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Genetic and neurophysiological studies of electroencephalogram (EEG) have shown that an individual‟s brain 

activity during a given cognitive task is, to some extent, determined by their genes. In fact, the field of biometrics 

has successfully used this property to build systems capable of identifying users from their neural activity. These 

studies have always been carried out in isolated conditions, such as relaxing with eyes closed, identifying visual 

targets or solving mathematical operations. Here we show for the first time that the neural signature extracted from 

the spectral shape of the EEG is to a large extent independent of the recorded cognitive task and experimental 

condition. In addition, we propose to use this task-independent neural signature for more precise biometric identity 

verification. We present two systems: one based on real cepstrums and one based on linear predictive coefficients. 

We obtained verification accuracies above 89% on 4 of the 6 databases used. We anticipate this finding will create 

a new set of experimental possibilities within many brain research fields, such as the study of neuroplasticity, 

neurodegenerative diseases and brain machine interfaces, as well as the mentioned genetic, neurophysiological and 

biometric studies. Furthermore, the proposed biometric approach represents an important advance towards real 

world deployments of this new technology. 

Keywords: Electroencephalogram; biometry; task-independent; neural signature.

1. Introduction 

As early as 1936 – only 12 years after Hans Berger 

recorded the first human electroencephalogram (EEG)
1
 

– twin EEG research by H. and P. Davis evidenced the 

existence of a brain activity inheritance model.
2
 They 

concluded that the posterior rhythm of the resting EEG 

between twins were as similar as recordings from an 

individual across time. Many studies followed, 

including analyses of EEG recorded from twins reared 

apart to isolate exogenous factors,
3
 from families to 

evaluate the continuity of the phenotypic range,
4
 and 

from datasets recorded across long periods of time to 

assess the inheritance of maturation processes.
5
 They 

revealed that the EEG follows elaborated models of 

inheritance affecting a wide range of properties, 

especially the power and peak frequency of the alpha 

rhythm over occipital regions.
3, 6, 7

 

These results laid the foundation for the first 

attempts at automatic EEG-based biometric 

identification.
8, 9

 The field has progressed substantially 

since then. Some recent works include the use of 

functionality connectivity between brain regions,
10
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spectral coherence,
11

 wavelet package decomposition,
12

 

similarity-based approaches
13

 and features of the 

N400.
14

 Refs.15–17 are detailed reviews of the state of 

the art, while Ref.18 provides a fundamental study of 

the properties of this neural signature. 

To date, EEG genetic, neurophysiological and 

biometric studies have assessed numerous recording 

conditions, including relaxed and engaged states and 

stimulus-elicited activity, but always in an isolated 

manner. This should come as no surprise given that, 

historically, functional brain research has mainly 

studied the differences across task-related or condition-

related activity. The only multitask studies come from 

the biometric field,
19–21

 and are aimed at finding the 

most favourable condition performance-wise. 

Here we propose a fundamentally different 

approach. We hypothesize the existence of a neural 

pattern homogeneous across cognitive tasks and 

recording conditions, which is concomitant to the 

subject‟s identity. We call this „task-independent neural 

signature‟. Specifically, this paper presents two 

novelties in this field. First, we provide for the first time 

evidence of the existence of such task-independent 

signature. Second, we propose for the first time a 

biometric identity verification system that relies on the 

task-independent EEG signature. 

To understand the magnitude of the difference 

between this (task-independent) and previous (task-

specific) studies, let us consider fingerprints and written 

signatures respectively as analogous examples. While 

the former uses properties „inherent‟
a
 to the individual, 

the latter focuses on how they perform a given task. 

Hence, we argue that task-specific studies are closer in 

nature to describing behaviour (idiosyncratic activity 

during cognitive processing), while the current 

research tries to describe identity in and of itself.  

In the remainder of this paper, we will first 

introduce the 6 publicly available databases used 

during experimentation, as well as their preparation 

(section 2). We will continue detailing the 

experimental methods, describing algorithms, 

evaluation procedures and experiment designs (section 

3). We will then present all the obtained results 

(section 4), followed by the discussion, including a 

comparison of our results with those of the state of the 

art, some hypotheses of the physiological source of the 

                                                 
a
 Strictly speaking, fingerprints are not inherent parts of an 

individual, as a subject can still be without them. 

signature, and a discussion of the advantages of the 

proposed task-independent approach (section 5). To 

finalise, we will clarify the limitations of this work 

(section 6) and summarize its conclusions (section 7). 

When necessary, the reader is referred to the 

supplementary material for additional results and 

discussion, as well as for the result of statistical tests. 

2. Materials 

In a bid to gather enough evidences, we tested our 

hypothesis on an array of 6 publicly available data bases 

of different nature. To remove uninteresting differences 

across them, we applied a common preprocessing stage. 

This stage filtered out unwanted or contaminated 

frequencies from the EEG signal; rejected highly noisy 

channels, trials, sessions and subjects; interpolated 

rejected channels to retrieve the full original set of 

sensors; normalized the sampling frequency across 

databases to 128 Hz; and selected a common subset of 

19 channels evenly spread throughout the scalp. For a 

detailed description of this preprocessing, the reader is 

referred to Ref.18 

As a result of the preprocessing and after preparing 

each dataset we obtained the following databases used 

during experimentation (name code in parenthesis): 

(B) BCI2000
22, 23

 contains data from 100 subjects 

(from the 109 original ones) while performing 6 

different tasks, including two 1-minute baseline runs of 

resting with eyes open (REO) and closed (REC), and 

three 2-minute runs of 2 motor and 2 motor-imagery 

tasks: (T1 and T2) a target appears on either the left or 

the right side of the screen, the subject opens and closes 

(T1) or imagines opening and closing (T2) the 

corresponding fist until the target disappears; and (T3 

and T4) a target appears on either the top or the bottom 

of the screen, the subject opens and closes (T3) or 

imagines opening and closing (T4) either both fists (if 

the target is on top) or both feet (if the target is on the 

bottom) until the target disappears. In total, 11 different 

tasks/conditions were identified: left/right in T1 and T2, 

and top/bottom in T3 and T4 were differentiated –, and 

9 or 10 4-seconds trials per task/condition were 

extracted from the data. 

(D) Dataset for Emotion Analysis using EEG, 

Physiological and Video Signals (DEAP)
24, 25

 was 

originally collected to study emotional responses. It 

contains 20 subjects (from the 32 original ones – 50% 

males, aged between 19 and 37, mean age 26.9) while 
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they visualized 40 60-second music videos which 

elicited different emotions. Before each session, a 2-

minute baseline was recorded with subjects REO. In 

total 5 tasks/conditions were identified, i.e. REO and the 

four quadrants of the valence-arousal representation of 

emotions, and we extracted 5 to 10 20-seconds trials per 

task/condition.  

(K) Keirn‟s dataset
26, 27

 contains data from 5 

subjects (from the 7 original ones – 6 males and 1 

female between the ages of 21 and 48) recorded during 

2 different-day sessions. Subjects performed 5 tasks: 

(T1) relax, (T2) mentally solve non-trivial 

multiplication problems, (T3) mentally rotate 3-

dimensional complex objects, (T4) mentally write a 

letter to a friend or a family member and (T5) visualize 

numbers being written on a blackboard sequentially. 

Each of these tasks was repeated 5 times under both 

REC and REO on every session. We extracted 8 to 10 2-

seconds trials per task. Only 6 channels were available: 

O1/O2, P3/P4, C3/C4. 

(P) P. Ullsperger‟s dataset
28

 contains Auditory 

Evoked Potentials (AEPs) recorded from 5 subjects. 

Auditory stimuli (words) were presented to the 

participants, who had to classify each of the stimuli as 

synonyms or non-synonyms of a given target. The 

number of trials varied across subjects. Inter-stimulus 

time between trait and test stimulus was set to 1 second. 

We extracted 180 4.1-seconds trials per condition. 

