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We consider Fock representations of the Q-deformed commutation relations ∂s∂
†
t

=Q(s, t)∂†t ∂s + δ(s, t) for s, t ∈ T . Here T :=Rd (or more generally T is a locally com-
pact Polish space), the function Q : T2→C satisfies |Q(s, t)| ≤ 1 and Q(s, t)=Q(t, s),
and ∫T2 h(s)g(t)δ(s, t)σ(ds)σ(dt) := ∫T h(t)g(t)σ(dt), σ being a fixed reference mea-
sure on T. In the case, where |Q(s, t)| ≡ 1, the Q-deformed commutation relations
describe a generalized statistics studied by Liguori and Mintchev. These generalized
statistics contain anyon statistics as a special case (with T =R2 and a special choice of
the function Q). The related Q-deformed Fock space F(H) over H :=L2(T→C,σ)
is constructed. An explicit form of the orthogonal projection of H⊗n onto the n-
particle space Fn(H) is derived. A scalar product in Fn(H) is given by an oper-
ator Pn ≥ 0 in H⊗n which is strictly positive on Fn(H). We realize the smeared
operators ∂†t and ∂t as creation and annihilation operators in F(H), respectively.
Additional Q-commutation relations are obtained between the creation operators
and between the annihilation operators. They are of the form ∂†s ∂

†
t =Q(t, s)∂†t ∂

†
s ,

∂s∂t =Q(t, s)∂t∂s, valid for those s, t ∈ T for which |Q(s, t)| = 1. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4991671]

I. INTRODUCTION

The aim of the paper is to construct Fock representations of the Q-commutation relations

∂s∂
†
t =Q(s, t)∂†t ∂s + δ(s, t), s, t ∈ T . (1)

Here T =Rd , or more generally, T is a locally compact Polish space, the function Q : T2→C is
Hermitian, i.e., Q(s, t)=Q(t, s), and satisfies |Q(s, t)| ≤ 1, ∂t and ∂†t are operator-valued distributions,
adjoint of each other, and ∫

T2
δ(s, t)f (s, t)σ(ds)σ(dt) :=

∫
T

f (t, t)σ(dt),

where σ is a fixed Radon measure on X (typically σ(dt)= dt being the Lebesgue measure if T =Rd).
We will call (1) the Q-deformed commutation relations, or just Q-CR.

For a function Q satisfying |Q(s, t)| ≡ 1, a Fock representation of the Q-CR was constructed by
Liguori and Mintchev.24 In that case, creation operators ∂†t and annihilation operators ∂t satisfy the
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b)E-mail: e.lytvynov@swansea.ac.uk
c)Author to whom correspondence should be addressed: jwys@math.uni.wroc.pl and janusz.wysoczanski@math.uni.wroc.pl.
Tel.: +48 71 3757095.
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additional commutation relations

∂†s ∂
†
t =Q(t, s)∂†t ∂

†
s , ∂s∂t =Q(t, s)∂t∂s. (2)

The term Fock representation means that for each annihilation operator, one has ∂tΩ= 0, where Ω is
the vacuum vector.

In the present study, relations (2) will hold for those s, t ∈ T which satisfy |Q(s, t)| = 1. Note that
under the assumption that the function Q is Hermitian, the commutation relations (2) are consistent
if and only if |Q(s, t)| = 1.

For the first time, an interpolation between the canonical (bosonic) commutation relations
(CCR) and the canonical (fermionic) anticommutation relations (CAR) was rigorously constructed
in Ref. 7. Let H be a separable Hilbert space and let q ∈ (−1, 1). On a q-deformed Fock space over
H, Bożejko and Speicher7 constructed q-creation operators a+(f ) [in fact a+(f ) were free creation
operators], and q-annihilation operators a−(f ) := (a+(f ))∗, for f ∈H, which satisfy the q-commutation
relations

a−( f )a+(g)= qa+(g)a−( f ) + ( f , g)H, f , g ∈H. (3)

The limits q = 1 and q = �1 correspond to the boson and fermion statistics, respectively, thus giving
the CCR and CAR. The case q = 0 corresponds to the creation and annihilation operators acting in
the full Fock space; these operators are particularly important for models of free probability, see,
e.g., Refs. 30 and 5. Aspects of noncommutative probability related to the general q-commutation
relations (3) were discussed, e.g., in Refs. 7, 4, and 1.

