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Abstract

In this paper, we investigate the convergence of the tamed Euler-Maruyama
(EM) scheme for a class of neutral stochastic differential delay equations. The
strong convergence results of the tamed EM scheme are presented under global and
local non-Lipschitz conditions, respectively. Moreover, under the global Lipschitz
condition, we provide the convergence rate of tamed EM scheme, which could be
the same as the convergence rate of classical EM scheme one half.
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1 Introduction

The Euler-Maruyama (EM) scheme is of vital importance in numerical approximation for
stochastic differential equations (SDEs). In [21], Kloeden and Platen illustrated that, if
the coefficients of an SDE are globally Lipschitz continuous, then the EM approximation
converges to the exact solution of the SDE in both strong and weak sense, the convergence
rates for both cases are provided as well. In the same book, they also mentioned that the
Milstein scheme converges to exact solution of SDE in both strong and weak sense with
different orders under certain conditions including the global Lipschitz condition. It is the
first time that Higham, Mao and Stuart [12] established strong convergence results under
the super-linear condition and the moment boundedness condition, however, it remained
an open question whether the moment of the EM approximation is bounded within fi-
nite time if the coefficients of an SDE are not globally Lipschitz continuous. Recently,
Hutzenthaler, Jentzen and Kloeden [10] have found that once the global Lipschitz con-
dition was replaced by the super-linear condition, the moment of the EM scheme could
be infinity within finite time. To tackle this problem, in the paper [11], Hutzenthaler,
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Jentzen and Kloeden introduced a new approximation scheme, which is the so-call tamed
EM scheme. By employing the tamed scheme, the drift coefficient is tamed so that it
is uniformly bounded. With such an approach, it has been proved that the tamed EM
scheme converges to the exact solution of the SDE under the super-linear condition of the
drift coefficients. The tamed EM scheme is later extended to SDEs with locally Lipschitz
condition of the diffusion by Dareiotis et al. [7] and Sabanis [31].

On the other hand, stochastic differential delay equations (SDDEs) and neutral
stochastic differential delay equations (NSDDEs) describe a wide variety of natural and
man-made systems. For the theories and applications of SDDEs and NSDDEs, we here
only mention [1, 2, 4, 5, 6, 8, 9, 15, 18, 22, 27, 28], to name a few. Since most SDDEs and
NSDDEs can not be solved explicitly, numerical methods have become essential. Recently,
an extensive literature has emerged in investigating the strong convergence, weak conver-
gence and sample path convergence of numerical schemes for SDDEs and NSDDEs, for
example, [13, 18, 20, 26]. We should point out that the strong convergence of EM schemes
for SDDEs is, in general, discussed under a linear growth condition or bounded moments
of analytic and numerical solutions, e.g., [18, 20, 26]. However, similar to the SDEs case,
it remained an open question whether the EM scheme converges to the exact solution if
the coefficients of the SDDEs and NSDDEs are under the super-linear condition. The
main aim of this paper is to answer this question by extending the tamed EM method to
NSDDEs. Because of the neutral term, the technical details increased significantly.

The remainder of this paper will be organised as follows. In Section 2, some notation
and preliminaries are introduced. In Section 3, p-th moment boundedness, convergence
of EM scheme under global and local monotonicity conditions are provided with detailed
proofs respectively. Moreover, the rate of convergence is provided under the global mono-
tonicity condition. In Section 4, we present similar results as in Section 3 while the
Brownian motion is replaced by the pure jump processes.

2 Preliminaries

Throughout this paper, let (Ω,F ,P) be a complete probability space with a filtration
{Ft}t≥0 satisfying the usual condition (i.e. it is right continuous and F0 contains all P-
null sets). Let τ > 0 be a constant and denote C([−τ, 0];Rn) the space of all continuous
functions from [−τ, 0] to Rn with the norm ‖φ‖ = sup−τ≤θ≤0 |φ(θ)|. Let B(t) be a standard
m-dimensional Brownian motion.

Consider an n-dimensional neutral stochastic differential delay equation

d[X(t)−D(X(t− τ))] = b(X(t), X(t− τ))dt+ σ(X(t), X(t− τ))dB(t), (2.1)

on t ≥ 0, where

D : Rn → Rn, b : Rn × Rn → Rn, σ : Rn × Rn → Rn×m,

we assume thatD, b and σ are Borel-measurable, and the initial data satisfies the following
condition: for any p ≥ 2

{X(θ) : −τ ≤ θ ≤ 0} = ξ ∈ Lp
F0
([−τ, 0];Rn), (2.2)

that is ξ is an F0-measurable C([−τ, 0];Rn)-valued random variable and E‖ξ‖p < ∞. Now,
fix T > τ > 0, without loss of generality, we assume that T and τ are rational numbers,
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and the step size h ∈ (0, 1) be fraction of τ and T, so that there exist two positive integers
M, M̄ such that h = T/M = τ/M̄. Throughout the paper, unless otherwise stated, let
C > 0 denote a generic constant, independent of h, whose value may change from line to
line.

For the future use, we assume that:

(A1) There exists a positive constant K̃ such that for ∀ x, y ∈ Rn,

〈x−D(y), b(x, y)〉 ∨ ||σ(x, y)||2 ≤ K̃(1 + |x|2 + |y|2), (2.3)

and b(x, y) is continuous in both x and y.

(A2) D(0) = 0 and there exists a constant κ ∈ (0, 1) such that

|D(x)−D(x̄)| ≤ κ|x− x̄| for all x, y ∈ Rn. (2.4)

(A3) For any R > 0, there exist two positive constants K̃R and KR such that

〈x−D(y)− x̄+D(ȳ), b(x, y)− b(x̄, ȳ)〉 ∨ ||σ(x, y)− σ(x̄, ȳ)||2

≤ K̃R(|x− x̄|2 + |y − ȳ|2),
(2.5)

for all |x| ∨ |y| ∨ |x̄| ∨ |ȳ| ≤ R.

(A4) There exist two positive constants l and L such that,

〈x−D(y)− x̄+D(ȳ), b(x, y)− b(x̄, ȳ)〉+ ||σ(x, y)−σ(x̄, ȳ)||2 ≤ L(|x− x̄|2+ |y− ȳ|2),

and

|b(x, y)− b(x̄, ȳ)| ≤ L(1 + |x|l + |y|l + |x̄|l + |ȳ|l)(|x− x̄|+ |y − ȳ|),

for all x, y, x̄ and ȳ ∈ Rn.

(A5) For any s, t ∈ [−τ, 0] and q > 0, let L̄ be a positive number, then

E‖ξ(t)− ξ(s)‖q ≤ L̄|t− s|q.

Remark 2.1 Assume that (A1)-(A3) hold, then NSDDE (2.1) with initial (2.2) admits
a unique strong global solution X(t), t ∈ [0, T ]. The proof details of such existence and
uniqueness result can be found in [19]. If assumption (A3) is replaced by (A4), the
theorem of existence and uniqueness still holds.

Now, we define

bh(x, y) :=
b(x, y)

1 + hα|b(x, y)| , (2.6)

for all x, y ∈ Rn and α ∈ (0, 1
2
]. The reason why such value of α is chosen will be revealed

later in Section 3. By observation, one has

|bh(x, y)| ≤ min(h−α, |b(x, y)|).
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Remark 2.2 It is easy to verify that bh(x, y) =
b(x,y)

1+hα|b(x,y)| satisfies all assumptions (A1),

(A3) and (A4). For the assumption (A1), we have

2〈x−D(y), bh(x, y)〉 =
2

1 + hα|b(x, y)|〈x−D(y), b(x, y)〉

≤ K̃

1 + hα|b(x, y)|(1 + |x|2 + |y|2)

≤ K̃(1 + |x|2 + |y|2).
For the assumption (A3), which is a local assumption, we can derive that

2〈x−D(y)− x̄+D(ȳ), bh(x, y)− bh(x̄, ȳ)〉
≤ K̄R(|x− x̄|2 + |y − ȳ|2),

where K̄R = K̃R

1+hα(|b(x̄,ȳ)|∧|b(x,y)|) . The verification detail for assumption (A4) is omitted,

since it is similar to (A3).

Now, we can define the discrete-time tamed EM scheme:
For every integer n = −M̄, · · · , 0, Y (n)

h = ξ(nh). For every integer n = 0, · · · ,M − 1,

Y
(n+1)
h −D(Y

(n+1−M̄)
h ) = Y

(n)
h −D(Y

(n−M̄)
h ) + bh(Y

(n)
h , Y

(n−M̄)
h )h+ σ(Y

(n)
h , Y

(n−M̄)
h )∆B

(n)
h ,

(2.7)

where ∆B
(n)
h = B((n+1)h)−B(nh). For every integer n = 0, · · · ,M−1, the discrete-time

tamed EM scheme (2.7) can be rewritten as

Y
(n+1)
h =D(Y

(n+1−M̄)
h ) + ξ(0)−D(ξ(−τ)) +

n∑

i=0

bh(Y
(i)
h , Y

(i−M̄ )
h )h

+

n∑

i=0

σ(Y
(i)
h , Y

(i−M̄)
h )∆B

(i)
h .

(2.8)

For t ∈ [nh, (n + 1)h), we set Ȳ (t) := Y
(n)
h . Since τ = M̄h, Ȳ (t − τ) = Y

(n−M̄)
h . For the

sake of simplicity, we define the corresponding continuous-time tamed EM approximate
solution Y (t) as follows. For any θ ∈ [−τ, 0], Y (θ) = ξ(θ). For any t ∈ [0, T ],

Y (t) =D(Ȳ (t− τ)) + ξ(0)−D(ξ(−τ)) +

∫ t

0

bh(Ȳ (s), Ȳ (s− τ))ds

+

∫ t

0

σ(Ȳ (s), Ȳ (s− τ))dB(s).

