for i = 1 to m   

3.     j′ = i + d  

4.     j = j′ > m ? j′ - m : j′   

5.     for k′ = i + 1 to j′ – 1 

6.       k = k′ > m ? k′ - m : k′ 

7.       q = fQ(3, Mq(i, k), Mq(k, j), Q(Ki,j(k)))) 

8.       if k′ = i + 1 or q > Mq(i, j) 

9.         Mq(i, j) = q 

10.         Mk(i, j) = k 

 

3.1.4 The shell transformation routine. Algorithm 3 presents the shell transformation routine. 

In general, the optimal simple cycle is not empty and its size ( n ) is smaller than the size of 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

10 

the original skirt polygon ( m ). Nevertheless, two special cases may occur:  

(1) If n m , the core is the entire skirt polygon and no shell transformation is performed. 

(2) If 0n  , the core is empty and the complete shell transformation is performed.  

3.2 Mesh validity check 

In Algorithm 3, the output mesh needs to meet two general validity conditions: 

(1) All elements must have positive volumes. 

(2) The mesh must not contain supporting faces around any ancestor edge of ab.  

For boundary recovery purposes, additional validity conditions are defined for the output 

mesh:  

(1) BRC1. The mesh must not intersect a given boundary edge. 

(2) BRC2. The mesh must not intersect a given boundary face. 

(3) BRC3. The mesh must not intersect boundary edges more than the input mesh. 

(4) BRC4. The mesh must not intersect boundary faces more than the input mesh. 

Note that these additional conditions are not mandatory. They are selectively enabled in 

accordance with the purposes of calling Algorithm 3.  

Algorithm 3. A general routine of shell transformation 

shellTransformation(a, b, f, P, Kold) 

Inputs:  

a and b: the ending nodes of the supporting edge 

f: a face containing ab that the routine attempts to remove 

P = {p1, p2, …, pm}: the skirt polygon of the shell 

Kold: the old covering mesh of the shell 

1. fillInMatrices(a, b, P, Mq, Mk)  

2. G: the triangulation graph with Mq as its matrix representation 
3. 1 1 1{ , , }n nc c c c cp p p p   : an optimal simple cycle of G 

4. K: the covering mesh dual to Pc, see Equation 1  
5. V(K) & V(Kold): the quality vectors of K & Kold, see Equation 4 
6. Compare V(K) & V(Kold) lexicographically.  
7. If K is better than Kold 

8.   Remesh the shell by replacing Kold with K 
 

3.3 Quality functions 

In this study, the (K)Q  of a valid mesh is computed by either of the two quality functions 

defined as below. 

Let ( )q t  be the quality function of a tetrahedron. The first measure of (K)Q  is evaluated 

by the worst element in K :  

1

K

1 If K is invalid 
(K) (K)

min{ ( )} otherwise
i

i
t

Q Q
q t




  



.          (5) 

Thus, 

1 2
1

( , (K ), (K ), , (K )) min{ (K )}
K

K

n

K n i
i

f n Q Q Q Q


 . 

The second measure of (K)Q  reflects the preference over a covering mesh that intersects 

the input boundary constraints (denoted by Bc ) least, computed by  

  2

b i g c

1 I f  K  i s  i n v a l i d  
( K ) ( K )

( K , B ) o t h e r w i s e
Q Q

N I


  


,        (6) 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

11 

where c(K,B )I  is the number of intersections between K  and Bc , and bigN  is a big 

enough value such that big c(K,B ) 0N I   always.  

  Thus,  

  1 2 1

(K ) (K ) 0 1,2, ,
( , (K ), (K ), , (K ))

1 otherwise

K

K

n

i i K

K n i

Q Q i n
f n Q Q Q 


  

 
 


   (7) 

  An issue here is that the intersections are defined at mesh edges and faces while Equation 7 

is computed in an element-wise fashion. A resolution on this issue is presented as below: 

(1) Let c( ,B )fI f  record how many times the interior of a face f  is intersected by Bc . 

The share of c( ,B )eI f  on either element adjacent to f  is c( ,B ) / 2fI f . 

(2) Let c( ,B )eI e  record how many times the interior of an edge e  is intersected by Bc . 

The share of c( ,B )eI e  on any element adjacent to e  is c( ,B ) /e eI f n , where en  is 

the total number of elements adjacent to e . 

In the above computations, only those intersections defined at interior edges and faces of a 

shell will be considered since the outskirt of the shell remains unchanged in Algorithm 3. 

Besides, the en  values of interior edges are computed as below. 

(1) size of the coreen   for the supporting edge; 

(2) 3en   for the edges bounding the core (e.g., the edge p2p5 in the bottom of Figure 2); 

(3) 4en   for other interior edges (e.g., the edge p3p5 in the bottom of Figure 2). 

4. THE IMPROVED CONSTRAINED MESHING APPROACH   

4.1 The overall flowchart 

Given a surface triangulation that defines the meshing domain, the tetrahedral meshing 

algorithm takes the following steps to generate a boundary constrained mesh [15]: 

(1) Input the boundary triangulation. 

(2) Construct an initial Delaunay triangulation with the outer box. 

(3) Insert boundary points with the Bowyer-Watson algorithm [39, 40]. 

(4) Recover boundaries with the proposed algorithm. 

(5) Remove exterior elements. 

(6) Insert field points with the modified Bowyer-Watson algorithm [41]. 

(7) Improve mesh quality. 

The main procedure of the boundary recovery step (Step 4) inserts Steiner points at the 

intersection positions of lost constraints and mesh entities [13, 15]. To reduce the usage of 

Steiner points in boundary recovery, a preprocessing step and a postprocessing step are placed 

before and after the main procedure, respectively. 

(1) Preprocessing step. Recover edges and faces by recursive shell transformations. No 

mesh points are inserted or removed in this step.  

(2) Postprocessing step. Suppress Steiner points by recursive shell transformations. 

For constrained recovery, the remaining Steiner points after the postprocessing step are 

relocated to the domain interior [15]. 

4.2 The preprocessing scheme 

4.2.1 Edge recovery. A boundary edge is lost because it intersects some mesh edges or faces. 

If these intersecting entities are removed, the edge is recovered. Based on this idea, Algorithm 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

12 

4 employs Algorithm 1 to remove entities intersecting a boundary edge individually. The 

timing performance of Algorithm 4 depends on lmax. lmax is larger, more shell transformations 

are executed; thus, more edges are likely to be recovered. Algorithm 5 employs Algorithm 4 

iteratively to recover edges by increasing lmax in each iterative step, and it ends if all edges are 

recovered, or the mesh quality is not improved in three consecutive iterative steps. In 

Algorithm 5, the routine evalMesh computes the mesh quality index with respect to edge 

recovery.  

Algorithm 4. The edge recovery routine with a predefined maximal recursive level 

recvBndEdgesByST(E, lmax) 

Inputs: 

a set of lost boundary edges, denoted E = { e1, e2, …, em} 

the maximally allowed recursive level, denoted lmax 

Variables: 

a set of mesh entities that intersect an edge, denoted G(·) = { g1, g2,…, gn}  

1. for i = 1 to |E|  

2.   findInstEntsOfBE(ei, &G(ei)) /* find the set of entities intersecting ei */ 

3.   if |G(ei)| <= 0  

4.     continue 

5.   for j = 1 to |G(ei)|  

6.     if gj is an edge 

7.       recursiveST(gj, , 0, lmax)  

8.     else if gj is a face  

9.       for k = 1 to 3 

10.         if recursiveST(bk, gj, 0, lmax) succeeds /* bk is a boundary edge of gj */ 

11.           break 

12. updateLostEdges(E)  /* update the list of lost boundary edges */ 
 

Algorithm 5 is called twice in the edge recovery procedure. The mesh validity condition 

BRC1 (see Section 3.2) is enabled in the first calling to ensure no new entities intersect the 

boundary edge that is being recovered. The routine evalMesh evaluates a mesh by the number 

of lost boundary edges. Besides, Equation 5 is adopted to define (K)Q , the vector used to 

evaluate the quality of a simple cycle is computed by  

c(P ) ( (K), (K), (K))=[ (K), (K), (K)]v Q Q Q Q Q Q   Q V . 