By using probabilistic methods, Speicher36 proved existence of a representation of the (discrete)
qij-commutation relations of the form

∂i∂
†

j = qij∂
†

j ∂i + δij, (4)

with −1 ≤ qij = qji ≤ 1, i, j ∈N, and (∂†i )
∗
= ∂i. Bożejko and Speicher8 constructed a Fock representa-

tion of the following commutation relations between creation operators ∂†j and annihilation operators
∂i, with i, j ∈N,

∂i∂
†

j =
∑
k,l

qik
jl ∂
†

k ∂l + δi,j. (5)

They showed that if the operator Ψ given by the matrix (qik
jl )

i,j,k,l
is self-adjoint, satisfies the braid

relations, and has norm <1, then there exists a Fock representation of the commutation relations
(5). As a consequence, they obtained a Fock representation of the qij-commutation relations (4)
even for complex qij with qij = qji and supi,j |qij | = ‖Ψ‖ < 1. By taking the weak limit of corre-
sponding operator algebras, Bożejko and Speicher8 also derived existence of a representation of
the qij-commutation relations (4) with supi,j |qij | = ‖Ψ‖ = 1. Also Jørgensen, Schmitt, and Werner18,19

considered representations of the commutation relations (5).
In the case, where ‖Ψ‖ = 1, Jørgensen, Proskurin, and Samoı̌lenko20 found, for n ≥ 2, the kernel

of the nonnegative operator which determines the scalar product in the n-particle space of the Fock
space corresponding to the commutation relations (5). The papers Refs. 8 and 20 taken together give
then a Fock representation of the commutation relations (4) with supi,j |qij | = 1.

Properties of the algebras generated by such operators were studied by many authors. In the
context of C∗-algebras, let us mention the works by Dykema and Nica11 and Kennedy and Nica21

(who studied relations of the C∗-algebras generated by the q-commutation relations with the Cuntz
algebra), Jørgensen, Schmitt, and Werner18,19 (who studied the Wick order generated C∗-algebras),
and Proskurin and Samoı̌lenko32 (who studied general Wick *-algebras). There are also a number of
studies of the q-commutation relations in the context of von Neumann algebras, in particular, by Lust-
Piquard25 (who studied properties of the Riesz transform), Królak,22 Nou,31 Śniady,35 and Ricard33

(who studied factoriality problems), Shlyakhtenko34 (who studied Voiculescu’s free entropy for fam-
ilies of q-Gaussian operators), and Bożejko2 (who studied positivity of the symmetrization operators
constructed through a self-adjoint Yang–Baxter operator Ψ ≥ −1). Also Dabrowski,10 Guionnet and
Shlyakhtenko,17 and Nelson and Zeng28,29 proved that q-factors or, more generally, qij-factors are
isomorphic to the free group factors (q = 0) for small values of q or qij, respectively. Another possible
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generalization of the commutation relations (3) related to the group of signed permutations can be
found in Ref. 3.

All the above mentioned investigations are of discrete type so that the set T is at most countable. As
we have already mentioned above, in the continuous setting, a Fock representation of Q-CR (1) and (2),
called a generalized statistics, was constructed by Liguori and Mintchev,24 see also Refs. 14–16, 13,
and 6. A rigorous meaning of these commutation relations is given by smearing them with functions
from H :=L2(T→C,σ). More precisely, defining for f ∈H operators a+(f ) := ∫T σ(dt) f (t)∂†t and
a−(f ) := ∫T σ(dt) f (t)∂t , we get the commutation relations

a−(f )a+(g)=
∫

T2
σ(ds)σ(dt) f (s)g(t)Q(s, t)∂†t ∂s +

∫
T

f (t)g(t)σ(dt),

a+(f )a+(g)=
∫

T2
σ(ds)σ(dt) f (s)g(t)Q(t, s)∂†t ∂

†
s ,

a−(f )a−(g)=
∫

T2
σ(ds)σ(dt) f (s)g(t)Q(t, s)∂t∂s,

where f , g ∈H. (Of course, the operator-valued integrals in these relations should be given a rigorous
meaning.)

From the physical point of view, the most important case of a generalized statistics is the anyon
statistics, where T =R2 and the function Q(s, t) is determined by a complex parameter q with
|q| = 1, namely,

Q(s, t)=



q, if s1 < t1,

q̄, if s1 > t1.
(6)

Here, s= (s1, s2), t = (t1, t2) ∈R2. Note that the value of the function Q on the set {(s, t) ∈ T2 | s1

= t1} does not matter for the Fock representation of the Q-CR. For an explanation as to why such
commutation relations describe an anyon statistic, we refer the reader to Liguori and Mintchev’s
paper24 and to Goldin and Sharp’s paper.16

Goldin and Majid13 proved the following anyonic exclusion principle, which generalizes Pauli’s
exclusion principle for fermions: If qm = 1 and q, 1, then the creation operators a+(f ) in the
Fock representation of the anyon commutation relations satisfies a+(f )m = 0, or equivalently, the
Q-symmetrization of the function f ⊗m is equal to zero.

In Ref. 26, non-Fock representations of the anyon commutation relations have been constructed,
whose vacuum states are gauge-invariant quasi-free. Note that for those representations, the (real)
value of the function Q(s, t) for s = t must be specified.

Let us mention that anyon systems have also been considered in the discrete setting, i.e., when
T ⊂N, see, e.g., Refs. 12, 23, and 13 It should be, however, mentioned that when discussing the
anyons in the discrete setting, Goldin and Majid13 dropped the assumption that the annihilation
operator is adjoint of the creation operator and proved an anyonic exclusion principle for their
model.

