
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in:

Systems Science & Control Engineering

                                                

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa34594

_____________________________________________________________

 
Paper:

Yang, R., Yang, C., Chen, M. & Na, J. (2017).  Adaptive impedance control of robot manipulators based on Q-learning

and disturbance observer. Systems Science & Control Engineering, 5(1), 287-300.

http://dx.doi.org/10.1080/21642583.2017.1347532

 

 

 

 

 

 

 

_____________________________________________________________
  
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

 

Permission for multiple reproductions should be obtained from the original author.

 

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

 

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 

http://cronfa.swan.ac.uk/Record/cronfa34594
http://dx.doi.org/10.1080/21642583.2017.1347532
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 


 

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tssc20

Download by: [116.54.72.69] Date: 10 July 2017, At: 07:00

Systems Science & Control Engineering
An Open Access Journal

ISSN: (Print) 2164-2583 (Online) Journal homepage: http://www.tandfonline.com/loi/tssc20

Adaptive impedance control of robot manipulators
based on Q-learning and disturbance observer

Runxian Yang, Chenguang Yang, Mou Chen & Jing Na

To cite this article: Runxian Yang, Chenguang Yang, Mou Chen & Jing Na (2017) Adaptive
impedance control of robot manipulators based on Q-learning and disturbance observer, Systems
Science & Control Engineering, 5:1, 287-300, DOI: 10.1080/21642583.2017.1347532

To link to this article:  http://dx.doi.org/10.1080/21642583.2017.1347532

© 2017 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 10 Jul 2017.

Submit your article to this journal 

View related articles 

View Crossmark data



SYSTEMS SCIENCE & CONTROL ENGINEERING: AN OPEN ACCESS JOURNAL, 2017
VOL. 5, 287–300
https://doi.org/10.1080/21642583.2017.1347532

Adaptive impedance control of robot manipulators based on Q-learning and
disturbance observer

Runxian Yanga,b,d, Chenguang Yangb, Mou Chena and Jing Nac

aCollege of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China; bZienkiewicz Centre for
Computational Engineering, Swansea University, Swansea, UK; cFaculty of Mechanical and Electrical Engineering, Kunming University of
Science and Technolog, China; dCollege of Electric and IT, Yangzhou Polytechnic Institute, Yangzhou, China

ABSTRACT
In this paper, an adaptive impedance control combined with disturbance observer (DOB) is devel-
oped for a general class of uncertain robot manipulators in discrete time. The impedance control is
applied to realize the interaction force control of robotmanipulators in unknown, time-varying envi-
ronments. The optimal reference trajectory is produced by impedance control, and the impedance
parameters are achieved using Q-learning technique, which is implemented based on trajectory
tracking errors. The position control with DOB of robot manipulators is implemented to track the
virtual desired trajectory, and the DOB is designed to compensate for unknown compounded dis-
turbance function by bounding both tracking error inputs and compounded disturbance inputs in a
permitted control region, ofwhich the compoundeddisturbance function is taken into account of all
uncertain terms and external disturbances. The appropriate DOB parameters are selected applying
linear matrix inequalities (LMIs) method. Both the impedance control and the bounded DOB control
can well guarantee semiglobal uniform boundness of the closed-loop robot systems based on Lya-
punov analysis and Schur complement theory. Simulation results are performed to test and verify
effectiveness of the investigated combining adaptive impedance control with DOB.
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1. Introduction

Applications of robot manipulators have been extended
to many fields, such as domestic service, medical care,
industrial production and so on, and robot manipulators
are anticipated to work by interacting with fragile object,
other machines and even humans (Peshkin et al., 2001;
Lambercy et al., 2007). On the one hand, the interac-
tion is in unknown, time-varying, complex environment,
which makes the trajectory tracking problem of nonlin-
ear multiple-input multiple-output (MIMO) robot manip-
ulators becomes more difficult, and on the other hand,
most robot manipulators in practical application have
unmodeled dynamics and uncertainties (Lewis, Dawson,
& Abdallah 2004; Lewis, Jagannathan, & Yesildirak, 1998;
Yang, Yang, Chen, & Na, 2016).

The problem of interaction control between robot
manipulators and working environment has became
increasingly important and popular. Studies of interac-
tion control mainly involve force control and impedance
control (Hogan, 1985). The impedance control focuses on
selecting appropriate impedance parameters compared
with force control method. The impedance control is pre-
ferred to force control in interaction, because it does not

CONTACT Chenguang Yang cyang@theiet.org

rely on a direction decomposition. Many research find-
ings of impedance control have been applied to robot
manipulators in recent two decades. The impedance con-
trol approach was firstly proposed in Hogan (1985) to
introduce an ideal dynamic behaviour to the interaction
control between robot manipulator and environment. In
Johansson and Spong (1994) andMatinfar andHashtrudi-
Zaad (2005), the impedance control is investigated, and
the impedance parameters is properly selected by apply-
ing an optimal control method as the linear quadratic
regulator(LQR). The system control obtained satisfying
trajectory tracking performance and force regulation, but
the environment dynamics are completely known. In
Jung and Hsia (2010), Hosseinzadeh, Aghabalaie, Talebi,
and Shafie (2010) and Li, Sam Ge, and Yang (2012), desir-
able impedance parameters are chosen as constant val-
ues, while inmany tasks, interaction environment is time-
varying, uncertain and unstructured, the conventional
impedance control methods are incapable of incorporat-
ing environment properties.

Preliminary work on estimation of impedance param-
eters for a robot manipulator working in an unknown
environment has been studied in Diolaiti, Melchiorri, and

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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Stramigioli (2005), a desired impedance model is con-
structed by precisely estimating the stiffness and damp-
ing parameters of the interaction environment. Further-
more, research work of time-varying force control for a
robot manipulator is investigated in Xie, Sun, Liu, Cheng
and Liu (2009), where a cosine wave reference force is
tracked. However, impedance control is referred, which is
only briefly mentioned in simulation section, and no the-
oretical analysis is provided. An automatic cell injection
system is proposed in Xie, Sun, Liu, Tse and Cheng (2010),
and the research focuses on time-varying force trajectory
tracking.However, themethod is only studied for one-link
manipulator.