However, the validity condition BRC1 cannot prevent new entities from intersecting the 

boundary edges other than the one that is being recovered. To remove the intersections 

further, Algorithm 5 is restarted by replacing BRC1 with BRC3 as the mesh validity 

condition. The routine evalMesh evaluates a mesh by the number of intersections between all 

boundary edges and mesh entities. Besides, Equation 6 is adopted to define (K)Q , the vector 

used to evaluate the quality of a simple cycle is computed by  

c(P ) ( (K), (K), (K))=[ (K), (K), (K)]v Q Q Q Q Q Q   Q V . 

Nevertheless, it is time-consuming to implement BRC3 by computing intersections and 

counting their numbers in real time. To reduce the timing costs, a hash table is maintained to 

record the mesh entities intersected by lost boundary edges. In each item of the table, the 

number of intersections between lost boundary edges and a certain mesh edge or face is kept. 

The hash table is compact because only a few boundary edges are lost after the first calling of 

Algorithm 5.  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

13 

For performance sake, the entities intersected by lost edges are not recorded once they are 

created; instead, they are recorded in the routine updateLostEdges (see Line 12 of Algorithm 

4). This strategy may increase the number of intersections temporarily because some 

intersected entities created by shell transformation callings are not recorded in the table. 

However, if these entities survive the current calling of Algorithm 4, they will be inserted into 

the hash table afterwards and possibly removed in the next calling of Algorithm 4. 

Note that both callings of Algorithm 5 never destroy recovered edges because the 

supporting edges in shell transformations are always non-boundary. 

Algorithm 5. The edge recovery routine by increasing the maximal recursive level iteratively 

recvBndEdgesByST_Wrap(E) 

Inputs: 

a set of lost boundary edges, denoted E 

Variables: 

the maximally allowed recursive level, denoted lmax; initial value is 0 

the number of consecutive unsuccessful iterations, denoted mf; initial value is 0 

1. while (|E| > 0 and mf < 3) 

2.   evalMesh(EDG_RECV, &qb)   

3.   recvBndEdgesByST(E, lmax)  

4.   evalMesh(EDG_RECV, &qa)   

5.   qa > qb ? mf = 0 : mf += 1 

6.   lmax += 1  
 

4.2.2 Face recovery. A boundary face is lost because its boundary and/or its interior intersect 

mesh edges. The mesh edges intersecting face boundaries have been tackled in edge recovery; 

therefore, face recovery only needs to remove mesh edges intersecting face interiors.  

The flowchart of face recovery is like edge recovery. It also contains two callings of a 

routine that removes the intersecting edges of boundary faces by increasing the allowed 

recursive levels iteratively. However, different validity conditions are enabled in the two 

callings. The first calling attempts to reduce the numbers of boundary faces whose interiors 

are intersected by mesh entities, and BRC2 is enabled as the validity condition. The second 

calling attempts to reduce the intersections in the interiors of boundary faces, and BRC4 is 

enabled as the validity condition. 

4.3 The postprocessing scheme 

Steiner points are moved to the domain interior after the main procedure of boundary 

recovery. For each Steiner point, the proposed scheme employs Algorithm 1 to remove the 

edges adjacent to this point. The point is removed directly when a mesh configuration shown 

in Figure 7 is formed (here, a is the point for removal). In [32], such a mesh is called a 

Christmas tree. 

The attempts of suppressing all surviving Steiner points are repeated a few times until no 

more benefits are expected.   

5. RESULTS 

We choose two groups of surfaces as inputs to demonstrate the proposed algorithm. The 

surfaces in the first group are mainly composed of highly stretched elements. The surfaces in 

the second group are some inputs for computational aerodynamics simulations.   



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

14 

5.1 Surface inputs composed of highly stretched triangles 

The first group includes seven meshes. The B747 aircraft model was downloaded from the 

mesh database maintained by INRIA [42], and the other six models are available from the 

repository in edge.mcs.drexel.edu. All these examples contain many badly shaped triangles. If 

no effective strategies are developed to reduce the number of Steiner points, boundary 

recovery may fail to tackle these examples, or succeed but insert an excessive number of 

Steiner points.  

Figures 8 and 9 present the pictures of the Mohne and B747 meshes, respectively. The 

pictures of other models could be seen in the literature [5, 9, 10]. 

5.1.1 Comparison of different algorithms. Table 1 compare the numbers of Steiner points 

inserted by the proposed boundary recovery algorithm with results published in [10] and those 

by TetGen (version number: 1.5) and a recent version of GHS3D (version number: 4.2-2; 

referred to as new GHS3D hereafter)
§
 [43]. The new GHS3D was licensed in September 

2010. The test data of both TetGen and the new GHS3D are provided by Dr. Hang Si. Those 

tests were executed on a MacBook Pro laptop (CPU: 2.8GHz; Memory: 4GB), i.e., the host 

computer of the license for GHS3D. The tests of the proposed algorithm were executed on a 

Sony laptop (CPU: 2.3GHz; Memory: 4GB). 

  The Mohne model used in [10] is slightly different with the model used by us. In [10], it 

was reported that the model contains 2,763 nodes and 5,566 faces. The model used in our 

tests contains 2,760 nodes and 5,560 faces. The Thepart, Boeing_part and Thru-mazewheel 

models have exactly same surface data as those reported in [10]. For unknown reasons, the 

new GHS3D failed to tackle the Cami1 and B747 aircraft models. In [5], it was reported that 

GHS3D can mesh the Cami1 model by inserting 14 Steiner points. For the Thru-mazewheel 

model, the new GHS3D inserts more Steiner points than its previous version (41 vs. 18).   

In most of the tests, the numbers of Steiner points inserted by the proposed algorithm are 

minimal, apart from the test on the Boeing_part model, where TetGen requires 4 Steiner 

points for constrained recovery while the proposed algorithm inserts 5 Steiner points. In 

general, TetGen and the proposed algorithm produce comparable performance data.  

In summary, the data listed in Table 1 reveal that the recursive flips are very useful to 

improve the topology of a mesh and thus benefit the subsequent boundary recovery procedure 

by reducing the usage of Steiner points. For instance, for 3 of 7 models (Cami1a, Thepart and 

B747), the proposed algorithm inserts no Steiner points. For the other four inputs, the 

numbers of inserted Steiner points range from 1 to 5. These numbers are much smaller than 

those by two versions of GHS3D and Liu’s algorithm. For instance, the proposed algorithm 

inserts 5 Steiner points to mesh the Boeing_part model. However, the algorithm proposed by 

Liu and Baida [10] and the new GHS3D insert 25 and 22 Steiner points, respectively.  

Minimizing the usage of Steiner points is helpful for enhancing the robustness of boundary 

recovery. It was reported that the old GHS3D failed to mesh the Mohne and Boeing_part 

models [10]. Although the reasons that the new GHS3D failed to mesh the Cami1 and B747 

aircraft models are unknown, from our experience, vulnerable geometric computations 

regarding Steiner points may account for these failures. 

Table 2 compares the timing performance of the proposed algorithm, TetGen and the new 

GHS3D. The results show that TetGen runs fastest in these tests, and both our algorithm and 

TetGen run much faster than GHS3D. By comparison with TetGen, the extra computations 

for optimal and partial shell transformations do affect the timing data of boundary recovery. 

An alternative approach would be to use simpler algorithms for initial recovery of missing 

                                                 

§It needs to be emphasised that the comparison between our code and GHS3D is not a comparison of the overall performance 

of two codes. The comparison presented here mainly focuses on the performance difference of two codes in terms of the 

number of Steiner points inserted in boundary recovery for a set of common models. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

15 

edges and faces, and then use partial and optimal shell transformations only for harder 

recovery of remaining missing edges and faces. Nevertheless, as to be demonstrated in 

Section 5.2, the timing cost consumed by boundary recovery usually takes a very small 

fraction of the entire meshing time cost in real applications. We leave the further optimization 

of efficiency of our algorithms for future works. 

5.1.2 Performance of the proposed boundary recovery scheme. The proposed edge recovery 

scheme is of paramount importance for reducing the usage of Steiner points, which calls 

Algorithm 4 twice to reduce the number of lost edges (n1) and the number of intersections (n2) 

between lost edges and mesh entities, respectively. A lost boundary edge may intersect mesh 

entities more than once. The intersection number of a boundary edge records how many times 

this edge is intersected. A new index n3 is introduced to record the maximal intersection 

numbers of all boundary edges. Taking the Cami1 model as an example, Figure 10 highlights 

the lost edges in different phases of the edge recovery process. Table 3 illustrates how n1, n2 

and n3 vary against the allowed recursive level (lmax) that increases continuously in the main 

loop of Algorithm 5. The values when lmax = -1 correspond to the status before calling 

Algorithm 5. 