In this paper, we study the continuous case with a function Q satisfying |Q(s, t)| ≤ 1. This natural
choice of Q contains generalized statistics and the relations (3) as special cases. We would also like to
draw the reader’s attention to the study by Merberg,27 where the case Q : T2→ (−1, 1) was considered
and factoriality of the related von Neumann algebras generated by the Q-Gaussian operators was
discussed.

In Sec. II, we present a construction of the Fock representation of Q-CR (1). To this end, we
construct a certain Q-deformed Fock space over H=L2(T→C,σ), denoted by F(H). We describe
the n-particle subspaces,Fn(H), ofF(H). As a set, eachFn(H) is a subset ofH⊗n =L2(Tn→C,σ⊗n)
and consists of all functions f (n) ∈H⊗n that are Q-quasisymmetric, meaning that, almost every, for
each k ∈ {1, . . . , n − 1},

f (n)(t1, . . . , tn)=Q(tk , tk+1)f (t1, . . . , tk+1, tk , . . . , tn), (7)

provided |Q(tk , tk+1)| = 1. We derive an explicit formula for the orthogonal projection of H⊗n onto
Fn(H). A scalar product in Fn(H) is given by an operator Pn ≥ 0 in H⊗n which is strictly positive on
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Fn(H). We then realize a+(f ) and a�(f ) (f ∈H) as creation and annihilation operators acting in the Q-
deformed Fock space F(H). These operators satisfy Q-CR (1). Additionally, due to the Q-symmetry
(7) in each Fn(H), we get the following commutation relations between the creation operators and
between the annihilation operators:

∂†s ∂
†
t =Q(t, s)∂†t ∂

†
s , if |Q(s, t)| = 1,

∂s∂t =Q(t, s)∂t∂s, if |Q(s, t)| = 1. (8)

We note that by choosing T to be a discrete set and σ to be the counting measure on T, one can
apply our results in a discrete setting. In fact, the explicit description of the n-particle space Fn(H),
explicit formula for the orthogonal projection of H⊗n onto Fn(H), and the additional commutation
relations (8) appear to be new results even in the discrete setting.

We finish Sec. II with a proposition that shows that discrete anyons of fermion type satisfy the
anyonic exclusion principle, compare with Ref. 13.

In Sec. III, we prove the results formulated in Sec. II.

II. CONSTRUCTION OF THE FOCK REPRESENTATION OF Q-CR

In this section, we will construct a Fock representation of the commutation relation (1), and we
will note that the additional commutation relations (8) then also hold.

A. Operator Pn

Let T be a locally compact Polish space, let B(T ) denote the Borel σ-algebra on T, and let
σ be a Radon measure on (T ,B(T )). Let E ∈B(T2) be a symmetric subset of T : if (s, t) ∈ E then
(t, s) ∈ E. We assume that σ⊗2(E)= 0. Denote T (2) :=T2 \ E, which is also a symmetric set. We fix a
complex-valued measurable function

Q : T (2)→{z ∈C : |z | ≤ 1},

which is Hermitian: for all (s, t) ∈ T (2), we have Q(s, t)=Q(t, s). This function is defined σ⊗2-almost
everywhere on T2.

Remark 1. The case where |Q(s, t)| = 1 for all (s, t) ∈ T (2) corresponds to a generalized statistics
studied by Liguori and Mintchev.24 The special case where T =R2,σ(dt)= dt is the Lebesgue measure
on T, E = {(s, t) ∈ T2 | s1 = t1}, and the function Q is defined by formula (6) with q ∈C, |q| = 1,
corresponds to anyon statistics, see Refs. 24, 16, and 13. The choice Q(s, t) = q for all (s, t) ∈ T (2) =T2

with q ∈ (−1, 1) corresponds to the q-commutations (3), see Ref. 7.

Let us consider an operator Ψ which transforms a measurable function f (2) : T (2)→C into the
function

(Ψf (2))(s, t) :=Q(s, t)f (2)(t, s), (s, t) ∈ T (2). (9)

Analogously to T (2), we define, for n ≥ 3,

T (n) :=
{
(t1, . . . , tn) ∈ Tn : (ti, tj) <E for all 1 ≤ i < j ≤ n

}
.

It is clear that σ⊗n(Tn \ T (n))= 0. The operator Ψ can be extended to a transformation of functions
f (n) : T (n)→C by setting, for k ∈ {1, . . . , n − 1},

(Ψk f (n))(t1, . . . , tn) :=Q(tk , tk+1)f (n)(t1, . . . , tk−1, tk+1, tk , tk+2, . . . , tn). (10)

Let H :=L2(T→C,σ) be the complex L2-space over T. We agree that the scalar product (·, ·)H
is antilinear in the first dot and linear in the second. For n ≥ 2, the nth tensor power of H, denoted
by H⊗n, can be identified with the complex L2-space L2(T (n)→C,σ⊗n). Each Ψk is a contraction in
H⊗n. The following trivial lemma shows that the operators Ψk are self-adjoint and satisfy the braid
relations.
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Lemma 2. The operators Ψk satisfy

