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ABSTRACT

Relatively few studies have so far investigated the hydrological impacts of urbanization in Mediterranean catchments, and particularly in peri-
urban catchments experiencing relatively rapid and large changes in their land-use mosaic. This study uses data-based model simulations to
investigate such impacts, with the Ribeira dos Covões catchment in Portugal as a concrete Mediterranean peri-urban catchment example. We
distinguish the impacts of urbanization from those of climatic change on the water flux partitioning and connectivity in the catchment over the
period 1958–2013. Decrease in precipitation over this period has primarily driven decreases in annual runoff and actual evapotranspiration,
while the urbanization development has primarily changed the relative flux partitioning and connectivity pattern in the catchment. The
relative contribution of overland flow to annual and seasonal runoff has increased, keeping the absolute overland flow more or less intact,
while the baseflow contribution to the stream network has decreased. Methodologically, the present simulation approach provides a relevant
means for distinguishing main drivers of change in hydrological flux partitioning and connectivity under concurrent urbanization and climatic
changes. © 2017 The Authors. Land Degradation & Development Published by John Wiley & Sons Ltd.
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INTRODUCTION

Hydrological characteristics in many river basins around the
world are changing with various human-related
developments in the landscape (Jaramillo & Destouni,
2014), such as changes in land-use and water-use for food
and energy production (Destouni et al., 2013; Jaramillo &
Destouni, 2015). Currently, 80% of the world’s gross
domestic product (GDP) comes from urban areas (United
Nations, UN, 2015), containing 54% of the population
(World Health Organization, WHO, 2015). However,
urbanization continues to spread into peri-urban areas
(Oyeyinka, 2008; PU-GEC, 2009), which are transition
zones between urban and rural areas, characterized by a
wide range of population density, from at least 40 to
20,000 inhabitants per km2 (Piorr et al., 2015). Although
most urban areas across the world are now growing
relatively slowly (0·5–0·6% per year), the development of
the built environment of peri-urban areas is growing at four
times this rate, and this trend is expected to continue (Piorr
et al., 2015).
Urbanization involves conversion of previous into

impervious surfaces, such as buildings, pavement roads

and car parks. Such changes may further alter hydrological
fluxes and their implied water balance (Shuster et al.,
2005; Fletcher et al., 2013). Numerous studies since the
1960s focusing on the hydrological impacts of urbanization
have identified the following: (i) reduced evapotranspiration
due to vegetation removal (Carlson & Arthur, 2000); (ii)
reductions in infiltration following surface sealing and soil
compaction (Carlson & Arthur, 2000; Hebrard et al.,
2006); (iii) increased overland flow and streamflow
(O’Driscoll et al., 2010; Fletcher et al., 2013; Miller et al.,
2014; Ferreira et al., in press) associated with higher flood
hazard (Rose & Peters, 2001); (iv) reductions in
groundwater recharge and water table with a corresponding
decline in stream baseflow (Hammer, 1972; Wang et al.,
2011); and (v) precipitation changes associated with “heat
island” effects (Jauregui & Romales, 1996).
Even though various research studies show consistent

impacts of urbanization on hydrology, the magnitudes of
change vary greatly. Differences in biophysical catchment
characteristics, such as climate, geology, lithology and soil
properties, affect hydrological processes and may to some
degree explain the variability of hydrological response
magnitude to urbanization (Boyd et al., 1993; Konrad et al.,
2005). Furthermore, other land and water management
developments (Jarsjö et al., 2012; Destouni et al., 2013;
Kalantari et al., 2014a, 2014b; Jaramillo & Destouni,
2015), in addition to urbanization patterns (Pappas et al.,
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2008; Zhang & Shuster, 2014), also lead to runoff and
streamflow changes. Runoff variability is further closely
linked to the variability of soil-water content, which is a key
component of water-storage change that is closely linked
with and thus both determines and is determined by current
and antecedent weather and climate conditions at the surface
as well as by the surface–subsurface flux partitioning and
connectivity over entire catchments (Bracken & Croke,
2007; Easton et al., 2007; Destouni & Verrot, 2014; Verrot
& Destouni, 2015; Ferreira et al., 2016a).
In the past decade, hydrological connectivity has been

widely studied and recognized as a key factor to understand
the partitioning of the total input of precipitation among soil-
water, groundwater and surface runoff fluxes, and storage
changes in surface water and groundwater, and the
interactions that determine the hydrological flux
connectivity among all these water flux and change
components within catchments (Ali & Roy, 2010; Bosson
et al., 2012, 2013; Johansson et al., 2015; Parsons et al.,
2015; López-Vicente et al., 2016). The questions of water
flux and change partitioning, and associated component
interactions and flux connectivity in catchments are also
essential for understanding the separate and combined
impacts of land management and climate change on changes
in runoff and waterborne sediment and nutrient transport
(Jarsjö et al., 2012; Destouni et al., 2013; Jaramillo &
Destouni, 2015; Marchamalo et al., 2015; Keesstra et al.,
2016; Masselink et al., 2016).
The hydrological impacts of urbanization may