In our previous work Ge, Li, and Wang (2014), the
developed method is verified for the time-invariant envi-
ronment dynamics, such that the method is inapplica-
ble to the time-varying environment interacted with the
end-effector of robot manipulator. In Wang, Li, Ge, and
Lee (2015), the optimal critic learning is proposed for
unknown and time-varying environment, however, the
uncertain effect of robot manipulator for trajectory track-
ing is not considered.

To compensate for uncertainties,many researchworks
focus on disturbance observer (DOB) of states and exter-
nal disturbances. In Wen, Zhou, Liu, and Su (2011), a
robust adaptive controlwithDOB is designed for a class of
nonlinear systems with uncertainty. The adaptive param-
eters are properly selected by saturating input states and
compensating for external disturbances. In Xu, Lu, Zhou,
and Yang$ (2004), a DOB control based on saturation
of inputs and compensation for external disturbances is
designed, and the state feedback theory is added to DOB
control. In Yang, Fukushima, and Qin (2012), an adaptive
robust control method is proposed for robot manipula-
tors, the decentralized controller is designed by intro-
ducing a DOB and an adaptive sliding mode term to
compensate for uncertainties of robot manipulators.

Most DOBmethods are usually subject to compensate
for external disturbances, which have be widely used in
the field of trajectory tracking control for robot manipu-
lators. However, most research studies are concentrated
in continuous time. In Zeinali and Notash (2010), the
dynamic model of robot manipulator is divided into two
terms, the known-structure dynamics and the unknown-
structure dynamics. Correspondingwith the known term,
a known system controller term is designed, and a feed-
back control and an adaptive control terms are pro-
posed to correspond with the unmodeled dynamics. In
Chen (2011), neural network (NN) control is proposed,
a satisfying control performance is achieved by intro-
ducing the neural fuzzy network method, observer and
sliding-mode method. In these studies, the stability of

closed-loop robot control systems are reliably guaran-
teed, and the trajectory tracking control has obtained
satisfying performance. Moreover, the digital controller
of robot manipulator is applied more and more exten-
sively at present, and the quick run speed of the digital
implementation is more important in practical industry
application. Recent relevant research works for nolinear
uncertain robotmanipulators focus on trajectory tracking
control in discrete time.

In Li, Ma, Yang, and Fu (2015a), a adaptive controller
is designed for a class of robot manipulators in dis-
crete time, which have unknown fixed terms or time-
varying payload uncertain terms. A satisfying control per-
formance is obtainedbasedonestimation for the external
payload terms. However, it assumes that the uncertain
termsof robotmanipulators are bounded in a fixed range,
and the structure of controller is complex, such that their
applications in practice are limited.

Based on the above discussion, we will extend our
previous works to propose an adaptive impedance con-
trol based on Q-learning and disturbance observer for
an unknown, time-varying environment and an uncertain
time-varying robot system. The objective of this paper is
to achieve the optimal control performance of trajectory
tracking requiring little knowledge of the environment
and the robot dynamics. As discussed above, impedance
iterative learning method, adaptive impedance control
and DOB method have been developed and applied,
but very few control methods have been proposed both
for environmentswithunknown time-varyingparameters
and robotmanipulator with nonliear uncertainties. This is
the motivation to develop novel trajectory tracking con-
trol using optimal impedance controlwithDOB in the rest
of this paper.

We highlight the contributions of this paper as follows:

• The uncertain time-varying damping-stiffness envi-
ronment is described as linear stiffness system with
unknown dynamic parameters.

• The optimal virtual desired reference trajectory is
derived subject to unknown environment dynamics
in Cartesian space by applying the impedance con-
trol with Q-learning, and the online adaptation of
impedance parameters are achieved.

• The optimal position trajectory to track the virtual
desired reference trajectory is obtained subject to
uncertain robot system in joint space, and the com-
pounded effect of uncertainties and disturbances is
compensated by DOB with saturation.

Throughout this paper, the notations used are detailed
in Table 1..
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Table 1. NOMENCLATURE

Notation Description

‖·‖ the Euclidean norm of vectors and induced norm of matrices

[ ]T the transpose of a vector or a matrix
[ ]−1 the inverse of a n-order reversible matrix
0n n-dimensional zero vector
0a×b a×b-dimension zero matrix
Im m-dimensional identity matrix
x n-dimensional position vector
f e n-dimensional impedance force vector
xd n-dimensional desired trajectory in Cartesian space
xr n-dimensional virtual desired reference trajectory
q n-dimensional joint position
qr n-dimensional virtual desired reference joint position
τ n-dimensional vector of control input torque
τ e n-dimensional external force torque

2. Preliminaries

2.1. System structure

In this paper, Study of the whole system includes a class
of rigid robotmanipulators andanunknown time-varying
environment.

A novel trajectory tracking control method, integrat-
ing an adaptive impedance control and aDOB controlling
both trajectory tracking errors and all uncertain terms, is
proposed to achieve a satisfying interaction performance
and a satisfying trajectory tracking performance.

In particular, the system control framework is shown in
Figure 1. The framework consists of two parts: an optimal
impedance control and a bounded DOB control.

In the first part, a certain optimal interaction perfor-
mance between the environment and the end-effector
of robot system is achieved by founding a proper
impedance model, and an optimal reference trajectory
is provided to the second part as the virtual desired ref-
erence. However, it is extremely difficult to identity the
time-varying parameters of working environment. In this
regard, the research of this paper focuses on adopting
ideal Q-learning to derive a desired optimal impedance
function.

In the second part, joint position control of robot
manipulators is implemented to track the virtual desired
trajectory produced by the impedance control in the first
part. Furthermore, the DOB is designed to approximate
and compensate for all uncertainties and external distur-
bances of robot manipulators.

2.2. Systemmodel

In this paper, we consider a system in which a class of
rigid robot manipulators is physically interacting with an
unknown time-varying environment.

2.2.1. Environmentmodel
The second part of the control system in (1) is consid-
ered using a typical damping-stiffness environment, the
interaction of environment and robot is described in
Figure 2.

In the model, the contact parameters relate the
end-effector position x to the interaction force fe at
each contact effector, Ce and Ke are unknown time-
varying damping and stiffness matrices of the dynamics,
respectively. Introducing an environment model pro-
posed (Wang et al., 2015), we define that k describes the
time-step index, the unknown time-varying environment

Figure 2. Interaction environment.