Ψ
∗
k =Ψk ,

ΨkΨl =ΨlΨk if |k − l | ≥ 2,

ΨkΨk+1Ψk =Ψk+1ΨkΨk+1. (11)

Let Sn denote the symmetric group on {1, . . . , n}. We represent a permutation π ∈ Sn as an arbitrary
product of adjacent transpositions,

π = πj1 . . . πjm , (12)

where πj := (j, j + 1) ∈ Sn for 1 ≤ j ≤ n − 1. A permutation π ∈ Sn can be represented (not in a unique
way, in general) as a reduced product of a minimal number of adjacent transpositions, i.e., in form
(12) with a minimal m. This number m is then called the length of π, denoted by |π |. It is well
known that |π | is equal to the number of inversions of π, i.e., the number of 1 ≤ i < j ≤ n such that
π(i)> π(j).

The mapping πk 7→Ψπk :=Ψk can be multiplicatively extended to Sn by setting

Sn 3 π 7→Ψπ :=Ψj1 . . .Ψjm . (13)

Although representation (12) of π ∈ Sn in a reduced form is not unique, formulas (11) yield that
extension (13) is well defined, i.e., it does not depend on the representation. (This fact also follows
from the proof of Proposition 3 below.)

We will use the notations t(n) := (t1, . . . , tn) ∈ T (n) and t(n)
π := (tπ(1), . . . , tπ(n)) for π ∈ Sn.

Proposition 3. For each π ∈ Sn and f (n) ∈H⊗n, we have

(Ψπ f (n))(t(n))=Qπ−1 (t(n))f (n)(t(n)
π ), (14)

where
Qπ(t(n)) :=

∏
1≤i<j≤n
π(i)>π(j)

Q(ti, tj), t(n) ∈ T (n). (15)

For n ≥ 2, we define an operator Pn on H⊗n by

Pn :=
1
n!

∑
π∈Sn

Ψπ . (16)

The operator Pn is a self-adjoint contraction in H⊗n, so are the operators Ψk .
The following result is a special case of Theorem 1.1 in Ref. 8.

Theorem 4 (Ref. 8). For each n ≥ 2, we have Pn ≥ 0.

For any f (n), g(n) ∈H⊗n, we define

(f (n), g(n))Fn(H) := (Pnf (n), g(n))H⊗n . (17)

We consider the factor space

Fn(H) :=H⊗n/{f (n) ∈H⊗n : (f (n), f (n))Fn(H) = 0
}

and define a scalar product on Fn(H) by (17).
Below, for a bounded linear operator L in a Hilbert space H, we denote by Ker(L) and Ran(L)

the kernel of L and the range of L, respectively. Recall that Ker(L) is a closed linear subspace of H
and, if L is self-adjoint,

H=Ker(L) ⊕ Ran(L),

where Ran(L) denotes the closure of the linear subspace Ran(L). The following lemma only uses the
fact that Pn ≥ 0.

Lemma 5. (i) We have {
f (n) ∈H⊗n : (f (n), f (n))Fn(H) = 0

}
=Ker(Pn).
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(ii) For each f (n) ∈Ran(Pn), f (n) , 0,

(f (n), f (n))Fn(H) > 0.

By Lemma 5, we can identify Fn(H) with the set Ran(Pn) equipped with scalar product (17).
The result below follows from Theorem 2 and Remark 4 in Ref. 20.

Theorem 6 (Ref. 20). We have

Ker(Pn)=
n−1∑
k=1

Ker(1 + Ψk), (18)

i.e., the kernel of Pn is equal to the closure of the linear span of the subspaces Ker(1 + Ψk),
k = 1, . . . , n − 1.

We will now give an explicit description of the space Fn(H)=Ran(Pn). We denote

Θ :=
{
(s, t) ∈ T (2) : |Q(s, t)| = 1

}
, Θ

′ :=T (2) \ Θ=
{
(s, t) ∈ T (2) : |Q(s, t)| < 1

}
. (19)

Theorem 7. The space Fn(H)=Ran(Pn) is equal (as a set) to the subspace of H⊗n consist-
ing of all f (n) ∈H⊗n that are Q-quasisymmetric, i.e., formula (7) holds for each k ∈ {1, . . . , n − 1}
and for σ⊗n-a.a. (t1, . . . , tn) ∈ T (n) such that |Q(tk , tk+1)| = 1, i.e., for σ⊗n-a.a. (t1, . . . , tn) ∈ T (n)

k ,
where

T (n)
k :=

{
(t1, . . . , tn) ∈ T (n) : (tk , tk+1) ∈Θ

}
. (20)

B. Orthogonal projection onto Ran(Pn)

We will now describe the orthogonal projection Pn of H⊗n onto Ran(Pn)=Fn(H). For this
purpose, we define a function

R(s, t) :=

{
Q(s, t), if (s, t) ∈Θ,
0, if (s, t) ∈Θ′.

