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Abstract
Freshwaters provide valuable habitat and important ecosystem services but are threatened

worldwide by habitat loss and degradation. In Southeast Asia, rainforest streams are particularly

threatened by logging and conversion to oil palm, but we lack information on the impacts of this

on freshwater environmental conditions, and the relative importance of catchment versus

riparian‐scale disturbance. We studied 16 streams in Sabah, Borneo, including old‐growth forest,

logged forest, and oil palm sites. We assessed forest quality in riparian zones and across the

whole catchment and compared it with stream environmental conditions including water quality,

structural complexity, and organic inputs. We found that streams with the highest riparian forest

quality were nearly 4 °C cooler, over 20 cm deeper, had over 40% less sand, greater canopy

cover, more stored leaf litter, and wider channels than oil palm streams with the lowest riparian

forest quality. Other variables were significantly related to catchment‐scale forest quality, with

streams in the highest quality forest catchments having 40% more bedrock and 20 times more

dead wood, along with higher phosphorus, and lower nitrate‐N levels compared to streams with

the lowest catchment‐scale forest quality. Although riparian buffer strips went some way to

protecting waterways, they did not maintain fully forest‐like stream conditions. In addition,

logged forest streams still showed signs of disturbance 10–15 years after selective logging. Our

results suggest that maintenance and restoration of buffer strips can help to protect healthy

freshwater ecosystems but logging practices and catchment‐scale forest management also need

to be considered.

KEYWORDS

freshwater, habitat disturbance, oil palm, rainforest, riparian buffer, selective logging, Southeast

Asia, water quality
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1 | INTRODUCTION

Freshwater ecosystems are intricately linked with their surrounding

terrestrial habitats. In the case of stream systems, all inputs of water,

sediment, organic matter, and sunlight are strongly influenced by

properties of the stream catchment and riparian zone, which in turn

shape the structure, nutrient availability, and ecology of the stream

habitat (Allan, 2004). Any changes in land use therefore have the

potential to affect freshwater ecosystems fundamentally. Globally, it

has been estimated that 65% of river habitats are under moderate to

high threat from land‐use change (Vörösmarty et al., 2010). Freshwater

ecosystems provide essential services for people, including water for

drinking, homes, agriculture, and industry, as well as food resources

such as fish and crustaceans. They also provide habitat for 6% of the

world's species (Dudgeon et al., 2006), of which it is estimated that

10,000–20,000 are currently at risk of extinction (Strayer & Dudgeon,

2010; Vörösmarty et al., 2010). If the ecosystems and services pro-

vided by freshwaters are to be maintained and managed effectively,

it is essential that the impacts of land‐use change and degradation

on waterways are understood.

Southeast Asia, particularly the Sundaland region, which includes

Borneo, has some of the highest rates of land‐use change in the world

(Sodhi, Koh, Brook, & Ng, 2004) and had lost nearly 70% of its lowland

forests by 2010 (Wilcove, Giam, Edwards, Fisher, & Koh, 2013). By

2009, just 25% of land in Sabah, Malaysian Borneo, was covered by

intact forest, whilst 31% was degraded or severely degraded forest,

much of which had been logged multiple times (Bryan et al., 2013).

Increasingly, these logged forests are also being converted to timber,

rubber, and, particularly, oil palm plantations (Wilcove et al., 2013).

By 2010, 20% of Sabah's land area was being used to grow oil palm

(Elaeis guineensis), and it is estimated that 62% of all plantations in

Sabah have been established on land directly converted from forests

(Gunarso, Hartoyo, Agus, & Killeen, 2013). Although selective logging

only removes the largest trees of commercial species (mainly of the

family Dipterocarpaceae), it is estimated that many more die, with

41% of remaining trees being uprooted and crushed and another

18% suffering damage to their crowns or bark (Pinard & Putz, 1996).

In addition, bulldozers directly affect approximately 30–40% of any

area being logged (Bryan et al., 2013). Skid trails, log landing areas,

and logging roads, along with full‐scale conversion for agriculture,

create large areas of exposed and compacted soil that are vulnerable

to increased runoff and high rates of soil erosion (Brooks & Spencer,

1997; Douglas, 1999).

It is likely that logging and oil palm agriculture are having substan-

tial impacts on freshwater systems in the region. A broad literature on

the impacts of catchment‐scale and riparian land use exists for temper-

ate freshwaters (e.g., reviewed by Allan, 2004; Tabacchi et al., 2000).

But those impacts are less clear for tropical freshwater systems, which

differ substantially from temperate ones in terms of rainfall and

flooding regime, nutrient loads, biotic interactions, and normal levels

of sediment and organic matter (Boulton et al., 2008; Dudgeon,

1999; Payne, 1986). In addition, the type and extent of land‐use

changes being experienced in the tropics often differ from those in

temperate regions. Temperate or tropical land‐use changes that result

in larger areas of bare soil increase surface runoff, gully formation, and

potential for flash floods and may cause permanently higher

streamflow (Brooks & Spencer, 1997; Bruijnzeel, 2004; Douglas,

1999). This can increase sediment flow into streams, loss of nutrients

from soils (Douglas, 1999; Malmer, 1996; Malmer & Grip, 1994) and

streamwater nutrient, and mineral concentrations (Douglas, 1999).

Loss of vegetation decreases water interception by canopy and leaf lit-

ter and reduces removal rates of water by transpiration, whilst soil dis-

turbance and compaction reduces water infiltration (Bruijnzeel, 2004;

Douglas, 1999). Loss or degradation of forest in the riparian zone

may alter channel cross‐sectional size and shape, reduce inputs of

woody debris, reduce shading and promote algal growth, change water

chemistry, and remove the final barrier to sediment and nutrient inputs

into streams (de Souza, Fonseca, Libório, & Tanaka, 2013; Dosskey

et al., 2010; Fernandes, Souza, & Tanaka, 2013; Sweeney et al.,

2004). It is uncertain how long it takes for freshwater ecosystems to

recover from disturbance caused by land‐use change, with studies

showing mixed results. Recovery to predisturbance sediment levels

has been reported only 2 years after oil palm plantation establishment

in Malaysia (DID, 1986, in Douglas, 1999). In contrast, studies in Kuala

Lumpur (Lai 1992 and 1993, in Douglas et al., 1999) found that it took

8–20 years for erosion levels to return to normal, and streamflow had

still not returned to normal 7 years after logging at another site in Pen-

insular Malaysia (Rahim & Zulkifli, 1994, in Bruijnzeel, 2004).