(2.9)

Noting that for any t ∈ [0, T ], there exists a positive integer n, 0 ≤ n ≤ M − 1, such that
for t ∈ [nh, (n + 1)h), we have

Y (t) = D(Ȳ (t− τ)) + ξ(0)−D(ξ(−τ)) +

∫ nh

0

bh(Ȳ (s), Ȳ (s− τ))ds

+

∫ nh

0

σ(Ȳ (s), Ȳ (s− τ))dB(s) +

∫ t

nh

bh(Ȳ (s), Ȳ (s− τ))ds

+

∫ t

nh

σ(Ȳ (s), Ȳ (s− τ))dB(s)

= Y (nh) +

∫ t

nh

bh(Ȳ (s), Ȳ (s− τ))ds +

∫ t

nh

σ(Ȳ (s), Ȳ (s− τ))dB(s).

(2.10)
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This means the continuous-time tamed EM approximate solution Y (t) coincides with the
discrete-time tamed approximation solution Ȳ (t) at grid points t = nh, n = 0, 1, · · · ,M−
1.

3 Tamed EM Method of NSDDEs driven by Brown-

ian Motion

In this section, we show that the tamed EM scheme converges to the exact solution under
certain conditions, i.e. we have the following main results:

Theorem 3.1 Suppose that (A1), (A2), (A4) and (A5) hold, then the tamed EM
scheme (2.9) converges to the exact solution of (2.1) such that for any p ≥ 2,

E
[

sup
0≤t≤T

|X(t)− Y (t)|p
]
≤ Chαp. (3.1)

The next theorem states that the convergence result still holds if the global monotonicity
condition (A4) is replaced by its local counterpart (A3). However, we are unable to
provide the convergence rate under this weaker condition.

Theorem 3.2 Suppose that (A1)-(A3) and (A5) hold, then the tamed EM scheme (2.9)
converges to the exact solution of (2.1) such that for any p ≥ 2,

lim
h→0

E
[

sup
0≤t≤T

|X(t)− Y (t)|p
]
= 0. (3.2)

3.1 Moment Bounds

Before the proof of our main results, we investigate the boundedness of moments of both
exact solution and EM approximation in this subsection.

Lemma 3.1 Consider the continuous-time tamed EM scheme given by equation (2.10).
If for some p ≥ 2,

sup
0≤t≤T

E(|Y (t)|p) ≤ C, (3.3)

and (A1) hold, then it holds that

E
[

sup
0≤n≤M−1

sup
nh≤t≤(n+1)h

|Y (t)− Y (nh)|p
]
≤ Chp/2, (3.4)

and

E
[

sup
0≤n≤M−1

sup
nh≤t≤(n+1)h

|Y (t)− Y (nh)|p|bh(Ȳ (t), Ȳ (t− τ))|p
]
≤ C. (3.5)

Proof : By the definition of the tamed EM scheme, we have for nh ≤ t ≤ (n + 1)h,

E
[

sup
nh≤t≤(n+1)h

|Y (t)− Y (nh)|p
]
= E

[
sup

nh≤t≤(n+1)h

∣∣∣∣
∫ t

nh

bh(Ȳ (s), Ȳ (s− τ))ds

+

∫ t

nh

σ(Ȳ (s), Ȳ (s− τ))dB(s)

∣∣∣∣
p]
.
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Therefore, due to Hölder’s inequality,

E
[

sup
nh≤t≤(n+1)h

|Y (t)− Y (nh)|p
]
≤ 2p−1hp−1E

[ ∫ (n+1)h

nh

∣∣∣∣bh(Ȳ (s), Ȳ (s− τ))

∣∣∣∣
p

ds

]

+ 2p−1E
[

sup
nh≤t≤(n+1)h

∣∣∣∣
∫ t

nh

σ(Ȳ (s), Ȳ (s− τ))dB(s)

∣∣∣∣
p]
.

(3.6)

Using the Burkholder-Davis-Gundy(BDG) inequality [23, Theorem 1.7.3 page 40] and
(3.3), for some p ≥ 2, we derive that

E
[

sup
nh≤t≤(n+1)h

∣∣
∫ t

nh

σ(Ȳ (s), Ȳ (s− τ))dB(s)
∣∣p
]

≤ CE

[∫ (n+1)h

nh

‖σ(Ȳ (s), Ȳ (s− τ))‖2ds
]p/2

≤ CE

[∫ (n+1)h

nh

(1 + |Ȳ (s)|2 + |Ȳ (s− τ)|2)ds
]p/2

≤ Chp/2.

This, together with |bh(Ȳ (s), Ȳ (s− τ))| ≤ h−α, yields

E
[

sup
nh≤t≤(n+1)h

|Y (t)− Y (nh)|p
]
≤ 2p−1h(1−α)p + Chp/2 ≤ Chp/2. (3.7)

Therefore (3.4) holds. Moreover,

E
[

sup
nh≤t≤(n+1)h

|Y (t)− Y (nh)|p|bh(Ȳ (s), Ȳ (s− τ))|p
]

≤ E
[

sup
nh≤t≤(n+1)h

|Y (t)− Y (nh)|p
]
h−αp

≤ Ch(1/2−α)p ≤ C.

(3.8)

In (3.7) and (3.8), we have used the fact that α ∈ (0, 1/2]. The proof is therefore complete.
2

Lemma 3.2 Assume that (A1), (A2) and (A5) hold. Then there exists a positive con-
stant C independent of h such that for any p ≥ 2,

E[ sup
0≤t≤T

|X(t)|p] ∨ E[ sup
0≤t≤T

|Y (t)|p] ≤ C. (3.9)

Proof. For every integer k ≥ 1, define the stopping time

τk = T ∧ inf{t ∈ [0, T ] : |X(t)| ≥ k}.

Clearly, τk → T as k → ∞ almost surely. Now, for any t ∈ [0, T ], by [23, Lemma 4.4,
p212] and assumption (A2), we know that for any p ≥ 2,

sup
0≤s≤t∧τk

|X(s)|p ≤ κ

1− κ
||ξ||p + 1

(1− κ)p
sup

0≤s≤t∧τk
|X(s)−D(X(s− τ))|p. (3.10)
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An application of Itô’s formula yields,

|X(t)−D(X(t− τ))|p ≤ |ξ(0)−D(ξ(−τ))|p

+ p

∫ t

0

|X(s)−D(X(s− τ))|p−2〈X(s)−D(X(s− τ)), b(X(s), X(s− τ))〉ds

+
p(p− 1)

2

∫ t

0

|X(s)−D(X(s− τ))|p−2||σ(X(s), X(s− τ))||2ds

+ p

∫ t

0

|X(s)−D(X(s− τ))|p−2(X(s)−D(X(s− τ)))T (σ(X(s), X(s− τ))dB(s))

=: |ξ(0)−D(ξ(−τ))|p +H1(t) +H2(t) +H3(t).

(3.11)

Under (A1) and (A2), one has

E( sup
0≤s≤t∧τk

H1(s)) + E( sup
0≤s≤t∧τk

H2(s))

≤ CE
∫ t∧τk

0

|X(s)−D(X(s− τ))|p−2(1 + |X(s)|2 + |X(s− τ)|2)ds

≤ CE
∫ t∧τk

0

(|X(s)|p−2 + |D(X(s− τ))|p−2)(1 + |X(s)|2 + |X(s− τ)|2)ds

≤ CE
∫ t∧τk

0

(1 + |X(s)|p + |X(s− τ)|p)ds ≤ C + C

∫ t

0

E( sup
0≤u≤s∧τk

|X(u)|p)ds.

(3.12)

By the Burkholder-Davis-Gundy(BDG) inequality and the Young inequality, we derive
that

E( sup
0≤s≤t∧τk

H3(s)) ≤ CE
(∫ t∧τk

0

(
|X(s)−D(X(s− τ))|2p−2‖σ(X(s), X(s− τ))‖2

)
ds

)1/2

≤ CE
(

sup
0≤s≤t∧τk

|X(s)−D(X(s− τ))|p−1
( ∫ t∧τk

0

‖σ(X(s), X(s− τ))‖2ds
)1/2

)

≤ 1

4
E( sup

0≤s≤t∧τk
|X(s)−D(X(s− τ))|p) + C(

∫ t∧τk

0

‖σ(X(s), X(s− τ))‖2ds)p/2

≤ 1

4
E( sup

0≤s≤t∧τk
|X(s)−D(X(s− τ))|p) + C(

∫ t∧τk

0

(1 + |X(s)|2 + |X(s− τ)|2ds)p/2

≤ 1

4
E( sup

0≤s≤t∧τk
|X(s)−D(X(s− τ))|p) + C

∫ t∧τk

0

E(1 + |X(s)|p + |X(s− τ)|p)ds

≤ 1

4
E( sup

0≤s≤t∧τk
|X(s)−D(X(s− τ))|p) + C + C

∫ t

0

E( sup
0≤u≤s∧τk

|X(u)|p)ds.

(3.13)

Now, substituting (3.12) and (3.13) into (3.11), we then have

E( sup
0≤s≤t∧τk

|X(s)−D(X(s− τ))|p) ≤ C + C

∫ t

0

E( sup
0≤u≤s∧τk

|X(u)|p)ds. (3.14)

This, together with (3.10), implies that

E( sup
0≤s≤t∧τk

|X(s)|p) ≤ C + C

∫ t

0

E( sup
0≤u≤s∧τk

|X(u)|p)ds.
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The desired assertion for the exact solution follows an application of Gronwall’s inequality
and letting k → ∞.