Observe that

|R(s, t)| =

{
1, if (s, t) ∈Θ,
0, if (s, t) ∈Θ′,

and that the function R is Hermitian. Hence, for each π ∈ Sn, similarly to the operatorΨπ :H⊗n→H⊗n

defined in Subsection II A for the function Q(s, t), we may define an operator Φπ :H⊗n→H⊗n for
the function R(s, t). By Proposition 3, we get

(Φπ f (n))(t(n))=Rπ−1 (t(n))f (n)(t(n)
π ), (21)

where
Rπ(t(n)) :=

∏
1≤i<j≤n
π(i)>π(j)

R(ti, tj), t(n) ∈ T (n). (22)

Let π ∈ Sn and let t(n) ∈ T (n) be such that for some 1 ≤ i < j ≤ n, we have π(i)> π(j) and (ti, tj) ∈Θ′.
Then, it follows from (22) that Rπ(t(n))= 0. Otherwise, i.e., if such i and j do not exist, we get
|Rπ(t(n))| = 1.

Given t(n) ∈ T (n), we define a splitting

Sn = S1
n(t(n)) t S0

n(t(n))

of the set Sn into two disjoint subsets:

S1
n(t(n)) := {π ∈ Sn : |Rπ−1 (t(n))| = 1},

S0
n(t(n)) := {π ∈ Sn : |Rπ−1 (t(n))| = 0}. (23)
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Let cn(t(n)) := |S1
n(t(n))| denote the cardinality. We define an operator Pn :H⊗n→H⊗n by setting,

for each f (n) ∈H⊗n,

(Pnf (n))(t(n)) :=
1

cn(t(n))

∑
π∈S1

n (t(n))

(Φπ f (n))(t(n))

=
1

cn(t(n))

∑
π∈S1

n (t(n))

Rπ−1 (t(n))f (n)(t(n)
π ). (24)

Theorem 8. For each n ≥ 2, the operator Pn is the orthogonal projection of H⊗n onto Ran(Pn)
=Fn(H).

The corollary below is a straightforward consequence of Theorem 8.

Corollary 9. For each n ≥ 2,
PnPn =PnPn =Pn.

We will also need the following result about the operators Pn, which follows from Theorem 8
and its proof.

Corollary 10. For each n ≥ 2 and k ∈ {1, . . . , n − 1}, we have

Pn =Pn(Pk ⊗ Pn−k). (25)

Here we denote by P1 := 1 the identity operator in H.

Remark 11. For f (n) ∈Fn(H) and g(m) ∈Fm(H), we may define a Q-quasisymmetric tensor
product of f (n) and g(m) by

f (n) ~ g(m) :=Pn+m(f (n) ⊗ g(m)).

Then Corollary 10 implies that the Q-quasisymmetric tensor product ~ is associative.

C. Creation and annihilation operators and their Q-commutation relations

Recall that we have defined complex Hilbert spaces Fn(H) for n ≥ 2. Let also F1(H) :=H and
F0(H) :=C. We define a Q-deformed Fock space to be the Hilbert space

F(H) :=
∞⊕

n=0

Fn(H) n! .

Thus, every f ∈F(H) is represented as f = (f (n))
∞

n=0, where f (n) ∈Fn(H), and the norm of f is given
by

‖f ‖2F(H) :=
∞∑

n=0

‖f (n)‖2Fn(H) n! .

The vector Ω := (1, 0, 0, . . .) is called the vacuum.
Let Ffin(H) ⊂F(H) be the subspace consisting of all finite sequences of the form f = (f (0),

f (1), . . . , f (k), 0, 0, . . .) for some k ∈N. The subspace Ffin(H) is evidently dense in F(H).
For each h ∈H, we define a creation operator a+(h) :F fin(H)→Ffin(H) by setting

a+(h)Ω := h, a+(h)f (n) :=Pn+1(h ⊗ f (n)), f (n) ∈Fn(H), n ∈N. (26)

The domain of the adjoint operator of a+(h) inF(H) containsFfin(H), and furthermore the annihilation
operator a−(h) := (a+(h))∗ �F fin(H) also maps Ffin(H) into itself.

The following proposition gives an explicit form of the action of the annihilation operator.

Proposition 12. For each h ∈H, we have a−(h)Ω= 0, a−(h)g= (h, g)H for g ∈H, and

(a−(h)f (n))(t1, . . . , tn−1)

=

n∑
k=1

Pn−1



∫
T

h(s) *
,

k−1∏
i=1

Q(s, ti)+
-

f (n)(t1, . . . , tk−1, s, tk , . . . , tn−1)σ(ds)


(27)
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for any f (n) ∈Fn(H), n ≥ 2. In formula (27), the operator Pn−1 acts on the function of t1, . . . , tn−1

variables. Furthermore, for any g(n) ∈H⊗n, n ≥ 2,(
a−(h)Png(n))(t1, . . . , tn−1)

=

n∑
k=1

Pn−1



∫
T

h(s) *
,

k−1∏
i=1

Q(s, ti)+
-

g(n)(t1, . . . , tk−1, s, tk , . . . , tn−1)σ(ds)


. (28)