Figure 1. Control framework.
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dynamics in discrete time is given as follows:

x(k + 1) = Ae(k)x(k)+ Be(k)fe(k) (1)

where x(k) ∈ �n is the position state vector of end-
effector, fe(k) ∈ �n is the interaction force imposed by
the environment, and Ae(k) and Be(k) are parameter
matrices of the environment, and they are also unknown
time-varying functions of the damping matrix Ce and the
stiffness matrix Ke.

This kind of damping-stiffness environment model
stands for a large range of connection environment with
robot system, it may represent a class of viscoelastic
objects in robot works.

Assumption 2.1: The environment parameters Ae(k)
and Be(k) are assumed to be unknown time-varying
matrices, and they are stabilizable.

Compare with the previous studies in Matinfar and
Hashtrudi-Zaad (2005) and Ge et al. (2014), in this paper,
research of the interaction force control andposition con-
trol based on the Assumption 2.1 are more practical and
more complicated.

A class of robot manipulators are required for the
damping-stiffness environment model in (1) to achieve a
satisfying interaction performance.

2.2.2. Impedance control
The impedance controlmethod is introduced toobtain an
optimal control performance in (1) by using a Q-learning
to approximate impedance parameters.

In this paper, we adopt the desired target impedance
model to implement impedance control in Cartesian
space as follows Li et al. (2012):

−fe(k) = �(xd(k), xr(k))
= Ce(k)ėrd(k)+ Ke(k)erd(k) (2)

where � is the target impedance function, xd(k) ∈ �n
is the desired trajectory and xr(k) ∈ �n is the virtual ref-
erence trajectory of the robot end-effector in Cartesian
space, and erd(k) = xr(k)− xd(k) is the corresponding
desired tracking error.

Obviously, the end-effector of robot manipulator is
described in Cartesian space, and intermediate links of
the kinematic chain are to be represented in this space.
However, joints of robot manipulator are in joint space.
We need proceed the map between Cartesian space and
joint space by inverse kinematics and forward kinematics.
Furthermore, we can obtain virtual desired joint angles
and virtual reference angles according to (2).

Let T represents the sampling time interval and the
robot joint angels be q ∈ �n in continuous time, and the

sampled joint angles q(k) = q(tk) at time tk = kT . The
relationship between the position in Cartesian space and
the joint angles in joint space can be obtained by

qr(k) = ϕ(xr(k))
x(k) = ψ(q(k))

(3)

where qr(k) ∈ �n is the virtual desired joint angles in joint
space,ϕ(·) andψ(·) are thebackward kinematics function
and forward kinematics function of robot manipulators,
respectively. The position control target is designed to
make limk→∞ x(k) = xr(k).

2.2.3. Robotmanipulatormodel
In this paper, the end-effector of robotmanipulator phys-
ically interacts with the environment, of which themodel
is defined in (1), and the trajectory tracking control will
be considered for n-degrees of freedom (DOF) rigid robot
manipulators. The robot dynamic model is described in
continuous time as follows:

M(q)q̈+ C(q, q̇)q̇+ G(q) = τ − τe (4)

where q ∈ �n, q̇ ∈ �n and q̈ ∈ �n are the joint angle
position, velocity and acceleration, and M(q) ∈ �n×n,
C(q, q̇) ∈ �n×n and G(q) ∈ �n are the symmetric posi-
tive definite inertiamatrix, the Coriolis-Centrifugal torque
matrix and thegravity torque vector, and τ ∈ �n and τe =
JTτ (q)fe(k) ∈ �n are the control input torque vector and
the external force vectormapped to thegeneralized coor-
dinates with Jτ (q) as the Jacobian matrix, respectively.

The dynamic model of robot manipulator (4) has the
following properties (Lewis et al., 2004):

Property 2.1: The inertia matrix M(q) is uniformly
bounded, g1 > 0 and g2 > 0 are constants, and thus,
M(q) satisfies the following inequality

g1 ≤ ‖M(q)‖ ≤ g2 (5)

Property 2.2: The Coriolis-Centrifugal torque matrix
C(q, q̇) and the gravity vector G(q) are bounded by
‖C(q, q̇)‖ ≤ ρc‖q̇‖2, ‖G(q)‖ ≤ ρg, respectively, where ρc,
ρg, are positive constants.

Property 2.3: The matrix [Ṁ(q)− C(q, q̇)] is skew sym-
metric, i.e.,

yT[ 12 Ṁ(q)− C(q, q̇)]y = 0, ∀y 	= 0 (6)

3. Impedance adaptation learning

As discussed in Section 2, an impedance control is pro-
posed based onQ-learningmethod to obtain the optimal
virtual desired reference trajectory xr(k).
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3.1. Q-function construction

In the following section, the desired trajectory in Carte-
sian space is generated by adopting an exogenous sys-
tem, and the Q-learning method is introduced to derive
the optimal control, and in which we does not rely on
prior information of environment and robot system.

In fact, the traditional optimal problem can be regard
as the robot desired trajectory is zero, which is a special
case. Further, relative robot studies are needed to make
the problems identical.

In particular, the following assumption is considered:

Assumption 3.1: Assume that the desired trajectory
xd(k) is generated by the following exogenous system:

σ(k + 1) = Wdσ(k)

xd(k) = Udσ(k)
(7)

where σ(k) ∈ �n is an observable auxiliary vector, Wd ∈
�n×n and Ud ∈ �n×n are knownmatrices, and (Wd ,Ud) is
also observable.

It is noted that a wide class of desired trajectory xd(k)
can be determined by the exogenous system.

Assumption 3.2: The desired position trajectory xd(k) is
bounded in Cartesian space.

To ensure the parameter convergence of the linear
time-varying environment model (1) (Zhang, Ge, Hang, &
Chai, 2000), we design a a control input to formulated the
optimal control problem as follows:

fe(k) = −L(k)xr(k) (8)

where L(k) ∈ �n is the control gain vector, which mini-
mizes the system cost function defined in quadratic form:

J(k) =
∞∑
k=1

[erd(k)
TSerd(k)+ f Te (k)Rfe(k)] (9)

where S ∈ �n×n and R ∈ �n×n are weights of the end-
effector position tracking error and interaction force,
respectively, which satisfy S = ST ≥ 0 and R = RT ≥ 0.