In order to estimate the p-th moment of the tamed EM scheme (2.9), an inductive
argument is used below. Firstly, we claim that there exists a constant C such that:

sup
0≤t≤T

E|Y (t)|2 ≤ C. (3.15)

Similarly, we define another stopping time: for every integer k ≥ 1, define a stopping time

τ̄k = T ∧ inf{t ∈ [0, T ] : |Y (t)| ≥ k}.

Clearly, τ̄k → T as k → ∞ almost surely. Now, for any t ∈ [0, T ], an application of the
Itô formula yields

|Y (t)−D(Ȳ (t− τ))|2

= |ξ(0)−D(ξ(−τ))|2 + 2

∫ t

0

〈Y (s)−D(Ȳ (s− τ)), bh(Ȳ (s), Ȳ (s− τ))〉ds

+

∫ t

0

||σ(Ȳ (s), Ȳ (s− τ))||2ds+ 2

∫ t

0

〈Y (s)−D(Ȳ (s− τ)), σ(Ȳ (s), Ȳ (s− τ))dB(s)〉

= |ξ(0)−D(ξ(−τ))|2 + 2

∫ t

0

〈Ȳ (s)−D(Ȳ (s− τ)), bh(Ȳ (s), Ȳ (s− τ))〉ds

+ 2

∫ t

0

〈Y (s)− Ȳ (s), bh(Ȳ (s), Ȳ (s− τ))〉ds+
∫ t

0

||σ(Ȳ (s), Ȳ (s− τ))||2ds

+ 2

∫ t

0

〈Y (s)−D(Ȳ (s− τ)), σ(Ȳ (s), Ȳ (s− τ))dB(s)〉

=: |ξ(0)−D(ξ(−τ))|2 + Ĥ1(t) + Ĥ2(t) + Ĥ3(t) + Ĥ4(t).

(3.16)

By (A1) and (A2), we compute

sup
0≤s≤t

E(Ĥ1(s ∧ τ̄k)) + E(Ĥ3(s ∧ τ̄k)) ≤ CE
∫ t∧τ̄k

0

1 + |Ȳ (s)|2 + |Ȳ (s− τ)|2ds

≤ C + C

∫ t

0

sup
0≤u≤s

E(|Y (u ∧ τ̄k)|2)ds.
(3.17)
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Using the definition of Y (s) and Ȳ (s), together with the property of conditional expec-
tation, we have

sup
0≤s≤t

E(Ĥ2(s ∧ τ̄k)) = 2 sup
0≤s≤t

{
E
∫ s∧τ̄k

0

〈
∫ u

[u
h
]h

bh(Ȳ (r), Ȳ (r − τ))dr, bh(Ȳ (u), Ȳ (u− τ))〉du

+ E
∫ s

0

〈
∫ u∧τ̄k

[
u∧τ̄k

h
]h

σ(Ȳ (r), Ȳ (r − τ))dB(r), bh(Ȳ (u ∧ τ̄k), Ȳ (u ∧ τ̄k − τ))〉du
}

= 2 sup
0≤s≤t

{
E
∫ s∧τ̄k

0

〈
∫ u

[u
h
]h

bh(Ȳ (r), Ȳ (r − τ))dr, bh(Ȳ (u), Ȳ (u− τ))〉du

+ E
∫ s

0

E〈
∫ u∧τ̄k

[
u∧τ̄k

h
]h

σ(Ȳ (r), Ȳ (r − τ))dB(r), bh(Ȳ (u ∧ τ̄k), Ȳ (u ∧ τ̄k − τ))〉|F[
u∧τ̄k

h
]hdu

}

= 2 sup
0≤s≤t

E
∫ s∧τ̄k

0

〈
∫ u

[u
h
]h

bh(Ȳ (r), Ȳ (r − τ))dr, bh(Ȳ (u), Ȳ (u− τ))〉du

≤ Cth1−2α ≤ C,

(3.18)

where we have used α ∈ (0, 1/2]. Using the Young inequality, we have

sup
0≤s≤t

E(|Y (s ∧ τ̄k)|2) = sup
0≤s≤t

E(|Y (s ∧ τ̄k)−D(Ȳ ((s− τ) ∧ τ̄k)) +D(Ȳ ((s− τ) ∧ τ̄k))|2)

≤ C +
1

2
sup
0≤s≤t

E(|Y (s ∧ τ̄k)|2) + C sup
0≤s≤t

E(|Y (s ∧ τ̄k)−D(Ȳ ((s− τ) ∧ τ̄k))|2),

(3.19)

Now, substituting (3.17) and (3.18) into (3.19), we can derive that

sup
0≤s≤t

E(|Y (s ∧ τ̄k)|2) ≤ C + C
(
sup
0≤s≤t

E(|Y (s ∧ τ̄k)−D(Ȳ ((s− τ) ∧ τ̄k))|2)
)

≤ C + C

∫ t

0

sup
0≤u≤s

E(|Y (u ∧ τ̄k)|2)ds.

The assertion (3.15) follows an application of the Gronwall inequality and letting k → ∞.

In the sequel, we are now going to show that there exists a constant C > 0 such that
for any p ≥ 2,

E[ sup
0≤t≤T

|Y (t)|p] ≤ C. (3.20)

Letting p = 4 and using the Itô formula, we have for any t ∈ [0, T ],

|Y (t)−D(Ȳ (t− τ))|p = |ξ(0)−D(ξ(−τ))|p + p

∫ t

0

|Y (s)−D(Ȳ (s− τ))|p−2

× 〈Ȳ (s)−D(Ȳ (s− τ)), bh(Ȳ (s), Ȳ (s− τ))〉ds

+ p

∫ t

0

|Y (s)−D(Ȳ (s− τ))|p−2〈Y (s)− Ȳ (s), bh(Ȳ (s), Ȳ (s− τ))〉ds

+
p(p− 1)

2

∫ t

0

|Y (s)−D(Ȳ (s− τ))|p−2‖σ(Ȳ (s), Ȳ (s− τ))‖2ds

+ p

∫ t

0

|Y (s)−D(Ȳ (s− τ))|p−2〈Y (s)−D(Ȳ (s− τ)), σ(Ȳ (s), Ȳ (s− τ))dB(s)〉

=: |ξ(0)−D(ξ(−τ))|p + H̄1(t) + H̄2(t) + H̄3(t) + H̄4(t).

(3.21)
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Under assumptions (A1) and (A2), there exists a constant C > 0 such that

E( sup
0≤s≤t∧τ̄k

H̄1(s)) + E( sup
0≤s≤t∧τ̄k

H̄3(s))

≤ CE
∫ t∧τ̄k

0

|Y (s)−D(Ȳ (s− τ))|p−2(1 + |Ȳ (s)|2 + |Ȳ (s− τ)|2)ds

≤ CE
∫ t∧τ̄k

0

(|Y (s)|p−2 + |D(Ȳ (s− τ))|p−2)(1 + |Ȳ (s)|2 + |Ȳ (s− τ)|2)ds

≤ CE
∫ t∧τ̄k

0

(1 + |Y (s)|p + |Ȳ (s)|p + |Ȳ (s− τ)|p)ds ≤ C + C

∫ t

0

E( sup
0≤u≤s∧τ̄k

|Y (u)|p)ds.

(3.22)

Using Young’s inequality, we derive that

E( sup
0≤s≤t∧τ̄k

H̄2(s))

≤ CE
∫ t∧τ̄k

0

|Y (s)−D(Ȳ (s− τ))|p−2|〈Y (s)− Ȳ (s), bh(Ȳ (s), Ȳ (s− τ))〉|ds

≤ CE
(

sup
0≤s≤t∧τ̄k

|Y (s)−D(Ȳ (s− τ))|p−2 ×
[
|
∫ t∧τ̄k

0

〈Y (s)− Ȳ (s), bh(Ȳ (s), Ȳ (s− τ))〉ds|1/2
]2)

≤ 1

4
E sup

0≤s≤t∧τ̄k
|Y (s)−D(Ȳ (s− τ))|p + CE

∫ t∧τ̄k

0

|Y (s)− Ȳ (s)|p/2|bh(Ȳ (s), Ȳ (s− τ))|p/2ds

≤ 1

4
E sup

0≤s≤t∧τ̄k
|Y (s)−D(Ȳ (s− τ))|p + C,

(3.23)

where we have applied result from obtained Lemma 3.1 to the second term above.

By the BDG inequality again, we have

E( sup
0≤s≤t∧τ̄k

H̄4(s))

≤ E( sup
0≤s≤t∧τ̄k

p

∫ s

0

|Y (u)−D(Ȳ (u− τ))|p−2|〈Y (u)−D(Ȳ (u− τ)), σ(Ȳ (u), Ȳ (u− τ))dB(u)〉|)

≤ CE
(∫ t∧τ̄k

0

(
|Y (s)−D(Ȳ (s− τ))|2p−2‖σ(Ȳ (s), Ȳ (s− τ))‖2

)
ds

)1/2

≤ CE
(

sup
0≤s≤t∧τ̄k

|Y (s)−D(Ȳ (s− τ))|p−1
( ∫ t∧τ̄k

0

‖σ(Ȳ (s), Ȳ (s− τ))‖2ds
)1/2

)

≤ 1

4
E( sup

0≤s≤t∧τ̄k
|Y (s)−D(Ȳ (s− τ))|p) + C + C

∫ t

0

E( sup
0≤u≤s∧τ̄k

|Y (u)|p)ds.