particularly be reflected in peri-urban catchments, which
experience changes in flow connectivity due to relatively
rapid changes in their heterogeneous land-use mosaic,
including a mixture of, e.g. decreasing natural areas,
woodland and agriculture along with expanding urban
land-uses (Braud et al., 2013). In such catchments, overland
flow may occur on both pervious and impervious surfaces,
but is prone to be increasingly generated in the latter,
expanding urban areas (Ferreira et al., 2015). This particular
spatial complexity of peri-urban catchments may be
enhanced by temporal soil-moisture variability and change
(Destouni & Verrot, 2014); such changes affect the flux
partitioning and connectivity patterns and thereby the runoff
responses to precipitation changes due to global climate
change, e.g. in the Mediterranean region, where soil
moisture already exhibits high seasonal variability due to
hot dry summers and wet winters (Bracken & Croke,
2007; Easton et al., 2007; Ferreira et al., 2016a).
Relatively few studies have so far investigated the

impacts of urbanization on hydrological flux partitioning
and connectivity in Mediterranean catchments. This may
be due to a limited availability of sufficiently long-term
stream flow records that can reveal effects of both climate
and land-use changes; see, e.g. the particularly limited data
availability in Mediterranean catchments compared to other
northern hemisphere catchments studied by Bring et al.
(2015). Under such data limitations, hydrological models
are used as tools to still be able to explore the hydrological

impacts of land-use and climate changes (Asokan et al.,
2010; Branger et al., 2013; Isik et al., 2013; Asokan &
Destouni, 2014; Jankowfsky et al., 2014; Kalantari et al.,
2014a, 2014b; Miller et al., 2014; Song et al., 2014); see
also reviews by DeFries & Eshleman (2004), Bach et al.
(2014), Devia et al. (2015) and Kalantari et al. (2015) of
hydrological models used to assess the hydrological impacts
of land-use changes.
The present study investigates urbanization impacts on

hydrological fluxes and their partitioning and connectivity
in a Mediterranean peri-urban catchment as a concrete case
study over a long period. The study uses data-based model
simulations with the aim to bridge prevailing long-term data
gaps in such catchments, particularly in the Mediterranean
region. The simulations use the physically based
hydrological model MIKE-SHE coupled with the hydraulic
model MIKE 11 (Graham & Butts, 2005; Refsgaard et al.,
2010; DHI, 2015), applying this to the Ribeira dos Covões
catchment. This catchment is located in the periphery of
Coimbra, the main city of central Portugal (143,396
inhabitants in 2011, INE, 2012), and a medium-sized
European city (EU, 2005). The model application to this
changing peri-urban catchment facilitates in-depth analysis
of how measured hydro-climatic changes in temperature
and precipitation combine with known land-use changes,
and particularly urbanization, to affect catchment-scale
evapotranspiration and runoff (stormflow and baseflow)
fluxes over the period 1958–2013.

MATERIAL AND METHODS

Study Site

The small Ribeira dos Covões catchment (6·2 km2) is
somewhat elongated in shape and drains S–N into the large
floodplain of the Mondego river through a perennial stream
and some upstream ephemeral and intermittent tributaries
(Figure 1). The catchment has a humid Mediterranean
climate, with an average annual temperature of 15 °C and
a mean annual rainfall of 892 mm y�1 (INMG, 1941–
2000). The highest recorded daily rainfall between 1958
and 2013 occurred on 25th October 2006 and was 102 mm
day�1 (return period of 50 years) leading to floods within
the catchment. According to older local residents, other such
flood events have also occurred around 1936 and 1966.
The geology of the catchment comprises: (i) Cretaceous

and Tertiary sandstones, conglomerates and mudstones in
the west (56%); (ii) Jurassic dolomitic and marly limestone
in the east (41%); and (iii) small areas of Pliocene-
Quaternary sandy-conglomerate (colluvium) and alluvial
deposits in the main valleys (3%) (Ferreira et al., 2016a).
Soils are predominantly deep Fluvisols and Podsols (>3 m
and up to 25 m), but with some shallow Leptic Cambisols
(<0·4 m) on the steeper limestone slopes (WRB, 2006).
Altitude ranges from 34 to 205 m a.s.l., and the average
slope is 9°, although the local hillslope gradient reaches
46° in a few locations.
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Due to its proximity to the Coimbra city centre, the
catchment has undergone major land-use changes over the
past half-century. Between 1958 and 2012, the agricultural
area of mainly olives and arable land declined from 48% to
4%, primarily due to an increase of urban land-use (from
8% to 40%) and of woodland areas (from 44% to 53%),
as well as a temporary creation of open spaces (from 0%
to 3%) (Figure 2a). Although woodland areas do not
exhibit a major increase, the nature of woodland cover also
changed, from native species, such as oaks (Quercus sp.),
to commercial timber plantations, mostly of Pinus pinaster
L. and Eucaliptus globulus L. in the western and headwater
parts of the catchment, respectively (Figure 2b). Woodland
reached its greatest extent in 2007 (61%), and has since
been partially replaced by urban land-use, mostly
associated with a major road and an enterprise park
construction, along with an expansion of existing urban
core areas (Ferreira et al., 2016b).
Urbanization became more pronounced after 1973, as a