The stabilizing feedback gain vector L(k) can be cal-
culated by using solution sequence of algebraic Riccati

equation (DARE) in discrete time. According to the heuris-
tic dynamic programming in Landelius (1997), the solu-
tion sequence P(k + 1) is derived as

P(k + 1) = ATe(k)P(k)Ae(k)+ S− AT(k)P(k)Be(k)

× [R+ BTe(k)P(k)Be(k)]
−1BTe(k)P(k)Ae(k)

P(0) = n× n
(10)

Then, the control gain L(k) is obtained that

L(k) = −[R+ BTe(k)P(k + 1)Be(k)]−1

× BTe(k)P(k + 1)Ae(k) (11)

After enough iterations, P(k + 1) can converges to the
solution of the DARE.

Introducing the auxiliary state σ(k) in (7) into environ-
ment model in (1), then, an extended state vector η(k) ∈
�2n is defined as follows:

η(k) = [xTr (k), σ T(k)]T (12)

The augmented matrices of system (1) can be defined as
follows:

Āe(k) =
[
Ae(k) 0
0 Wd

]
, B̄e(k) =

[
Be(k)
0

]

S̄ =
[

S −SUd

−UT
dS UT

dSUd

]
, R̄ = R

(13)

Then, the environment model (1) can be renewed as:

η(k + 1) = Āe(k)η(k)+ B̄e(k)fe(k) (14)

The corresponding function with the system cost func-
tion in (9) can be rewritten as

J̄(k) =
∞∑
k=1

[ηTS̄η + f Te (k)R̄fe(k)] (15)

It is noted that the cost function J̄(k) correlates with
extended system state η(k) and impedance force fe(k).

Similarly, the control input law (8) can be renewed as

fe(k) = −L̄(k)η(k) (16)

where L̄ = [L̄T1(k), L̄
T
2(k)]

T, L̄1(k) ∈ �n×n and L̄2(k) ∈ �n×n
are control gains for the state system x(k) and the auxil-
iary state σ(k), respectively.

According to Remark 2.1, we know that the matrix
Ae(k)+ Be(k)L̄(k) has all its eigenvalues in the open unit
disc, which also applies to the work environment (14).
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We can define a cost-to-go function V(x(k)) with a
quadratic form:

V(k) =
∞∑
i=k

[η(i)TS̄η(i)+ f Te (i)R̄fe(i)]

= r(η(k), fe(k))+ V(k + 1) (17)

where r(η(k), fe(k)) = η(k)TS̄η(k)+ fe(k)TR̄fe(k).
The cost function (17) is minimized by finding the

appropriate fe(k) in (16).
Assume the optimal impedance force f∗e = arg limfe(k)

V(k) exists, corresponding with cost-to-go function in
(17), V∗(k) is quadratic, and it can be described as follows:

V∗(k) = min
fe(k)

V(k) =
∞∑
i=k

[η(k)TS̄η(k)+ f∗
T

e (k)R̄f
∗
e (k)]

= η(k)TP(k)η(k) (18)

whereP(k) is the solution sequence of the DARE, which is
derived as

P(k + 1) = ĀTe(k)P(k)Āe(k)+ S̄− ĀT(k)P(k)B̄e(k)

× [R̄+ B̄Te(k)P(k)B̄e(k)]
−1B̄Te(k)P(k)Āe(k)

P(0) = 02n×2n
(19)

Further more, L̄(k) in (16) can be calculated by using
solution sequence of DARE, such that we have

L̄(k) = − [R̄+ B̄Te(k)P(k+ 1)B̄e(k)]−1

× B̄Te(k)P(k+ 1)Āe(k) (20)

Consider our previous results inWanget al. (2015) and the
cost-to-go function in (17), a Q-function with quadratic
form is introduced as follows:

Q(η(k), fe(k)) =
∞∑
i=k

[η(i)TS̄η(i)+ f Te (i)R̄fe(i)]

= r(η(k), fe(k))+ Q(η(k + 1), fe(k + 1))

=
[
η(k)
fe(k)

]T
H(k)

[
η(k)
fe(k)

]
(21)

where H(k) is a parameter matrix, and it is written as
follows

H(k) =
[
H11 H12

H21 H22

]
(22)

where

H11 = ĀTe(k)P(k + 1)Āe(k)+ S̄

H12 = ĀTe(k)P(k + 1)B̄e(k)

H21 = HT
12

H22 = B̄Te(k)P(k + 1)B̄e(k)+ R̄

(23)

It is easy to prove that the matrix H describing the
Q-function is positive semi-definite.

The goal of fe(k) is to determine the optimal control
law:

f∗e (k) = arg lim
fe(k)

Q(η(k), fe(k)) (24)

Note the corresponding Q-function Q∗(η(k), fe(k)) =
limfe(k) Q(η(k), fe(k)) is also quadratic, when Q∗(η(k),
f∗e (k)) exists:

Q∗(η(k), f∗e (k)) = η(k)TP(k)η(k) (25)

Employ theoptimization algorithmbasedon thegradient
as below:

∂Q(η(k), fe(k))
∂fe(k)

= (B̄Te(k)P(k + 1)B̄e(k)+ R̄)−1B̄Te(k)

P(k + 1)Āe(k)η(k) (26)

Compare (23) with (26), the optimal control policy is
acquired as:

fe(k) = −L̄(k)η(k) = −H−122 H21η(k) (27)

Noting (21) and (22), we know if the parameter H(k) can
be obtained by an identification method, then, the sys-
tem dynamic parameters will no longer be needed. In
particular, (21) equals to (25) when f∗e (k) exists, and the
optimal performance will is achieved.

By introducing fe(k) into (21) and (25) without external
disturbance, we have

P(k) = [In, L̄T(k)]H(k)[In, L̄T(k)]T (28)

Based on the above discussion, Q(η(k), fe(k)) will con-
verge to Q∗(η(k), f∗e (k)) with the optimal control input
f∗e (k).