In the first calling of Algorithm 5, 203 of 243 lost edges are recovered when lmax increases 

from -1 to 2. n2 decreases by one order, from 1,505 to 145. n3 decreases from 41 to 21, not so 

remarkably. With lmax increasing to 9, n1 decreases stably to 13, and n2 and n3 also decrease to 

39 and 12, respectively. However, the first calling of Algorithm 5 may create new entities that 

intersect the boundary edges other than the one is being recovered. Therefore, n2 is observed 

to go up temporarily when lmax increases from 4 to 5. n3 is observed to go up temporarily as 

well when lmax increases from 5 to 6.  

In the second calling of Algorithm 5, a hash table is used to reduce the time-consuming 

intersection computations. The size of this table, n4, is introduced in Table 3. n2 goes up 

temporarily in the first iterative step because many new mesh entities that intersect lost edges 

are not recorded in the hash table. After they are recorded, n2 is reduced stably. After the 

second calling, only 10 edges are lost, and each edge intersects one mesh entity once.  

Finally, the main procedure of boundary recovery [13, 15] inserts 10 Steiner points, and 

only one Steiner point survives the shell transformation based suppression scheme.  

5.2 Surface inputs for computational aerodynamics simulations 

5.2.1 Sequential mesh generation of the F16 aircraft model. An F16 aircraft model is selected 

in this test (see Figure 11). Grid sources [44] are configured to refine local meshes where 

small element sizes are necessary. The mesh generation is conducted sequentially on the Sony 

laptop. Table 4 summarizes the performance data of the mesh generation process. The surface 

elements with minimal interior angles below 15 degrees are referred to as thin triangles, and 

the dihedral angle between neighboring surface elements are referred to as small angles if 

they are below 15 degrees.  

All constraints are recovered by the proposed preprocessing scheme of boundary recovery. 

The Delaunay meshing procedure consumes about 30 seconds to generate nearly 4 million 

tetrahedral elements, 0.59 second of which is consumed by the boundary recovery procedure. 

The mesh improvement procedure [21] consumes about 227 seconds, about seven times 

slower than the Delaunay meshing procedures in this test.   

5.2.2 Parallel mesh generation of the F16 aircraft model. The tested parallel mesh generation 

approach [23, 24] includes four main steps: 

(1) Domain decomposition. The input surface mesh is decomposed into many subdomains 

by inserting inter-domain surface meshes inside the domain.   

(2) Mesh generation. The subdomains are distributed and meshed individually in parallel. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

16 

(3) Mesh repartitioning. The mesh is repartitioned and then redistributed to balance the 

loads and minimise the communications. 

(4) Quality improvement. The redistributed submeshes are improved individually.  

The test was performed on a Dawning TC5000 Cluster composed of 30 computer nodes. 

Each node contains two six-core CPUs and the CPU frequency is 2.66GHz. The accessible 

memory size of each computer node is 24GB. In this test, the F16 aircraft model is selected, 

and 32 computer cores are used. 749 seconds are consumed totally to output a mesh 

composed of about 123 million tetrahedra. Table 5 presents the performance data. 

Our focus is on Step 2, where subdomains are meshed by the proposed Delaunay mesher. 

Constrained boundary recovery is required to maintain the conformity of inter-domain 

meshes. The original surface mesh contains 27 thin triangles and 13 small angles. The domain 

decomposition step introduces 15 thin triangles and 1,843 small angles. In general, the surface 

quality of subdomains is much worse than that of the original input. Therefore, the parallel 

mesh generation challenges the boundary recovery algorithm more than its sequential 

counterpart. In our experience, the classic boundary recovery algorithm proposed in [13, 15] 

occasionally failed during the process of meshing some subdomains. However, the proposed 

algorithm behaved very reliable and effective in this test, where all boundary constraints are 

recovered in the preprocessing step.  

The mesh generation step consumes 48.44 seconds, accounting for 6.5% of the total time 

cost. The boundary recovery only consumes 0.68 seconds averagely. Domain decomposition 

and quality improvement are two most time-consuming steps, accounting for 46.0% and 

34.9% of the total time cost, respectively.  

Figure 12 presents a coarser volume mesh of the F16 aircraft model. This mesh is created in 

parallel on 8 computer cores, containing about ten million tetrahedral elements. 

5.2.3 Local remeshing of a wing/pylon/finned-store separation simulation. The last case is a 

wing/pylon/finned-store separation simulation executed on the Dawning TC5000 Cluster. The 

main loop of this simulation includes four main steps: 

(1) Flow computation. Compute the unsteady flow by a finite volume solver.  

(2) Motion computation. Compute aerodynamic forces and moments based on flow 

simulation results, with which as input, the positions of moving bodies in the next time 

step are determined using the six degrees-of-freedom equations of motion. 

(3) Mesh movement. Move the mesh points to adapt the movement of mesh boundaries.  

(4) Local remeshing. If mesh movement yields elements with unacceptable quality, the 

holes are formed by deleting these elements. Next, a new mesh is formed by merging 

undeleted elements and new elements filled in the holes. Finally, the solution is 

reconstructed by interpolation.  

The computation conditions of this simulation can be found in [45]. The input volume 

mesh contains 1,111,001 tetrahedral elements and 194,754 nodes. Figure 13 shows the cut 

views of the volume meshes at different time steps (ts), where Figure 13b and 13c compare 

the meshes before and after a local remeshing calling when ts =0.38s. Figure 14 presents the 

contour plot of the computed pressure distributions during the separation. 

The proposed Delaunay mesher is employed in the local remeshing step, where constrained 

recovery is mandatory to maintain the conformity of new elements and undeleted elements. 

The boundaries of holes usually contain a few thin triangles and small angles because interior 

volume elements are deformed in the mesh movement step. In previous studies, the local 

remeshing step is restarted by adding neighboring elements to expand the holes if the 

boundary recovery algorithm fails to mesh these holes. In our experiments, this backup 

scheme has never been employed. In the total 16 remeshing callings, all the boundary 

recovery processes end successfully in their preprocessing steps. 131,045 elements are 

generated averagely in each remeshing step. If not counting the computing time of quality 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

17 

improvement, the Delaunay meshing procedure consumes 1.2 seconds averagely, 0.11 second 

of which is consumed by the boundary recovery procedure. 

6. CONCLUSIONS 

Minimizing the usage of Steiner points can improve the robustness and efficiency of 

boundary recovery and reduce the damage of Steiner points to element quality. In this study, 

this goal is achieved by a new flip named shell transformation. It searches the optimal mesh of 

a shell among multiple choices, and its recursive scheme could overcome the limits of a single 

flip. The boundary recovery algorithm is evidently improved by applying the new flip (and its 

recursive scheme) in the preprocessing and postprocessing procedures of boundary recovery. 

Various difficult boundary constrained meshing tasks are tested and the performance data are 

provided to demonstrate the effectiveness and efficiency of the improved algorithm. 

Appendix 

In [15], we presented a boundary recovery algorithm that first inserts Steiner points at 

intersection positions between lost boundary constraints and the tetrahedral mesh to achieve a 

conforming recovery, and then removes these points from the surface to achieve the final 

constrained recovery. The problem of constructing a conforming tetrahedralization is much 

easier than the problem of constructing a constrained tetrahedralization. If all the possible 

intersection and subdivision cases [4, 15] are covered, it is not too hard to see that the 

conforming tetrahedralization procedures presented in [4, 11, 15] can construct the desired 

tetrahedralization. Interested readers are referred to [11] for the proofs. Nevertheless, the 

problem of constrained boundary recovery is much more difficult. The previous works [5-6] 

provide different levels of algorithmic and theoretical details. In this appendix, we will 

provide the theoretical proofs to explain why the algorithm presented in [15] could output a 

constrained recovery result after calling a finite number of local operations on the tetrahedral 

mesh. Besides, since these proofs do not consider the round-off errors due to floating point 

numbers, we will investigate some issues that may challenge the robustness of the algorithm 

in the real world. 

A.1 Terms and definitions 

Definition 1 (visibility) [6] 

Let △ABC be a triangle with O as the centroid, and P be a point shown in Figure A.1. The 

vertices of △ABC are called directionally oriented if the outer normal direction ON  is 

defined as AB BC . The triangle △ABC is said to be visible to P if 0ON OP  . 

The visibility of △ABC to P is equivalent to the signed volume of the tetrahedron ABCP 

being positive, or, the tetrahedron ABCP being valid.  