(3.24)

Substituting (3.23) and (3.24) into (3.21) and using (3.10), for p = 4, we can derive that

E( sup
0≤s≤t∧τ̄k

|Y (s)|p) ≤ C + CE( sup
0≤s≤t∧τ̄k

|Y (s)−D(Ȳ (s− τ))|p)

≤ C + C

∫ t

0

E( sup
0≤u≤s∧τ̄k

|Y (u)|p)ds.

The required assertion follows from an application of the Grownwall inequality and letting
k → ∞. By repeating the same procedure, the desired result (3.9) can be obtained by
induction. 2
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3.2 Proof of Main Results

In this subsection, we give proofs for the main results.

Proof of Theorem 3.1: For any 0 ≤ t ≤ T, by [23, Lemma 6.4.1] as well as the
assumption (A2), we have, for p ≥ 2 and ε > 0,

|X(t)− Y (t)|p = |X(t)− Y (t)−D(X(t− τ)) +D(Ȳ (t− τ))

+D(X(t− τ))−D(Ȳ (t− τ))|p

≤
[
1 + ε

1
p−1

]p−1( |D(X(t− τ))−D(Ȳ (t− τ))|p
ε

+ |X(t)−D(X(t− τ))− Y (t) +D(Ȳ (t− τ))|p
)

≤
[
1 + ε

1
p−1

]p−1(
κp|X(t− τ)− Ȳ (t− τ)|p

ε

+ |X(t)−D(X(t− τ))− Y (t) +D(Ȳ (t− τ))|p
)
.

(3.25)

Letting ε = [ κ
1−κ

]p−1, by (3.25) we obtain

sup
0≤s≤t

|X(s)− Y (s)|p

≤ κ sup
0≤s≤t

|X(s− τ)− Ȳ (s− τ)|p

+
1

(1− κ)p−1
sup
0≤s≤t

|X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ))|p

≤ κ sup
−τ≤s≤0

|X(s)− Ȳ (s)|p + κ sup
0≤s≤t

|X(s)− Y (s) + Y (s)− Ȳ (s)|p

+
1

(1− κ)p−1
sup
0≤s≤t

|X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ))|p

≤ κ sup
−τ≤s≤0

|X(s)− Ȳ (s)|p + κc sup
0≤s≤t

|X(s)− Y (s)|p + C sup
0≤s≤t

|Y (s)− Ȳ (s)|p

+
1

(1− κ)p−1
sup
0≤s≤t

|X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ))|p,

(3.26)

where κc ∈ (0, 1) is a constant. This, together with (A5), implies

E
(
sup
0≤s≤t

|X(s)− Y (s)|p
)
≤ 1

(1− κ)p−1(1− κc)
E
(
sup
0≤s≤t

|X(s)−D(X(s− τ))

− Y (s) +D(Ȳ (s− τ))|p
)
+ Chp/2.

(3.27)
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An application of Itô’s formula yields

|X(t)−D(X(t− τ))− Y (t) +D(Ȳ (t− τ))|p

≤ p

∫ t

0

|X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ))|p−2

× 〈X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ)), b(X(s), X(s− τ))− bh(Ȳ (s), Ȳ (s− τ))〉ds

+
p(p− 1)

2

∫ t

0

|X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ))|p−2

× ‖σ(X(s), X(s− τ))− σ(Ȳ (s), Ȳ (s− τ))‖2ds

+ p

∫ t

0

|X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ))|p−2

× 〈X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ)),

(σ(X(s), X(s− τ))− σ(Ȳ (s), Ȳ (s− τ)))dB(s)〉

= p

∫ t

0

|X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ))|p−2

× 〈X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ)), b(X(s), X(s− τ))− b(Y (s), Ȳ (s− τ))〉ds

+ p

∫ t

0

|X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ))|p−2

× 〈X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ)), b(Y (s), Ȳ (s− τ))− b(Ȳ (s), Ȳ (s− τ))〉ds

+ p

∫ t

0

|X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ))|p−2

× 〈X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ)), b(Ȳ (s), Ȳ (s− τ))− bh(Ȳ (s), Ȳ (s− τ))〉ds

+
p(p− 1)

2

∫ t

0

|X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ))|p−2

× ||σ(X(s), X(s− τ))− σ(Ȳ (s), Ȳ (s− τ))||2ds

+ p

∫ t

0

|X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ))|p−2

× 〈X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ)),

(σ(X(s), X(s− τ))− σ(Ȳ (s), Ȳ (s− τ)))dB(s)〉
=: I1(t) + I2(t) + I3(t) + I4(t) + I5(t).

(3.28)
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By assumptions (A2), (A4) and (A5), we have

E( sup
0≤s≤t

(I1(s))) ≤ CE
∫ t

0

|X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ))|p−2

× (|X(s)− Y (s)|2 + |X(s− τ)− Ȳ (s− τ)|2)ds

≤ CE
∫ t

0

(
|X(s)− Y (s)|p−2 + |D(X(s− τ))−D(Ȳ (s− τ))|p−2

)

× (|X(s)− Y (s)|2 + |X(s− τ)− Ȳ (s− τ)|2)ds

≤ C

∫ t

0

E( sup
0≤u≤s

|X(u)− Y (u)|p)ds+ C

∫ t

0

E( sup
0≤u≤s

|X(u)− Y (u) + Y (u)− Ȳ (u)|p)ds

+ C

∫ 0

−τ

E( sup
−τ≤θ≤0

|X(θ)− Ȳ (θ)|p)ds ≤ C

∫ t

0

E( sup
0≤u≤s

|X(u)− Y (u)|p)ds+ Chp + Chp/2.

(3.29)

In the same way as in (3.29), we can estimate I4(t) such that

E( sup
0≤s≤t

(I4(s))) ≤ C

∫ t

0

E( sup
0≤u≤s

|X(u)− Y (u)|p)ds+ Chp + Chp/2. (3.30)

Using assumption (A4), Hölder’s inequality and (3.4), we arrive at

E( sup
0≤s≤t

I2(s)) ≤ E
(∫ t

0

|X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ))|p−1

× L(1 + |Ȳ (s)|l + |Y (s)|l + 2|Ȳ (s− τ)|l)(|Y (s)− Ȳ (s)|)ds
)

≤ E
(

sup
0≤s≤t

|X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ))|p−1

×
∫ t

0

L(1 + |Ȳ (s)|l + |Y (s)|l + 2|Ȳ (s− τ)|l)(|Y (s)− Ȳ (s)|)ds
)

≤ 1

4
E( sup

0≤s≤t
|X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ))|p)

+ CE
[ ∫ t

0

(1 + |Ȳ (s)|l + |Y (s)|l + |Ȳ (s− τ)|l)(|Y (s)− Ȳ (s)|)ds
]p

≤ 1

4
E( sup

0≤s≤t
|X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ))|p)

+ C

[ ∫ t

0

E(1 + |Ȳ (s)|l + |Y (s)|l + |Ȳ (s− τ)|l)p(|Y (s)− Ȳ (s)|)pds
]

≤ 1

4
E( sup

0≤s≤t
|X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ))|p)

+ C[

∫ t

0

(E(1 + |Ȳ (s)|l + |Y (s)|l + |Ȳ (s− τ)|l)2p)1/2(E|Y (s)− Ȳ (s)|2p)1/2ds]

≤ 1

4
E( sup

0≤s≤t
|X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ))|p) + Chp/2.

(3.31)
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We now estimate I3,

E( sup
0≤s≤t

I3(s)) ≤ pE
∫ t

0

|X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ))|p−1

× |b(Ȳ (s), Ȳ (s− τ))− bh(Ȳ (s), Ȳ (s− τ))|ds

≤ 1

4
E( sup

0≤s≤t
|X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ))|p)

+ CE
∫ t

0

|b(Ȳ (s), Ȳ (s− τ))− bh(Ȳ (s), Ȳ (s− τ))|pds

≤ 1

4
E( sup

0≤s≤t
|X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ))|p) + Chαp,

(3.32)

where we have used the following fact

E
∫ t

0

|b(Ȳ (s), Ȳ (s− τ))− bh(Ȳ (s), Ȳ (s− τ))|pds

≤ hαpE
[ ∫ t

0

|b(Ȳ (s), Ȳ (s− τ))|2p
(1 + hα|b(Ȳ (s), Ȳ (s− τ))|)pds

]

≤ hαp

∫ t

0

E
[
|L(1 + |Ȳ (s)|l + |Ȳ (s− τ)|l)(|Ȳ (s)|+ |Ȳ (s− τ)|) + C|2p

]
ds

≤ Chαp.

(3.33)

Moreover, the BGD inequality yields that

E( sup
0≤s≤t

I5(s)) ≤ CE
( ∫ t

0

|X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ))|2p−2

× ‖σ(X(s), X(s− τ))− σ(Ȳ (s), Ȳ (s− τ))‖2ds
)1/2

≤ 1

4
E( sup

0≤s≤t
|X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ))|p)

+ C

∫ t

0

E(|X(s)− Ȳ (s)|p + |X(s− τ)− Ȳ (s− τ)|p)ds

≤ 1

4
E( sup

0≤s≤t
|X(s)−D(X(s− τ))− Y (s) +D(Ȳ (s− τ))|p)

+ C

∫ t

0

E( sup
0≤u≤s

|X(u)− Y (u)|p)ds+ Chp.

(3.34)

Substituting (3.29), (3.30), (3.31), (3.32) and (3.34) into (3.27), then for any t ∈ [0, T ],
we have

E
(
sup
0≤s≤t

|X(s)− Y (s)|p
)
≤ Chαp + Chp/2 + Chp + C

∫ t

0

E( sup
0≤u≤s

|X(u)− Y (u)|p)ds

≤ Chαp + C

∫ t

0

E( sup
0≤u≤s

|X(u)− Y (u)|p)ds.