The f∗e (k) satisfies a time-varying temporal difference
equation as follows:

Q∗(η(k), f∗e (k)) = η(k)TS̄η(k)+ f∗
T

e (k)R̄f
∗
e (k)

+ Q∗(η(k + 1), f∗e (k + 1)) (29)

It is obvious that the unknown and time-varying envi-
ronment (1) has damping-stiffness dynamics, and it is
more complex by using the traditional impedance for the
systems. Considering the structure of Q-function in (29)
or (21), the optimal impedance control is proposed by
using Q-learning in discrete time.

3.2. Impedance adaptation control with Q-learning

In this subsection, wewill employ a successiveQ-learning
method to solve (10) to obtain the sequence matrix
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P(k) (Wang et al., 2015), and impedance parameters are
obtained by applying the Q-learning method.

The algorithm is summarized as follows:

(a) Choose a stable control vector u0(k) when the itera-
tion index j=0.

(b) The evaluation solver ofQ(η(k), fe(k)) at the (j + 1)th
iteration is calculated as follows:

Qj+1(η(k), fe(k)) = zT(k)H̄j+1(k)z(k)

= zT(k)Dz(k)+ Qj(η(k + 1), uj(k))

= zT(k)Dz(k)+ zT(k + 1)H̄j(k + 1)zT(k + 1)
(30)

where H̄(k)j+1 is the approximation of H(k) at the
(j + 1)th iteration, D = [S̄ 0; 0 R̄], and z(k) = [ηT(k)
f T(k)]T, and z(k + 1) = [ηT(k + 1) L̄j(k + 1)η(k + 1)]T.

(c) Pj(k + 1) is obtained by solving DARE (19).
(d) L̄j can is obtained by solving (20).
(e) The control vector can be updated by

uj+1(η(k)) = argmin
fe(k)

Qj+1(η(k), fe(k)) (31)

(f) Update j←− j + 1, and go back to (30).

To obtain the approximative solver in (30), and achieve
the optimal control performance, the recursive time-
varying least square method is applied.

The (j + 1)th step of Q-function is introduced as fol-
lows:

Qj+1(η(k), fe(k)) = zT(k)Dz(k)+ h̄j(k + 1)Tz(k + 1)

⊗ z(k + 1)

= h̄j+1(k)T(z(k)⊗ z(k)) (32)

where h̄j+1(k) = vec(H̄j+1(k)), of which vec() represents
a linear transformation to convert a matrix into a column
vector, and h̄j(k + 1) = vec(H̄j(k + 1)).

Then, we can rewrite (32) by the following linear-in-
parameters form as:

Qj+1(η(k), fe(k)) = h̄j+1(k)T(z(k)⊗ z(k)) = θT(k)φ(k)
(33)

where θ(k) is systemparameter vector and φ(k) is regres-
sive vector.

The time-varying parameter θ(k) is able to be iden-
tify, the exponentially weighted RLSs (EWRLS) method
(Astrom andWittenmark, 1989) is introduced tominimize
the following blockwise mean squared error (MSE):

D(θ , k) = 1
2

k∑
i=1

αk−i(ρ(i)− θT(i)φ(i))2 (34)

where α is a design parameter with 0 < α < 1, ρ(i) =
zT(k)Dz(k)+ h̄j(k + 1)Tz(k + 1)⊗ z(k + 1).

The parameter θ(k), minimizing (34), is given by

θ̂ (k + 1) = θ̂ (k)+ g(k + 1)(ρ(k + 1)− θ̂T(k)φ(k + 1))
(35)

where the estimation gain matrix g(x) is designed
as follows:

g(k+ 1) = N(k)φ(k+ 1)(αIn+φT(k+ 1)N(k)φ(k+ 1))−1

(36)

where the covariance matrix N(k) at the kth step with

N(k + 1) = 1
α
(In − g(k + 1)φT(k + 1)N(k)) (37)

To avoid N(k) becoming too close to singularity, we
define 
0 and 
1 are the positive scalars, and assume
λmin(N(k)) ≤ 
1. Then the covariance matrix is designed
as follows:

N(k) = 
0In, (38)

where λ(·) denotes the eigenvalue of a matrix.
Based on the above discuss about impedance con-

trol policy design and Q-learning, consider the exoge-
nous system of the desired trajectory xd(k) in (7) and the
impedance control in (27), we rewrite (27) as follows:

−fe(k) = L̄(k)η(k) = H−122 H21η(k)

= L̄1(k)xr(k)+ L̄2σ(k)

= L̄1(k)xr(k)+ L̄2(U
T
dUd)

−1UT
d)xd(k) (39)

Compare the optimal impedance control (39) with the
desired target impedance model(2), it is obvious that
the considered damping-stiffness environment has been
changed to the stiffness environment.

The proposed adaptive impedance control by using
Q-learning is investigated to simplify the structure of
the interaction environment model, and only the stiff-
ness term exists to achieve optimal interaction perfor-
mance between the damping-stiffness environment and
the robot manipulators.

4. Discrete-time trajectory tracking controller
of robot manipulator

Consider the robot dynamic model (4) and the actual
desired reference trajectory xr(k) in Section 2, the qr(k)
is able to derive according to (2).

Define q̄ = [qT, q̇T]T ∈ R
2n, the dynamics correspond-

ing with the model (4) is written as Li, Ma, Yang, and



294 R. YANG ET AL.

Fu (2015b)

˙̄q = �(q, q̇)q̄+ �(q)(τ − τe − G(q)) (40)

with

�(q, q̇) =
[
0n×n In×n
0n×n −M−1(q)C(q, q̇)

]
, �(q) =

[
0n×n

M−1(q)

]

T is sampling time and q(k) is the sampled joint angle,
which are defined in (3), v(k) = q̇(tk) is the sampled
joint angle velocity, τ(k) = τ(tk) is the control torque
and τe(k) = τe(tk) is the external torque at the sampling
time instant tk = kT , respectively. The equivalent robot
dynamics can be derived as

q̄(k + 1) = �(k)q̄(k)+�(k)(τ (k)− τe(k)− G(k)) (41)

where q̄(k) = [qT(k), vT(k)]T, and G(k) = G(q(k)) is the
gravity torque vector in discrete time.�(k) ∈ R

2n×2n and
�(k) ∈ R

2n×n are counter-part matrices in discrete time
corresponding with the matrices�(q, q̇) and �(q) in (40)
in continuous time.
�(k),�(k) are analyzed as following:

�(k) = e�(q(k),v(k))T , �(k) =
∫ kT

(k−1)T
e�(q,q̇)t�(q)dt

(42)
We only can only obtain joint angle q(k) and joint veloc-
ity v(k) in practice, and the estimation values of �̂(k) ∈
R
2n×2n and �̂(k) ∈ R

2n×n are obtained as following:

�̂(k) = e�(k)T , �̂(k) =
∫ kT

(k−1)T
e�(k)t�(k)dt (43)

with�(k) = �(q(k), q̇(k)) and �(k) = �(q(k)).
At each sampling time, the matrix�(k) is determined,

and �̂(k), �̂(k) can be obtained via a numerical method
at sampling time tk = kT .