For t ∈ T , we now informally define creation and annihilation operators at point t, denoted by
∂†t and ∂t , respectively. A rigorous meaning to these operators is given through smearing them with
functions h ∈H,

a+(h)=
∫

T
σ(dt) h(t)∂†t , a−(h)=

∫
T
σ(dt) h(t) ∂t . (29)

So we have the following informal equalities:

∂†t f (n) =Pn+1(δt ⊗ f (n)),

∂t f
(n)(t1, . . . , tn−1)=

n∑
k=1

Pn−1


*
,

k−1∏
i=1

Q(t, ti)+
-

f (n)(t1, . . . , tk−1, t, tk , . . . , tn−1)


,

where δt denotes the delta function at t.
Using (26) and Corollary 10, we see that for any g, h ∈H and f (n) ∈Fn(H),

a+(g)a+(h)f (n) :=Pn+2(g ⊗ h ⊗ f (n)). (30)

In view of (29) and (30), for each ϕ(2) ∈H⊗2, we can naturally define an operator∫
T2
σ(ds)σ(dt) ϕ(2)(s, t) ∂†s ∂

†
t :F fin(H)→Ffin(H)

by setting ∫
T2
σ(ds)σ(dt) ϕ(2)(s, t) ∂†s ∂

†
t f (n) :=Pn+2(ϕ(2) ⊗ f (n)) (31)

for f (n) ∈Fn(H). In particular, choosing ϕ(2) = g ⊗ h with g, h ∈H, we get∫
T2
σ(ds)σ(dt) g(s)h(t) ∂†s ∂

†
t = a+(g)a+(h).

Remark 13. Note that we also accept the natural formula∫
T2
σ(ds)σ(dt) ϕ(2)(s, t) ∂†t ∂

†
s =

∫
T2
σ(ds)σ(dt) ϕ(2)(t, s) ∂†s ∂

†
t . (32)

Similarly, using also Proposition 12, we may define, for each ϕ(2) ∈H⊗2, linear operators∫
T2
σ(ds)σ(dt) ϕ(2)(s, t) ∂s∂t :Ffin(H)→Ffin(H),∫

T2
σ(ds)σ(dt) ϕ(2)(s, t) ∂†s ∂t :Ffin(H)→Ffin(H).

Note that (∫
T2
σ(ds)σ(dt) ϕ(2)(s, t) ∂†s ∂

†
t

)∗
=

∫
T2
σ(ds)σ(dt) ϕ(2)(s, t) ∂t∂s

=

∫
T2
σ(ds)σ(dt) ϕ(2)(t, s) ∂s∂t . (33)

Also, for any g, h ∈H, we denote∫
T2
σ(ds)σ(dt) g(s)h(t)∂s∂

†
t := a−(g)a+(h).

We will now present the commutation relations for the creation and annihilation operators.
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Theorem 14 (Q-CR). The operators ∂†t and ∂t (t ∈ T) satisfy the (informal) commutations
relations (1) and (8). Rigorously, this means the following: for any g, h ∈H,∫

T2
σ(ds)σ(dt) g(s)h(t)∂s∂

†
t =

∫
T

g(t)h(t)σ(dt) +
∫

T2
σ(ds)σ(dt) g(s)h(t)Q(s, t)∂†t ∂s, (34)

and for any function ϕ(2) ∈H⊗2 that vanishes almost every in Θ′ [see (19)],∫
T2
σ(ds)σ(dt) ϕ(2)(s, t) ∂†s ∂

†
t =

∫
T2
σ(ds)σ(dt) ϕ(2)(s, t)Q(t, s) ∂†t ∂

†
s , (35)∫

T2
σ(ds)σ(dt) ϕ(2)(s, t) ∂s∂t =

∫
T2
σ(ds)σ(dt) ϕ(2)(s, t)Q(t, s) ∂t∂s. (36)

We finish this section with several remarks.

Remark 15. We can naturally identify the diagonal ∆ := {(s, t) ∈ T2 | s= t} with T. Denote by σ̃,
the measure σ on ∆. We may consider σ̃ as a measure on T2 which is equal to zero outside of ∆.
Denote

G :=L2(T2→C,σ⊗2) ∩ L1(T2→C, σ̃).

In view of (34), for each ϕ(2) ∈G, we may define an operator∫
T2
σ(ds)σ(dt) ϕ(2)(s, t) ∂s∂

†
t :F fin(H)→Ffin(H),

which satisfies∫
T2
σ(ds)σ(dt) ϕ(2)(s, t)∂s∂

†
t =

∫
T
ϕ(2)(t, t)σ(dt) +

∫
T2
σ(ds)σ(dt) ϕ(2)(s, t)Q(s, t)∂†t ∂s.