Several mitigation strategies have been proposed to reduce the

impacts of land‐use change on freshwaters and aid recovery after

disturbance. Reduced impact logging using practices such as stock

mapping, skid trail planning, liana cutting, and avoiding slopes steeper

than 25° (Pinard & Putz, 1996; Putz & Pinard, 1993; Putz, Sist,

Fredericksen, & Dykstra, 2008) minimises damage to remaining forest

and therefore nearby freshwaters compared to traditional mechanised

approaches (Bruijnzeel, 2004; Chappell et al., 2008; Douglas, 1999;

Walsh et al., 2011). Terracing of slopes, planting of cover crops, and

appropriate road construction are also recommended for reducing

erosion in oil palm plantations (RSPO, 2013). Retaining riparian

vegetation and forest fragments in agricultural areas has been found

to substantially reduce impacts on freshwater systems in a range of

tropical regions (e.g., de Souza et al., 2013; Fernandes et al., 2013;

Heartsill‐Scalley & Aide, 2003; Suga & Tanaka, 2012). Riparian buffer

strips (protected zones of natural or non‐crop habitat left beside

waterways) have been widely adopted as a mitigation strategy for

reducing impacts of land‐use change on freshwaters, and they are

one of the certification criteria for sustainable palm oil production

under the Roundtable on Sustainable Palm Oil (RSPO, 2013). In Sabah,

20 m wide riparian buffers are required along all rivers measuring 3 m

or more in width in order to maintain water volume and flow, prevent

degradation of water quality, and damage to the aquatic environment

(Sabah Water Resources Enactment, 1998) although these regulations

are often poorly enforced and many rivers currently lack adequate, or

indeed any, riparian buffers. In tropical ecosystems in particular, a con-

sensus has not yet been reached on the most appropriate width for

riparian buffers or the extent of forest cover across the wider catch-

ment that needs to be retained in order to minimise limnological

change. Furthermore, few studies have considered effects on a range

of stream conditions simultaneously, or the effects of forest distur-

bance over multiple spatial scales (Allan, 2004). There have been calls
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for a greater consideration of potential changes to freshwaters in

logged forest landscapes (Bruijnzeel, 2004), and research into the

impacts of oil palm on freshwaters is very limited.

This study assesses how stream conditions, including sediment

characteristics, water quality, channel structure, and organic inputs,

change along a gradient of forest disturbance, comprising old

growth forest, logged forest of varying quality, oil palm with

riparian buffer strips of differing widths, and oil palm with no

buffer strips in Sabah, Malaysian Borneo. We consider how stream

environmental conditions vary in relation to quality of forest at the

catchment scale and in the riparian zone, the effects of riparian

buffer strips, and the rate at which streams recover after forest

disturbance.

2 | METHODS

2.1 | Stream sites

We conducted survey work in Sabah, Malaysian Borneo (Figure 1). The

region has an equatorial climate with high annual rainfall and little

seasonality, but with a tendency for drought from February to early

May in major ENSO years (Walsh & Newbery, 1999). Mean annual

rainfall at Danum Valley Field Centre 1985–2012 was 2,883 mm

(Walsh et al., 2013), and 2,455 mm at the “Stability of Altered Forest

Ecosystems” (SAFE) Project site near Tawau, 2012–2015 (Rory P.D.

Walsh, unpublished data). The geology is similar across stream sites

and comprises a mixture of sedimentary rocks including sandstones,

mudstones, and tuff, and orthic acrisols are the dominant soil type

(see Nainar, Bidin, Walsh, Robert, & Reynolds, 2015 for more

information). The natural vegetation is lowland dipterocarp rainforest

(Marsh & Greer, 1992).

We surveyed 16 streams (Figure 1) that were located at a mean

altitude of 236 m asl ± SE 26 m and were matched according to slope

(mean slope across the whole catchment of 18.24° ± SE 0.81°). In each

stream, we started our survey work at matched points that had an

upstream catchment size of 3.16 km2 ± SE 0.31 km2 and approximately

2 km of headwater flow. We will henceforth refer to these points as

the “0‐m point” of each stream. Stream catchments were located

across three research areas: the Danum Valley Conservation Area

(117° 48.75′ E and 5° 01′ N), the Maliau Basin Conservation Area

(116° 54′E and 4° 49′ N), and the SAFE Project site in an area of the

FIGURE 1 Schematic and map showing the location of the 16 stream sites used in our study within Sabah, Malaysian Borneo. The Borneo inset
map was drawn using library “maps” in R statistical package (Becker & Wilks, 2015; R CoreTeam, 2014). All other maps were drawn using ArcMap
10.2.1 GIS software (Environmental Systems Research Institute [ESRI], 2014) using map layers developed from Landsat imagery (Ewers et al., 2011)
and local maps and information from maps in Douglas et al. (1992) and Hansen et al. (2013). LF, logged forest; OG, old growth; OPB, oil palm with
buffer; SAFE, Stability of Altered Forest Ecosystems
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Kalabakan Forest Reserve (116° 57′ E to 117° 42′ E and 4° 38′ N to 4°

46′ N; Figure 1). The SAFE Project is a large‐scale, long‐term research

project that is making use of government‐planned forest clearance and

conversion to oil palm to investigate the impacts of land‐use change

and forest fragmentation on ecosystems (see Ewers et al., 2011 for

more information). We chose catchments in areas that had undergone

different levels of habitat disturbance and conversion, which are typi-

cal of the major types of habitat change found in this region (Reynolds,

Payne, Sinun, Mosigil, & Walsh, 2011).