Considering uncertain terms and estimation errors of
robot manipulators in (43), we develop the following
structures for�(k),�(k) and G(k) in (41):

�(k) = �̂+��(k)
�(k) = �̂+��(k)
G(k) = Ĝ+�G(k)

(44)

where �̂ ∈ R
2n×2n, �̂ ∈ R

2n×n, Ĝ ∈ R
n are the known

parts, and ��(k),��(k),�G(k) are the unknown parts
of�(k),�(k),G(k), respectively.

Further, we define u(k) = τ(k)− Ĝ(k) ∈ �n is a corre-
sponding control input in the presence of uncertainties

and disturbances, such that a standard dynamics corre-
sponding with systemmodel (41) is derived as follows:

q̄(k + 1) = �̂q̄(k)+ �̂u(k)− �̂τe(k)+ d(k)

+��(k)q̄(k)+��(k)u(k)
−��(k)�G(k)− �̂�G(k)

−��(k)τe(k) (45)

where d(k) ∈ R
2n represents a external disturbance vec-

tor which is bounded.
Assume the matching conditions, for example, sys-

tem’s structure property, are satisfied, then, all uncertain
terms are guaranteed in a range space. Then, an unknown
function vector F(k) ∈ R

2n, consisting of uncertainties
including external disturbances in uncertain elements
in (45), is defined as follows:

F(k) = F(q̄(k), τ(k))

= ��(k)q̄(k)+��(k)u(k)
−��(k)�G(k)− �̂�G(k)

−��(k)τe(k) (46)

Substituting (46) into (45) yields

q̄(k + 1) = �̂q̄(k)+ �̂u(k)− �̂τe(k)+ F(k) (47)

To track the reference trajectory qr(k), a new error
vector is defined as ξe(k) = q̄(k)− q̄r(k) ∈ �2n with
q̄r(k) = [qr(k), q̇r(k)]. Therefore, an error dynamicsmodel
can be described as follows:

ξe(k + 1) = �̂ξe(k)+ �̂u(k)− �̂τe(k)+ F(k)+�(k)
(48)

where�(k) = �̂q̄r(k)− q̄r(k + 1) ∈ �2n, and F(k) can be
formulated under the following assumption.

Assumption 4.1: The unknown complicated function
F(k) in (48) canbe formulated as the following exogenous
system:

w(k + 1) = Wfw(k)

F(k) = Ufw(k)
(49)

where w(k) ∈ R
2n is the observer parameter, and

Wf ∈ R
2n×2n and Uf ∈ R

2n×2n are auxiliary matrices.

With respect to the error dynamic represented in (48),
we provided the following assumptions.

Assumption4.2: The function F(k) and its partial deriva-
tives both are continuous, and they locally uniformly are
bounded in Euclidian norm as follows:

‖F(k)‖ ≤ F∗ (50)

with F∗ > 0 as a constant.
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Assumption 4.3: Considering Property 2.2 and the
bounded reference trajectory, we assume that the vector
�(k) is bounded as follows:

‖�(k)‖ ≤ �∗ (51)

with�∗ > 0 as a constant.

To compensate the effect of robot uncertainties, we
introduce the saturation method to design the position
controller. The saturation function is considered as fol-
lows:

Assumption 4.4: We assume sat(φ(k)) is a saturated
nonlinear function, and we define sat(φ(k)) as

sat(φ(k)) = [sat(φ1(k)), . . . , sat(φn(k))]T, i = 1, . . . , n
(52)

Defineanauxiliary control vector τu(k) = sat(K1ξe(k)+
K2F̂(k)), of which K1 ∈ R

n∗2n, K2 ∈ R
n∗2n are feedback

gain matrices, and F̂(k) is estimation of the unknown
complicated function F(k), and a bounded controller for
system (48) is designed as follows:

û(k) = τu(k)+ τe − �̂+Qr(k)

= sat(K1ξe(k)+ K2F̂(k))+ τe − �̂+Qr(k) (53)

where �̂+ represents pseudo inverse matrix of �̂.
For design the bounded, saturated disturbance

observer, we apply the following Lemmas and Definition
as:

Lemma 4.1 (Song and Wang, 2013): Assume that
D = {D1,D2, . . . ,D2n} is the set of n× n diagonal matrices,
of which diagonal elements are either 1 or 0, if Dl ∈ D, we
have that D−l = In − Dl with l = 1, 2, . . . , 2n.

Lemma 4.2 (Zheng and Wu, 2008): we assume that
v(k) = [v1, . . . , vn]T ∈ R

n is existent auxiliary vector, if
|vi| ≤ τuimax , the saturated input sat(τu(k)) is denoted as

sat(τu(k)) =
2n∑
l=1

ηl(Dlτu(k)+ D−l v(k))

where i = 1, . . . , n, and ηl is limited as 0 < ηl < 1 and∑2n
l=1 ηi = 1.

Definition 4.1 (Wu, Chen, & Chen, 2015): The robot
control input τu(k) are saturated in τuimax in a linear region,
which is defined as

℘(V1, V2) = (ξe(k), F̂(k)) : ‖Vi,1ξe(k)+ Vi,2F̂(k)‖ ≤ τuimax

(54)
where ℘(V1, V2) ∈ R

4n, V1 = [V1,1, . . . , V2n,1]T ∈ R
n×2n

with Vi,1 ∈ R
1×2n, V2 = [V1,2, . . . , V2n,2]T ∈ R

n×2n with
Vi,2 ∈ R

1×2n, and i = 1, 2, . . . n.