(3.35)

The desired result follows by the Grownwall inequality and the fact α ∈ (0, 1/2]. 2
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In the sequel, we want to prove Theorem 3.2, in which the monotonicity condition
(A4) is replaced by its local counterpart (A3). The techniques of this proof have been
developed in Higham, Mao and Stuart [16] where they showed the strong convergence
of the EM method for the SDE under a local Lipschitz condition. Therefore only the
sketched proof is provided here.

Proof of Theorem 3.2: For every R > 0, we define the stopping times

τR := inf{t ≥ 0 : |X(t)| ≥ R}, ρR := inf{t ≥ 0 : |Y (t)| ≥ R}, (3.36)

and denote that θR = τR∧ρR, and e(t) = X(t)−Y (t). By the virtue of Young’s inequality,
for q > p and η > 0 we have for any t ∈ [0, T ]

E
[
sup
0≤s≤t

|e(s)|p
]
≤ E

[
sup
0≤s≤t

|e(s)|pI{τR ≤ t or ρR≤t}

]
+ E

[
sup
0≤s≤t

|e(s ∧ θR)|p
]

= E
[(

ηp/q sup
0≤s≤t

|e(s)|p
)(

η−p/qI{τR ≤ t or ρR≤t}

)]
+ E

[
sup
0≤s≤t

|e(s ∧ θR)|p
]

≤ pη

q
E
[
sup
0≤s≤t

|X(s)− Y (s)|q
]
+

q − p

qηp/(q−p)
P (τR ≤ t or ρR ≤ t)

+ E
[
sup
0≤s≤t

|e(s ∧ θR)|p
]

≤ pη

q
2qE

{[
sup
0≤s≤t

|X(s)|q
]
+

[
sup
0≤s≤t

|Y (s)|q
]}

+
q − p

qηp/(q−p)

{
E
[ |X(τR)|

Rp

]
+ E

[ |Y (ρR)|
Rp

]}

+ E
[
sup
0≤s≤t

|e(s ∧ θR)|p
]

≤ pη

q
2qC +

q − p

qηp/(q−p)Rp
C + E

[
sup
0≤s≤t

|e(s ∧ θR)|p
]
.

In the similar way as Theorem 3.1 was proved, we can show that

E
[

sup
0≤t≤T

|e(t ∧ θR)|p
]
≤ CRh

αp. (3.37)

Finally, given an ǫ > 0, there exist some η small enough that

pη

q
2qC <

ǫ

3
,

choose R large enough that
q − p

qηp/(q−p)Rp
2C <

ǫ

3
,

and h small enough that

E[ sup
0≤t≤T

|e(t ∧ θR)|p] <
ǫ

3
,

Hence we obtain

E
[

sup
0≤t≤T

|X(t)− Y (t)|p
]
< ǫ.

2
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4 Tamed EM Method of NSDDEs driven by Pure

Jump Processes

In this section, we investigate NSDDEs driven by pure jump processes. Similar to NSD-
DEs driven by Brownian motion, most NSDDEs driven by pure jumps have no explicit
solutions. Therefore, it is important to investigate the numerical approximation of NSD-
DEs driven by pure jumps.

We need to introduce more notation. Let (Y,B(Y)) be a measurable space, and
p : Dp 7→ Y an adapted Poisson point process, whereDp is a countable subset of R+. Then,
as in Ikeda-Watanabe [17, p.59], the Poisson random measure N(·, ·) : B(R+ ×Y)×Ω 7→
N ∪ {0}, defined on the complete filtered probability space (Ω,F , (Ft)t≥0,P), can be
represented by

N((0, t]× Γ) =
∑

s∈Dp,s≤t

1Γ(p(s)), Γ ∈ B(Y).

In this case, we say that N is the Poisson random measure generated by p. Let λ(·) =
EN((0, 1]× ·). Then, the compensated Poisson random measure

Ñ(dt, dz) := N(dt, dz)− dtλ(dz) is a martingale.

In what follows, we further assume that
∫
Y |u|pλ(du) < ∞ for any p ≥ 1. In this

section, we consider the following NSDDE driven by pure jump processes on Rn :

d[x(t)−G(x(t− τ))] = f(x(t), x(t− τ))dt+

∫

Y
g(x(t−), x((t− τ)−), u)Ñ(dt, du), t ≥ 0,

(4.1)
with initial data {x(θ) : −τ ≤ θ ≤ 0} = ξ ∈ Lp

F0
([−τ, 0];Rn), p ≥ 2, x(t−) := lims↑t x(t),

where G : Rn 7→ Rn, f : Rn×Rn 7→ Rn, and g : Rn×Rn×Y 7→ Rn are Borel measurable.

Again, we assume that the step size h ∈ (0, 1) be fraction of two positive rational
numbers τ and T, so that there exist two positive integers M, M̄ such that h = T/M =
τ/M̄.

For the future use, we assume:

(B1) There exists a positive constant K1 such that

2〈x−G(y), f(x, y)〉 ≤ K1(1+|x|2+|y|2) and
∫

Y
|g(x, y, u)|pλ(du) ≤ K1(1+|x|p+|y|p)

(4.2)
for ∀ x, y ∈ Rn, p ≥ 2, and f(x, y) is continuous in both x and y.

(B2) G(0) = 0 and there exists a constant κ ∈ (0, 1) such that

|G(x)−G(x̄)| ≤ κ|x− x̄| for all x, y ∈ Rn. (4.3)

(B3) For any R > 0, there exists a positive constant K̃R such that for all |x| ∨ |y| ∨ |x̄| ∨
|ȳ| ≤ R, p ≥ 2

2〈x−G(y)− x̄+G(ȳ), f(x, y)− f(x̄, ȳ)〉 ≤ K̃R(|x− x̄|2 + |y − ȳ|2),∫

Y
|g(x, y, u)− g(x̄, ȳ, u)|pλ(du) ≤ K̃R(|x− x̄|p + |y − ȳ|p).

(4.4)
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(B4) There exist two positive constants l and L such that for all x, y, x̄, ȳ ∈ Rn, p ≥ 2

2〈x−G(y)− x̄+G(ȳ), f(x, y)− f(x̄, ȳ)〉 ≤ L(|x− x̄|2 + |y − ȳ|2)∫

Y
|g(x, y, u)− g(x̄, ȳ, u)|pλ(du) ≤ L(|x− x̄|p + |y − ȳ|p)

and

|f(x, y)− f(x̄, ȳ)| ≤ L(1 + |x|l + |y|l + |x̄|l + |ȳ|l)(|x− x̄|+ |y − ȳ|).

(B5) For every p > 0, there exists a positive integer K, such that

E‖ξ(t)− ξ(s)‖p ≤ K|t− s|p, for any s, t ∈ [−τ, 0].

Remark 4.1 Under assumptions (B1), (B2) and (B4), in the same way as that of [24,
Theorem A.1] we can prove that the NSDDE (4.1) with the initial data x(0) = ξ satisfying
E‖ξ‖2 < ∞ has a pathwise unique strong solution. If the condition (B4) is replaced by
the condition (B3), the existence and uniqueness theorem still holds.

Set

fh(x, y) =
f(x, y)

1 + hα|f(x, y)| , α ∈ (0, 1/2].

Similarly to the Brownian motion case, the discrete-time tamed EM scheme associated
with (4.1) can be defined as following: For every integer n = −M̄, · · · , 0, z(n)h = ξ(nh).
For every integer n = 0, · · · ,M − 1,

z
(n+1)
h −G(z

(n+1−M̄ )
h ) = z

(n)
h −G(z

(n−M̄ )
h )+fh(z

(n)
h , z

(n−M̄)
h )h+

∫

Y
g(z

(n)
h , z

(n−M̄)
h , u)∆Ñn

h (du),

(4.5)
where ∆Ñn

h (du) := Ñ((n + 1)h, du)− Ñ(nh, du), the increment of compensated Poisson
process. We may rewrite the discrete tamed EM scheme as follows:

z
(n+1)
h =G(z

(n+1−M̄)
h ) + ξ(0)−G(ξ(−τ)) +

n∑

i=0

fh(z
(i)
h , z

(i−M̄ )
h )h

+

n∑

i=0

∫

Y
g(z

(i)
h , z

(i−M̄ )
h , u)∆Ñ i

h(du).

(4.6)

For t ∈ [nh, (n + 1)h), denote that z̄(t) := z
(n)
h , and then z̄(t − τ) = z

(n−M̄ )
h . It is more

convenient to define the continuous-time tamed EM approximate solution z(t) associated
with (4.1) as below:

For any θ ∈ [−τ, 0], z(θ) = ξ(θ). For any t ∈ [0, T ],

z(t) =G(z̄(t− τ)) + ξ(0)−G(ξ(−τ)) +

∫ t

0

fh(z̄(s), z̄(s− τ))ds

+

∫ t

0

∫

Y
g(z̄(s−), z̄((s− τ)−), u)Ñ(ds, du).

(4.7)

Since for any t > 0 there exists a positive integer n, 0 ≤ n ≤ M − 1, such that t ∈
[nh, (n+ 1)h), we have

z(t) = z(nh) +

∫ t

nh

fh(z̄(s), z̄(s− τ))ds+

∫ t

nh

∫

Y
g(z̄(s−), z̄((s− τ)−), u)Ñ(ds, du).

(4.8)
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Clearly, the continuous-time tamed EM approximate solution z(t) coincides with the
discrete-time tamed approximation solution z̄(t) at the grid points t = nh, i.e. z̄(t) =
znh = z(nh).