1. Four streams in old‐growth lowland dipterocarp rainforest (old

growth [OG]). Old‐growth forest sites were within the Danum

Valley Conservation Area, the Maliau Basin Conservation Area,

and a virgin jungle reserve (VJR) at the SAFE Project site (Figure

1). The two Danum Valley sites (OG‐West and OG‐Rhinopool)

had never been logged. The Maliau Basin site (OG‐Maliau) had

been very lightly logged (to provide timber for adjacent field centre

buildings), and the VJR (OG‐VJR) had suffered minimal illegal

felling (Ewers et al., 2011), but neither the VJR nor Maliau had

experienced the extent of commercial selective logging

characteristic of the wider region, and tree cover at theMaliau site

remained similar to that at undisturbed sites (Hamzah Tangki,

unpublished data from Maliau for PhD dissertation, University of

Zurich, 2014).

2. Seven streams in forests that had been selectively logged to

different extents (logged forest [LF]). Logged forest sites were

located at the SAFE Project (Figure 1). At the time of the study,

the “SAFE experimental area” was a continuous forest that had

undergone a round of selective logging during the 1970s that

removed approximately 113 m3 of hardwood timber per hectare

and multiple rounds from the late 1990s–2000s that removed a

further 66 m3 ha−1 (LF‐1, LF‐2, LF‐3, LF‐4, LF‐5, and LF‐6),

although in the case of LF‐7, this second round was only a single

harvest of 37 m3 ha−1 (Fisher et al., 2011; Pfeifer et al., 2015;

Struebig et al., 2013). Although logging had been completed at

the same time across the landscape, the logged forest sites were

very heterogeneous with patches of forest with closed canopy

interspersed with early regrowth, gaps, and roads.

3. Three streams in oil palm plantations with forested riparian buffer

strips remaining beside the streams (oil palm with buffer [OPB]).

Oil palm sites were located in areas of mature oil palm (planted

between 1999 and 2009) near the SAFE Project experimental

area (Figure 1). Oil palms are usually planted 9 m apart, with a

cover crop (often leguminous) grown between to help decrease

soil erosion and nutrient loss (Corley & Tinker, 2003). The palms

had not yet grown sufficiently to give a closed canopy (Luskin &

Potts, 2011). All oil palm stream catchments were predominantly

planted with oil palm but varied in the amount of forest cover

and riparian buffer strip remaining in the catchment. The

OPB‐Gaharu had a wide riparian buffer strip (mean ~ 331 m,

minimum ~75 m) on each side of the stream. The OPB‐Keruing

had a medium‐width riparian buffer strip (mean ~ 68 m,

minimum ~33 m) on each side of the stream. The OPB‐Merbau

had a narrow riparian buffer strip (mean ~ 26 m, minimum ~2 m)

on each side of the stream.

4. Two streams (OP‐Binuang and OP‐Selangan Batu) in oil palm

plantations with no buffer strips (oil palm no buffer [OP]). These

were located in the same regions as detailed (in 3) above.

We sampled more streams in logged forest than in old‐growth for-

est and oil palm because logged forest sites were expected to show

greater habitat heterogeneity, and it was important to ensure that

the sites chosen covered a range of forest qualities. Forest quality

varies continuously within our broad habitat categories (old‐growth

forest [OG], logged forest [LF], oil palm with buffers [OPB], and oil

palm no buffers [OP]), and some categories encompass more variation

than others. We therefore conducted analyses using continuous mea-

sures of forest quality rather than these simplified categories.

Sites were surveyed before forest clearance, and conversion to oil

palm occurred at the SAFE Project, and so they therefore form a

valuable baseline data set for later comparison with postconversion

data. Table S1 gives details of how each stream will be affected by

proposed future logging at the SAFE Project.

2.2 | Forest quality

We assessed riparian forest quality in each of the 16 streams at 50‐m

intervals, for 500‐m upstream of the “0‐m point.” At each survey point,

measurements were taken 10 m into the forest or oil palm on both

sides of the stream. Canopy openness was measured using a spherical

densiometer (with measurements directed upstream, downstream,

towards, and away from the stream, and then averaged; Lemmon,

1956). Tree density was measured using a hand‐held relascope

(Bitterlich, 1984), which is based on the angle‐count sampling method.

To allow for lower tree numbers where the stream flowed, trees were

counted in a 180° turn from upstream to away from the stream to

downstream; the resulting count was then doubled to represent a full

turn. Values were converted to an estimate of basal area (m2 ha−1) by

doubling the value again. Forest quality and percentage cover of vines

in the canopy within 10 m around the survey point were assessed visu-

ally. Forest quality was scored using the SAFE Project forest quality

scale: 0 = oil palm; 1 = very poor—no trees, open canopy with ginger

or vines, or low scrub; 2 = poor—open with occasional small trees over

ginger or vine layer; 3 = OK—small trees fairly abundant or canopy at

least partially closed; 4 = good—lots of trees, some large, and canopy

closed; 5 = very good—closed canopy with large trees, no evidence

of logging (Ewers et al., 2011; Pfeifer et al., 2015). Measurements were

made once at each site in June–December 2011–2013, and repeated

at all sites except OG‐West and OG‐Rhinopool in May–August 2014.

Measurements were averaged to give a single value of each variable

for each stream.

To quantify forest quality across the whole stream catchment, we

used forest stand structure maps developed by Pfeifer et al. (2016).

Maps showed mean above‐ground living biomass (AGB [t/ha]), leaf

area index (LAI, defined as leaf area per ground area), and percentage

forest cover (FCover) values within a 25‐m2 pixel. They were produced

by modelling the relationship between on‐the‐ground measurements

from forest quality plots (n = 193, taken in 2010 and 2011) and the

corresponding spectral intensity, spectral vegetation indices and tex-

ture data from RapidEye™ satellite images (taken during 2012 and
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2013), and upscaling the relationship for each pixel across the extent

of the study area (for full details, please refer to Pfeifer et al., 2016).