Remark 16. Denote B(ϕ) := a+(ϕ) + a−(ϕ). The family of operators (B(ϕ))ϕ∈H can be thought of
as a noncommutative Brownian motion (or a noncommutative Gaussian white noise). LetP denote the
complex unital ∗-algebra generated by (B(ϕ))ϕ∈H, i.e., the algebra of noncommutative polynomials
in the variables B(ϕ). We define a vacuum state on P by τ(p) := (pΩ,Ω)F(H), p ∈P. By analogy with
the proofs of Theorem 4.4 in Ref. 8 and Corollary 4.9 in Ref. 6, one can prove the following result:
the state τ is tracial (i.e., it satisfies τ(p1p2)= τ(p2p1) for all p1, p2 ∈P) if and only if the function Q
is real-valued, i.e., Q : T (2)→ [−1, 1].

Remark 17. The results of this section hold, in particular, in the case where σ⊗2(Θ′)= 0, i.e.,
when |Q(s, t)| < 1 forσ⊗2-a.a. (s, t) ∈ T2. Then, for each n ≥ 2, the equalityFn(H)=H⊗n holds (in the
sense of sets). Evidently, there are no commutation relations (35) and (36) in this case. Note also that
if |Q(s, t)| ≤ r < 1 for some number 0 < r < 1, then the creation operators a+(h) and the annihilation
operators a�(h) (h ∈H) are bounded in F(H), see Theorem 3.1, (ii) in Ref. 8.

D. Discrete setting: The anyonic exclusion principle

We will now make several observations about the discrete setting. We may choose T to be a
finite or countable set and σ to be the counting measure on T, i.e., σ({t})= 1 for each t ∈ T . Hence,
the space H becomes the complex `2-space over T, i.e., H= `2(T→C). We obviously have T (2)

= T2 so that the function Q(s, t) is defined for all (s, t) ∈ T2. Thus, we have, in particular, constructed
Fock representations of the discrete commutation relations (4) with additional commutation relations
between ∂†s and ∂†t and between ∂s and ∂t for those pairs (s, t) ∈ T2 for which |Q(s, t)| = 1. (Note that
in this case, the operators ∂†t , ∂t have a rigorous meaning.)

Since the function Q is Hermitian, we have Q(t, t) ∈R for each t ∈ T . Hence, |Q(t, t)| = 1 if and
only if either Q(t, t) = 1 or Q(t, t) = �1. In the first case, we just get the tautological commutation

relation (∂†t )2 = (∂†t )2. In the second case, we get (∂†t )2 =−(∂†t )2 so that (∂†t )
2
= ∂2

t = 0. If the latter
formulas hold for all t ∈ T , then we may call the corresponding commutation relations the discrete
Q-CR of fermion type.
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For the discrete Q-CR of fermion type, the operators ∂†t and ∂t become bounded in F(H)
and have norm equal to 1, see Ref. 8, Corollary 3.2 and Remark after it. Hence, for each h ∈ `1

(T→C),
‖a+(h)‖ = ‖a−(h)‖ ≤ ‖h‖`1(T→C).

Let us now assume that T ⊂N and fix q ∈C, |q| = 1. We consider the function

Q(s, t) :=



q, if s > t,
q̄, if s < t,
−1, if s= t.

The corresponding Q-CR describes a discrete anyon system of fermion type. Note that |Q(s, t)| = 1
for all (s, t) ∈ T2, hence Pn =Pn is the projection of H⊗n onto Fn(H).

Theorem 18 (Anyonic exclusion principle). Consider a discrete anyon system of fermion type.
Let m ∈N, m ≥ 2. Assume that the parameter q ∈C, q, 1, is an mth root of unity, i.e., qm = 1. Then,
for any h ∈H, we have

a+(h)m = a−(h)m = 0. (37)

III. PROOFS

In this section, we collect the proofs of the results from Sec. II.

Proof of Proposition 3. We start with the following crucial lemma.

Lemma 19. Let ρ= πlη be a reduced representation of a permutation ρ ∈ Sn. Then

Qρ(t1, . . . , tn)=Q(tη−1(l), tη−1(l+1))Qη(t1, . . . , tn), (t1, . . . , tn) ∈ T (n). (38)

Proof. Let

Lρ :=Qρ(t1, . . . , tn)=
∏

1≤i<j≤n
ρ(i)>ρ(j)

Q(ti, tj), Lη :=Qη(t1, . . . , tn)=
∏

1≤i<j≤n
η(i)>η(j)

Q(ti, tj).

Let 1 ≤ u < v ≤ n. We consider the following cases.

� If η(u), η(v) < {l, l + 1}, then both η(u), η(v) are fixed points for πl. Consequently, ρ(u)= η(u)
and ρ(v)= η(v) so that ρ(u)> ρ(v) if and only if η(u)> η(v). Hence, the term Q(tu, tv) appears
in Lρ if and only if it appears in Lη .

� If η(u) ∈ {l, l+1} and η(v) < {l, l+1}, then ρ(v)= v < {l, l+1} and, since ρ(u)= (πlη)(u) ∈ {l, l+1},
the order between η(u) and η(v) is the same as between ρ(u) and ρ(v). Thus, the term Q(tu, tv)
appears in Lρ if and only if it appears in Lη .