result of the 1970s Master Plan for urbanization of the
Coimbra city. This favoured an increase of residential
buildings, consisting mainly of detached houses along major
roads, as well as apartment blocks after 1980 (Tavares et al.,
2012). In 1993, the approval of a new Master Plan for urban
regulation considered the present study catchment as part of
the central urban area, leading to establishment of well-
defined urban cores in Ribeira dos Covões. This land-use
history points at three main land-use phases in the
catchment: (i) a rural phase between 1958 and 1973,
characterized by a low percentage of urban cover; (ii) a
discontinuous urban fabric phase, between 1973 and 1995;
and (iii) a more continuous urbanization period after 1995
(Tavares et al., 2012). The gradual increase of urban
occupation is also associated with a population rise from
2500 to 26,700 inhabitants (Pato et al., 2015). The
construction of an enterprise park, covering about 5% of
the catchment area, started in 2008 with deforestation
activities and it is still ongoing. After 2013, with the peak

of a national and economic crisis, however, land-use
stabilized and only on-going building constructions are
currently being finished (Ferreira et al., 2016b). Renewed
urbanization increase is further expected after economic
recovery, in view of urban projects already approved.
Regarding water management in the catchment, storm

runoff from paved surfaces and buildings is in part dispersed
in surrounding pervious areas, and in part piped downslope
into the stream network and/or nearby abandoned
agricultural and woodland areas. A separate sewerage
system routes wastewater to a treatment plant located
outside the catchment.

Hydrological Modelling

Model overview
The hydrological simulations in this study are carried out
with the distributed hydrological model MIKE SHE, which
represents the main hydrological components, processes
and resulting water flux partitioning and connectivity in the
terrestrial part of the hydrological cycle as described in more
detail in Supporting Information—Model description. In
summary, MIKE SHE is a deterministic, dynamic, physically
based and distributed hydrological model that has been
described and used in many previous hydrological studies
over various parts and climate zones of the world (e.g.
Graham & Butts, 2005; Im et al., 2009a, 2009b; Refsgaard
et al., 2010; Bosson et al., 2012, 2013; Kalantari et al.,
2014a, 2014b, 2015; Johansson et al., 2015; DHI, 2015).
More specifically, MIKE SHE uses physically based

differential equations to describe the flow processes and
interactions (flux partitioning and connectivity) in and
among the main hydrological components. These include
streams and other surface water bodies and overland flow
at the surface, subsurface unsaturated soil water flow and
saturated groundwater flow, as well as vertical land-
atmosphere interaction fluxes at the surface. The latter
include the driving precipitation from the atmosphere, and
its interception and the transpiration of water by vegetation

Figure 1. Location of Ribeira dos Covões catchment in Portugal in relation to Coimbra city centre (adapted from Google Earth, 2015). [Colour figure can be
viewed at wileyonlinelibrary.com]
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Figure 2. (a) Variation of relative land-use (% in x-axis) between 1958 and 2012; (b) spatial land-use distribution in different years between 1958 and 2012.
The anomalously high percentage of open space seen in panel (a) for year 1995 is due to a forest fire. Land-uses in panel (b) is as previously reported for the
Ribeira dos Covões catchment for the different shown years (adapted from Tavares, 2012; Corine Land Cover, 2007, and Google Imagery, 2013). [Colour

figure can be viewed at wileyonlinelibrary.com]
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as well as the evaporation of soil water back to the
atmosphere.
To handle the representation of all these different

hydrological components and their processes, interactions
and flux partitioning and connectivity, the hydrological
MIKE SHE model is fully coupled with the hydraulic model
MIKE 11, the latter specifically for representing channel
flow, with exchange-connectivity of water between the two
modelling tools taking place throughout each simulation,
i.e. the two models are run simultaneously. The coupled
MIKE SHE–MIKE 11model has been already used for water
management purposes by local water authorities, responsible
among others for the Ribeira dos Covões catchment. For
consistency with previous model representations of the
hydrology in this catchment, the coupled MIKE SHE–MIKE
11 model is also used in the present study to investigate the
combined effect of hydro-climatic and land-use changes on
hydrological fluxes in the catchment. The model is used to
assess differences between the three representative
urbanization stages, including the rural phase (1958–1973),
the discontinuous urban phase (1974–1997) and the recent
continuous urban period (1998–2013).