 

Definition 2 (consistently oriented triangle set) 

Let 
1 2,f f   be a pair of triangles meeting at one common edge PQ . The vertices of both 

1f  and 
2f  are directionally oriented. If the direction of PQ  in 

1f  is opposite to its 

counterpart in 
2f , the pair of triangles is called consistently oriented.  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

18 

Let  | 1,2, ,i ff i n F  be a set of connected triangles. If an arbitrary pair of triangles 

meeting at one edge, denoted by , (1 , )i j ff f i j n i j    ， , is consistently oriented, F  

is called consistently oriented as well, as shown in Figure A.2.  

Let ( )( 1,2, , )i fr f i n  be the same triangle as if  but with opposite orders of vertices. 

Evidently, if F  is consistently oriented, the triangle set  

 ( ) ( ) | 1,2, ,i fr f i n R F  

is consistently oriented as well. In brief, ( )R F  is called the reverse of F . 

  

Definition 3 (ball)  

Let P  be a point. The set of tetrahedra incident to P  is called the ball of P , as shown in 

Figure A.3, denoted by  

 ( ) | 1,2, ,i eP e i n B .  

 

Definition 4 (2-way cutting) [6] 

Let P  and ( )PB  be defined as above. 
1( )PB  and 

2 ( )PB  are two sets of connected 

tetrahedra. The set 
1 2{ ( ), ( )}P PB B  defines a 2-way cutting of ( )PB  if  

(1) 
1( )P B  and 

2( )P B ; 

(2) 
1( ) ( )P PBB  and 

2( ) ( )P PB B ; 

(3) 
1 2( ) ( )P P B B ; 

(4) 
1 2( ) ( ) ( )P P P B B B . 

The set of triangles shared by 
1( )PB  and 

2 ( )PB  is referred to as the poly-triangle 

separator of ( )PB , denoted by 
1 2( ),I B B .  

Figure A.4 presents a 2-way cutting, where  
1

2 6 3 3 6 5 3 5 4 4 5 1 1 5 2 2 5 6( ) { , , , , , }P PP P P PP P P PP P P PP P P PPP P PP P PB , 

2

7 2 3 7 3 4 7 4 1 1 2 7( ) { , , , }P PP P P PP P P PP P P PPP PB , 

and the poly-triangle separator refers to  
1 2

1 2 2 3 3 4 4 1, ) {( , , },PPP PP P PP P PP PI B B . 

 

Definition 5 (n-way cutting) 

Let P  and ( )PB  be defined as above. ( ) ( 1,2, , ,  2) i P i n n B  is a set of connected 

tetrahedra. The set { ( ) | 1,2, , }i P i nB  defines an n-way cutting of B(P) if  

(1) ( )  ( 1,2, , )i i nP  B ; 

(2) ( ) ( ) ( 1,2, , )i P P i n B B ; 

(3) ( ) ( )  (1 , , )i jP P i j n i j    B B ; 

(4) 
1

( ) ( )
n

i

i P P


B B . 

Let )( , ( )i j i jI B B  be the set of triangles shared by ( )i PB  and ( )j PB . If )( ,i jI B B  

is not empty, we say )( ,i jI B B  is a poly-triangle half-separator of B(P).  

Figure A.5 presents a 4-way cutting, where  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

19 

1

2 5 6 2 6 3 3 6 5 3 5 4( ) { , , , }P PP P P PP P P PP P P PP P PB , 

2

4 5 1 1 5 2( ) { , }P PP P P PPP PB ,  

3

7 4 1 1 2 7( ) { , }P PP P P PPP PB , 

4

7 2 3 7 3 4( ) { , }P PP P P PP P PB . 

Accordingly, the sets of poly-triangle half-separators are denoted as below.  
1 2

2 5 5 4, ) { }( ,PP P PP PI B B , 

2 3

1 4 2 1, ) { }( ,PPP PP PI B B ,  

3 4

2 7 7 4, ) { }( ,PP P PP PI B B ,  

4 1

2 3 3 4, ) { }( ,PP P PP PI B B .  

A.2 Algorithms and proofs 

A.2.1 Constrained face recovery 

Lemma 1  

Let S  be a point and ( )SB  be the ball of S . The set { ( ) | 1,2}i P i B  is an 2-way cutting 

of ( )PB , and the corresponding poly-triangle separator is denoted by  
1 2

1 1 1, ) { |1 ,( }i i mSPP i m P P    I B B . 

Relabel the points set 1 1{ |1 , }i mP i m P P    such that the boundary of 
1 2 )( ,I B B  is a 

polygon depicted by a set of end-to-end edges, denoted by  

1 1 1{ |1 , }i i mPP i m P P    P . 

Besides, let the exterior boundary of ( 1,2)i i B  be 
1 2, )( ) ( ) (i i C B I B B F B , 

where  

|( ) { 1 }i i

j ij n  F B f   

is the set of exterior faces of iB  bounding ( )SB . 

If  

(1) S  is visible to all the faces in 
1 2( () )F B F B ;  

(2) A valid triangulation exists for the polygon P , and a consistently oriented triangle set 

defining this triangulation is  

{ |1 2}j j m    I f , 

where I  is oriented such that 
1 1

2 2

( ) (

( ) ( )

)

( )

  


  



 

C B I F B

C B R I F B
 

are consistently oriented triangle sets; 

(3) There exists a neighborhood of S  (denoted by * *

1 1( ) { | }U S S S S    ) and two 

subsets of 1( )U S  that defines the respective parts of 1( )U S  separated by 
1 2 )( ,I B B  

(denoted by 1

1 ( )U S  and 2

1 ( )U S ) such that all the points belonging to 1

1 ( )U S  and 
2

1 ( )U S  are visible to I  and ( )R I , respectively, 

there must be two points 1,2)iS i （  such that  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

20 

(1) 1S  is visible to all the faces in 
1( )F B  and I , and 

(2) 2S  is visible to all the faces in 
2( )F B  and ( )R I . 

Proof: 

Since S  is visible to all the faces in 
1 2( () )F B F B , there exists a neighborhood of S, 

(denoted by * *

2 2( ) { | }U S S S S    ) such that all the points belonging to 2 ( )U S  are 

visible to the faces to 
1 2( () )F B F B . 

Let min 1 2min( , )   , * *

min min( ) { | }U S S S S     defines the intersection of 1( )U S  

and 2 ( )U S , i.e., 

min 1 2( ) ( ) ( )U S U S U S  .  

Evidently, min ( )U S  could be subdivided into two parts that belong to the regions bounded 

by 
1( )C B  and 

2( )C B , denoted by 1

min ( )U S  and 2

min ( )U S , respectively. 

1

1 min ( )S U S  , we know 1S  must be visible to all the faces in 
1( )F B  (since 1 2( )S U S

) and I  (since 1

1 1 ( )S U S ).  

2

2 min ( )S U S  , we know 2S  must be visible to all the faces in 
2( )F B  (since 

2 2( )S U S ) and ( )R I  (since 2

2 1 ( )S U S ).                                    □ 

 

Based on Lemma 1, we could develop an algorithm to remove a Steiner point from the 

interior of a boundary face by splitting this point into two points located in either side of the 

face (see Figure A.6). 

Algorithm A.1: face-added-point splitting 

Let S  be a Steiner point at the interior of a lost boundary face f , and  

1 1 1{ |1 , }i i mSPP i m P P    I  

be the set of sub-faces of f  adjacent to S  (see Figure A.6, where 4m  ). Relabel 

the points set 1 1{ |1 , }i mP i m P P    such that the boundary of I  is a polygon 

depicted by a set of end-to-end edges, denoted by  

1 1 1{ |1 , }i i mPP i m P P    P . 

Evidently, I  defines a poly-triangle separator of ( )SB . Let 
1( )SB  and 

2 ( )SB  be 

the two parts of ( )SB  separated by I  and the exterior boundary of ( 1,2)i i B  be 

)( ) (i i C B I F B , 

where  

|( ) { 1 }i i

j ij n  F B f  

is the set of exterior faces of iB  bounding ( )SB . Reorder the vertices of all faces in 
1( )C B  and 

2( )C B  is visible to S . 

Now, we describe the general procedures included in the face-added-point splitting 

algorithm.  

(1) Remove all the elements belonging to ( )SB . 