(Y) Yeom‟s dataset
29, 30

 contains Visual Evoked 

Potentials (VEPs) from 10 male subjects (from the 11 

original ones); including 1 pair of monozygotic twins, 

with ages between 20 and 29 years old (mean 26.67). 

Self and non-self images were presented to the subjects 

in 2 different-day sessions. Each session consisted of 

20,000 trials divided into 2 runs (with a short break in 

between), 50 blocks per run, and 20 trials per block (10 

self and 10 non-self stimuli). We extracted 900 1-

second trials per condition. Only 18 channels were 

available spread throughout the scalp. 

(Z) Zhang‟s dataset
31–33

 contains VEPs of 30 

subjects (from the 37 original ones) exposed to black 

and white images taken from the set of Snodgrass and 

Vanderwart
34

 in an identification problem. Subjects 

were asked to determine whether the first stimulus was 

the same as the second stimulus. In some cases, only 

one stimulus was presented. Forty trials were recorded 

from each subject. We identified 3 conditions 

(references, targets and lures) and extracted 15 to 20 1-

second trials per condition. 

Together, the above datasets encompass the 

following tasks
b
: relaxed states, VEPs, AEPs, motor-

tasks, intellectual tasks and elicited emotions. 

To reduce bias from artefacts during exploration of 

the signature, an artefact free version of the databases 

was computed during preprocessing. Specifically, we 

applied ADJUST
35

, a tool based on the Independent 

Component Analysis (ICA) representation of the EEG. 

ADJUST automatically identifies artefactual 

independent components from time and topological 

features by means of an unsupervised classification 

method. We slightly modified the algorithm to account 

for missing features by simply ignoring them from the 

calculations. Due to the requirements of ICA, ADJUST 

was only applied to datasets with more than 20 channels 

(i.e. all but Keirn‟s and Yeom‟s). See Ref. 18 for details 

on how ADJUST was applied within the preprocessing. 

3. Methods 

We followed an experimentation approach composed of 

two stages. First, we focussed our efforts on obtaining 

firm evidence of the existence of a task-independent 

neural signature. Second, we designed a biometric 

identification system capitalizing on such task-

independent neural signatures. 

3.1. Evidence of a task-independent neural 

signature 

This experimentation stage builds on the results and 

methods of Ref.18. The reader is referred to Ref.18 for 

any further details. 

3.1.1. System 

We made use of a supervised classification system. The 

system is first fed with a set of sample-identity pairs 

(training set). Subsequently, the system is presented 

with test samples and asked to find the matching 

identities. 

We used the Sort-Time Fourier Transform (STFT) 

for the computation of the EEG‟s time-frequency 

representation. We applied a 2-seconds long Hamming 

window during STFT segmentation to avoid edge 

leakage, and a 75% overlap between windows. We 

                                                 
b
 For simplicity, we will use the term „tasks‟ to refer to changes 

in conditions, states or cognitive tasks accordingly for each database. 
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computed 256 Power Spectral Density (PSD) 

coefficients for each window and concatenated those 

between 1 and 40 Hz from all EEG channels to build the 

feature vector. This vector was fed to a Gaussian Naive 

Bayes classifier with uniform prior distribution across 

classes, which classified each sample into one of the 

registered subjects. Results from all windows were 

added together to generate the final response for each 

sample. Because Yeom‟s and Zhang‟s datasets had 1-

second long recordings, a 0.5-seconds window was used 

and 64 coefficients calculated during STFT in these 

cases (results highlighted in grey). 

We evaluated the following 3 different system 

conditions/configurations: 

 Raw system: The system as described above fed 

with the preprocessed databases. 

 ADJUST processed databases: The system as 

described above fed with the artefact free version of 

the databases. 

 rNorm systems: A robust normalization method, 

which has been found to reduce the effect of 

artefacts on the spectral shape,
18 

is applied to the 

PSD coefficients (H) of each window. This method 

is defined as 

)(

)(
)(

Hiqr

HmedianH
HrNorm


 , (1) 

where iqr is the interquartile range function. 

Normalizing factors are computed from the training 

data.  

3.1.2. Evaluation 

The performance of the above system was measured 

through a multi cross-validation (CV) approach, 

applying stratified K-Folds within 20 Monte Carlo 

(MC) iterations. This K-Fold + MC design benefits 

from the stability (lack of bias) of the former and the 

low-variance of the latter.
36

 To maintain the testing 

parameters across databases as similar as possible and 

reduce the computational time, the number of subjects 

considered was limited to 20 for BCI2000 and Zhang‟s 

databases – the only sets with more than 20 subjects. 

These were randomly selected for each MC iteration. 

We first computed accuracies within MC 

repetitions. Let M be a 4D matrix with dimensions C x 

K x Ns x Ns, where C is the number of MC iterations, K 

is the number of folds in K-Folds and Ns is the number 

of subjects in the experiment. For simplicity, let M(i,j) be 

the sub-matrix of M corresponding to the Ns x Ns 

confusion matrix of the i-th MC repetition and j-th K-

Fold iteration. Then, Mi = ∑i M(i,j) is the aggregated 

confusion matrix Ns x Ns for the i-th MC iteration. Let Ai 

be the corresponding mean accuracy rate defined as the 

proportion of correctly classified samples: 




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Because at this stage it was not necessary to have 

absolute accuracy rates, we transformed Ai into the more 

easily interpreted Percentage Reduction of Error 

(PRE)
37

 comparing the system with a random process 

(i.e. chance classification accuracy 1/NS). Formally, 

%
11

1
100PRE

S

Si
i

N

NA




 . (3) 

As a result, PRE is 0% if the system performs at 

chance level, and 100% if it has perfect accuracy, 

regardless of the number of users used during 

experimentation (NS). The mean PRE (μPRE) and 95% 

Confidence Intervals (CI) were finally computed across 

all MC iterations. 

3.1.3. Experiments 

Within this phase, we executed 3 experiments: 

(Task-CV) We began by asserting that the EEG 

contains task-independent discriminant information. 

Tasks were crossed between training and testing sets. 

The system was trained with samples from some tasks 

and evaluated with samples from other tasks (e.g. 

trained with tasks A and B and tested with tasks C and 

D). Crucially, we executed this segmentation 

individually for each subject. As a result, in a given 

iteration, a task may be used to train some subjects and 

test others (e.g. subject 1 trained with task A and tested 

with task B; subject 2 trained with task B and tested 

with task A). This forces the system to use task-

independent characteristics. Hence, a PRE above 0% 

will suggest that the proposed hypothesis is true. 

(Single-Task and Bal-CV) We then assessed how 

much of the identity information within the EEG is task-

independent and how much is task-specific. We 

compare Task-CV results with Single-Task and Bal-CV 

ones. In Single-Task, the system was fed with the EEG 

from each task individually – as it is common in the 
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state of the art. In other words, the system was trained 

and tested with a single task each time. To compute a 

single PRE, we aggregated the confusion matrices 

obtained for each task. During Bal-CV, all tasks were 

used for training and testing, with samples from each 

task evenly distributed between training and testing sets 

(i.e. balanced CV). In this case, a PRE on Single-Task or 

Bal-CV similar to that on Task-CV will suggest that the 

task-specific signature contains little extra information 

over and above the task-independent signature. 

(Sess-CV) Finally, we assessed the permanence of 

the task-independent property across time using Keirn‟s 

and Yeom‟s datasets – the only sets with 2 recording 

sessions. We repeated the previous experimental modes 

while crossing sessions between training and testing sets 

(i.e. training the system with samples from one session 

and testing it with samples from the opposite session). 

For example, in the Sess-CV + Task-CV mode, the 

system was trained with samples from a set of tasks in 

one session (tasks A and B, session 1), and tested with 

samples from the opposite tasks and session (tasks C 

and D, session 2). This experiment also serves to assure 

that the performance is not due to idiosyncrasies of the 

setup, such as the exact location and impedance of EEG 

channels. In this case, a PRE above 0% will suggest that 

results of our previous experiments are not due to 

idiosyncrasies of the data, and that the task-independent 

neural signature is stable across time
c
. 