Input data
The MIKE 11 and MIKE SHE model require several input
datasets, as summarized in Table I. The river map and river
bed sections are estimated from Google Earth Imagery and
topography data (IGP, 2014). Meteorological data are
obtained from a weather station belonging to national
climatic services (Coimbra/Bencanta), located 0·5 km NW
of the study catchment. Daily rainfall and temperature are
used, assuming a uniform distribution over the catchment.
This assumption is based on the high correlation that has
been found by direct comparison between the rainfall data
from the weather station and from five new rain gauges
installed in 2011, showing no significant spatial variation
over the catchment between 2011 and 2013 (Ferreira et al.,
2016b). Using daily temperature records, potential
evapotranspiration is further estimated as a function of the
reference evapotranspiration (i.e. a hypothetical grass crop
with no limitation on water availability (Allen et al., 1998;
Vázquez, 2003) by means of a crop coefficient approach.
The ArcGIS 10·2·2 software has been used for geospatial

referencing in the modelling and mapping, with soil type

determined by a soil map obtained from Ferreira et al.
(2015), defined to a depth of 4 m, and land-use categorized
into 13 types: Continuous urban fabric; Discontinuous urban
fabric; Industrial, commercial and transport units; Artificial
non-agricultural vegetation (e.g. leisure parks); Arable land;
Permanent crops; Dry and irrigated meadows; Hardwood;
Softwood; Mixed forest areas; Natural shrub and herbaceous
associations, and Bare soil. Land-use changes over the last
decades are assessed through maps from 1958, 1973,
1979, 1990, 1995, 2002, 2007 and 2012 (Figure 2b). The
maps adapted from Tavares et al. (2012) have been designed
based on the categories in the Corine Land Cover product
(CLC, 1990) and carefully checked for errors. The 2012
map has been prepared using a combination of aerial
photographs from Google Imagery and field survey. The
information updated for the last map (2012) has been
validated based on field visits. Thus, the quality of the data
is assured. All these maps have been processed and
compared in ArcGIS (Figure 3) and formatted for use in
the MIKE SHE model based on the 5-m grid resolutions of
the model.
The urban storm drainage system is not included in the

model due to the lack of available independent data for
doing so. Furthermore, the urban storm runoff is partitioned
between flow through pervious soil and piped flow to the
stream network and/or to nearby pervious areas. As such,
the fast hydrological responses of urban storm runoff may
have a major impact on hydrograph shape, but not on
catchment-scale water fluxes and their water balance with
the daily time resolution of the present study.

Model parameterization
Model parameterization (Table II) is determined in
accordance with available site information and data (see
previous section) and relevant related literature reports. In
particular regarding the latter, both the roughness coefficient
(Manning n), used in the calculation of overland flow, is
defined for each land-use feature and river bed roughness
coefficient (Manning n), used in the calculation of the river
flow, were based on values in Chow (1959) and Arcement
& Schneider (1989). Furthermore, the crop coefficient
(Kc), leaf area index (LAI) and root depth (RD) (Bultot
et al., 1990; Büttner & Leuschner, 1994; DHI, 2015; Domec
et al., 2010; Ferreira et al., 2015; Kelliher et al., 1993 and

Table I. Input data for the MIKE 11 and MIKE SHE model application to the Ribeira dos Covões catchment

Data type Description Source

Topography DEM (5 m) same as MIKE SHE grid size IGP (2014)
River bed section Estimated from topography data IGP (2014)
River map Location of the river Google Earth Imagery (2015)
Land-use Land-use/cover classification maps for the years

1958, 1973, 1979, 1990, 1995, 2002, 2007
and 2012 (scale 1:10,000)

Adapted from Tavares et al. (2012)
and Google Earth Imagery (2013)

Soil type Soil type classification map (scale 1:10,000). Ferreira et al., 2015
Streamflow Daily streamflow from Oct. 2008 to Sept. 2013 Field data (Ferreira et al., 2006)
Weather Daily precipitation and daily average temperature

from Oct. 1958 to Sept. 2013
IPMA (2016)
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Kalantari et al., 2014a) are derived for different length of
growth stages, and relevant soil data (initial values for
saturated conductivity of the soil; Table II) are taken from
the Ferreira et al. (2015) map defined to 4-m depth.
The upper model boundary is the ground surface, as

given by the topographical model. The lower boundary in
the base setup of the model is at 100-m depth below the
surface, equivalent to bedrock depth and in order to avoid
significant boundary effects on simulated flow through
numerical and corresponding geological layers closer
to the surface. Values for the various hydrogeological
parameters in the model, such as vertical and horizontal
hydraulic conductivity, specific yield and specific storage,
are assigned for the different geological layers based on
existing general (i.e. not site-specific) relationships. A
sensitivity analysis has also been carried out following the
procedure of Hävermark (2016) in order to adjust general
parameter values to more site-specific ones, and thus
improve model parameterization. To improve numerical
accuracy, the model time-step (Table II) and numerical

interaction criteria have been controlled to obtain a
reasonable compromise between simulation time and
numerical stability (DHI, 2015).