(2) Retriangulate the polygon P . Let the consistently oriented triangle set defining this 

triangulation be  

{ 1 2j j m    I f | }, 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

21 

where I  is oriented such that 
1 1

2 2

( ) (

( ) ( )

)

( )

  


  



 

C B I F B

C B R I F B
 

are consistently oriented triangle sets; 

(3) Search two points (denoted by 1S  and 2S ) that are respectively located at the 

interior of the regions bounded by 
1( )C B  and 

2( )C B  such that  

(c.1) 1S  is visible to all the faces in 
1( )F B  and I , and 

(c.2) 2S  is visible to all the faces in 
2( )F B  and ( )R I . 

(4) Connect 1S  to all the faces in 
1( )F B  and I , and connect 2S  to all the faces in 

2( )F B  and ( )R I . 

 

We have the following lemma for the face-added-point splitting algorithm. 

Lemma 2  

Let the face-added-point splitting algorithm be defined as above. If ( )SB  is a valid 

tetrahedralization, the algorithm could always output a valid tetrahedralization. 

Proof: 

Firstly, we prove that the algorithm could provide an output as defined in the finite 

number of steps. It is evident that this discussion on Steps (a) and (d) is unnecessary. With 

respect to Step (b), since the polygon P  is planar, the algorithm such as the ear clipping 

algorithm could always provide a valid triangulation in at most 
2 )(mO  steps.  

With respect to Step (c), three conditions listed in Lemma 1 are met exactly. 

(1) Since ( )SB  is a valid tetrahedralization, S  is visible to all the faces in 
1 2( () )F B F B . 

(2) Since the polygon P  is planar, a valid triangulation of P  could always be 

provided as defined in the algorithm. 

(3) Again, since the polygon P  is planar, two half spaces could be defined as below 

{ |  is visible to 

{ |  is visible to

}

 ( })

U P P

U P P





 








I

R I
. 

Two nonempty point sets 1

1 ( )U S  and 2

1 ( )U S  could then be defined as blow. 

1

1 1

2 -

1 1

( ) ( )

( ) ( )

U S U S U

U S U S U

  


 

, 

where * *

1 1( ) { | }U S S S S     is a neighborhood of S, and 1  could be an arbitrary 

positive real number.  

According to Lemma 1, there exist qualified 1S  and 2S  that meet the conditions (c.1) 

and (c.2) listed in Step (c) of the algorithm. As a result, we know the output of the 

algorithm (i.e., 1 2( ) ( )S SB B ) is always valid. 

Next, we prove the algorithm could be finished in the finite number of steps. Again, our 

focus is on Step (c). 

Let * *

2 2( ) { | }U S S S S    . Since 1  could be an arbitrary large number,  

min 1 2 2min( , )     . 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

22 

We could then search a qualified 1S  along the normal direction of f  by using the 

bisectional scheme. In theory, this scheme could always be finished in 2 0 2
log ( )l   steps, 

where 0l  is the initial search length.  

Likely, we could search a qualified 2S  in the finite number of steps.                □ 

 
Furthermore, we could give the following theorem illustrating that we could achieve the 

final constrained recovery of a face by performing the face-added-point splitting algorithm for 

each Steiner point on f .  

Theorem 1 

Suppose f  is a boundary face with its three edges being recovered but its interior being split 

into a union of triangles. We could then perform the finite number of the face-added-point 

splittings to achieve the final constrained recovery. Moreover, the recovery of f  does not 

affect other existing or recovered constraints if the prescribed constraints contain no self-

intersections. 

Proof  

We know from Lemma 2 that each face-added-point splitting reduces an added point. As the 

number of added points (denoted by N) is finite, eventually, we achieve the final constrained 

recovery of f  by performing N splittings. As seen in Figure A.6, all the removed edges by 

the splitting algorithm are connected to the Steiner point. If the prescribed constraints contain 

no self-intersections, the recovery of f  does not affect other existing or recovered 

constraints. 

A.2.2 Constrained edge recovery 

A.2.2.1 Constrained recovery of manifold edges. Here, manifold edges refer to those edges 

shared by two boundary faces. Based on Lemma 1, we could develop a similar algorithm as 

Algorithm A.1 to remove a Steiner point from the interior of a manifold edge (see Figure 

A.7).  

Algorithm A.2: manifold-edge-added-point splitting 

Let e  be a conformingly recovered manifold edge, 1f  and 2f  are two faces meeting 

at e . S  be a Steiner point at the interior of e , and  

1 1 1{ |1 , }i i mSPP i m P P    I  

be the set of sub-faces on 1f  and 2f  (see Figure A.7, where 4m  ). I  is 

subdivided into two parts by e  and each part defines a set of sub-faces on 1f  or 2f , 

denoted by 1I  and 2I , respectively. Accordingly, the boundary polygon of I  (i.e., 

P ) is subdivided into two parts by e , denoted by 1P  and 2P , respectively. 

Let other notations be defined as in Algorithm A.1. Algorithm A.2 includes the 

following steps.  

(a) Remove all the elements belonging to ( )SB . 

(b) Retriangulate the polygon P  by triangulating 1P  and 2P , respectively.  

(c) Search two points 1S  and 2S  meeting the conditions (c.1) and (c.2) defined in 

Algorithm A.1. 

(d) Connect 1S  to all the faces in 
1( )F B  and I , and connect 2S  to all the faces in 

2( )F B  and ( )R I . 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

23 

 

Like Lemma 2, we have the following lemma for Algorithm A.2. 

Lemma 3  

Let Algorithm A.2 be defined as above. If ( )SB  is a valid tetrahedralization, the 

algorithm could always output a valid tetrahedralization. 

The proof of Lemma 3 is very similar to its counterpart of Lemma 2. The differences 

between these two proofs are listed as below. 

(1) With respect to Step (b), a valid triangulation of P  could always be provided by 

triangulating 1P  and 2P , respectively. 

(2) By performing the bisectional search along the average normal direction of 1f  and 

2f , the qualified 1S  and 2S  could be obtained in the finite number of steps. 

It is worth noting that the above differences do not change the theoretical roundness of 

Lemma 3. 

A.2.2.2 Constrained recovery of non-manifold edges. Here, non-manifold edges refer to those 

edges shared by more than two boundary faces. To be concise, we directly present the 

algorithm (Algorithm A.3) for the removal of a Steiner point at the interior of a non-manifold 

edge (see Figure A.8) and then use a lemma (Lemma 4) to depict the property of Algorithm 

A.3.  

Algorithm A.3: non-manifold-edge-added-point splitting 

Let e  be a conformingly recovered non-manifold edge, and the set of faces meeting at 

e  be 

0{ | 1,2, , , }i nf i n f f  S . 

Relabel S  such that the dihedral angle between a pair of neighboring faces   

1 1 1( , )( 1,2, , , )i i i i nf f i n   A A A A  

does not contain other faces. Reorder the vertices of each face such that the normal 

direction of (1 )i nf i   points toward 1iA  while that of 1if   points outward iA  

(see Figure A.8(a)).  

Let S  be a Steiner point at the interior of e , and I  be the set of triangles adjacent 

to S  that are sub-faces of (1 )if i n  . Denote the set of vertices of these sub-faces, 

excluding S , by V . 

I  is subdivided into n  parts by e  and the set of sub-faces on if  is denoted by 

iI . Accordingly, 
1 11{ ( ) | , }ni i nS   B B B  defines a n-way cutting of ( )SB , where 

( )i SB  is the set of tetrahedra located in iA  (see Figure A.8(b)); 0{ |1 , }i ni n  I I I  

defines a group of poly-triangle half-separators, i.e., 
1,( (1 ))i

i

i i n  I I B B . 

The boundary polygon of iI  could then be depicted by a set of end-to-end mesh edges 

{ , | , }i j k j kP P P P   P V . 

For instance, as seen in Figure A.8(b), 

1 4 2 2 5 5 4{ , , , , , }P P P P P P      P . 

Let the exterior boundary of iB  be 

1 ) )( ) ( (1i i

i i i n    C B I I F B , 

where )( iF B  is the set of exterior faces of iB  bounding ( )SB .  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

24 

Now, we describe the general procedures included in Algorithm A.3.  

(a) Remove all the elements belonging to ( )SB . 

(b) For each poly-triangle half-separator iI , retriangulate its boundary polygon iP . Let 

the consistently oriented triangle set defining this triangulation be i
I , 

where i
I  is oriented such that 

1 ) ) (1 )( ) ( (i i

i i i n
      C B I R I F B   

are consistently oriented triangle sets; 

(c) For each empty polyhedron bounded by ( )iC B , search a point (denoted by iS ) that 

is located in the interior of this polyhedron such that  

(c.1) iS  is visible to all the faces in ( )iC B .  