We now state our main results of this section.

Theorem 4.1 Assume that (B1), (B2), (B4) and (B5) hold. Assume also that p ≥ 2
and α ∈ (0, 1/p), then the tamed EM scheme (4.7) converges to the exact solution of (4.1)
such that

E
[

sup
0≤t≤T

|z(t)− x(t)|p
]
≤ Chγ, (4.9)

where γ = 1/2 ∧ αp.

Theorem 4.2 Assume that (B1)-(B3) and (B5) hold. Assume also that p ≥ 2 and
α ∈ (0, 1/p), then the tamed EM scheme (4.7) converges to the exact solution of (4.1)
such that

lim
h→0

E
[

sup
0≤t≤T

|z(t)− x(t)|p
]
= 0. (4.10)

4.1 Boundedness of Moments

In order to show our main results, we need the following inequality [25, Theorem 1].

Lemma 4.1 Let ϕ : R+ ×Y×Ω → Rn be a progressively measurable process and assume
that ∫ t

0

∫

Y
|ϕ(s, u)|2λ(du)ds < ∞, t ≥ 0 a.s..

Then there exist a constant Cp > 0 such that for any p ≥ 1

E
(
sup
0≤s≤t

|
∫ s

0

∫

Y
ϕ(r, u)Ñ(dr, du)|p

)
≤ Cp

[
E
(∫ t

0

∫

Y
|ϕ(s, u)|2λ(du)ds

)p/2

+ E
∫ t

0

∫

Y
|ϕ(s, u)|pλ(du)ds

]
.

It is known that if 1 ≤ p ≤ 2, then the second term on the right hand side can be
eliminated.

Lemma 4.2 Consider the continuous-time tamed EM scheme given by equation (4.8).
Assume that p ≥ 2, α ∈ (0, 1/p), and

sup
0≤t≤T

E(|z(t)|p) ≤ C. (4.11)

Assume also that (B1) holds, then the following two inequalities hold

E
[

sup
0≤n≤M−1

sup
nh≤t≤(n+1)h

|z(t)− z(nh)|p
]
≤ Ch, (4.12)

and

E
[

sup
0≤n≤M−1

sup
nh≤t≤(n+1)h

|z(t)− z(nh)|p|fh(z̄(t), z̄(t− τ))|p
]
≤ C. (4.13)
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Proof : By the definition of z(t), we can write that

E
[

sup
nh≤t≤(n+1)h

|z(t)− z(nh)|p
]
= E

[
sup

nh≤t≤(n+1)h

∣∣∣∣
∫ t

nh

fh(z̄(s), z̄(s− τ))ds

+

∫ t

nh

∫

Y
g(z̄(s−), z̄((s− τ)−), u)Ñ(ds, du)

∣∣∣∣
p]
.

Therefore, due to Hölder’s inequality,

E
[

sup
nh≤t≤(n+1)h

|z(t)− z(nh)|p
]

≤ 2p−1hp−1E
[ ∫ (n+1)h

nh

|fh(z̄(s), z̄(s− τ))|pds
]

+ 2p−1E
[

sup
nh≤t≤(n+1)h

∣∣∣∣
∫ t

nh

∫

Y
g(z̄(s−), z̄((s− τ)−), u)Ñ(ds, du)

∣∣∣∣
p]
.

(4.14)

Using Lemma 4.1, Hölder’s inequality and (4.11), for some p ≥ 2 we have

E
[

sup
nh≤t≤(n+1)h

∣∣∣∣
∫ t

nh

∫

Y
g(z̄(s−), z̄((s− τ)−), u)Ñ(ds, du)

∣∣∣∣
p ]

≤ C
[
E
( ∫ (n+1)h

nh

∫

Y
|g(z̄(s), z̄(s− τ), u)|2λ(du)ds

)p/2

+ E
∫ (n+1)h

nh

∫

Y
|g(z̄(s), z̄(s− τ), u)|pλ(du)ds

]

≤ CE
∫ (n+1)h

nh

(1 + |z̄(s)|p + |z̄(s− τ)|p)ds

≤ Ch.

This, together with |fh(z̄(s), z̄(s− τ), s)| ≤ h−α, yields

E
[

sup
nh≤t≤(n+1)h

|z(t)− z(nh)|p
]
≤ 2p−1h(1−α)p + Ch ≤ Ch. (4.15)

Hence (4.12) holds. Moreover,

E
[

sup
nh≤t≤(n+1)h

|z(t)− z(nh)|p|fh(z̄(s), z̄(s− τ))|p
]

≤ E
[

sup
nh≤t≤(n+1)h

|z(t)− z(nh)|p
]
h−αp ≤ Ch1−αp ≤ C,

(4.16)

as required. The proof is therefore complete. 2

The result of boundedness is given below:

Lemma 4.3 Assume that (B1) and (B2) hold. Assume also p ≥ 2, α ∈ (0, 1/p), then
there exists a constant C such that

E[ sup
0≤t≤T

|x(t)|p] ∨ E[ sup
0≤t≤T

|z(t)|p] ≤ C. (4.17)
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Proof : Similarly, we can give a proof for p = 2, and then for p > 2 as the case of NSDDEs
driven by Brownian motion, here we only give a proof for p ≥ 4. For every integer k ≥ 1,
we define a stopping time as follows

τ̂k = T ∧ inf{t ∈ [0, T ] : |x(t)| > k}.

Clearly, τ̂k → T as k → ∞ almost surely. Now, for any t ∈ [0, T ], we have

|x(t)−G(x(t− τ))|p = (|x(t)−G(x(t− τ))|2)p/2

≤ C

(
|ξ(0)−G(ξ(−τ))|p +

∣∣∣∣
∫ t

0

〈x(s)−G(x(s− τ)), f(x(s), x(s− τ))〉ds
∣∣∣∣
p/2

+

∣∣∣∣
∫ t

0

∫

Y
|x(s)−G(x(s− τ)) + g(x(s), x(s− τ), u)|2 − |x(s)−G(x((s− τ))|2

− 2〈x(s)−G(x(s− τ)), g(x(s), x(s− τ), u)〉λ(du)ds
∣∣∣∣
p/2

+

∣∣∣∣
∫ t

0

∫

Y

(
|x(s−)−G(x((s− τ))−) + g(x(s−), x((s− τ)−), u)|2

− |x(s−)−G(x((s− τ)−))|2
)
Ñ(ds, du)

∣∣∣∣
p/2)

=: J1(t) + J2(t) + J3(t) + J4(t).

Due to assumptions (B1), we derive that

E( sup
0≤s≤t∧τ̂k

J2(s))

≤ CE
∣∣∣∣
∫ t∧τ̂k

0

〈x(s)−G(x(s− τ)), f(x(s), x(s− τ))〉ds
∣∣∣∣
p/2

≤ CE
∣∣∣∣
∫ t∧τ̂k

0

(1 + |x(s)|2 + |x(s− τ)|2)ds
∣∣∣∣
p/2

≤ C + CE
∫ t∧τ̂k

0

|x(s)|pds = C + CE
∫ t∧τ̂k

0

|x(s−)|pds

(4.18)

where the Hölder inequality is employed in the last second step. By the Taylor expansion,
one gets

|x+ y|p − |x|p − p〈x, y〉|x|p−2 ≤ C(|x|p−2|y|2 + |y|p). (4.19)
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This, together with (B1), (B2) and the Hölder inequality, implies

E( sup
0≤s≤t∧τ̂k

J3(s))

≤ CE
∣∣∣∣
∫ t∧τ̂k

0

∫

Y
|x(s)−G(x(s− τ)) + g(x(s), x(s− τ), u)|2 − |x(s)−G(x((s− τ))|2

− 2〈x(s)−G(x(s− τ)), g(x(s), x(s− τ), u)〉λ(du)ds
∣∣∣∣
p/2

≤ CE
∣∣∣∣
∫ t∧τ̂k

0

∫

Y

[
|x(s)−G(x(s− τ))|2 + |g(x(s), x(s− τ), u)|2

]
λ(du)ds

∣∣∣∣
p/2

≤ CE
∣∣∣∣
∫ t∧τ̂k

0

(1 + |x(s)|2 + |x(x− τ)|2)ds
∣∣∣∣
p/2

≤ C + CE
∫ t∧τ̂k

0

|x(s)|pds = C + CE
∫ t∧τ̂k

0

|x(s−)|pds.
(4.20)

Using Lemma 4.1, Taylor’s expansion and noting p ≥ 4, one has

E( sup
0≤s≤t∧τ̂k

J4(s))

≤ CE
∫ t∧τ̂k

0

∫

Y

∣∣∣∣|x(s−)−G(x((s− τ)−)) + g(x(s−), x((s− τ)−), u)|2

− |x(s−)−G(x((s− τ)−))|2
∣∣∣∣
p/2

λ(du)ds

+ CE
(∫ t∧τ̂k

0

∫

Y

∣∣∣∣|x(s−)−G(x((s− τ)−)) + g(x(s−), x((s− τ)−), u)|2

− |x(s−)−G(x((s− τ)−))|2
∣∣∣∣
2

λ(du)ds

)p/4

≤ CE
∫ t∧τ̂k

0

∫

Y

∣∣∣∣|x(s−)−G(x((s− τ)−)) + g(x(s−), x((s− τ)−), u)|2

− |x(s−)−G(x((s− τ)−))|2
∣∣∣∣
p/2

λ(du)ds

≤ CE
∫ t∧τ̂k

0

∫

Y

(
|x(s−)−G(x((s− τ)−))|p + |g(x(s−), x((s− τ)−), u)|p

)
λ(du)ds

≤ C + CE
∫ t∧τ̂k

0

|x(s−)|pds.
(4.21)

Applying [23, Lemma 6.4.4] (also see (3.10)), we derive that

E
(

sup
0≤s≤t∧τ̂k

|x(s)|p
)
≤ C + CE

∫ t∧τ̂k

0

∣∣x(s−)|pds < ∞.