Recall that the system always aims at recognising 

the identity of the subject. EEG from different cognitive 

tasks are strategically used here as a mean to answer our 

questions. The system is, at all times, unaware of what 

tasks correspond to the fed samples. 

We run Sess-CV experiments with Keirn‟s and 

Yeom‟s databases, and 2 folds (from K-Folds CV). For 

the other experiments, we distributed samples from each 

session evenly between training and testing sets, and set 

the number of folds to the minimum between 5 and the 

number of tasks in each dataset.  

3.2.  Biometric identity verification 

During the second stage, we assessed the potential of a 

biometric identity verification system based on the task-

independent neural signature.  

                                                 
c Due to the limited data, we cannot extract strong conclusions about 

the permanence of the neural signature. See section 6 for more details. 

3.2.1. System 

In a verification system, users request access by 

providing a „user name‟ (i.e. their identity) and a 

password (in our case, their EEG). The system then 

analyses this information and concludes whether both 

pieces match (genuine user) or not (impostor). This 

paradigm is arguably more suitable for the biometry in 

hand than that of classification, as the user‟s consent 

and collaboration will always be required to proceed, 

more so than in other biometries, since users need to 

wear an EEG device during the process.  

We followed a step-by-step approach were we 

started with a baseline design similar to that used in 

phase 1 (section 3.1.1) and introduced small changes to 

each of its components. We will only present the two 

best performing systems: one based on Real Cepstrums 

(RCeps) and one on Linear Prediction Coefficients 

(LPC). Short descriptions of all the systems evaluated 

can be found in Appendix A. 

Cepstral coefficients have been extensively used on 

signal processing problems.
38

 The RCeps (C) – usually 

just called „cepstrums‟ – are defined as 

  221 ))((log)( tXFFTFFTqC   (4) 

where X(t) is any signal in the time domain and q is a 

quefrency index with time units. Here, we delimited the 

application of the FFT 
-1 

operator within the [1, 40] Hz 

range, and set it to compute the same number of 

coefficients as FFT (i.e. 64 for Yeom‟s and Zhang‟s 

datasets and 256 for the rest). The cepstral space codes 

the broad shape of the spectrum in the lower quefrencies 

(first coefficients) and its details and periodicity in 

higher quefrencies.  

The coefficients of an Auto-Regressive model or 

LPC have been a popular choice for subject 

characterization within the EEG biometric identification 

literature.
15

 Such a model predicts samples of a time 

series (X(t)) as a function of the past N observations, 

where N is the order of the system. This is typically 

defined as 






N

i

ti itXctX

1

)()(  , (5) 

with c a constant, φi the LPC and єt white noise. The 

above can also be seen as the output of an all-pole 

Infinite Impulse Response system with noise presented 

at its input. Therefore, the LPC describe the spectral 
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shape of the modelled signal. The higher the order of 

the model, the more detailed the description. 

In both systems, the EEG signal was again 

segmented into 2-second windows 50% overlapped, 

with RCeps and LPC computed for each window. We 

concatenated coefficients from all EEG sensors to build 

the feature vector. A Linear Discriminant Classifier 

(LDC) evaluated this vector. Results from all windows 

were added together to generate the final response for 

each sample. 

We defined the RCeps system to use the first P% of 

all the computed cepstral coefficients (RcepsP%), and the 

LPC system to have a order N (LPCN). Based on 

previous results,
18

 we aimed at capturing the overall 

shape of the spectrogram and discarded irrelevant 

details. We ran a battery of experiments with increasing 

P (between 5% and 100%) and N (between 2 and 50), 

and found RCeps20% (i.e. P = 20) and LPC8 (i.e. N = 8) 

to be the overall optimal points across datasets 

(Appendix B). Thus, the feature vectors had length NCh 

x (0.2 x Nq) for RCeps20% and NCh x 7 for LPC8, with NCh 

the number of channels (i.e. 6 for Keirn‟s dataset, 18 for 

Yeom‟s and 19 for the rest) and Nq the number of 

cepstral coefficients (i.e. 64 for Yeom‟s and Zhang‟s 

datasets and 256 for the rest). 

3.2.2. Evaluation 

As before, experiments combined stratified K-Folds and 

MC CV methodologies. The number of folds (from K-

Folds) was set to 2, and the number of MC iteration was 

set equal to the number of subjects in the dataset. In 

databases where the number of subjects was smaller 

than 20, we repeated the whole K-Fold MC process M 

times until at least 20 experiments were executed. For 

example, for Keirn‟s database (5 subjects) we repeated 

the whole process 4 times (4 x 5 = 20). 

Because we are now interested in the absolute 

performance of the systems, instead of PRE, we 

computed and reported accuracy results (Acc.), defined 

as the average between the sensitivity (percentage of 

positive samples correctly classified), also known as 

Genuine Acceptance Rate (GAR), and the specificity 

(percentage of negative samples correctly classified). 

2

yspecificitysensitivit
Acc.


 . (6) 

Receiver Operating Characteristic (ROC) curves, 

showing False Acceptance Rate (FAR) against GAR for 

different decision threshold, and optimal real ROC 

points (i.e. actually computed points rather than 

interpolated points) will also be provided. 

3.2.3. Experiments 

As we aimed at assessing the feasibility of using the 

task-independent neural signature, we evaluated the 

systems on Task-CV mode, except for Keirn‟s and 

Yeom‟s datasets for which we used Sess-CV + Task-CV 

mode (section 3.1.3).  

Recall that these are verification systems. Within 

each MC iteration, a subject was treated as the positive 

class (registered user) and the remaining as impostors. 

Each subject is used as the registered user at least once 

in the whole CV process. In addition, we applied an 

open-set segmentation, where different sets of impostors 

were used for training and testing. Hence, impostors 

were segmented at subject level, using all data from an 

impostor (all tasks and sessions) either for training or 

testing – as opposed to the segmentation of the 

registered user data, which was done at sample level 

using Task-CV or Sess-CV + Task-CV. 

 
Figure 1: Neural signature of three subjects from BCI2000 database, extracted from channel C3. Images are spectrograms from 

multiple trials stacked to generate a piece-wise continuous in time representation of the signature. The median spectrum curve can be 

seen to the right of each spectrogram. Different tasks are coded by the top colour bars. These colours match the corresponding 

spectrum curve at the right of the spectrograms. Conditions include different real and imaginary motor tasks as well as REO and REC 

conditions. 
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4. Results 

4.1. Evidence of a task-independent neural signature 

Looking at the visual representation of the EEG‟s 

spectrogram, the general spectral shape, although not 

constant, is remarkably stable across tasks and different 

across subjects (Fig. 1). At the same time, details such 

as the exact position, height and width of the spectral 

peaks and valleys are more sensitive to task variations. 

The classification system described in section 3.1.1 

was able to differentiate between subjects using task-

independent identity information (Table 1). PRE values 

from Task-CV experiments are well above 0% (the point 

of chance) with Yeom's database yielding the lowest 

PREs around 50% (i.e. reducing chance‟s error by half). 

The use of ADJUST or rNorm had no major or 

homogeneous effects on PRE, except for an increase of 

20 percentage points by rNorm in Keirn‟s database.   

Next, we compared results between Task-CV and 

Single-Task or Bal-CV modes. PRE values of Task-CV 

was on average less than 5 percentage points lower than 

Single-Task and Bal-CV (Fig. 2 and Tables C.1 and 

C.2). The use of rNorm or ADJUST had no major effect 

on this relationship. PRE differences between Task-CV 

and Single-Task were substantially more variable across 

databases and configurations than between Bal-CV and 

Task-CV. 
d
 

                                                 
d
 Comparisons between Task-CV and Single-Task experiments should 

be interpreted as hints of their real relationship, as the amount of data 

available to train each system (number of training samples) in the 

latter is lower than in the former. See section 3.1.3 for more details. 