(d) For each (1 )iS i n  , connect it to all the faces in ( )iC B . 

 

Like Lemma 3, we have the following lemma for Algorithm A.2. 

Lemma 4  

Let Algorithm A.3 be defined as above. If ( )SB  is a valid tetrahedralization, the 

algorithm could always output a valid tetrahedralization. 

The proof of Lemma 4 is very similar to its counterpart of Lemma 3. The minor 

difference is that we now require ( 2)n n   Steiner points. Each Steiner point is located in 

the interior of the empty polyhedron bounded by ( )(1 )i i n C B  and computed along the 

average normal direction of 1if   and ( )ifR  (i.e., the reverse of if ) by the bisectional 

search scheme. Evidently, both this search scheme and Algorithm A.3 could be competed 

in the finite number of steps. 

A.2.2.3 Edge-added-point splitting. For a boundary edge with its interior being split into a 

union of linear segments, Algorithm A.2 or Algorithm A.3 could then be employed to achieve 

its final constrained recovery. The pseudo-code form for this recovery procedure is simply 

given as: 

 

Algorithm A.4: edge-added-point splitting 

If the edge is a manifold edge 

Perform Algorithm A.2. 

Else 

Perform Algorithm A.3. 

End if 

 

We now give the following theorem illustrating that we could achieve the final constrained 

recovery of an edge (denoted by e ) by performing Algorithm A.4 for each Steiner point on 

e . 

Theorem 2 

Suppose e  is a boundary edge with its interior being split into a union of linear segments. 

We could then perform the finite number of the edge-added-point splittings to achieve the 

final constrained recovery. Moreover, the recovery of e  does not affect other existing or 

recovered constraints if the prescribed constraints contain no self-intersections. 

Proof  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

25 

We know from Lemma 3 and Lemma 4 that each edge-added-point splitting reduces an added 

point. As the number of added points (denoted by N) is finite, eventually, we achieve the final 

constrained recovery of f  by performing N splittings. As seen in Figures A.7 and A.8, all 

the removed edges by the splitting algorithm are connected to the Steiner point. If the 

prescribed constraints contain no self-intersections, the recovery of e  does not affect other 

existing or recovered constraints.                                               □ 

A.2.3 Constrained boundary recovery: the overall algorithm 

Now, given a set of boundary constraints that have been recovered conformingly, we could 

achieve the constrained recovery of these constraints by first treating Steiner points on 

boundary edges individually by Algorithm A.4, and then treating Steiner points on boundary 

faces individually by Algorithm A.1. The pseudo-code form for this recovery procedure is 

simply given as: 

Algorithm A.5: constrained boundary recovery 

For each edge containing Steiner points in their interiors (denoted by e) 

For each Steiner point on e (denoted by S) 

Perform edge-added point splitting (i.e., Algorithm A.4) for S. 

End for 

End for 

For each face containing Steiner points in their interiors (denoted by f) 

For each Steiner point on f (denoted by S) 

Perform face-added point splitting (i.e., Algorithm A.1) for S. 

End for 

End for 

 

We now give the following theorem illustrating that we could achieve the final constrained 

recovery of a set of boundary constraints that have been recovered conformingly by 

performing Algorithm A.5. 

Theorem 3 

Given a set of boundary constraints that have been recovered conformingly, we could then 

perform the finite number of the edge-added-point splittings and face-added-point splittings to 

achieve the final constrained recovery of these constraints by performing Algorithm A.5. 

Proof  

The proof is straightforward. Since the recovery of each edge and each face could be achieved 

in the finite number of steps, and the recovery procedure does not affect other existing or 

recovered constraints, plus the numbers of edges and faces for treatment are finite, Algorithm 

A.5 could always be finished in the finite number of steps.                          □ 

 

A.3 Implementation issues and remarks 

In Section A.2, all the presented proofs do not consider the round-off errors due to floating 

point numbers. The robustness of Algorithm A.5, although theoretically it could provide a 

valid output in the finite number of steps (see Theorem 3), could be challenged in the real 

world.  

For instance, there might be a very small neighbourhood of S  (denoted by 
* *

2 2( ) { | }U S S S S     in the previous discussions) in which all the points are visibile to 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

26 

the exterior boundary of ( )SB . This situation could be induced by a poorly shaped exterior 

boundary of ( )SB , such as with 1 or 2 small angles and/or with small or near-360-degree 

dihedral angles between two boundary triangles.  

To improve the robustness, an idea is to enlarge the cavity for remeshing by adding more 

neighbouring elements, for instance, according to the Delaunay criteria [6, 19]. Nevertheless, 

caution must be taken to ensure the remeshing of the enlarged cavity does not affect other 

existing or recovered constraints [6]. 

Note that in the proof for Lemma 2, for the simplicity of the proof, we suggest a simple 

bisectional search scheme along a specified direction. Evidently, this 1D search scheme could 

be problematic in the case of a very small 2 ( )U S . To improve the robustness, we [15] 

suggest a mesh optimization based scheme [46] to search the possible positions of Steiner 

points after splitting in the 3D space. In practice, to achieve a trade-off between computing 

time and robustness, we could first perform the 1D search, and switch to the time-consuming 

3D search when the 1D search fails to provide a desirable output [15].  

Even if all the schemes for robustness mentioned above are incorporated, the boundary 

recovery procedure could still fail in the real work, when an excessive number of Steiner 

points are required for the recovery. This situation usually happens when the input surface 

contains a certain number of elements having high aspect ratios. For Algorithm A.5, at least 

two issues could be introduced by Steiner points. Firstly, the positions of Steiner points stored 

with floating-point numbers are essentially inaccurate due to round-off errors. These errors 

can accumulate if an excessive number of Steiner points are inserted. Predicates [20] with 

these positions as inputs may return an undesirable value and collapse the entire boundary 

recovery procedure. Secondly, the insertion of Steiner points is accompanied with the splitting 

of mesh elements in the conforming recovery procedure. The resulting poorly shaped 

elements could do harm to the robustness of both the conforming and constrained recovery 

procedures. Therefore, reducing the usage of Steiner points in boundary recovery could 

benefit a lot for the robustness of the boundary recovery algorithm like Algorithm A.5. 

Acknowledgements: This research is funded by the National Natural Science Foundation of China (Grant No. 

11432013, 11172267 and 10872182), the Joint Fund of the National Natural Science Foundation of China and 

China Academy of Engineering Physics (Grant No. U1630121) and Zhejiang Provincial Natural Science 

Foundation of China (Grant No. LR16F020002 and Y1110038). The authors acknowledge Dr. Dawei Zhao at 

Zhejiang University for his cooperation in preparing the results of parallel mesh generation. The first author 

would like to thank the financial support from Zhejiang University and China Scholarship Council during his 

research visit at Swansea University, UK. The authors appreciate the valuable comments and constructive 

suggestions from the anonymous reviewers, which help improve the work a lot.  

References 

[1] Ruppert J, Seidel R. On the difficulty of triangulating three-dimensional non-convex polyhedra. Discrete 

and Computational Geometry 1992; 7:227-254. 

[2] Schönhardt E. Über die zerlegung von dreieckspolyedern in tetraeder. Mathematische Annalen 1928; 

98:309-312. 

[3] Chazelle B. Convex partitions of polyhedra: a lower bound and worst-case optimal algorithm. SIAM 

Journal On Scientific Computation 1984; 13:488-507. 

[4] Weatherill NP, Hassan O. Efficient three-dimensional Delaunay triangulation with automatic point creation 

and imposed boundary constraints. International Journal for Numerical Methods in Engineering 1994; 

37:2005-2039. 

[5] George PL, Borouchaki H, Saltel E. 'Ultimate' robustness in meshing an arbitrary polyhedron. International 

Journal for Numerical Methods in Engineering 2003; 58:1061-1089. 

[6] Du Q, Wang D. Constrained boundary recovery for three dimensional Delaunay triangulations. 

International Journal for Numerical Methods in Engineering 2004; 61:1471-1500. 

[7] George PL, Hecht F, Saltel E. Automatic mesh generator with specified boundary. Computer Methods in 

Applied Mechanics and Engineering 1991; 92:269-288. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

27 

[8] Joe B. Three-dimensional boundary-constrained triangulations. Proceedings of the 13th IMACS World 

Congress on Computation and Applied Mathematics, Trinity College, Dublin, Ireland 1991; 215-222. 