To assess forest quality within each stream catchment, we first calcu-

lated catchment areas using an ArcMap Hydrology toolbox (Environ-

mental Systems Research Institute [ESRI], 2014) with an ASTER

Digital Elevation Model (ASTER GDEM is a product of METI and

NASA), and the start point of the catchment (snapping point) set to

the 0‐m point in our catchments. These methods use topography infor-

mation to calculate the likely path of flow and accumulation of water

over the landscape and therefore delineate streams and catchments.

Once catchment areas had been mapped, we used the library “raster”

(Hijmans, 2014) in R statistical software (R Core Team, 2014) to clip

the AGB, LAI, and FCover maps to each of the catchment areas and

compute mean forest quality values (meanAGB, meanLAI, and

meanFCover) for each one. In the case of OG‐West and OG‐

Rhinopool, the stream catchments were obscured by cloud, making it

impossible to calculate forest quality values for these catchments.

Instead, we used forest quality values for the entire Danum Valley

Conservation Area. As the Danum Valley area is a continuous forest

that has never been logged or disturbed, it is very homogenous in

cover and structure and is likely to offer a good approximation for

the OG‐West and OG‐Rhinopool catchments.

2.3 | Stream environmental variables

Measurements of a wide range of stream environmental variables

were made once at each stream in April–August 2012, November–

December 2012, or April–June 2013, in nonflood conditions along

200‐m transects starting at the 0‐m point and going upstream. Water

chemistry variables, including temperature, pH, conductivity (Hanna

Combo pH and EC Meter), and dissolved oxygen (Hach‐Lange HQ40

digital DO meter), were measured at five points in each stream (0, 50,

100, 150, and 200 m upstream of the 0‐m point). Stream structural var-

iables including canopy openness over the stream, wetted width, total

channel width, maximum depth, maximum velocity, sediment cover,

and leaf litter were measured every 10 m. Canopy openness was mea-

sured from the middle of the stream in four directions (upstream,

downstream, left, and right at each point) using a spherical

densiometer. Channel width and wetted width of the stream were

measured using a tape measure, and maximum depth was measured

using a ruler. We measured maximum velocity at the fastest flowing

part of the stream at each measurement point using a 2‐m string, ten-

nis ball, and stopwatch. The time taken for the ball to travel 2 m was

recorded three times and then averaged. We assessed sediment size

in a 50‐cm‐wide band across the wetted width of the stream using

percentage cover within five size categories: bedrock, large rocks

(heavy, need two hands to move), small rocks (could pick up in one

hand), pebbles, and sand. To assess the amount of leaf material

retained within the stream (e.g., caught between rocks), we collected

leaves from a 20‐cm‐wide band across the wetted width of the stream

at each 10‐m point. Leaves were oven‐dried to a constant weight,

which was then recorded.

In addition to point measurements every 10 m, we characterised

the entire stream channel section between successive 10‐m points in

terms of percentage cover of dead tree trunks (henceforth shortened

to dead wood), rapids, riffles, and pools. If water was still or near‐still

with no ripples, we defined the area as a pool; if water was moving

and the surface was rippled, it was defined as a riffle; if water was

moving fast enough to give white water, we defined it as a rapid. For

analysis, we calculated the percentage contributions of rapids, riffles,

and pools to this water total.

Water samples (~500 ml in a plastic bottle) were taken at the 0‐m

point during nonflood conditions. Samples were taken approximately

monthly for a subset of streams (LF‐1, LF‐2, LF‐3, LF‐4, LF‐5, LF‐6,

LF‐7, OG‐VJR, and OP‐Selangan Batu) between 2011 and 2014 (giving

between 13 and 29 samples from each stream) and on a single occa-

sion for another subset of streams (OP‐Gaharu, OP‐Keruing, OP‐

Merbau, and OG‐West) in 2014 (giving one sample for each stream).

Samples were kept frozen and later analysed for nitrate‐N and phos-

phorus content using HACH nitrate and phosphate pocket colorime-

ters. We analysed Nitrate‐N using the cadmium reduction method

(APHA, 2005), and reactive‐P was analysed using the acidic molybde-

num‐blue method (APHA, 2005). Unfiltered samples were used unless

they were very turbid.

2.4 | Statistical methods

All statistical analyses were conducted using the R statistical package

(R CoreTeam, 2014). As forest quality variables were nonindependent,

we used principal component analysis (PCA) on the mean values for

each variable to summarise the major axes of variation in forest

quality. We ran separate PCAs for the riparian and catchment for-

est quality variables to produce summary riparian and catchment

forest quality variables. Riparian PC1 and Catchment PC1 were

used as forest quality variables in subsequent analyses.

We used linear mixed effects models (library “lme4,” Bates,

Mächler, Bolker, & Walker, 2015) with random intercepts to assess

individual relationships between riparian and catchment forest quality

and each instream environmental variable measured. In each model,

we treated the specific instream environmental condition as the

response variable and either riparian (Riparian PC1) or catchment for-

est quality (Catchment PC1) as the fixed effect and stream identity

as a random effect to take account of nonindependence of multiple

measurements within a stream. Model residuals were checked for

homoscedasticity and normality, and transformations were used where

necessary to ensure that model assumptions were met. All percentage

cover data were normalised using an arcsine square root transforma-

tion prior to analysis. For full details of statistical tests, refer toTable 2.

We used log‐likelihood ratio tests to generate p values to assess model

significance. Original data, fitted models, and 95% confidence intervals

(CI) of the model were plotted using library “ggplot2” (Wickham, 2009,

with reference to Chang, 2013).