Table 1: Results of Task-CV classification experiments. Mean 

PRE values and 95% confidence intervals obtained with each 

database (Dat.) and system configuration/condition. The system 

uses a special configuration for Yeom‟s and Zhang‟s datasets 

(highlighted in grey). 

Dat. - ADJUST rNorm 

B 83.07 

[82.13, 84.01] 
87.77 

[86.66, 88.89] 
83.91 

[83.13, 84.70] 

D 97.03 

[96.92, 97.14] 
97.97 

[97.90, 98.03] 
96.26 

[96.19, 96.32] 

K 73.49 

[73.40, 73.59] 
- 93.31 

[93.10, 93.52] 

P 93.70 

[93.65, 93.75] 
96.84 

[96.78, 96.90] 
94.16 

[94.11, 94.21] 

Y 51.25 

[51.18, 51.31] 
- 49.79 

[49.73, 49.86] 

Z 74.63 

[73.28, 75.98] 
74.32 

[73.45, 75.20] 
68.74 

[67.55, 69.93] 

 

 

Figure 2: Difference between PRE of Task-CV vs Single-Task and Task-CV vs Bal-Task classification experiments. Box limits are 25 

and 75 percentiles, while black bars shows maximum and minimum values after excluding outliers (red crosses). The red line within 

each box and triangle markers show median values and their 95% CI. The system uses a special configuration for Yeom‟s and 

Zhang‟s datasets (highlighted in grey). 
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Finally, we assessed the permanence of the task-

independent signature across time. Examining the 

spectrograms (Fig. 3), time fluctuations seemed more 

prominent than differences across tasks in some cases 

(Fig. 3 left panel) while on par with task variations in 

others (Fig. 3 right panel). 

PRE results show a similar scenario than before, 

with performance during Sess-CV + Task-CV still well 

above chance levels (Tables 2 and C3). The decrease on 

PRE between Sess-CV + Task-CV and Sess-CV + Bal-

CV was not greater than 10 percentage points for 

Keirn‟s database and not greater than 1 percentage point 

for Yeom‟s dataset. PRE differences between Sess-CV 

+ Task-CV and Sess-CV + Single-Task were again 

highly variable. In this case, the drop was never higher 

than 5 and 2 percentage points for Keirn‟s and Yeom‟s 

databases respectively. 

4.2. Biometric identity verification 

Finally, we assessed the feasibility of using the task-

independent neural signature for biometric verification. 

Results for RCeps20% and LCP8 systems were virtually 

identical, with accuracies above 89% in all cases except 

Keirn‟s and Yeom‟s datasets, which yielded accuracies 

of 80% and 74% respectively (Table 3). 

After inspecting the ROC curves (Table 4, Figs. B.2 

and B.4), both systems obtained accuracy values close 

to their optimal ROC points – the only notable 

exception was P. Ullsperger‟s dataset, which 

underperformed on both systems by ~5 percentage 

Table 2: Results of Sess-CV classification experiments. Mean 

PRE values and 95% confidence intervals of Sess-CV + {Task-

CV; Single-Task; Bal-CV} for Keirn‟s and Yeom‟s databases 

(Dat.). The system uses a special configuration for Yeom‟s 

dataset (highlighted in grey). 

 Sess-CV +  

Dat. Bal-CV Task-CV Single-Task 

(a) Raw systems 

K 73.29 

[72.66, 73.92] 
69.07 

[65.82, 72.31] 
68.52 

[67.72, 69.32] 

Y 34.36 

[33.73, 34.98] 
33.11 

[32.31, 33.91] 
35.01 

[34.52, 35.51] 

(b) rNrom systems 

K 82.18 

[81.34, 83.02] 
73.58 

[70.20, 76.97] 
78.14 

[77.41, 78.87] 

Y 42.60 

[42.46, 42.74] 
41.76 

[41.38, 42.13] 
42.97 

[42.78, 43.16] 

 

Table 1: Results of RCeps20% and LPC8 verification 

experiments. Mean accuracy and 95% CI. The systems use a 

special configuration for Yeom‟s and Zhang‟s datasets 

(highlighted in grey). 

 

System B D K 

RCeps20% 95.40 

[94.70, 96.10] 
97.59 

[96.12, 99.05] 
80.06 

[73.97, 86.16] 

LPC8 95.42 

[94.79, 96.05] 
96.82 

[95.66, 97.97] 
79.10 

[72.03, 86.18] 

System P Y Z 

RCeps20% 89.19 

[85.55, 92.83] 
73.94 

[69.04, 78.84] 
91.58 

[89.30, 93.87] 

LPC8 89.88 

[85.49, 94.26] 
74.73 

[69.57, 79.88] 
93.24 

[91.53, 94.94] 

 

Table 4: Optimal real ROC points (i.e. points obtained from 

testing, not interpolations) of RCeps20% and LPC8 

experiments. The systems use a special configuration for 

Yeom‟s and Zhang‟s datasets (highlighted in grey). 

 

System B D K P Y Z 

RCeps20% 96.85 97.99 80.71 94.42 76.19 93.21 

LPC8 96.06 96.89 79.36 94.46 75.61 94.02 

 

 

Figure 3: Neural signature from three subjects of Keirn‟s database, extracted from channel C3. Conditions include resting and different 

intellectual-tasks, such as letter-composing and arithmetic operations, recorded during two different-day sessions coded in the colour 

bars above each spectrogram. See the legend of Fig. 1 for more details. 
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points. The obtained accuracy corresponds to a 

sensitivity of 99% and a specificity of 78% for 

RCeps20% and 79% for LPC8. 

On BCI2000 and DEAP databases, RCeps20% and 

LPC8 systems showed a strong performance for lower 

FARs. GAR was above 88% for an FAR of 1%, and 

above 82% for an FAR of 0.5%. Experiments with 

Zhang‟s database resulted on a GAR above 63% for 1% 

FAR and 49% for 0.5% FAR. The remaining datasets 

had relatively poor performances at these FAR values. 

Overall, RCeps20% seemed to work marginally better 

than LPC8 under low FAR conditions, except for P. 

Ullsperger‟s and Zhang‟s datasets. 

5. Discussion 

5.1. Evidence of a task-independent neural signature: 

discussion. 

Results from some previous EEG studies already hint 

that part of the EEG neural signature is indeed task-

independent. First, the performance of a subject 

classification system has been shown to increase when 

fed with labelled data from multiple tasks.
21

 Second, 

poor results have been obtained when trying to identify 

tasks with the same features used to identify 

individuals.
39

 Finally, remarkably similar behaviours to 

variations in some of the system‟s parameters has been 

reported across systems, tasks and databases.
18 

However, we present here for the first time, a direct 

evaluation of the existence of such task-independent 

neural signature within the EEG.  

Performance in Task-CV experiments was well 

above chance levels in all cases, showing that inter-

individual inter-task variability is greater than the intra-

individual inter-task one. PRE values should have been 

close to 0% if differences in brain activity across tasks 

were predominant over the subjects‟ signatures. 

Furthermore, the small drop in performance observed 

between Task-CV and Single-Task or Bal-CV modes 

suggests that most of the identity information within the 

spectral shape of the EEG is, in fact, task-independent. 

The above is reinforced by results of Sess-CV 

experiments. If our first results had been due to 

peculiarities of the EEG set-up (i.e. variations in the 

exact sensor location, sensor-scalp impedance and 

signal quality) rather than to real subject features within 

the signal, PRE values should have slumped to zero 

under Sess-CV modes. Results also suggest that the 

neural signature is relatively stable across time. 

However, this should be interpreted carefully (section 

6). 