We assume vi = Vi,1ξe(k)+ Vi,2F̂(k) satisfies |vi| ≤
τuimax , such that the control input τu(k) in (53) can be sat-
urated in τuimax . We further define the following saturated
control input τu(k) as

τu(k) = sat(K1ξe(k)+ K2F̂(k))

=
2n∑
l=1

ηlDl(K1ξe(k)+ K2F̂(k))

+
2n∑
l=1

ηlD
−
l (V1ξe(k)+ V2F̂(k)) (55)

F̂(k), the estimation value of F(k), is achieved designing
the following observer as

ŵ(k) = b(k)− K3ξe(k)

b(k + 1) = (W + K3Uf )ŵ(k)+ K3(�̂ξe(k)+ �̂u(k)

− �̂τe(k)+ Qr(k))

(56)

wherew(k) defined in (49), b(k) ∈ R
2n is an auxiliary vec-

tor as the observer, K3 ∈ R
2n×2n is design as feedback

gain matrix.
Note equations (49), (48) and (56), the estimation error

of uncertain terms F̃(k) = F̂(k)− F(k) is derived as

w̃(k + 1) = ŵ(k + 1)− w(k + 1)

= (W + K3Uf )w̃(k) (57)

Substituting (53) into (48), the closed loop system formu-
lated by

ξe(k + 1) =
2n∑
l=1

ηl{(�̂+ ϒ1)ξe(k)+ ϒ2w̃(k)}

+
2n∑
l=1

ηl{ϒ3w(k)} (58)

where ϒ1 = �̂(DlK1 + D−l V1), ϒ2 = �̂(DlK2 + D−l V2)Uf

andϒ3 = �̂(DlK2 + D−l V2)Uf + Uf .
The closed system (58) and the uncertain error (57) are

combined and formulated as:

ξ̄e(k + 1) =
2n∑
l=1

ηl{As(k)ξ̄e(k)+ Bsw(k)} (59)

with

ξ̄e(k) =
[
ξe(k)
w̃(k)

]
B̄s =

[
ϒ3

02n

]

As(k) =
[
�̂+ϒ1 ϒ2

02n Wf + K3Uf

] (60)

Stability of the controller and control performances can
be achieved by the proof in next section.
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5. Controller realization and stable analysing

Further, to guarantee that the closed control system (59)
is asymptotically stable, the design parameter matrices
K1, K2, K3, V1, V2 of the bounded observer can be
achieved applying Schur complement Lemma and stabil-
ity method as follows:

Lemma 5.1 (Ouellette, 1981): Give constant matrices
S11, S22 andS12, whichare the symmetric constantmatrices,
then, S22 < 0 and S11 − S12S

−1
22 S

T
12 < 0 hold if and only if[

S11 S12

ST12 S22

]
< 0 (61)

In this section, the feedback gain matrix K1 and
observer gain matrix K2 can be derived by applying the
LMIs theory, and the stable of closed-loop system and the
robust control performance for uncertainty, nonliear, and
vary-time can be given.

We define the Lyapunov function as follows:

V(k) = ξ̄Te (k)P̄ξ̄e(k) (62)

where symmetric positive matrix P̄ ∈ R
4n×4n can guaran-

tee the closed system is stable.
Further, assume thematrix P̄(k) exists, andwe define it

as

P̄(k) =
[
Q̄−11 02n
02n P̄2

]
> 0 (63)

with Q̄−11 = P̄1 ∈ R
2n×2n > 0 and P̄2 ∈ R

2n×2n > 0.
Then,wehave�V(k) = V(k + 1)− V(k), which canbe

further analyzed that

�V(k) ≤ max
l∈[1,2n]

[
ξ̄e(k)
w(k)

]T
S1

[
ξ̄e(k)
w(k)

]
(64)

where S1 is a matrix, which represents as:

S1 =
[
ATs P̄As − P̄ ATs P̄Bs

BTs P̄As BTs P̄Bs

]
(65)

It is obvious that�V < 0 in (64) holds if S1 < 0.
Applying the Schur complement Lemma 5.1, a new

matrix S2 < 0 can be obtained from matrix S1 < 0, and
there S2 < 0⇔ S1 < 0, such that the matrix S2 can be
derived as

S2 =
⎡
⎣−P̄ ∗ ∗
02n 02n ∗
As Bs −P̄−1

⎤
⎦ < 0 (66)

where ‘∗’ in S2(i, j) represents the transpose matrix of
S2(j, i) with i = and j as the index of row and column,
respectively, and the following expressions are similar.

Thus, it is shown that�V < 0holds if andonly if S2 < 0
under existingpositive symmetric definedmatrix P̄. More-
over, under ensuring the system is stable, the design
parameters of bounded observer are achieved using the
following computing and analyzing.

Substituting (63) and (59) into (67), we have

S3 =

⎡
⎢⎢⎢⎢⎢⎣

−Q̄−11 ∗ ∗ ∗ ∗
02n −P̄2 ∗ ∗ ∗
02n 02n 02n ∗ ∗

�̂+ ϒ1 ϒ2 ϒ3 −Q̄1 ∗
02n Wf + K3Uf 02n 02n −P̄−12

⎤
⎥⎥⎥⎥⎥⎦ < 0

(67)
Furthermore, we define auxiliary matrices as follows:

�1 = diag{Q̄1, I2n, I2n, I2n, I2n}
�2 = diag{I2n, I2n, I2n, I2n, P̄2}

Thus, a newmatrix S4 = �T
2(�

T
1S3�1)�2 can be obtained

as

S4 =

⎡
⎢⎢⎢⎢⎣
−Q̄1 ∗ ∗ ∗ ∗
02n −P̄2 ∗ ∗ ∗
02n 02n 02n ∗ ∗
T1 ϒ2 ϒ3 −Q̄1 ∗
02n P2Wf + X3Uf 02n 02n −P̄2

⎤
⎥⎥⎥⎥⎦ (68)

where T1 = �̂Q̄1 + �̂DlX1 + �̂D−l X2.
It is shown that�V(k) < 0 if and only if S4 < 0, which

implies that q(k)→ qr(k) and w̃(k)→ 0 as k→∞. Thus,
the following Theorem is derived and is described as:

Theorem 5.1: Giving auxiliary matrices Uf , Wf , if exist-
ing symmetric positive-defined matrices P̄1 = Q−11 > 0,
P̄2 > 0, if existing matrices X1, X2, X3 satisfy S4 < 0, then,
the closed-loop robot system in (59) is asymptotically stable
based on the impedance control and the bounded observer,
and the system control has satisfying robustness for robot
manipulators with uncertainty under designing the param-
eters as follows:

K1 = X1Q̄
−1
1

V1 = X2Q̄
−1
1

K3 = P̄−12 X3

6. Simulation studies

To verify the validity of the proposed controlmethod, a 2-
DOF rigid robot manipulator is considered, of which the
end-effector has a physical interact with the damping-
stiffness environment.