3 | RESULTS

3.1 | Riparian and catchment forest quality

Principal component analysis produced summary scores for catchment

and riparian forest quality. In the riparian PCA, the first principal com-

ponent (Riparian PC1) explained 77.6% of the variation in
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measurements of riparian forest quality. Riparian PC1 scores were

multiplied by −1 to make the scale more readily interpretable from

low to high forest quality. In the catchment PCA, the first principal

component explained 92.1% of the variation in AGB, LAI, and FCover

measurements across catchments. Loadings of each of the original

forest quality measurements on each principal component are shown

in Table S2. Catchment PC1 and Riparian PC1 scores were correlated

(Pearson's r = .57, t = 2.60, df = 14, p = .0211). Despite this, there were

substantial differences in Riparian PC1 and Catchment PC1 scores

for some streams, particularly the oil palm and oil palm buffer

streams (Figure S1), indicating that the riparian and catchment scales

should be considered separately in analyses.

3.2 | Responses of stream variables to riparian forest
quality

Streams with high riparian forest quality (high Riparian PC1 scores) had

significantly higher canopy cover at the centre of the stream, more leaf

litter found lodged within the stream, and lower water temperatures

than streams that had lower riparian forest quality (Figure 2a–c,

Table 2). The model results suggest that streams with the highest ripar-

ian forest quality had over 10 times as much trapped instream leaf

matter and were nearly 4 °C cooler than oil palm streams with the low-

est riparian forest quality (Figure 2b and 2c). Water temperature and

canopy openness also decreased with rising catchment forest quality

(Catchment PC1), but the effect was less significant (Table 2). In terms

of differences between broad habitat types (OG, LF, OPB, and OP), the

results suggest that logged forest and old‐growth streams were similar

in water temperature and instream canopy openness, whereas oil palm

buffer streams were warmer, with a more open canopy, but less so

than the nonbuffered oil palm streams (Figure 2a–c, Table 1). Oil palm

buffer streams and logged forest streams were the most similar in their

stocks of submerged leaves, although oil palm streams without buffers

had substantially fewer leaves and old‐growth forest streams had sub-

stantially more (Table 1).

Streams with high riparian forest quality also had lower percent-

age cover of sand on the stream bed and a greater maximum depth

and total channel width than streams with lower riparian forest quality

(Figures 2d–f, Table 2). High‐quality forest streams had approximately

2% sand on the stream bed, compared to a modelled result of 45% in

the lowest quality oil palm streams, although there was substantial var-

iation between streams. Across broad habitat types, only logged forest

streams were similar to old‐growth forest streams in terms of sand

cover. Sand cover was higher in the oil palm streams, even including

those which had riparian buffers (Figure 2d, Table 1). Streams with

the highest quality riparian vegetation had a maximum depth over

20 cm deeper than that modelled for streams with the lowest riparian

forest quality. These results correspond to a progressively increasing

maximum depth across the habitat types from oil palm through to

old‐growth forest (Figure 2e, Table 1). Model results suggest that the

highest forest quality streams were double the total width, from bank

to bank, than the lowest forest quality streams, but that there was

no significant difference in wetted width between high and low quality

streams (Figure 2f, Table 2). This means that there were more dry areas

in the channel of higher forest quality streams and that percentage

cover of the channel by water was significantly related to forest qual-

ity. Oil palm streams without riparian buffers were only just over half

as wide as streams in old growth forest, logged forest, and oil palm

streams with buffers, all of which had similar channel widths. However,

although old‐growth forest and logged forest streams had similar per-

centage cover of water within the channel, oil palm streams had higher

percentage water cover (fewer dry areas) than the forested streams

and this difference was found in oil palm streams with and without

riparian buffers (Figures 2g, Table 1).

3.3 | Responses of stream variables to catchment
forest quality

Other instream environmental variables showed significant relation-

ships with catchment‐scale forest quality rather than riparian forest

quality. Modelled results indicate that streams with the highest catch-

ment forest quality had 46% bedrock cover compared to only 6% in

the lowest quality catchment streams, and had over 20 times more

dead wood than lowest forest quality oil palm streams (Figures 2h–i).

Considering broad differences between major habitat types, logged

forest, and old growth forest streams had similarly high levels of

exposed bedrock, with lower levels in oil palm streams. Levels of dead

wood in the streams declined steadily from old‐growth through to

logged forest, then oil palm, with the lowest levels in the oil palm

streams with buffers (Table 1).

Nitrate‐N levels were significantly lower in higher quality catch-

ment streams with models suggesting that nitrate values were about

12 times lower in the highest quality streams than in the lowest quality

oil palm streams (Figure 2j, Table 2). Phosphorus showed the opposite

trend, with levels being three times higher in streams with high catch-

ment forest quality scores than those in the lowest quality oil palm

catchment (Figure 2k, Table 2), although the difference was only

approximately 0.1 mg/L. Across the broad habitat types, logged and

old‐growth forests appear most similar in terms of nitrate‐N and phos-

phorus levels, with oil palm streams showing higher nitrate‐N and

lower phosphorus levels, with the highest values recorded at oil palm

sites with riparian buffers (Table 1). All nitrate and phosphorus values,

however, are well below pollution threshold levels.

We found no significant differences in other aspects of water

quality (dissolved oxygen, pH, and conductivity) in relation to either

riparian or catchment quality, nor in a range of other water flow and

sediment conditions (velocity; wetted width; percentage cover of

rapids or pools; percentage cover of large rocks, small rocks, or

pebbles; Table 2).