All this suggest that previous studies have probably 

relied, inadvertently, on task-independent traits. The 

staggering similarity observed between spectrograms of 

different tasks/conditions, together with the differences 

between individuals, indicates that the spectral shape of 

continuous brain activity, as recorded by an EEG 

device, is more defined by the individual‟s identity than 

it is by the performed task or experimental condition.  

This is not to say that the EEG is constant across 

tasks. In fact, on the spectrograms showed here (Figs. 1 

and 3), variations between tasks can be appreciated. 

Cognitive tasks have a modulating effect on the 

signature, introducing dynamics that (A) coexist with 

task-independent features and/or (B) are of smaller 

magnitude than differences across individuals. Thus, 

under the described experimental conditions, inter-task 

variations have a smaller magnitude than inter-

individual ones. The use of different algorithms may 

invert the situation (i.e. inter-task variations magnified 

while inter-individual ones minimized). 

5.2. Biometric identity verification: discussion 

We found that RCeps20% and LPC8 are the best 

performing characteristics from those tested. Adding 

any extra feature and fusing RCeps20% and LPC8 in 

various ways had a neutral or negative effect on the 

system‟s accuracy, as did the application of non-linear 

classification algorithms such as Artificial Neural 

Networks and Support Vector Machines with a 

Gaussian Kernel  (see Appendix A). Therefore, we may 

resolve that: 

(1) The information extracted by RCeps20% and 

LPC8 is highly correlated, as evidenced by the fact that 

fusing them had no effect on the system‟s performance. 

(2) The problem of verification based on RCeps20% 

and LPC8 features is a linear problem, as evidenced by 

the fact that the evaluated non-linear classifiers only 

equalled the performance of LDC. 

(3) RCeps20% and LPC8 can encode most of the 

discrimination power of the EEG‟s spectral shape, as 

evidenced by the fact that all the systems tested 

performed worse than, or similarly to, those based 

solely on RCeps20% or LPC8 – including systems that 

fused different measurements of the spectral data. 
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Overall, we obtained relatively good and stable 

accuracy results across systems and databases. 

RCeps20% and LPC8 systems maximized their potential, 

with performances similar to their optimal ROC points. 

The poor GAR for lower values of FAR in all but 

BCI2000 and DEAP datasets, and the relatively lower 

performance observed in some cases when compared 

with other works (section 5.3), may be due to the 

following reasons: 

Keirn‟s and Yeom‟s databases were tested under the 

Sess-CV + Task-CV paradigm, which is arguably more 

difficult than the Task-CV one. This is especially true 

when considering that a single session is used for 

training, which in turn leaves the system prone to 

detecting the idiosyncrasies of that specific recording 

session. We can expect higher accuracies when more 

sessions are available for training.
40–43

 

Performance on Keirn‟s and P. Ullsperger‟s 

databases was certainly affected by the reduced number 

of available subjects (only 5 subjects). Following the 

described experimentation methodology, 1 subject is 

designated as the registered user and only 2 subjects are 

used as impostors for training, with the other 2 utilized 

for testing. With such a small number of impostors, we 

can expect the system‟s performance to be more 

sensitive to the peculiarities of each CV partition. 

The above should also be considered, to a lesser 

degree, for Yeom‟s database, which only has 10 

subjects. In addition, this dataset contains EEG from 

two MZ twins. How these subjects are distributed 

among the registered and impostor sets should be 

presumed to have an impact on the test result. 

P. Ullsperger‟s and Yeom‟s datasets contained only 

two experimental conditions. This left the system with a 

single condition for training, which, as described before, 

is not the ideal scenario to account for the dynamics of 

the neural signature described in section 5.1. 

Finally, in the case of Yeom‟s and Zhang‟s 

databases, the systems‟ performance was certainly 

compromised by the length of the EEG segments (only 

1 second). This forced us to use a window length of 0.5 

seconds, as opposed to the optimal 1 or 2 seconds. 

5.3. Comparison with the state of the art 

Although BCI2000, Keirn‟s, Yeom‟s and Zhang‟s 

databases have also been used by other authors, a direct 

comparison between our results and those within the 

state of the art is impossible due to numerous reasons 

(tables 5 to 8). In addition to differences in the number 

of subjects and tasks used and in the applied 

experimentation methodology, the following two factors 

should be considered: 

Firstly, the design proposed here is a generalised 

one. Unlike most of the systems presented by other 

authors, we have designed the system using multiple 

databases and selected the collective optimal 

configurations – these configurations were not 

necessarily optimal for individual datasets. Hence, our 

system is not tuned to maximize the performance within 

a single case, but to work well across multiple 

scenarios. In fact, the performance of the three largest 

databases are within 6 percentage points within each 

other, suggesting that this level of discrimination is 

indeed a property of the neural signature and not due to 

idiosyncrasies of the data.  

Table 5: Comparison of results obtained with BCI2000 

database. Columns correspond to the publication reference 

(Ref.), the number of subjects used (# Subj.), the task used 

(Task), the CV method applied (CV), and the success rate 

(Succ.). For completeness, classification results are also 

shown, which can be deduced applying eq. 3 to the PRE 

results of Table 1. 

 

Ref. # Subj. Task CV Succ. 

Classification experiments 

11 109 REO & REC 5 K-Folds 100% 

44 18 Task 4 3 K-Folds 96% 

This 20 All ● 85% 

Verification experiments 

10 109 REO N.A. 96% 

This 100 All ◊ 95% 

● Task-CV; 5 K-Folds + 20 MC. 

◊ Open-set; Task-CV; 2 K-Folds + 20 MC. 
Task 4: A target appears on either the top or the bottom of the screen. 

The subject imagines opening and closing either both fists (if the 

target is on top) or both feet (if the target is on the bottom) until the 
target disappears. Then the subject relaxes. 
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Secondly, our proposed approach on a task-

independent neural signature represents a more complex 

problem than that of task-specific identification via 

EEG. As highlighted by our comparison between Task-

CV and Single-Task or Bal-CV modes, task specific 

neural activity carries some extra discriminant 

information. Systems from other architectures may 

potentially exploit this information, hence obtaining 

higher overall performances. 

In addition, on Keirn‟s and Yeom‟s datasets, 

sessions were also crossed between training and testing 

sets (Sess-CV + Task-CV), a practice that was not 

generally followed in the literature. 

5.4. Source of the task-independent neural 

signature 

Given its independence of the recorded condition, we 

may associate the EEG neural signature with 

unconscious processes working uninterruptedly in the 

background, similar to M.E. Raichle‟s et. al. (2001) 

concept of a „default mode of brain function‟.
52–54

 Such 

a concept hypothesises the existence of an intrinsic 

activity which “instantiates the maintenance of 

information for interpreting, responding to and even 

predicting environmental demands”. Moreover, “its 

functions are spontaneous and virtually continuous, 

being attenuated only when we engage in goal-directed 

actions”,
53

 which coincides with the described dynamic 

nature of the signature across tasks. The task-

independence property arises from the fact that 

fluctuations have a smaller magnitude than differences 

across subjects. Hence, we could interpret these 

fluctuations as task specific activity superimposing the 

default mode.  

The neural signature could also be due to the 

structure and disposition of the underlying neural 

networks, and nothing to do with their cognitive 

processes. Indeed, fMRI results of Ref.55 support this 

hypothesis. Given the nature of the electrical fields and 

their propagation through the skull, two networks with 

identical functionality but different organizations may 

produce distinct EEG signals. The EEG inverse problem 

describes how a recorded signal cannot be assigned to a 

unique disposition of sources within the skull.
56

 

Accordingly, the signature would be broadly defined by 

the layout of networks within the subject‟s brain, with 

cognitive processes playing a modulating role. 

Table 6: Comparison of results obtained with Keirn‟s 

database. For completeness, classification results are also 

shown, which can be deduced applying eq. 3 to the PRE 

results of Table 1. Refer to table 6 for a description of the 

columns and symbols ● and ◊. 