Model calibration and validation
MIKE SHE has been calibrated against 2 years of daily
stream flow data, available for the Ribeira dos Covões
catchment from 1 October 2008 to 30 September 2010
(Ferreira et al., 2016b). The calibration has been focused
on the most sensitive parameters (Table II), such as the
drainage time constant (Tc) and soil saturated hydraulic
conductivity (Ks) (Hävermark, 2016). The Tc represents a
leakage coefficient used to regulate how quickly the water
can drain from the catchment (Kalantari et al., 2014a).
With the main sensitive parameters identified, the first

calibration step is a simplified tuning of the drainage time
constant, Tc, to calibrate the model with emphasis on getting
the greatest daily discharge correct, as recorded on 16
November 2009. In the second and third calibration steps,
the flow simulated by MIKE SHE has been calibrated by

Figure 3. (a) Simulated and measured streamflow (M3S�1) during the calibration period (1 October 2008–30 September 2010) and the validation period (1
October 2010–30 September 2013). (b) R2 represents the coefficient of determination, NSE the Nash–Sutcliffe simulation efficiency and Dv the relative

deviation (percentage bias, given in %) of streamflow volume. [Colour figure can be viewed at wileyonlinelibrary.com]
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adjusting Ks in order to minimize differences between
simulated and recorded annual runoff.
After calibration, the model is validated against 3 years of

daily stream flow records, available from 1 October 2010
until 30 September 2013. Model performance, defined as
the goodness of fit between observed and simulated stream
flow, is evaluated for the 5 years of measured data, using
the coefficient of determination (R2) (Krause, 2005), the
Nash–Sutcliffe efficiency (Nash & Sutcliffe, 1970) and the
percent deviation of streamflow volume (Dv) also known
as the percentage bias (Gupta et al., 2009).
The calibrated and validated model is further run for the

three urbanization stages of Tavares et al. (2012). (1) For
the rural phase (1958–1973), the model is run in two stages:
(i) from 1958 to 1965, with the available land-use map of
1958; and (ii) from 1966 to 1973, with the available land-
use map from 1973. (2) For the discontinuous urban phase,
the model is run in three stages: (i) for 1974–1979, based
on the land-use of 1979; (ii) for 1980–1994, based on
1990 land-use map; and (iii) for 1995–1997, with the land-
use from 1995. (3) For the most recent continuous urban
period, the model is also run in three stages: (i) for 1998–
2002, with the land-use from 2002; (ii) for 2003–2010, with
the land-use map from 2007; and (iii) for 2010–2013, with
the land-use from 2012.

Data Analysis

The water-flux output from the MIKE SHE simulations
includes area-normalized fluxes (expressed in terms of
average water depths, e.g. in unit mm, over the whole
catchment area) and associated net balance-implied water
storage changes; see also the model, hydrological
component and flux-connectivity descriptions and
calculation explanations in Supporting Information—Model
description. The total evapotranspiration (e.g. in mm) is
estimated as follows:

AET ¼ Ecanopy þ EOL þ Esoil þ TRZ (1)

Where AET is total actual evapotranspiration; Ecanopy is
evaporation from canopy, i.e. interception; EOL is
evaporation from overland flow (OL); Esoil is direct
evaporation from the soil; and TRZ is transpiration by
vegetation using water from the root zone.
Furthermore, total runoff is estimated as:

Runoff ¼ OLriver þ SZdrainage þ SZriver (2)

Where OLriver is the overland flow contribution to the
stream network; SZdrainage is the contribution of subsurface
flow drainage routed to river through the tile drainage
infrastructure from arable land; and SZriver is the flow
contribution from the saturated zone (groundwater) to the
stream network. The sum of SZdrainage and SZriver is here
termed as the total base flow contribution to stream flow.
Changes in water storage include changes in both surface
water storage and subsurface water storage.
Changes between the different urbanization and land-use

stages—rural domain (1958–1973), discontinuous urban

pattern (1973–1995) and urban consolidation (1995–2013)
—as well as between observed hydro-climatic data
(temperature, precipitation and other water flux variables)
are assessed statistically, in terms of box-plot statistical
values and differences between these for the months and
years in each of the three stage periods. Seasonal changes
in the water balance are also investigated in the three stages,
based on monthly average hydro-climatic data and simulated
mean monthly water flows for the dry summer season (June–
August) and the following wet season (September–May).
The statistical significance of the found differences in

the investigated hydrological variables between the three
urbanization stages are explored by applying Kruskal–
Wallis statistical test (p < 0·05), given the non-normal
data distribution. The least significant difference (LSD)
post-hoc test (p < 0·05) is also applied in order to
further analyse identified significant annual differences.
Statistical data analysis is performed using the IBM SPSS
Statistics 22 software.

RESULT AND DISCUSSION

Model Performance Evaluation

Model results for stream flow show good agreement with the
observed stream flow in both the calibration and the
independent validation period (Figure 3), with only slightly
lower coefficient of determination (0·71 vs 0·67) and
Nash–Sutcliffe efficiency (0·68 vs 0·60) in the latter. As
should be expected in any modelling study, a perfect fit
could not be achieved; however, both indicators are greater
than the 0·5 value that is considered a satisfactory model
performance for daily stream flow (Moriasi et al., 2007).
The resulting relative deviation of streamflow volume

(percentage bias Dv) is �13% and 1% in the calibration
and the independent validation period, respectively
(Figure 3), indicating an error of underestimation (negative
value) and overestimation (positive value), respectively, in
simulated stream flow results.