4 | DISCUSSION

Our study is the first to demonstrate how riparian and catchment for-

est quality affect stream environmental variables across a habitat deg-

radation landscape in Southeast Asia. We show that forest quality at

both the riparian and catchment scales are significantly related to

stream environmental conditions and that different conditions are

affected by habitat quality across different scales. In accordance with

other studies in the region, our results indicate that the impacts of
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FIGURE 2 Relationship between (a–f) riparian forest quality PC1 and (g–k) catchment forest quality PC1 and stream environmental conditions.
Points (jittered to aid viewing and coloured according to habitat type) show original repeat measures within each stream, whilst lines and 95%
confidence intervals show results of mixed effects models (see Table 2)
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selective logging are still evident in stream environmental conditions

over 10 years after logging, because logged forest streams showed dif-

ferences in conditions to the old‐growth forest streams. In turn, oil

palm streams with riparian buffers retained more natural stream

conditions than oil palm streams without buffers, illustrating the

importance of retaining or restoring riparian buffers for freshwater

management in these systems. However, they still differed from for-

ested streams in many of their channel characteristics and some of

TABLE 2 Model equation and details of variables (including transformations) used in mixed effects models, along with results of log‐likelihood ratio
test comparisons of mixed model results with null models to assess significance of relationships between catchment and riparian forest quality and
stream environmental variables

For mixed effects models of the form: lmer (transformed response variable ~ forest quality explanatory variable + [1|Stream])

Transformed response variable
Forest quality

explanatory variable

Results of log‐likelihood
ratio test

χ2 p

Water temperature Catchment PC1 9.3494 .0022b

Riparian PC1 11.183 .0008c

Dissolved oxygen Catchment PC1 0.3929 .5308
Riparian PC1 0.0038 .9595

pH Catchment PC1 0.0002 .9885
Riparian PC1 0.3929 .5308

Conductivity Catchment PC1 2.4513 .1174
Riparian PC1 0.1647 .6849

−1/(Nitrate‐N + 1) Catchment PC1 22.188 <.0001c

Riparian PC1 0.9095 .3402

Reactive‐P Catchment PC1 5.0749 .0243a

Riparian PC1 1.789 .1811

−1/(flow time)^0.5
(time for a ball to move 2 m)

Catchment PC1 0.413 .5205
Riparian PC1 0.0005 .9823

Log10 (total channel width) Catchment PC1 0.7631 .3824
Riparian PC1 8.3182 .0039b

Log10 (wetted width) Catchment PC1 0.0004 .9845
Riparian PC1 2.7478 .0974

Maximum depth Catchment PC1 3.5281 .0603
Riparian PC1 4.5558 .0328a

Log10 (submerged leaves weight + 1) Catchment PC1 3.6944 .0546
Riparian PC1 13.424 .0002c

Instream canopy openness Catchment PC1 8.9976 .0027b

Riparian PC1 16.176 <.0001c

Arcsin square root (% cover water
stream channel)

Catchment PC1 5.1588 .0231a

Riparian PC1 3.1049 .0781

Arcsin square root (% cover of rapids) Catchment PC1 0.6447 .4220
Riparian PC1 0.9061 .3411

Arcsin square root (% cover of riffles) Catchment PC1 2.7009 .1003
Riparian PC1 0.9683 .3251

Arcsin square root (% cover of pools) Catchment PC1 0.8109 .3679
Riparian PC1 0.0787 .7790

Arcsin square root (% cover of dead wood) Catchment PC1 7.7975 .0052b

Riparian PC1 0.3899 .5323

Arcsin square root (% cover of bedrock) Catchment PC1 7.1287 .0076b

Riparian PC1 1.4152 .2342

Arcsin square root (% cover of large rocks) Catchment PC1 3.1435 .0762
Riparian PC1 2.2871 .1305

Arcsin square root (% cover of small rocks) Catchment PC1 0.682 .4089
Riparian PC1 1.7454 .1865

Arcsin square root (% cover of pebbles) Catchment PC1 0.8835 .3473
Riparian PC1 1.1906 .2752

Arcsin square root (% cover of sand) Catchment PC1 4.0783 .0434a

Riparian PC1 8.1223 .0044b

Note. n = 16 streams (unless stated otherwise in Table 1), with multiple repeat measures in each stream (see Section 2).

Significant results are denoted by the following:
ap < .05,
bp < .01, and
cp < .001.
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their chemical conditions, suggesting that riparian buffer strips alone

are not sufficient to protect streams fully from the impacts of oil palm

agriculture.

Specifically, we found that streams with higher quality riparian for-

est had significantly lower canopy openness over the stream, lower

water temperatures, and higher levels of leaf material in the water.

They also had lower percentage cover of sand, greater maximum

depth, and greater channel widths compared to streams with lower

quality riparian habitat. Other variables showed stronger trends with

forest quality across the catchment‐scale. Percentage cover of bed-

rock, dead wood, and phosphorus levels were significantly higher in

streams with higher catchment forest quality, although water cover

within the stream channel and nitrate‐N levels were lower.

4.1 | Responses of stream variables to riparian forest
quality

Loss of tree cover in the riparian zone through selective logging or

complete clearance for oil palm reduces the canopy cover above the

stream, leading to higher canopy openness scores over the centre of

the stream, and lower availability of leaves to fall into the water. As

well as increasing light levels and reducing leaf input, lower riparian

forest cover reduces shading and consequently results in higher water

temperatures (e.g., Kiffney, Richardson, & Bull, 2003; Moore,

Spittlehouse, & Story, 2005). In our study, light exposure almost dou-

bled and water temperature was approximately 4 °C higher in streams

with lowest riparian forest quality compared to those of the highest

quality. Water temperature was also significantly correlated with

catchment‐scale forest quality, and other studies have found that

upstream forest cover, for at least a few hundred metres, is important

for stabilising downstream water temperatures (Scarsbrook & Halliday,

1999; Storey & Cowley, 1997). This may be because temperature of

runoff water into streams is affected by temperatures across the

catchment. Air temperatures have been found to increase by up to

6.5 °C when forest is converted to oil palm (Hardwick et al., 2015)

and with the average surface temperature in Borneo predicted to

increase by up to 3–4 °C by 2081–2100 relative to 1986–2005, as a

result of climate change (Intergovernmental Panel on Climate Change

[IPCC], 2014), higher water temperatures are likely to become increas-

ingly common.