This implies

E
(

sup
0≤s≤t∧τ̂k

|x(s)|p
)
≤ C + C

∫ t

0

E
(

sup
0≤v≤s∧τ̂k

|x(v)|p
)
ds.

21



By the Gronwall inequality and letting k → ∞, we have

E
(

sup
0≤t≤T

|x(t)|p
)
≤ C.

The proof of boundedness of EM approximation is analogous to its Brownian motion
counterpart, we first claim that there exists a constant C > 0 such that:

sup
0≤t≤T

E(|z(t)|2) ≤ C. (4.22)

For every integer k ≥ 1, define the stopping time

τ̃k = T ∧ inf{t ∈ [0, T ], |z(t)| > k}.

Clearly, τ̃k → T as k → ∞ almost surely. Now, for any t ∈ [0, T ], an application of the
Itô formula yields

|z(t)−G(z̄(t− τ))|2 = |ξ(0)−G(ξ(−τ))|2

+ 2

∫ t

0

〈z̄(s)−G(z̄(s− τ)), fh(z̄(s), z̄(s− τ))〉ds

+ 2

∫ t

0

〈z(s)− z̄(s), fh(z̄(s), z̄(s− τ))〉ds

+

(∫ t

0

∫

Y
|z(s)−G(z̄(s− τ)) + g(z̄(s), z̄(s− τ), u)|2 − |z(s)−G(z̄(s− τ))|2

− 2〈z(s)−G(z̄(s− τ)), g(z̄(s), z̄(s− τ), u)〉
)
λ(du)ds

+

∫ t

0

∫

Y

(
|z(s−)−G(z̄((s− τ)−)) + g(z̄(s−), z̄((s− τ)−), u)|2

− |z(s−)−G(z̄((s− τ)−))|2
)
Ñ(ds, du)

=: |ξ(0)−G(ξ(−τ))|2 + J̄1(t) + J̄2(t) + J̄3(t) + J̄4(t).

(4.23)

By (B1), we compute

sup
0≤s≤t

E(J̄1(s ∧ τ̂k)) ≤ E
∫ t∧τ̂k

0

C(1 + |z̄(s)|2 + z̄(s− τ)|2)ds

≤ C + CE
∫ t∧τ̂k

0

|z(s)|2ds = C + CE
∫ t∧τ̂k

0

|z(s−)|2ds.
(4.24)
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Using the definition of z(s) and z̄(s), together with the property of conditional expectation,
we have

sup
0≤s≤t

E(J̄2(s ∧ τ̂k)) = 2

{
sup
0≤s≤t

E
∫ s∧τ̂k

0

〈fh(z̄(v), z̄(v − τ)),

∫ v

[ v
h
]h

fh(z̄(r), z̄(r − τ))dr〉dv

+ E
∫ s∧τ̂k

0

〈
∫ v

[ v
h
]h

gh(z̄(r−), z̄((r − τ)−), u)Ñ(du, dr), fh(z̄(v), z̄(v − τ))〉dv
}

= 2

{
sup
0≤s≤t

E
∫ s∧τ̂k

0

〈fh(z̄(v), z̄(v − τ)),

∫ v

[ v
h
]h

fh(z̄(r), z̄(r − τ))dr〉du

+ E
∫ s

0

E〈
∫ v∧τ̂k

[
v∧τ̂k

h
]h

gh(z̄(r−), z̄((r − τ)−), u)Ñ(du, dr), fh(z̄(v), z̄(v − τ))〉
∣∣F

[
v∧τ̂k

h
]h
dv

}

= 2E
∫ t

0

〈
∫ v

[ v
h
]h

fh(z̄(r), z̄(r − τ))dr, fh(z̄(v), z̄(v − τ)〉dv

≤ Cth1−2α ≤ C.

(4.25)

By using (4.19), we have

sup
0≤s≤t

E(J̄3(s ∧ τ̂k)) ≤ CE
∫ t

0

(1 + |z̄(s ∧ τ̂k)|2 + |z̄((s− τ) ∧ τ̂k)|2)ds

≤ C + CE
∫ t∧τ̂k

0

|z(s)|2ds = C + CE
∫ t∧τ̂k

0

|z(s−)|2ds.
(4.26)

By taking the expectation of J̄4(t), we know that it is a local martingale with E(J̄4(t)) = 0.
Therefore, we have

sup
0≤s≤t∧τ̃k

E(|z(s)|2) ≤ C + C
(
sup
0≤s≤t

E(|z(s ∧ τ̃k)−D(z̄((s− τ) ∧ τ̂k))|2)
)

≤ C + CE
∫ t∧τ̂k

0

|z(s−)|2ds < ∞.

This means

sup
0≤s≤t∧τ̃k

E(|z(s)|2) ≤ C + C

∫ t

0

sup
0≤v≤s∧τ̂k

E(|z(v)|2)ds.

Letting k → ∞, the required result (4.22) follows an application of the Gronwall inequal-
ity.
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Now, letting p = 4 and using the Itô formula, we have

|z(t)−G(z̄(t− τ))|p =
(
|z(t)−G(z̄(t− τ))|2

)p/2

≤ C

(
|ξ(0)−G(ξ(−τ))|p +

∣∣∣∣
∫ t

0

〈z(s)−G(z̄(s− τ)), fh(z̄(s), z̄(s− τ))〉ds
∣∣∣∣
p/2

+

∣∣∣∣
∫ t

0

∫

Y

(
|z(s)−G(z̄(s− τ)) + g(z̄(s), z̄(s− τ), u)|2 − |z(s)−G(z̄(s− τ))|2

− 2〈z(s)−G(z̄(s− τ)), g(z̄(s), z̄(s− τ), u)〉
)
λ(du)ds

∣∣∣∣
p/2

+

∣∣∣∣
∫ t

0

∫

Y

(
|z(s−)−G(z̄((s− τ)−)) + g(z̄(s−), z̄((s− τ)−), u)|2

− |z(s−)−G(z̄((s− τ)−))|2
)
Ñ(ds, du)

∣∣∣∣
p/2)

=: F1(t) + F2(t) + F3(t) + F4(t).

(4.27)

By using assumption (B1), (4.13) and (4.22), we arrive at

E( sup
0≤s≤t∧τ̃k

F2(s)) ≤ CE
∣∣∣∣
∫ t∧τ̃k

0

(1 + |z̄(s)|2 + |z̄(s− τ)|2)ds
∣∣∣∣
p/2

+ E
∣∣∣∣
∫ t∧τ̃k

0

|z(s)− z̄(s)||fh(z̄(s), z̄(s− τ))|ds
∣∣∣∣
p/2

≤ CE
∫ t∧τ̃k

0

(1 + |z̄(s)|p + |z̄(s− τ)|p)ds

+ CE
∫ t∧τ̃k

0

(|z(s)− z̄(s)|p/2|fh(z̄(s), z̄(s− τ))|p/2)ds

≤ C + CE
∫ t∧τ̃k

0

|z(s)|pds = C + CE
∫ t∧τ̃k

0

|z(s−)|pds,

(4.28)

where the Hölder inequality is also applied. By (B1), (B2) and (4.19), we obtain

E( sup
0≤s≤t∧τ̃k

F3(s))

≤ CE
∣∣∣∣
∫ t∧τ̃k

0

∫

Y
|z(s)−G(z̄(s− τ)) + g(z̄(s), z̄(s− τ), u)|2 − |z(s)−G(z̄(s− τ))|2

− 2〈z(s)−G(z̄(s− τ)), g(z̄(s), z̄(s− τ), u)〉λ(du)ds
∣∣∣∣
p/2

≤ CE
∣∣∣∣
∫ t∧τ̃k

0

∫

Y

[
|z(s)−G(z̄(s− τ))|2 + |g(z̄(s), z̄(s− τ), u)|2

]
λ(du)ds

∣∣∣∣
p/2

≤ C + CE
∫ t∧τ̃k

0

|z(s)|pds = C + CE
∫ t∧τ̃k

0

|z(s−)|pds.
(4.29)
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Using Lemma 4.1 and Young’s inequality, we derive that

E( sup
0≤s≤t∧τ̃k

F4(s))

≤ CE
∫ t∧τ̃k

0

∫

Y

∣∣∣∣|z(s−)−G(z̄((s− τ)−)) + g(z̄(s−), z̄((s− τ)−), u)|2

− |z(s−)−G(z̄((s− τ)−))|2
∣∣∣∣
p/2

λ(du)ds

+ CE
(∫ t∧τ̃k

0

∫

Y

∣∣∣∣|z(s−)−G(z̄((s− τ)−)) + g(z̄(s−), z̄((s− τ)−), u)|2

− |z(s−)−G(z̄((s− τ)−))|2
∣∣∣∣
2

λ(du)ds

)p/4

≤ CE
∫ t∧τ̃k

0

∫

Y

∣∣∣∣|z(s−)−G(z̄((s− τ)−)) + g(z̄(s−), z̄((s− τ)−), u)|2

− |z(s−)−G(z̄((s− τ)−))|2
∣∣∣∣
p/2

λ(du)ds

≤ CE
∫ t∧τ̃k

0

∫

Y

(
|z(s−)−G(z̄((s− τ)−))|p + |g(z̄(s−), z̄((s− τ)−), u)|p

)
λ(du)ds

≤ C + CE
∫ t∧τ̃k

0

|z(s−)|pds.
(4.30)

Now substituting (4.28), (4.29) and (4.30) into (4.27), we obtain that

E( sup
0≤s≤t∧τ̃k

|z(s)−G(z̄(s− τ))|p) ≤ C + CE
∫ t∧τ̃k

0

|z(s−)|pds.