Hydro-Climatic Changes

Climate and evapotranspiration changes
Annual average precipitation decreased between the three
periods, from 1041 mm y�1 in 1958–1973 (16% above the
long-term average, p < 0·05) to 873 mm y�1 in 1974–
1995 and 845 mm y�1 in 1996–2013 (0·8 and 7% below
the long-term average, p > 0·05) (Figure 4a). Annual
average temperature increased over the same time, with
values being significantly lower in 1958–1973 (14·9 °C,
p < 0·05) than in 1974–1995 and 1996–2013 (15·6 and
15·7 °C, respectively, p > 0·05) (Figure 4b).
The climatic changes imply significant increase in annual

PET (Figure 5a) (p < 0·05) due to the temperature increase;
in general, increases in PET are largely related to increases
in vapour pressure deficit resulting from higher temperature
(IPCC, 2007, 2014). Annual actual evapotranspiration,
AET, however, has still decreased (Figure 5b) (p < 0·05)
due to the concurrent precipitation decrease.
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The found annual PET increase is from 991 mm y�1

during the first period (p < 0·05) to 1,006 and 1,010 mm
y�1 in the latter development periods (p > 0·05). This
implies a shift to greater annual average PET than
precipitation (885 mm y�1 in 1974–1995 and 826 mm y�1

in 1996–2013) in the latter two periods, highlighting a

typical water stress situation reported for the Mediterranean
region (Hebrard et al., 2006; Garcia-Ruiz et al., 2011; Paço
et al., 2009; Zdruli, 2014). The found decrease in average
annual AET (Figure 5b) is from 526 mm y�1 in the earlier
rural domain period (p < 0·05) to 474 and 448 mm y�1 in
the two later periods (p > 0·05). This change pattern follows

Figure 4. Boxplots for annual (a) precipitation and (b) temperature in the three occupation stages: 1) rural domain (1958–1973); 2) discontinuous urban pattern
(1973–1995) and 3) urban consolidation (1995–2013). Boxplots include minimum, first quartile, median, mean (red marker), third quartile and maximum

values. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 5. Boxplots for annual (a) potential evapotranspiration (PET) and (b) actual evapotranspiration (AET) in the three occupation stages: 1) rural domain
(1958–1973); 2) discontinuous urban pattern (1973–1995) and 3) urban consolidation (1995–2013). AET includes (c) evaporation from canopy (Ecanopy); (d)
direct evaporation from soil (Esoil); (e) transpiration from root zone (TRZ) and (f) evaporation from overland flow (EOL). Boxplots include minimum, first

quartile, median, mean (red marker), third quartile and maximum values. [Colour figure can be viewed at wileyonlinelibrary.com]
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that of precipitation (Figure 4a) and was also noticed during
dry and wet conditions (Table III), because the current
condition of greater PET than precipitation implies that
AET is now constrained by water availability (Beven, 2012).
Apart from the climatic change drivers, land-use changes

may also drive AET change (Destouni et al., 2013; Jaramillo
& Destouni, 2015). The precise mechanisms for different
types of such driver-impact connections between land-use
and AET changes remain still mostly as key open questions
for further research across disciplines (Jaramillo &
Destouni, 2014; Elmhagen et al., 2015). In the present case,
one such connection component is the land-use influence of
urbanization leading to an overall decrease of vegetation
cover, which has in turn decreased the evaporation from
the decreased canopy (Figure 5c) and the transpiration of
the decreased vegetation from the soil root zone (Figure 5e).
Furthermore, resulting AET changes are to some degree

also due to conversion (and not just overall decrease) of
vegetation. In the present case, such conversion has occurred
from native shrubs, herbaceous vegetation and mixed forest
areas (comprising native species, including oak) into fast
growing commercial timber plantations of pine (P. pinaster)
and eucalyptus (Eucalyptus globulus) over the
discontinuous urbanization period (1974–1995).
Evaporation from broadleaved forests (e.g. oak) is then
higher than that from conifer stands (e.g. pine) (Komatsu
et al., 2007; Baldocchi et al., 2010), reflected in the
modelling by a higher crop coefficient for oak (Kc in
Table II).
In general, the model simulations account for land-cover

changes and conversions, including the vegetation decrease
and species shifts mentioned previously, based on the
available land-cover data for the different stage periods.