 

Ref. # Subj. Task CV Succ. 

Classification experiments 

20 5 All on 

MTL 
2 K-Folds 100% 

This 5 All ● 89% 

Verification experiments 

19, 45 5 Task 3 2 K-Folds 100% 

10 5 Task 1 2 K-Folds 80% 

This 5 All ◊ 80% 

Task 1. Subjects were asked to relax. 

Task 3. Subjects were presented with an image of a 3-D complex 
object and were asked to mentally rotate it. 

 

Table 7: Comparison of results obtained with Yeoms‟s 

database. For completeness, classification results are also 

shown, which can be deduced applying eq. 3 to the PRE 

results of Table 1. Refer to table 6 for a description of the 

columns and symbols ● and ◊. 

 

Ref. # Subj. Task CV Succ. 

Classification experiments 

This 10 All ● 53% 

Verification experiments 

30 10 All 10 K-Folds 86% 

This 10 All ◊ 75% 

 
Table 8: Comparison of results obtained with Zhangs‟s 

database. For completeness, classification results are also 

shown, which can be deduced applying eq. 3 to the PRE 

results of Table 1. Refer to table 6 for a description of the 

columns and symbols ● and ◊. 

 

Ref. # Subj. Task CV Succ. 

Classification experiments 

46, 47 20 All (ignored) Leave-One-Out 100% 

48-50 20 All (ignored) 2 K-Folds 99% 

51* 20 All (ignored) 3 K-Folds 93% 

This 20 All ● 76% 

Verification experiments 

This 10 All ◊ 93% 

* 10 healthy and 10 alcoholic users. 
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Each of these proposed explanations by themselves 

are unlikely to account for the neural signature. While 

we cannot deny the effect of network organization on 

the EEG, especially on the light that these networks can 

also be subject specific, evidence of continuous 

activation of some of these networks strongly suggest 

that underlying neural activity also plays an important 

part. Therefore, the solution is likely to fall somewhere 

in between the two proposals, with the distribution of 

neural networks and background brain activity working 

in conjunction to generate the signature. 

Regarding the linkage between the task-independent 

EEG signature and genetics, although Vogel‟s work 

supports the genetic basis of such signature (encoded in 

the spectral shape of the EEG)
3
, it is still unclear if, how 

and to what extent this is the case. 

5.5. The task-independent EEG biometric 

approach 

To date, the approach followed in the literature has been 

based on the analysis of EEG from isolated conditions. 

Even when the system was fed with signals from 

multiple tasks, they were usually labelled with the task 

itself, so that systems could differentiate amongst them 

and exploit task-specific information (Multi Task 

Learning
21

). 

Ref.16 expands on the idea of an acquisition 

protocol, where users were asked to perform a particular 

task while their EEG was recorded for 

identification/verification. Specifically, the authors have 

focused their efforts mainly on REC and REO 

conditions:
11, 45, 57, 58

 “Within this paradigm subjects are 

typically seated in a comfortable chair with both arms 

resting, in a dimly lit or completely dark room. 

Generally, external sounds and noise are minimized to 

favour the relaxed state of the subjects. Participants are 

asked to perform a few minutes of resting state with eyes 

closed or eyes open, avoiding any focusing or 

concentration, but staying awake and alert.” 

Ref.59 goes a step further and proposed a system 

which assigns specific tasks to groups of subjects. By 

identifying the performed task during verification, they 

can effectively reduce the problem‟s complexity by a 

factor of N, where N is the number of considered tasks. 

It is undeniable that performing these tasks during 

the verification of a user‟s identity is, in many real 

scenarios, cumbersome. If this modality is to be 

integrated within a system such as the biometric 

passport, performing “a simple ‘resting state’ protocol” 

is utterly impractical. In addition, this biometric security 

will almost certainly find an application within other 

BCIs, which were originally intended for different 

purposes other than identity verification. For example, a 

recent patent issued by Google embeds the 

identification of the user within a multi-sensor 

diagnostic system.
60

 

To overcome these difficulties, we have proposed a 

new approach where subjects are not asked to perform 

any specific task. Instead, the system is tuned to extract 

the subject‟s task-independent neural signature. This 

will leave the user free to perform any other operations. 

For example, in an airport border control, the EEG 

activity could be collected while users present their 

passport, introduce any required information, and/or 

provide any supplementary biometry. In a general 

purpose BCI, the verification of the user‟s identity could 

take place in the background invisibly. As a result, the 

security procedure will not interfere with the user 

experience of the system. Moreover, verification checks 

could happen continuously or periodically, again, 

without interfering in the operation of the device.  

6. Limitations 

The biggest limitation of this work, and those of the 

state of the art, is that of the data. To obtain stronger 

evidence and draw bolder conclusions we need a 

complex database containing the EEG of more than 100 

subjects, recorded with different equipment and under 

different conditions, over a span of years, while 

performing highly different cognitive tasks.  

We have tried to alleviate this by using 6 different 

databases to support our conclusions. Unfortunately, 

only Keirn‟s and Yeom‟s had data from different days, 

but even then it was only 2 sessions from no more than 

10 subjects. This hinders the interpretation of the Sess-

CV experiments.  

Equally, all the datasets were recorded with medical 

or research equipment. To properly assess the feasibility 

of a real world application of the proposed biometric 

system, we need to test its performance on data recorded 

by commercial EEG equipment. Although the literature 

already contains examples of this
42

, complex databases 

such as the one described are needed to draw stronger 

conclusions.  
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7. Conclusions and implications 

In this work, we have presented for the first time 

evidence supporting the existence of a neural signature 

within the EEG that is independent of the performed 

task or recording condition. Specifically, we observed 

this task-independent signature across motor tasks, 

relaxation and resting states (BCI2000 dataset), 

emotional states and REO (DEAP dataset), problem 

solving tasks and relaxation (Keirn‟s dataset), synonyms 

and non-synonyms AEPs (P. Ulssperger‟s dataset), self 

and non-self VEPs (Yeom‟s dataset) and target and non-

target VEPs (Zhang‟s dataset). 

We have also proposed to use this task-independent 

neural signature for biometric identity verification. We 

found that a feature vector composed of the first 20% of 

the RCeps or the order 8 LPC encodes most of the 

discrimination power within the spectral shape of the 

EEG in a linearly separable problem. Both systems 

yielded verification accuracies above 89% on 4 of the 6 

databases used, and between 73% and 80% when 

training and testing sessions were recorded in different 

days.  

We anticipate the finding of a task-independent 

signature will create a new set of experimental 

possibilities within brain research fields. Genetic and 

neurophysiological studies could use this neural 

signature to further the understanding of the EEG 

inheritance model, differentiating between task- 

independent and task-dependent activity. Through 

targeted experiments, it could also be used in the study 

of neuroplasticity,
61

 neurodegenerative diseases
62

 or the 

default mode of brain function. It will also be interesting 

to test whether existing neural models or models of 

EEG activity
63, 64

 produce the described signature. 

At the same time, EEG have the advantage of being 

a more affordable and easier to use tool than other 

neuroimaging techniques, especially after the recent 

proliferation of consumer EEG devices. As a result, 

while findings on other modalities tend to be confined 

in the first place within the neuroscience field, we 

expect our results on EEG to have direct implications 

and applications within other disciplines. We have 

outlined here the advantages of using the task-

independent neural signature for biometric identity 

verification. At the same time, the complete 

understanding of the EEG genotype-phenotype map will 

ultimately allow the development of a major and 

inexpensive instrument for the improved understanding 

and diagnosis (early and new) of many diseases, 

especially those affecting the brain. Mainly because an 

instrument based on the quantitative measure of EEG 

properties will be closer to gene function than the 

traditional interpretation of cognitive tests.
7, 65

 

Overall, this work represents a step forward in the 

understanding of the individual differences in brain 

activity, which will, in turn, help in the understanding of 

the commonalities, and in the design of practical 

biometric systems based on neural activity. 
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Appendix A: Other evaluated systems 

A number of different architectures were evaluated in 

addition to the ones described in the main text. 