By applying [23, Lemma 6.4.4] (also see (3.10)), we derive that

E
(

sup
0≤s≤t∧τ̃k

|z(s)|p
)
≤ C + CE

∫ t∧τ̃k

0

|z(s−)|pds < ∞.

This implies

E
(

sup
0≤s≤t∧τ̃k

|z(s)|p
)
≤ C + C

∫ t

0

E
(

sup
0≤v≤s∧τ̃k

|z(v)|p
)
ds.

By the Gronwall inequality, we have

E
(

sup
0≤t≤T∧τ̃k

|z(t)|p
)
≤ C.

The required assertion follows for p = 4 by letting k → ∞. Repeating the same procedure
above, we can obtain the result (4.17). 2

4.2 Proof of the Main Results

In this subsection, we shall prove our main results.
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Proof of Theorem 4.1: By using the similar approach as (3.26), we have

sup
0≤t≤T

|x(t)− z(t)|p ≤ κ sup
0≤t≤T

|x(t− τ)− z̄(t− τ)|p

+
1

(1− κ)p−1
sup

0≤t≤T
|x(t)−G(x(t− τ))− z(t) +G(z̄(t− τ))|p

≤ κ sup
−τ≤t≤0

|x(t)− z̄(t)|p + κ sup
0≤t≤T

|x(t)− z(t) + z(t)− z̄(t)|p

+
1

(1− κ)p−1
sup

0≤t≤T
|x(t)−G(x(t− τ))− z(t) +G(z̄(t− τ))|p

≤ κ sup
−τ≤t≤0

|x(t)− z̄(t)|p + κ̄c sup
0≤t≤T

|x(t)− z(t)|p + C sup
0≤t≤T

|z(t)− z̄(t)|p

+
1

(1− κ)p−1
sup

0≤t≤T
|x(t)−G(x(t− τ))− z(t) +G(z̄(t− τ))|p.

(4.31)

where κ̄c ∈ (0, 1) is a constant. This, together with (B5), implies that

E
(
sup
0≤s≤t

|x(s)− z(s)|p
)
≤ 1

(1− κ)p−1(1− κ̄c)
E
(
sup
0≤s≤t

|x(s)−G(x(s− τ))

− z(s) +G(z̄(s− τ))|p
)
+ Chp + Ch.

(4.32)

An application of the Itô formula yields that for any p ≥ 2,

|x(t)−G(x(s− τ))− z(t) +G(z̄(t− τ))|p

=
(
|x(t)−G(x(s− τ))− z(t) +G(z̄(t− τ))|2

)p/2

≤ C

(∣∣∣∣
∫ t

0

〈x(s)−G(x(s− τ))− z(s) +G(z̄(s− τ)),

f(x(s), x(s− τ))− fh(z̄(s), z̄(s− τ))〉ds
∣∣∣∣
p/2

+

∣∣∣∣
∫ t

0

∫

Y
|x(s)−G(x(s− τ))− z(s) +G(z̄(s− τ))

+ (g(x(s), x(s− τ), u)− g(z̄(s), z̄(s− τ), u))|2
− |x(s)−G(x(s− τ))− z(s) +G(z̄(s− τ))|2
− 2〈x(s)−G(x(s− τ))− z(s) +G(z̄(s− τ)),

g(x(s), x(s− τ), u)− g(z̄(s), z̄(s− τ), u)〉λ(du)ds
∣∣∣∣
p/2

+

∣∣∣∣
∫ t

0

∫

Y
|x(s)−G(x(s− τ))− z(s) +G(z̄(s− τ))

+ (g(x(s−), x((s− τ)−), u)− g(z̄(s−), z̄((s− τ)−), u))|2

− |x(s)−G(x(s− τ))− z(s) +G(z̄(s− τ))|2Ñ(ds, du)

∣∣∣∣
p/2)

=: F̄1(t) + F̄2(t) + F̄3(t)

(4.33)
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Using the similar approach in(3.28), we derive

F̄1(t) =

∣∣∣∣
∫ t

0

〈x(s)−G(x(s− τ))− z(s) +G(z̄(s− τ)),

f(x(s), x(s− τ))− f(z(s), z̄(s− τ))〉ds

+

∫ t

0

〈x(s)−G(x(s− τ))− z(s) +G(z̄(s− τ)),

f(z(s), z̄(s− τ))− f(z̄(s), z̄(s− τ))〉ds

+

∫ t

0

〈x(s)−G(x(s− τ))− z(s) +G(z̄(s− τ)),

f(z̄(s), z̄(s− τ))− fh(z̄(s), z̄(s− τ))〉ds
∣∣∣∣
p/2

.

By the definition of fh and Lemma 4.2, we have

CE
∫ t

0

|f(z̄(s), z̄(s− τ))− fh(z̄(s), z̄(s− τ))|pds

≤ hαpE
[ ∫ t

0

|f(z̄(s), z̄(s− τ))|2p
(1 + hα|f(z̄(s), z̄(s− τ))|)pds

]

≤ ChαpE
[
(1 + |z̄(s)|l + |z̄(s− τ)|l)(|z̄(s)|+ |z̄(s− τ)|+ 1)

]

≤ hαp.

This, together with (B1), (B2) and (B4), yields

E( sup
0≤s≤t

F̄1(t)) ≤ CE
∫ t

0

(
sup
0≤v≤s

|x(v)− z(v)|p
)
ds+ CE

∫ 0

−τ

(
sup

−τ≤θ≤0
|x(θ)− z̄(θ)|p

)
ds

+ CE
∫ t

0

|f(z̄(s), z̄(s− τ))− fh(z̄(s), z̄(s− τ))|pds

+ CE
∫ t

0

(1 + |z̄(s)|l + |z(s)|l + 2|z̄(s− τ)|l)p(|z(s)− z̄(s|)p)ds

≤ C + C

∫ t

0

E[ sup
0≤v≤s

|x(v)− z(v)|p]ds

+ Ch1/2 + CE
∫ t

0

|f(z̄(s), z̄(s− τ))− fh(z̄(s), z̄(s− τ))|pds

≤ C

∫ t

0

E[ sup
0≤v≤s

|x(v)− z(v)|p]ds+ Chγ,

(4.34)

where γ = 1/2 ∧ αp. By (B2), (B4) and (4.19), we arrive at

E( sup
0≤s≤t

F̄2(s))

≤ CE
∫ t

0

|x(s)−G(x(s− τ))− z(s) +G(z̄(s− τ))|p

|g(x(s), x(s− τ), u)− g(z̄(s), z̄(s− τ), u)|pds

≤ Chp + C

∫ t

0

E[ sup
0≤v≤s

|x(v)− z(v)|p]ds.

(4.35)
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and

E( sup
0≤s≤t

F̄3(s))

≤ E
∫ t

0

∫

Y

∣∣∣∣|x(s)−G(x(s− τ))− z(s) +G(z̄(s− τ))

+ (g(x(s), x(s− τ), u)− g(z̄(s), z̄(s− τ), u))|2

− |x(s)−G(x(s− τ))− z(s) +G(z̄(s− τ))|2
∣∣∣∣
p/2

λ(du)ds

+ E
(∫ t

0

∫

Y

∣∣∣∣|x(s)−G(x(s− τ))− z(s) +G(z̄(s− τ))

+ (g(x(s), x(s− τ), u)− g(z̄(s), z̄(s− τ), u))|2

− |x(s)−G(x(s− τ))− z(s) +G(z̄(s− τ))|2
∣∣∣∣
2

λ(du)ds

)p/4

≤ E
∫ t

0

∫

Y

∣∣∣∣|x(s)−G(x(s− τ))− z(s) +G(z̄(s− τ))

+ (g(x(s), x(s− τ), u)− g(z̄(s), z̄(s− τ), u))|2

− |x(s)−G(x(s− τ))− z(s) +G(z̄(s− τ))|2
∣∣∣∣
p/2

λ(du)ds

≤ E
∫ t

0

∫

Y

(
|x(s)−G(x(s− τ))− z(s) +G(z̄(s− τ))|p

+ |(g(x(s), x(s− τ), u)− g(z̄(s), z̄(s− τ), u))|p
)
λ(du)ds

≤ Chp + C

∫ t

0

E[ sup
0≤v≤s

|x(v)− z(v)|p]ds.

(4.36)

Now, substituting (4.34), (4.35) and (4.36) into (4.33), and using (4.32), we have

E
(
sup
0≤s≤t

|x(s)− z(s)|p
)
≤ Chγ + Chp + CE

∫ t

0

sup
0≤v≤s

|x(v)− z(v)|pds

≤ Chγ + C

∫ t

0

E[ sup
0≤v≤s

|x(v)− z(v)|p]ds.
(4.37)

An application of the Grownwall inequality yields the desired result. 2

Proof of Theorem 4.2: Noting the fact that all sample paths associated with (4.1)
are discontinuous, we define the following stopping times as follows, for every R > 0,

τ̃R := inf{t ≥ 0 : |x(t)| > R}, ρ̃R := inf{t ≥ 0 : |z(t)| > R}. (4.38)

The remainder of the proof is similar to the that of Theorem 3.2, we omit details here. 2
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