Calculations of evaporation from canopy are then
determined by model parameters for maximum interception
storage and potential canopy evaporation, with relevant
values assigned for the conditions at each stage period as
suggested by Kristensen & Jensen (1975). Furthermore,
based on Kristensen & Jensen (1975), the plant transpiration
in model simulations is a function of LAI, soil moisture
content in the root zone and root distribution function.
Considering then, for example, the oak to pine conversion
among the various land-use changes occurring in the
catchment development, the deeper roots of oak will access
soil water more effectively than the more shallow roots of
pines, thereby leading to higher transpiration rate and
stomatal conductance per unit leaf area in a land-cover stage
with more oak than in a land-cover stage with more pine
(Paço et al., 2009; Renninger et al., 2015). These vegetation
conversions thus contribute to decreased transpiration from
the root zone in the Ribeira dos Covões catchment from
the rural period (1958–1973) to the urbanization stages
(1974–2013) (Figure 5c, p < 0·05).
Overall, various data-given climate and land-cover

changes thus combine in yielding the resulting net decrease
in annual AET (Figure 5b) that is found to have occurred
during the urbanization development in the catchment. As
parts in this net annual AET decrease, the annual direct
evaporation from soil (Figure 5d) has for instance increased
while the direct evaporation from annual overland flow
(Figure 5f) has more or less remained the same under the
combined climatic and land-use changes occurring in the
catchment.
In summary over the whole study period, the model

results suggest that interception and evaporation from soil
represent a greater water loss from the landscape than

Table III. Mean monthly precipitation (P), temperature (T), potential evapotranspiration (PET), actual evapotranspiration (AET) and
simulated total runoff (R), runoff coefficient (Rcoef), overland flow (OLriver), overland flow coefficient (OLcoef), baseflow and contribution
of OLriver to R calculated for the dry summer season (June–August) and the following wet season (September–May) for the three occupation
stages: 1) rural (1958–1973); 2) discontinuous urban (1973–1995) and 3) consolidated urban (1995–2013)

Rural domain Discontinuous urbanization Urban consolidation

T (C) Wet months 12·7 13·8 13·6
Dry months 19·0 20·9 21·2

P (mm month�1) Wet months 99·9 91·2 85·9
Dry months 45·2 38·2 31·0

PET (mm month�1) Wet months 72·2 76·2 75·8
Dry months 98·7 106·2 106·2

AET (mm month�1) Wet months 46·6 42·2 41·6
Dry months 27·5 19·8 23·0

R (mm month�1) Wet months 45·2 36·8 34·3
Dry months 23·7 18·7 18·4

Rcoef (%) Wet months 45 41 40
Dry months 52 49 59

OLriver (mm month�1) Wet months 22·9 19·0 18·4
Dry months 21·4 17·2 17·1

OLcoef (%) Wet months 25 23 23
Dry months 47 45 55

Baseflow (mm month�1) Wet months 22·3 17·8 15·9
Dry months 2·3 1·6 1·3

OLriver to R (%) Wet months 55 6 59
Dry months 85 92 93
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transpiration (Figure 5), accounting for 64–68% of mean
annual AET. However, whereas evaporation from canopy
contributes most to total evaporation during the first, rural
period (62% of evaporation in 1958–1973), its contribution
has decreased during the subsequent development periods
(50% in 1974–1995 and 48% in 1996–2013). In contrast,
evaporation from soil has increased in importance with
climate change and urbanization, accounting for 51 and
49% in the later continuous and discontinuous urbanization
phases, respectively, compared with 36% in the first rural
phase (p < 0·05). This increase in soil evaporation has been
driven in part and in combination by the increased
temperature, the increased open area resulting from a forest
fire in 1995 and the conversion of permanent crops into
urban areas in the catchment, with the latter increasing from
8% in 1958 to 30% in 1995 and 40% in 2012 (Figure 2b).
Overall, water losses due to evaporation from overland flow
are modelled to be small (<6 mm y�1), representing 1% of
total evaporation, and relatively constant in time (no
significant changes, p > 0·05).

Runoff and water storage change
Over the entire study period, the modelled annual runoff
ranges from 15 mm y�1 in the driest year of 2007 (with
precipitation 480 mm y�1) to 910 mm y�1 in the wettest
year of 2000 (with precipitation 1,622 mm y�1)
(Figure 6a). The inter-annual variation of runoff has not
changed significantly between the three periods
(p > 0·05), but average annual runoff has successively
decreased from 508 mm y�1 in 1958–1973, to 396 mm y�1

in 1974–1995 and 395 mm y�1 in 1996–2013. This runoff
decrease follows that of precipitation, which is consistent
with the relative runoff coefficient remaining essentially
the same over the three periods (around 45% of
precipitation, Figure 6b). Specifically, this constancy
implies that the successive climatic precipitation decrease,
from the first rural to the last continuous urbanization
period (Figure 4a), is partitioned similarly between runoff
decrease (according to the constant runoff coefficient) and
AET decrease (according to the complementary and
thereby also constant evapotranspiration coefficient,