However, as they all yielded worse or equal 

performances with a more complex or computationally 

expensive design, their results are not reported in detail 

here. The designs are based in previous results reported 

in the literature as well as the authors‟ experience. In 

particular, the following were tested: 

Time statistics of feature vectors: We computed 

several statistical measurements across time (across 

windows of the STFT) and used the results as inputs to 

the LDC. Specifically, we computed mean, std, kurtosis, 

skewness and percentiles 5, 25, 50 (median), 75 and 95 

for each feature. Mean and median performed at a level 

similar to or worse than the original system, while the 

remaining measurements performed relatively poor. 

ROC curves showed an overall poorer behaviour away 

from the EER. Having said that, this method has the 

advantage of reducing the volume of data processed by 

the classifier, as all windows are merged (i.e. through 

average, median, std, etc) into a single vector. Thus, it 

may be considered in cases where the volume of data or 

the processing speed is a concern. 

Feature statistics of feature vectors: We computed 

the statistics described in the previous point, but across 

features for each SFTF window instead of across time. 

Hence, the number of windows remained the same and 

the length of the feature vector was reduced to one (i.e. 

the statistical value). In this case, results were 

substantially worse than that of the original systems. 

Power of bands: We divided the PSD into bands 

and computed the power within each band. Results were 

significantly worse than that of the baseline system; i.e. 

based on the full PSD vector.  

Different forms of the LPC: We considered the use 

of other representation forms of the LPC.   Specifically: 

Reflection Coefficients (RC) and Line Spectral Pairs 

(LSP), which have been identified as alternatives robust 

against   noise.   In   addition,   we   also   tested   the 

performance of the model‟s fitting error (є). Comparing 

the accuracy of 8-order LPC, RC, LSP and є, only є8 

performed substantially worse than the rest. LPC8, RC8 

and LSP8 resulted in virtually equivalent performances. 

Inspecting the ROC curves at lower FAR values, LPC8 

produced, on average, best GAR. 

Feature fusion: We fused RCeps20% and LPC8 in a 

single vector and fed it to the LDC. This fusion 

performed similarly to each feature individually, which 

evidenced the high level of correlation between the 

information extracted by both methods. 

Fusion of statistical measurements: We combined 

the statistical measurements taken from RCeps20% or 

LPC8 in a single feature vector. The fusion of time-

statistics performed similar to or worse than the 

individual mean and median vectors. On the other hand, 

the concatenation of the feature-statistics, i.e. taken 

within each vector instead of across time, produced a 

remarkable increase in accuracy compared to individual 

statistics. In some cases there were more than 10 

percentage points of improvement. Therefore, we 

considered the fusion of feature-statistics to the original 

RCeps20% or LPC8 vectors. Based on Ref.66 results, we 

were expecting this to improve the system‟s accuracy. 

Nevertheless, once more, results were similar to or 

worse than those of the original systems. The 

enhancement observed by such work may therefore be 

due to a suboptimal extraction of the LPC coefficients 

(the authors used EEG segments of 0.5 seconds). 

Score fusion of RCeps20% and LPC8 individual 

systems: This performed equal to, or worse than, the 

feature fusion version. 

Multi-window length: We considered the 

possibility that different spectral widths could extract 

uncorrelated discriminant information. To test this, we 

created a system composed of multiple sub-systems 

with different window lengths fused at score level. 

Results were equal to or worse than those obtained with 

the original systems. 

Projection methods: We applied Principal 

Component Analysis (PCA), Linear Discriminant 

Analysis (LDA) and Independent Component Analysis 

(ICA) to all the described architectures. This was not a 

bid to reduce the dimensionality of data, but rather an 

attempt to present the discriminant information to the 

classifier in a more suitable way, in the hope of boosting 

the performance and/or improve the stability of the 

system. We applied such projection techniques to the 

features of each sensor individually (as sensor experts) 

and to the vector containing the features from all 

sensors. In both cases, results were similar or worse 

than those of the original systems. 

Score fusion of sensor experts: This architecture 

contained as many sub-systems as EEG sensors. The 

LDC scores obtained for all sensors were then averaged 

to build the final response. We evaluated this with all 
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the described systems. In all cases, results were similar 

to those of the original systems. 

Non-lineal classifiers: In the classification phase, 

we evaluated the performance of Support Vector 

Machines with Radial Basis Function kernel (RBF-

SVM) and Artificial Neural Networks (ANN). The 

kernel and cost parameters of the former were optimized 

applying a CV procedure within the training data. To 

avoid any over fitting, this inner CV followed the same 

principle as the one used for testing, meaning different 

subjects were used as impostors during training and 

validation. Similarly, multiple configurations of the 

hidden layers were evaluated for the ANN. In both 

cases, we only managed to equal the results of LDC. 

Interestingly, the optimization of the RBF-SVM 

parameters showed a clear tendency to create a linear 

model, rather than a non-linear one. 

Appendix B: Optimization of RCepsP% and LPCN 

During the optimization of P and N from RCepsP% and 

LPCN, we used the same experiments as those described 

in section 3.2.3 with the exception of the number of MC 

iterations, which was truncated to 20 for BCI2000 and 

Zhang‟s datasets to reduce the computational time. 

During optimization of the RCepsP% system, 

maximum performance was achieved at different values 

of P across databases, with the majority of the 

configurations giving performances close to the 

maximum (Fig. B.1). On BCI2000, Keirn‟s and Zhang‟s 

databases, using too many cepstral coefficients 

translated on a loss of performance. This was especially 

 

 

Figure B.1: Performance of RCepsP% verification experiments 

with increasing number of coefficients. Mean accuracy values 

and 95% CI (shaded area) obtained with the first P% of the 

cepstral coefficients.  

 

Figure B.2: ROC curves of RCepsP% verification experiments 

with logarithmic FAR axis. Mean ROC curves and std (shaded 

area) obtained with different P. Refer to Fig. B.1 for legend 

details. 
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acute on Keirn‟s and Zhang‟s datasets, whose accuracy 

dropped ~20 percentage points. Looking at the ROC 

curves (Fig. B.2), we noticed a steady improvement of 

the GAR for lower FARs peaking at P = 20%. After that 

point, the GARs oscillated, regaining the maximum 

values in some cases but not in others. 

Results for the LPC design showed a similar 

behaviour, with high variation of the optimal point and 

great number of configurations performing similar to 

the optimal (Fig. B.3). Accuracy within 1.5 percentage 

points to the maximum is reached at order 8. Orders 

above this had no effect on the performance of the 

system, except on Zhang‟s database, whose accuracy 

decreased abruptly passed order 25. The tendency was 

less clear when looking at GAR for lower FARs, with 

large variation across databases (Fig. B.4). Having said 

that, a steady increase in GAR was observed up to order 

8 for all cases, followed by oscillating performances. In 

occasions, the maximum GARs were obtained with 

higher orders; e.g. LPC20 for BCI2000 database and 

LPC40 for DEAP dataset. 

The results obtained with LPC contradict some of 

the conclusions in the literature. Ref. 67 concludes that 

an increase in the order of the LPC model is necessary 

to bear with the rise in the number of users. Even with 

only 5 subjects, they reported an increase in 

classification accuracy of 7 percentage points when 

moving from order 9 to 15. Furthermore, Refs. 45 and 

57 found RC to outperform LPC, whereas we did not 

observed any improvement by using the more 

computationally expensive RC (Appendix A). These 

discrepancies may be due to differences in the 

experimentation methodology: classification versus 

verification experiments, differences in the systems‟ 

architectures, and/or idiosyncrasies of the databases. 

 

Figure B.3: Performance of LPCN verification experiments 

with increased order. Mean and 95% CI (shaded area) 

verification accuracy obtained with different values of N. 