Streams with lower riparian forest quality had narrower channels,

lower maximum depths, and higher percentage cover of sand on the

streambed. Narrow channels were a feature of the oil palm streams

without buffer strips, perhaps because reduced riparian shading may

allow increased growth of understory vegetation on the stream edge,

which hold the banks together and reduce erosion (Sweeney et al.,

2004). The maximum depth of oil palm streams was almost half that

of streams in old‐growth forest. Despite allowing growth of bank‐

stabilising plants near the stream edge, reduced vegetation cover in

the wider riparian landscape increases the likelihood of there being

areas of bare ground from which soil can be eroded, and fewer leaves,

roots, and less leaf litter to act as a barrier to its transport directly into

the stream (Bruijnzeel, 2004). It is well established that increased ter-

restrial disturbance can lead to increased sediment levels in streams.

Sediment loadings up to 50 times higher than normal levels have been

recorded in disturbed sites in Malaysia (Douglas, Greer, Bidin, &

Spilsbury, 1993), although high sediment yields were found in streams

draining both newly planted and mature (>10 years old) oil palm plan-

tations in Indonesia (Carlson et al., 2014). In addition, clear‐felling for-

est and replacing it with cocoa and oil palm increased sediment loads

by nearly 15 times (from a mean of 28 t/km2 to 414 t/km2 in one of

the streams; DID, 1986; DID, 1989, in Douglas, 1999) relative to

prelogging conditions. Such increases in stream sediment loads proba-

bly contributes to high levels of sand and silt settlement on the stream-

bed, resulting in a shallower average depth, infilling of the deepest

pools and overall simplification of the stream bed habitat (Allan, 2004).

4.2 | Responses of stream variables to catchment
forest quality

Several stream variables showed significant relationships with catch-

ment‐scale forest quality rather than riparian forest quality. Percentage

cover of bedrock, dead wood, and levels of phosphorus in the water

were significantly higher in streams with higher catchment forest qual-

ity, although levels of nitrate‐N were lower. Nitrates are readily

leached from tropical soils (Payne, 1986), particularly when land is dis-

turbed by clearance (Malmer & Grip, 1994), and so levels in stream

water may be high until vegetation regrowth removes more nitrogen

from soil water (Malmer & Grip, 1994). The elevated nitrate levels in

oil palm streams most likely resulted from runoff of fertilisers that

are added to oil palm plantations (Yusoff & Hansen, 2007). However,

local guidelines encourage the use of recycled biomass (e.g. cut fronds,

empty fruits bunches, cover crops) and minimal use of inorganic

fertilisers (Malaysian Palm Oil Board 2014), and fertiliser application

at our sites appeared to be targeted through use of slow‐release

fertilisers from semipermeable bags (personal observation). It is also

noteworthy that although we detected significant differences between

sites, nitrate levels were low. Levels were generally lower than those

found in a study of oil palm and forested control streams in Sarawak

(mean nitrate‐N in oil palm 2.70 mg/L, cf., 1.71 mg/L in our study,

and mean nitrate in forest of 1.92 mg/L, cf., 0.60 mg/L in our study,

Mercer, Mercer, & Sayok, 2013), and (apart from one outlier) our

results are still within recommended limits for sensitive aquatic species

on the basis of Malaysian National Water Quality Standards (Ministry

of Natural Resources and Environment Malaysia, 2014). They are also

substantially lower than values recorded in agricultural catchments in

Eastern England over recent decades, which have often exceeded

the maximum 50 mg/L level required for drinking water (Skinner et al.,

1997).

Phosphorus levels showed the opposite trend to nitrate‐N levels,

with highest phosphorus values in the logged and old‐growth forest

sites and lower levels in oil palm, despite fertilisers being added to

plantations. This may be because phosphorus is needed in large quan-

tities by rapidly growing plants (de Souza et al., 2013; Dosskey et al.,

2010), which would include oil palm, scrub, and forest regrowth in

the low‐quality forest streams. However, less is taken up by slow‐

growing, mature vegetation, perhaps resulting in the higher levels

observed in the old‐growth and less disturbed logged forest sites. In

addition, high‐throughflow and runoff rates in more disturbed catch-

ments (Bruijnzeel, 2004; Douglas, 1999) may dilute the phosphorus
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released from weathering of underlying rocks and organic matter

breakdown. However, the numerical difference was small and there-

fore unlikely to have substantial impacts on the stream system. Inputs

of tree trunks into streams depend entirely on supply of dead trees

from the surrounding forest and, because wood is often carried a long

way downstream, particularly in flood events, it makes sense that

higher levels of forest at the catchment‐scale gave higher levels of

wood in both our study and in others (Cadol & Wohl, 2010;

Heartsill‐Scalley & Aide, 2003).

4.3 | Other factors affecting stream conditions

Although many of the patterns in environmental variables in our

stream are likely to be directly and causatively linked with forest qual-

ity at the riparian and catchment‐scale, it is important to recognise that

some patterns might be correlative and simply the result of human

choices about which areas to develop. For example, in Sabah and other

areas of the tropics, logging and development is limited to the lowlands

by feasibility and regulations; slopes above 25° are considered

unworkable and are generally not released for logging, apart from by

helicopter logging (Reynolds et al., 2011), and inaccessible areas are

generally avoided. This may mean that catchments and streams

selected for oil palm cultivation may already have a suite of character-

istics that are different from those that remain forested, rather than

differences caused by the clearance itself. High levels of bedrock in

higher quality forest catchments may be an example of this, as rocky

areas may be less likely to be chosen for oil palm development. How-

ever, given that these policies are so widely followed, it may be that

some features are still generalizable to high‐quality forest streams,

although caused by human selection of which sites to log and convert

to oil palm rather than any hydrological or ecological process brought

about by forest quality.