Figure 6. Boxplots for annual (a) runoff, (b) runoff coefficient, (c) overland flow (OLriver), (d) overland flow coefficient, (e) baseflow and (f) implied water
storage change in the three occupation stages: 1) rural domain (1958–1973); 2) discontinuous urban pattern (1973–1995) and 3) urban consolidation (1995–
2013). Boxplots include minimum, first quartile, median, mean (red marker), third quartile and maximum values. [Colour figure can be viewed at

wileyonlinelibrary.com]
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equalling 1 minus the runoff coefficient, i.e. around 55%
of precipitation).
The decrease in annual runoff is not primarily due to

decrease in annual overland flow. The average annual value
of the latter has only decreased relatively slightly, from
274 mm y�1 to 223 mm y�1 and then up again to 243 mm
y�1 in the recent urban stage (Figure 6c; p > 0·05);
furthermore, the relative contribution of annual overland
flow to total runoff has increased rather than decreased over
the three development periods, from 54 to 62% (Figure 6d,
p > 0·05). The latter increase is consistent with the also
increased seasonal contributions of overland flow to total
runoff, from 55 to 59% and from 85 to 93% for the wet
and the dry season, respectively (Table III).
The decrease of annual average overland flow under

decreased annual precipitation, along with increases in
annual and seasonal overland flow coefficients, is due to
the increased impervious land cover associated with
urbanization. The impact of increased soil sealing on
overland flow from the rural to the continuous urbanization
period is in relative terms more noticeable in the dry than
in the wet season. Specifically, the relative contribution of
overland flow to total runoff increases by 4 percentage units
in the wet season and by 8 percentage units in the dry season
between the two stage periods (Table III). These seasonal
results highlight a particularly important impact of soil
sealing on water flows in the dry summer season.
The decrease in total runoff over the stage periods

corresponds mainly to a decreased contribution from base
flow, from 234 to 173 mm y�1 and later to 152 mm y�1

(Figure 6e, p > 0·05). On annual average, this base flow
contribution to total runoff has decreased from 46% in thefirst
period to 38% in the last, urban period. Importantly, under the
development of these concurrent climatic, land-use and
associated hydrological changes, the annual average storage
change in the catchment has remained essentially the same
and near-zero (Figure 6f, p > 0·05). This storage change
finding is consistent with previous data-based results
(Jaramillo et al., 2013) and supports fundamental
interpretation assumptions (Destouni et al., 2013; Jaramillo
& Destouni, 2014, 2015) made for hydrological change
assessments in catchments on various scales and in different
parts of the world. Seasonally, the base flow decrease is in
absolute terms greater for thewet than for the dry season (from
22·3 to 15·9 mm, and from 2·3 to 1·3 mm, respectively),
whereas the change in relative terms is greater for the latter,
dry season due to its overall small runoff value (Table III).
Given the small size of the catchment, changes over the

three development stages may also be noticeable in the
catchment hydrograph shape, not least considering the
urbanization development in the catchment. However, given
the daily time resolution of available rainfall data over most
of the study period, the lack of independent data on shorter
response times of the storm drainage system, and the focus
of the present study on longer-term (than sub-daily)
variability and changes in the catchment-scale water
balance, the possible changes in fast storm-event responses

and their reflection in hydrograph shape have not been
investigated as part of this study. However, changes in
rainfall–runoff responses during isolated storm events have
been assessed in a previous study for periods in 2008/2009
and 2012/2013 based on 15-min rainfall and streamflow
measurements (Ferreira et al., 2016b). Between these times,
urban areas expanded from 32 to 40%, leading to faster
hydrological response time to storm events (from 60–
75 min to 40–45 min), increased overland flow and peak
flow, and reduced recession time.
Overall, the climatically driven decrease in precipitation

in conjunction with the increasing urbanization development
in the peri-urban catchment landscape itself has jointly led to
decreased infiltration and further decreased base flow from
the subsurface to the stream water network of the catchment.
The urbanization development over the same time has
particularly increased the relative overland flow coefficient
and thereby kept the absolute overland flow component
essentially constant in spite of the precipitation decrease in
the catchment. These land-use changes represent important
flux partitioning and connectivity alterations in the
catchment, with a greater share of any effective
(precipitation minus evapotranspiration) water input to the
catchment now going to overland flow that relatively
quickly feeds into the stream network.

CONCLUSIONS

The changes in hydrological flux partitioning and
connectivity occurring in the investigated peri-urban study
catchment emerge as driven in combination by the regional
climatic change and the urbanization development within
the catchment itself. In the Ribeira dos Covões catchment,
the main climatic driver of hydrological change has been a
decrease in precipitation, leading to decrease in both annual
and seasonal runoff and actual evapotranspiration. Even
though the decrease in precipitation has been significant,
the overland flow exhibits only a minor decrease from the
rural to the continuous urbanization period, and the relative
contribution of overland flow to total runoff has increased.
The impact of urbanization towards increased overland flow
has in this transition counteracted the concurrent decrease in
precipitation. Thus, based on climate change scenarios that
foresee more intense storms, the future flood hazard
mitigation in this catchment will be an even greater
challenge than under current conditions. Measures to
maximize water infiltration and retention in peri-urban
catchments therefore still need to be considered and assessed
for mitigation of urban flood risks.
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