Refer to Fig. B.1 for legend details. 

 

Figure B.4: ROC curves of LPCN verification experiments 

with logarithmic FAR axis. Mean ROC curves and std (shaded 

area) obtained with different N. Refer to Fig. B.1 for legend 

details. 
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Overall, for both designs, RCeps and LPC, results 

were not fully homogeneous across databases and 

systems, hindering the selection of the optimal 

configuration point. Based on the ROC curves, we 

chose to retain 20% of the cepstrums (RCeps20%) and 

use LPC of order 8 (LPC8). 

Appendix C: Statistical tests 

To avoid cluttering the main text, we have only 

presented the main results. Here, we provide 

supplementary statistical tests. Note that the p-values 

presented here have been adjusted using the Benjamini-

Hochberg False Discovery Rate (BHFDR) method. 

 

Appendix D: Task-independent subject-specific 

information within the fMRI. 

Interestingly, a similar experimentation paradigm 

showed that connectivity profiles recorded by 

Functional Magnetic Resonance Imaging (fMRI) are 

also subject specific and relatively homogeneous across 

tasks.
55

 It is important to note that this is fundamentally 

different research. fMRI connectivity profiles measure 

the distribution of networks within the brain through 

blood-oxygen-level fluctuations, whereas EEG 

measures neuronal activity in and of itself. In other 

words, fMRI registers location and brain activity levels 

indirectly through metabolic changes while EEG 

measures the electric fields directly generated by 

specific, synchronous firing patterns of millions of 

Table C.1: Independent t-test comparison of Task-CV and Bal-

CV experiments. The test corresponds to the results of Figure 

2. Null and alternative hypothesis were H0: μBal−CV − μTask−CV 

= 5 and H1: μBal−CV − μTask−CV < 5. P-values were adjusted with 

the BHFDR method. Yeom‟s and Zhang‟s databases are 

special cases of each system and are therefore highlighted in 

grey. 

 

Dat. t df p-value SE r 

(a) Preprocessed datasets 

B -3.06 38 < 0.01 0.62 -0.44 

D -50.19 38 < 0.001 0.08 -0.99 

K -21.96 38 < 0.001 0.19 -0.96 

P -124.02 38 < 0.001 0.04 -1.00 

Y -93.57 38 < 0.001 0.04 -1.00 

Z -0.47 38 0.37 0.87 -0.07 

(b) ADJUST preprocessed datasets 

B -3.65 38 < 0.001 0.76 -0.50 

D -84.59 38 < 0.001 0.04 -1.00 

P -109.08 38 < 0.001 0.05 -1.00 

Z -0.81 38 0.25 0.56 -0.13 

(c) rNorm systems with preprocessed dataset 

B -3.97 38 < 0.001 0.48 -0.53 

D -62.60 38 < 0.001 0.05 -0.99 

K -23.45 38 < 0.001 0.14 -0.97 

P -90.54 38 < 0.001 0.06 -1.00 

Y -112.36 38 < 0.001 0.03 -1.00 

Z 0.30 38 0.68 0.81 0.05 

 

Table C.2: Independent t-test comparison of Task-CV and 

Single-Task experiments. The test corresponds to the results of 

Figure 2. Null and alternative hypothesis were H0: μSingle−Task − 

μTask−CV = 5 and H1: μSingle−Task − μTask−CV < 5. P-values were 

adjusted with the BHFDR method. Yeom‟s and Zhang‟s 

databases are special cases of each system and are therefore 

highlighted in grey (Methods). 

 

Dat. t df p-value SE r 

(a) Preprocessed datasets 

B -4.79 38 < 0.001 0.56 -0.60 

D -48.51 38 < 0.001 0.10 -0.99 

K 58.91 38 1.00 0.10 0.99 

P -90.36 38 < 0.001 0.05 -1.00 

Y -42.27 38 < 0.001 0.04 -0.99 

Z -0.74 38 0.28 0.88 -0.12 

(b) ADJUST preprocessed datasets 

B -7.10 38 < 0.001 0.75 -0.75 

D -74.86 38 < 0.001 0.06 -1.00 

P -97.82 38 < 0.001 0.05 -1.00 

Z -2.21 38 < 0.05 0.60 -0.33 

(c) rNorm systems with preprocessed dataset 

B 0.66 38 0.85 0.47 0.10 

D -51.56 38 < 0.001 0.06 -0.99 

K -14.90 38 < 0.001 0.13 -0.92 

P -98.61 38 < 0.001 0.05 -1.00 

Y -95.22 38 < 0.001 0.04 -1.00 

Z -1.79 38 < 0.05 0.78 -0.27 
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neurons. EEG is therefore closer to the recording of our 

„thoughts‟, than it is to the spatial distribution of brain 

systems. Despite described correlations between them,
68

 

differences in the nature and source of these two signals 

inevitably led to the following dissimilarities in the 

properties and possibilities of the described signatures: 

First, while Finn‟s et. al. fMRI signature relied on 

signals recorded during “several minutes”, the EEG 

neural signature assessed here has been processed in 

segments of just 2 seconds (even 0.5 seconds for 

Yeom‟s and Zhang‟s datasets). Far from being arbitrary, 

in a previous study we have identified segments 

between 1 and 2 seconds to be optimal for the extraction 

of subject traits, and that 4 seconds of EEG is enough to 

obtain 90% of the potential discrimination power.
18

 

Second, where Finn‟s et. al. found the frontoparietal 

networks to be the most discriminative ones, we found 

no consistent most discriminative region on the 

mentioned previous study. Best performing areas varied 

not only across databases and tasks, but also across 

system configurations within the same database and 

task. While EEG is notorious for its low spatial 

resolution, the observed high variability and sensitivity 

hints that the mentioned discrepancy probably roots not 

only on resolution differences. 

Finally, Finn‟s et. al. experienced slumps in 

performance as large as 40 percentage points of PRE 

when moving from Sess-CV + Single-Task to a Sess-

CV + Task-CV experiments, compared to the less than 

10 percentage points of drop reported here. This 

difference can be explained by the paradigm itself. 

Because Finn‟s et. al. trained their system with a single 

task, the system lacks information about the natural 

variability of the signature across cognitive 

tasks/conditions, and is therefore unable to build a 

reliable model of the subject‟s signature. 

Ultimately, these two studies are different enough to 

account for the described differences, and the fact that 

both modalities (fMRI and EEG) yielded analogous 

results in terms of task-independence emphasizes the 

scale of inter-individual differences in brain anatomy 

and activity. 

 

 

 

Table C.3: Independent t-test comparison of Sess-CV + Task-

CV and Sess-CV + Bal-CV (Single-Task) experiments. The 

test corresponds to the results of Figure 1. Null and alternative 

hypothesis are H0: μA − μB = C and H1: μA − μB > C, with A 

the Sess-CV + Bal-CV (Single-Task) condition, B the Sess-

CV + Task-CV condition, and C a set threshold. P-values 

were adjusted with the BHFDR method. Yeom‟s database is a 

special case of each system and is therefore highlighted in 

grey (Methods). 

 

System. t df p-value SE r 

(a) Sess-CV + TaskCV vs. Sess-CV + Bal-CV 

Keirn's dataset results; C = 10 

- -3.65 38 1.00 1.58 -0.50 

rNorm -0.84 38 0.91 1.66 -0.13 

Yeom's dataset results; C = 1 

- 0.51 38 0.45 0.49 0.08 

rNorm -0.82 38 0.91 0.19 -0.13 

(b) Sess-CV + Task-CV vs. Sess-CV + Single-Task 

Keirn's dataset results; C = 10 

- -3.47 38 1.00 1.60 -0.48 

rNorm -0.27 38 0.81 1.65 -0.04 

Yeom's dataset results; C = 1 

- -0.21 38 0.81 0.45 -0.03 

rNorm -3.93 38 1.00 0.20 -0.53 

 