The parameters of 2-DOF rigid robot manipulator are
given in Table 2.
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Table 2. Structure parameters of 2-DOF robot manipulator.

Parameter Description Value

m1 Mass of link 1 1.0 kg
m2 Mass of link 2 1.0 kg
l1 Length of link 1 0.2m
l2 Length of link 2 0.2m
I1 Inertia of z-axis of link 1 0.003 kgm2

I2 Inertia of z-axis of link 2 0.003 kgm2

lc1 Mass centre distance of link 1 0.1m
lc2 Mass centre distance of link 2 0.1m

The damping-stiffness environment model is
described in (69):

Ae(k) = 1− 0.004
0.1(sin(5× 10−4k)+ 1.1)

Be(k) = − 0.01
0.1(sin(5× 10−4k)+ 1.1)

(69)

In joint space, the robot initial coordinates are given
as qr(0) = q(0) = [π/3, 2π/3]T. It is noted that the ini-
tial position in Cartesian space is xr(0) = x(0) = [0.4, 0]T,
the control input torque τ(0) = [0, 0]T, the auxiliary
b(0) = [0, 0, 0, 0]T, the observer design vector w(0) =
[0, 0]T, the uncertain function in joint space is determined
with Uf = I4 and Wf = [1, 0.1,−0.1, 1;−0.2, 1, 0.3, 1;
0,−1, 0.1, 3; 0.2, 0,−1, 0.1].

The known components of the robot manipulator
are assumed as, �̂ = 0.1× I4, �̂ = [10; 01; 10; 01], and
Ĝ = [0.001; 0.001].

By applying LMIs theory, the following parameters is
obtained as:

K11 = [−50,−6;−5,−20]
K12 = [−5.5,−0.5;−2,−1]
K21 = 0.1 ∗ [0.15, 0.25; 0.35, 0.5]

K22 = 0.1 ∗ [0.15, 0.25; 0.35, 0.5]
K31 = [0.1, 0.2;−0.1, 0.2; 0.1,−0.1;−0.001, 0.1]
K32 = [0.3, 0.4; 0.1, 0.3; 0.6, 0.4;−0.001, 0.1]
V11 = [−0.4967, 0.0014; 0.0037,−0.5073]
V12 = [−0.4981,−0.0082; 0.0037,−0.4898]
V2 = [0.5, 0, 0.5, 0; 0.5, 0.5, 0.5, 0]

The interaction force between environment and end-
effector of robot manipulator is regulated to imposed
alongwith the x-axis and the y-axis. The desired trajectory
in Cartesian space is determinedwithUd = 1 andWd = 1.

To verify effectiveness of the investigated combining
adaptive impedance control with DOB, LQR method is
applied to obtained thedesired impedance control based
on the DARE, and the environment parameters Ae(k) and
Be(k) are known in simulation. The LQR method is com-
pared with the desired impedance obtained by the pro-
posed Q-learning method, which does not rely on the
environment knowledge.

We design the saturated observer based on system
state ξ̄e(k) andunknown function F̂(k). The following sim-
ulation process are showed under the system sampling
interval T = 0.01 s.

To show the effectiveness of the proposed method,
using above design parameters K1, K2, K3, V1, V2, the inter-
action performance and trajectory tracking control are
shown in Figures 3–7.

In the Cartesian space, the simulation results of
impedance control based Q-learning are shown in
Figures 3–5, the weights S̄ and R̄ are given by S̄ = 1 and
R̄ = 0.2. Figure 3 shows that the convergence of control
gain L̄ is demonstrated and compared. Figure 4 shows

Figure 3. Impedance control gain.
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Figure 4. Interaction force between robot and environment.

Figure 5. Cost-to-go function.

Figure 6. Joint position trajectory.
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Figure 7. Joint position trajectory error.

that the interaction force fe obtained by applying the
proposed impedance control method has high tracking
performance. Figure 5 shows the cost-to-go performance
using proposed method, and the convergence to zero is
satisfying.

In the joint space, the simulation results of impedance
control based on DOB are shown in Figures 6 and 7.
Figure 6 shows actual Joint position trajectories q(1) and
q(2) compared with the desired virtual reference trajec-
tories qr(1) and qr(2), and Figure 7 shows position track-
ing errors of q1 and q2 for the desired virtual reference
trajectories qr(1) and qr(2).

Analyze the simulation results, the adaptive adjust-
ment takes time lead to the initial errors, which are small
away from the desired reference trajectories for less than
5s. We can improve control performance at the initial
stage if some prior knowledge of the environment and
uncertain robot have been given, and initial parameters
can be properly selected.

7. Conclusion

In this paper, a new method is proposed to realize the
interaction force control of uncertain robot manipulators
and unknown environments. The adaptive impedance
control is introduced to obtain optimal virtual reference
trajectory, and the impedance parameters are adjusted
by the Q-learning method in Cartesian space. The posi-
tion control with bounded DOB is investigated to obtain
optimal virtual trajectory for tracking the virtual reference
trajectory in the joint space, and the effect of uncertain-
ties and disturbances is compensated by bounding them
in a permitted control region. The method combined Q-
learning and DOB is proposed to realize the impedance

adaptation, such that we obtained the optimal trajectory
tracking performance in both Cartesian space and joint
space, where the optimal impedance parameters of sys-
temare properly selected onlinewithout any prior knowl-
edge both of the environment dynamics and robot
dynamics. Simulation results are performed to test and
verify effectiveness of the proposed adaptive impedance
control method.
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