4.4 | Consequences for freshwater ecosystems

Our findings of elevated light levels, temperatures, sand, and nitrate‐N

found in disturbed streams, along with lower levels of habitat hetero-

geneity in terms of leaf and woody matter, rockiness, channel width,

and depth, are likely to have substantial impacts on stream ecosystems

and the services that streams provide. Temperature increases caused

by habitat conversion, particularly in combination with rising tempera-

tures predicted with climate change, are likely to have substantial

impacts on freshwater biodiversity and ecosystem functions (Boyero

et al., 2011; Hogg &Williams, 1996). Tropical insects in particular have

been shown to be vulnerable because they are sensitive to tempera-

ture change and are currently living near their optimal temperature

(Deutsch et al., 2008). Increases in light levels, nitrate‐N, and decreases

in leaf inputs could contribute to a shift to a community dominated by

algal growth (Benstead & Pringle, 2004; England & Rosemond, 2004)

and substantial changes in stream food webs (Boyero et al., 2011;

Covich, Palmer, & Crowl, 1999; Yule et al., 2009). Decreases in channel

width, depth, rockiness, and occurrence of dead wood, along with

increases in levels of sand in disturbed streams, are likely to reduce

habitat complexity and suitable habitat for many benthic invertebrates

(Burdon, McIntosh, & Harding, 2013). Simplified benthic habitats are

also less able to trap and retain leaf litter, therefore reducing levels

of terrestrial organic matter further. These changes in environmental

conditions and biota could substantially reduce water clarity, quality,

and fish production, with adverse consequences for local people. Fur-

thermore, lower channel width, depth, and high sedimentation in dis-

turbed streams could contribute to increased downstream flood risk.

4.5 | Management implications

Reduced impact logging has been suggested as a method to decrease

damage to remaining forests and soil during timber extraction, through

approaches such as skid trail planning, cutting lianas, using culverts in

waterways, positioning roads along ridges, and avoiding logging on

slopes over 25° (Pinard & Putz, 1996; Putz & Pinard, 1993; Putz

et al., 2008; Walsh et al., 2011), all of which could help to minimise

negative impacts of logging on freshwaters. Our results indicate that

environmental conditions in logged forest streams were often different

from old‐growth sites, suggesting that two rounds of conventional

selective logging over 10 years earlier were still affecting stream con-

ditions. Although recovery to prelogging levels of water quality has

been reported after just a few years in some cases, and for some con-

ditions (e.g., Malmer & Grip, 1994), several other studies found that it

took up to 20 years to return to predisturbance levels following logging

(Bruijnzeel, 2004; Douglas et al., 1999; Iwata, Nakano, & Inoue, 2003).

A study in Sabah found that although erosion rates were substantially

lower 21 years after selective logging than they had been during and in

a secondary peak 6–10 years after logging, they had not fully returned

to normal (Walsh et al., 2011). Our data do not allow for the effects of

reduced impact logging compared to conventional logging on freshwa-

ters to be explicitly tested, and no other studies have yet done this.

However, given the legacy of logging impacts we have shown, it seems

likely that practices that reduce the initial impact of logging on remain-

ing forest would benefit freshwaters.

Retaining forested riparian buffer strips, maintaining headwater

and steep‐slope forest cover, and protecting forest patches within

catchments have been proposed as ways to help maintain freshwater

ecosystems and the services they provide after land conversion

(RSPO, 2013). Legislation in Sabah currently stipulates that 20‐m

buffers should be maintained on all streams over 3‐m wide

(Environment Protection Department (EPD), 2011; Sabah Water

Resources Enactment, 1998). Roundtable on Sustainable Palm Oil

guidelines also state that in addition to buffer strips (minimum 5‐m

wide), there should not be forest clearing or oil palm planting on

steep slopes and that soil conservation methods, such as terracing,

should be used on 9–25° slopes (RSPO, 2013). Our results indicate

that forest quality at both the riparian and catchment‐scale have sig-

nificant impacts on stream environmental conditions and that the

ability of riparian buffer strips to maintain forest‐like stream condi-

tions in oil palm streams depends on the environmental measure

being considered. This shows that riparian buffer protection is highly

advantageous but apparently not sufficient to maintain stream eco-

systems and services fully and highlights the importance of broader

scale conservation strategies, such as protection of forest fragments

and terracing on steep slopes, being promoted by organisations such

as the Roundtable on Sustainable Palm Oil. Other studies also
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suggest that maintaining catchment‐scale forest cover in addition to

the maintenance of riparian buffer strips is important for determining

stream conditions (e.g., Allan, 2004; Allan, Erickson, & Fay, 1997;

Death & Collier, 2009; Heartsill‐Scalley & Aide, 2003; Sponseller,

Benfield, & Valett, 2001; Suga & Tanaka, 2012) and that forest struc-

ture and quality have an effect as well as area of forest cover (de

Souza et al., 2013). It has also been shown that riparian buffers that

have gaps are not enough to offer protection to freshwater ecosys-

tems (Wahl, Neils, & Hooper, 2013). Thus, it seems that catchment‐

scale planning and careful protection of designated buffer areas are

needed for efforts to be effective.

5 | CONCLUSIONS

We show that rainforest logging and oil palm agriculture affect a wide

range of stream environmental conditions, that both riparian and

catchment‐scale forest quality are important in moderating these

impacts, and that different stream conditions are affected by distur-

bance at different scales. Our study also shows that impacts of selec-

tive logging upon stream limnology can still be evident over 10 years

after habitat disturbance. We consider that maintenance of riparian

buffer strips is essential for retaining some forest‐like conditions in

streams including aspects of structure, water quality, and organic

inputs, but our data suggest that this alone is unlikely to be sufficient

to maintain fully forest‐like conditions. We suggest that any logging

in the riparian zone should be prevented and that riparian buffer strips

alongside streams should be strictly protected. In areas where there is

development in the wider catchment, reduced‐impact logging proto-

cols should be used along with added catchment‐scale protection of

forest fragments to help maintain freshwater ecosystems and the ser-

vices that they provide.
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