[9] Lewis RW, Zheng Y, Gethin DT. Three-dimensional unstructured mesh generation: part 3. volume meshes. 

Computer Methods in Applied Mechanics and Engineering 1996; 134:285-310. 

[10] Liu A, Baida M. How far flipping can go towards 3D conforming/constrained triangulation. Proceedings of 

the 9th International Meshing Roundtable, New Orleans, LA, USA, 2000; 307-315.  

[11] Du Q, Wang D. Boundary recovery for three dimensional conforming Delaunay triangulation. Computer 

Methods in Applied Mechanics and Engineering 2004; 193:2547-2563. 

[12] Guan Z, Song C, Gu Y. The boundary recovery and sliver elimination algorithms of three-dimensional 

constrained Delaunay triangulation. International Journal for Numerical Methods in Engineering 2006; 

68:192-209. 

[13] Chen J, Zheng Y. Redesign of a conformal boundary recovery algorithm for 3D Delaunay triangulation. 

Journal of Zhejiang University SCIENCE A 2006; 7:2031-2042. 

[14] Liu J, Chen B, Chen Y. Boundary recovery after 3D Delaunay tetrahedralization without adding extra 

nodes. International Journal for Numerical Methods in Engineering 2007; 72:744-756.  

[15] Chen J, Zhao D, Huang Z, Zheng Y, Gao S. Three-dimensional constrained boundary recovery with an 

enhanced Steiner point suppression procedure. Computers and Structures 2011; 89:455-466. 

[16] Shewchuk JR. Constrained Delaunay tetrahedralizations and provably good boundary recovery. 

Proceedings of the 11th International Meshing Roundtable, Ithaca, NY, USA, 2002; 193-204. 

[17] Si H, Gärtner K. 3D boundary recovery by constrained Delaunay tetrahedralization. International Journal 

for Numerical Methods in Engineering 2011; 85:1341-1364. 

[18] Liu Y, Lo SH, Guan Z, Zhang H. Boundary recovery for 3D Delaunay triangulation. Finite Elements in 

Analysis and Design 2014; 84:32-43.  

[19] Si H. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Transactions on Mathematical 

Software 2015; 41: 11:1-11:36. 

[20] Shewchuk JR. Robust adaptive floating-point geometric predicates. Proceedings of the 12th Annual 

Symposium on Computational Geometry, Philadelphia, PA, USA, 1996; 141-150. 

[21] Freitag LA, Ollivier-Gooch C. Tetrahedral mesh improvement using swapping and smoothing. 

International Journal for Numerical Methods in Engineering 1997; 40:3979-4002. 

[22] Said R, Weatherill NP, Morgan K, Verhoeven NA. Distributed parallel Delaunay mesh generation. 

Computer Methods in Applied. Mechanic Engineering 1999; 177:109-125. 

[23] Larwood BG, Weatherill NP, Hassan O, Morgan K. Domain decomposition approach for parallel 

unstructured mesh generation. International Journal for Numerical Methods in Engineering 2003; 58:177-

188. 

[24] Chen J, Zhao D, Huang Z, Zheng Y, Wang D. Improvements in the reliability and element quality of 

parallel tetrahedral mesh generation. International Journal for Numerical Methods in Engineering 2012; 

92:671-693. 

[25] Hassan O, Probert EJ, Morgan K, Peraire J. Mesh generation and adaptivity for the solution of 

compressible viscous high speed flows. International Journal for Numerical Methods in Engineering 1995; 

38:1123-1148. 

[26] Hassan O, Morgan K, Probert EJ, Peraire J. Unstructured tetrahedral mesh generation for three-dimensional 

viscous flows. International Journal for Numerical Methods in Engineering 1996; 39:549-567. 

[27] Ito Y, Murayama M, Yamamoto K, Shih AM, Soni BK. Efficient hybrid surface/volume mesh generation 

using suppressed marching-direction method. AIAA Journal 2013; 51:1450-1461. 

[28] Hassan O, Probert EJ, Morgan K. Unstructured mesh procedures for the simulation of three-dimensional 

transient compressible inviscid flows with moving boundary components. International Journal for 

Numerical Methods in Fluids 1998; 27:41-55 

[29] Tremel U, Sørensen KA, Hitzel S, Rieger H, Hassan O, Weatherill NP. Parallel remeshing of unstructured 

volume grids for CFD applications. International Journal for Numerical Methods in Fluids 2007; 53:1361-

1379. 

[30] Zheng J, Chen J, Zheng Y, Yao Y, Li S, Xiao Z. An Improved Local Remeshing Algorithm for Moving 

Boundary Problems. Engineering Applications of Computational Fluid Mechanics 2016; 10: 405-428. 

[31] Joe B. Construction of three-dimensional improved quality triangulations using local transformations. SIAM 

Journal On Scientific Computation 1995; 16:1292-1307. 

[32] George PL, Borouchaki H. Back to edge flips in 3 dimensions. Proceedings of the 12th International 

Meshing Roundtable, Santa Fe, NM, USA, 2003; 393-402. 

[33] Shewchuk JR. Two discrete optimization algorithms for the topological improvement of tetrahedral 

meshes. 2002. Unpublished manuscript. Sep-27-2015. URL: https://www.cs. berkeley.edu/~jrs/papers 

 edge pdf . 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

28 

[34] De l’Isle EB, George PL. Optimization of tetrahedral meshes. IMA Volumes in Mathematics and its 

Applications 1995; 75:97–128. 

[35] Liu J, Chen B, Sun S. Small polyhedron reconnection for mesh improvement and its implementation based 

on advancing front technique. International Journal for Numerical Methods in Engineering 2009; 79: 

1004-1018.  

[36] Si H. On 3D indecomposable and irreducible polyhedra and the number of Steiner Points. 2002. May-17-

2017. URL: www.wias-berlin.de/people/si/course/files/talk-numgrid2016.pdf. 

[37] Goerigk N, Si H. On indecomposable polyhedra and the number of Steiner Points. Proceedings of the 24th 

International Meshing Roundtable, Austin, TX, USA, 2015; 343-355. 

[38] Klincsek GT. Minimal tiangulations of polygonal dmains. Annals of Discrete Mathematics 1980; 9:121-

123. 

[39] Bowyer A. Computing Dirichlet tessellations. The Computer Journal 1981; 24:162-166. 

[40] Watson D. Computing the n-dimensional Delaunay tessellation with application to Voronoï polytopes. The 

Computer Journal 1981; 24:167-172. 

[41] George PL. Improvements on Delaunay-based three-dimensional automatic mesh generator. Finite 

Elements in Analysis and Design 1997; 25:297-317. 

[42] 3D Meshes Research Database by INRIA GAMMA Group, Mar-05-2014. URL: https:// 

www.rocq.inria.fr/gamma/download/download.php. 

[43] GHS3D: A Powerful Isotropic Tet-Mesher, Mar-05-2014. URL: https://www.rocq.inria.fr/gamma 

/gamma/ghs3d/. 

[44] Xie L, Zheng Y, Chen J, Zou J. Enabling technologies in the problem solving environment HEDP. 

Communications in Computational Physics 2008; 4:1170–1193. 

[45] Snyder DO, Koutsavdis EK, Anttonen JS. Transonic Store Separation Using Unstructured CFD with 

Dynamic Meshing. Proceedings of the 33rd AIAA Fluid Dynamics Conference and Exhibit, Orlando, FL, 

USA, 2003. AIAA 2003-3919. 

[46] Escobar JM, Montenegro R, Montero G, Rodríguez E, González-Yuste JM. Smoothing and local 

refinement techniques for improving tetrahedral mesh quality. Computers and Structures 2005; 83:2423-

2430. 

  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

29 

 

  
(a)                                         (b) 

4-4 flip 
a 

p4 

 

p2 

 

b 

p1 

 

p3 

 

a 

p4 

 

p2 

 

b 

p1 

0 

p3 

a 

p2 

 

b 

p1 

 

p3 

 

a 

p2 

 

b 

p1 

 

p3 

 

3-2 flip 

2-3 flip 

 

Figure 1. Basic flips for a tetrahedral mesh: (a) 2-3 flip and 3-2 flip; (b) 4-4 flip. 

 

 

 

 

Figure 2. The difference between edge removal and a single calling of shell transformation. 

This difference enables shell transformation to be called recursively while edge removal 

cannot. This recursive ability is the main advantage of shell transformation technique. 

 

 a 

 b 

 p1 

 p2  p3 

 p5 p6 

a partially triangulated skirt 

polygon, where its core refers 

to the triangle p2p5p6 

p4  p1 

 p2  p3 

p4 

 p5 p6 

 a 

 b 

 p1 

 p2  p3 

p4 

 p5 p6 

 a 

 b 

 p1 

 p2  p3 

p4 

 p5 p6 

shell transformation 

edge removal 

 

 p1 

 p2  p3 

p4 

 p5 p6 

a completely triangulated skirt 

polygon 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

30 

 

(a)                    (b)                    (c)                    (d) 
 

 

Figure 3. Illustration for the recursive scheme of shell transformation. (a) The input mesh, 

composed of two shells that are supported by the edges ab and bh, respectively. (b) The 

output after the first shell transformation calling on the shell of ab. (c) The output after the 

second shell transformation calling on the shell of bh. (d) The final output after the third shell 

transformation calling on the shell of ab.  

 

 
 

 

Figure 4. Illustrative case of a reflex edge. 

 

 
 

Figure 5. A general partial triangulation case of the skirt polygon. 

h 

c 

d e 

f 

a 

b 

g 

h 

c 

d e 

f 

a 

b 

g 

h 

c 

d e 

f 

a 

b 

g 

h 

c 

d e 

f 

a 

b 

g 

 a 

 b 

 p2 

 

 p3 

 p4 

 
reflex edge 

 

 

 

  

 

 

 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

31 

 
 

 

Figure 6. Decomposing a triangulation optimisation problem into subproblems. 

 
 

 

Figure 7. A Christmas tree type mesh. 

 

 
Figure 8. (a) The surface mesh and (b) volume mesh after constrained recovery (cutting view) 

of the Mohne model. 

 

 

 

Figure 9. (a) The surface mesh and (b) volume mesh after constrained recovery (cutting view) 

of the B747 aircraft model. 

 

pi 

 pj 

 

pk 

 Ti,j = Ti,k∪Tk,j∪{△pi pk pj} 

 

Ti,k 

 
Tk,j 

 

pi pk pj 

 

a 

p4 

 

p2 

 

b 

p1 p3 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

32 

 

 

Figure 10. The edge recovery process of the Cami1 model. The surface mesh is shown in (a). 

243 lost edges after inserting boundary points are shown in (b). 10 lost edges after edge 

recovery are shown in (f). (c), (d) and (e) highlight the lost edges in three different phases 

when calling Algorithm 5 for the first time. (c) lmax = 0; 127 lost edges. (d) lmax = 2; 40 lost 

edges. (e) lmax = 9; 13 lost edges.    

 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

33 

Figure 11. Visual representation of the geometry, the surface and volume mesh of the F16 

aircraft model in the in-house mesh generation system HEDP/PRE. 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

34 

 

 

Figure 12. A mesh of the F16 aircraft model generated by the parallel mesher. 

 

 

 

Figure 13. Cut views of the volume meshes for the wing/pylon/finned-store separation at 

different time steps (ts): (a) ts= 0s; (b) ts= 0.38s, before local remeshing; (c) ts= 0.38s, after 

local remeshing; (d) ts= 0.5s. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

35 

 

 

Figure 14. Contour plot of the computed pressure distributions during the separation: (a) front 

view; (b) side view.  

 

 

 

Figure A.1. Visibility of a face to a point. 

 

 
 

Figure A.2. A consistently oriented triangle set. 

N 

 

A 

 

B 

 

C 

 

P 

O 

 

P4 

P3 

P2 

P1 

P 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

36 

 
 

 

Figure A.3. A ball of a point P . 

 

 
 

Figure A.4. A 2-way cutting and its corresponding poly-triangle separator. 

 
 

 

Figure A.5. A 4-way cutting and its corresponding poly-triangle half-separators. 

 

P4 

 

P2 

 

P5 

P1 

 

P3 

 

P 

P6 

P7 

P4 

 

P2 

 

P5 

P1 

 

P3 

 

P 

P6 

P7 

P4 

 

P2 

 

P5 

P1 

 

P3 

 

P 

P6 

P7 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

37 

 
 

Figure A.6. An illustrative example for the face-added point splitting. 

 
 

 

 

Figure A.7. An illustrative example for the manifold-edge-added point splitting.  

 
(a) 

P4 

 

P2 

 

P5 

P1 

 

P3 

 

S 

P6 

P7 

S2 

P4 

 

P2 

 

P5 

P1 

 

P3 

 

P6 

P7 

S1 

P4 

 

P2 

 

P5 

P1 

 

P3 

 

S 

P6 

P7 

S2 

P4 

 

P2 

 

P5 

P1 

 

P3 

 

P6 

P7 

S1 

f3 

f2 

f1 

f4 

P4 

 

P2 

 

P5 

P1 

 

P3 

 

S 

P7 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

38 

 
(b)                           (c) 

 

 

Figure A.8. An illustrative example for the non-manifold-edge-added point splitting. 

 

 

 

Table 1. Comparison of different constrained recovery algorithms (NP: Not Reported). The 

performance data for the old GHS3D and Liu’s algorithm are referred to [10]. 

Examples #Boundary 

faces 

#Boundary 

nodes 

Steiner points inserted in constrained boundary recovery 

Our 

algorithm 

TetGen 

1.5 

GHS3D 4.2-2 

(New) 

GHS3D 

(Old) 

Liu’s 

algorithm 

Cami1a 832 408 0 1 13 NP NP 

Cami1 932 460 1 2 Fail NP NP 

Mohne 5560 2760 1 3 35 Fail 26 

Thepart 1992 994 0 0 4 24 6 

Boeing_part 2472 1218 5 4 22 Fail 25 

Thru-mazewheel 5622 2781 4 5 41 18 13 

B747 5166 2560 0 0 Fail NP NP 

 

Table 2. Timing data of the proposed algorithm and the new GHS3D (unit: second) 
Algorithms Cami1a Cami1 Mohne Thepart Boeing_part Thru-mazewheel B747 

Our Algorithm 0.61 0.48 6.27 0.39 0.79 0.59 0.4 

Tetgen 1.5 0.048 0.067 0.33 0.088 0.16 0.19 0.1 

GHS3D 4.2-2 4.99 Fail 11.9 1.35 3.89 7.46 Fail 

 

Table 3. The mesh indices in the main loops of edge recovery 

lmax -1 0 1 2 3 4 5 6 7 8 9 10 11 12 

1st calling of 

Algorithm 6 

n1 243 127 69 40 33 26 25 25 19 15 13 13 13 13 

n2 1,505 866 243 145 117 82 87 82 63 48 39 41 38 37 

n3 41 37 27 21 18 14 13 17 13 15 12 13 12 12 

2nd calling of 

Algorithm 6 

n1 13 13 13 11 11 10 10 10 10      

n2 37 46 27 13 14 10 10 10 10      

n3 12 14 7 3 4 1 1 1 1      

n4 20 46 59 62 65 65 65 65 65      

S1 

P4 

 

P2 

 

P5 

P1 

 

P3 

 

S2 

P6 

P7 

S4 
S3 

P4 

 

P2 

 

P5 

P1 

 

P3 

 

S 

P6 

P7 

B1
(S) B2

(S) 

B3
(S) B4

(S) 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

39 

 

Table 4. Performance data for the sequential mesh generation of the F16 aircraft model 

Models F16 

#Boundary nodes 84,992 

#Boundary faces 169,964 

#Volume nodes 645,939 

#Volume elements 3,904,675 

#Thin faces 35 

#Small angles 4 

#Steiner points inserted 0 

Time cost of the whole boundary recovery (s) 0.59 

Time cost of mesh generation (s) 30.19 

Time cost of mesh optimization (s) 226.6 

Total time cost of all the steps (s) 256.79 

 

Table 5. Performance data for the parallel mesh generation of the F16 aircraft model.  

Models F16 

#Computer cores 32 

#Subdomains 242 

#Boundary nodes 1,156,192 

#Boundary faces 2,312,364 

#Volume nodes 21,701,930 

#Volume elements 122,535,257 

#Thin faces in the original surface 27 

#Small angles in the original surface 13 

#Thin faces after domain decomposition 15 

#Small angles after domain decomposition 1,843 

#Steiner points inserted 0 

Average time cost of boundary recovery per computer core (s) 0.68 

Time cost of all steps, wherein (s) 749.45 

Time cost of domain decomposition (s) 344.87 

  Time cost of mesh generation (s) 48.44 

  Time cost of mesh repartitioning (s) 94.54 

Time cost of quality improvement (s) 261.60 

 

 