� The case η(u) < {l, l + 1} and η(v) ∈ {l, l + 1} is analogous to the previous one.
� Consider the case η(u)= l and η(v)= l+1. Then the term Q(tu, tv) does not appear in Lη . Further,
ρ(u)= (πlη)(u)= πl(l)= l + 1 and ρ(v)= (πlη)(v)= πl(l + 1)= l so that ρ(u)> ρ(v). Hence, the
term Q(tu, tv) appears in Lρ. But we also have Q(tη−1(l), tη−1(l+1))=Q(tu, tv) on the right hand
side of equality (38).

� Finally, consider the case η(u)= l + 1 and η(v)= l. But then ρ(u)= (πlη)(u)= l and ρ(v)
= (πlη)(v)= l + 1. Thus, η changes the order of the pair (u, v), while ρ does not. Therefore,
η has more inversions than ρ: |η | > |ρ|. But this contradicts the assumption that ρ is in the
reduced form. Thus, this case is impossible. �

We will now prove the proposition by induction on the length of a permutation π. If |π | = 1, then
π = πk for some k ∈ {1, . . . , n−1}. In this case, the statement trivially follows from the definition ofΨk ,
see (10). Assume that the statement holds for each permutation of length m. Let π be a permutation of
length m + 1, and let π = ϕπl be a reduced representation of π. Hence, the length of the permutation ϕ
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is m. Denote η := ϕ−1 and ρ := π−1 so that ρ= πlη. Then, for each f (n) ∈H⊗n, by using the induction’s
assumption and Lemma 19, we get

(Ψπ f (n))(t1, . . . , tn)= (ΨϕΨlf
(n))(t1, . . . , tn)

=Qη(t1, . . . , tn)(Ψlf
(n))(tϕ(1), . . . , tϕ(n))

=Qη(t1, . . . , tn)Q(tϕ(l), tϕ(l+1))f
(n)(tϕ(1), . . . , tϕ(l+1), tϕ(l), . . . , tϕ(n))

=Qρ(t1, . . . , tn)f (n)(tπ(1), . . . , tπ(n)).

�
Proof of Lemma 5. (i) Since Pn is self-adjoint and Pn ≥ 0, we can write Pn = (

√
Pn)

2
. Let f (n) ∈

H⊗n be such that
0= (f (n), f (n))Fn(H) = ‖

√
Pnf (n)‖2H⊗n .

Hence, f (n) ∈Ker(
√
Pn). But Ker

√
Pn ⊂KerPn, which implies{

f (n) ∈H⊗n | (f (n), f (n))Fn(H) = 0
}
⊂Ker(Pn).

The inverse inclusion trivially follows from (17).

(ii) Let f (n) ∈Ran(Pn) be such that (f (n), f (n))Fn(H) = 0. By part (i), f (n) ∈Ker(Pn). But

Ran(Pn)⊥Ker(Pn). Hence, Ran(Pn) ∩ Ker(Pn)= {0}, and so f (n) = 0. �

Proof of Theorem 7. Using (18), we have

Ran(Pn)= *
,

n−1∑
k=1

Ker(1 + Ψk)+
-

⊥

=

n−1⋂
k=1

Ker(1 + Ψk)⊥ =
n−1⋂
k=1

Ran(1 + Ψk). (39)

For l ∈N and k ∈ {1, . . . , n − 1}, we denote

T (n)
k,l :=

{
(t1, . . . , tn) ∈ T (n) :

l − 1
l
≤ |Q(tk , tk+1)| <

l
l + 1

}
and recall the definition of T (n)

k , see (20). Then, for each k ∈ {1, . . . , n − 1}, we have the orthogonal
decomposition

H⊗n = *
,

∞⊕
l=1

L2(T (n)
k,l →C,σ⊗n)+

-
⊕ L2(T (n)

k →C,σ⊗n). (40)

Each of the spaces on the right-hand side of (40) is invariant for the operator 1 + Ψk . On each space
L2(T (n)

k,l →C,σ⊗n), the norm of the operator Ψk is bounded by l
l+1 < 1. Hence, the operator 1 +Ψk is

invertible in this space. Therefore the kernel of the operator 1 +Ψk restricted to L2(T (n)
k,l →C,σ⊗n) is

trivial
Ker(1 + Ψk) ∩ L2(T (n)

k,l →C,σ⊗n)= {0} for each l ∈N.

Let f (n) ∈ L2(T (n)
k →C,σ⊗n). Consider the decomposition f (n) = f (n)

k,+ + f (n)
k,− with

f (n)
k,±(t1, . . . , tn) :=

1
2
[
f (n)(t1, . . . , tn) ± Q(tk , tk+1)f (n)(t1, . . . , tk+1, tk , . . . , tn)

]
.

One can easily see that f (n)
k,+ and f (n)

k,− are orthogonal and f (n)
k,+ ∈Ran(1 + Ψk). Hence f (n)

k,− ∈Ker(1 + Ψk).

Therefore, the orthogonal projection of L2(T (n)
k →C,σ⊗n) onto Ker(1+Ψk), denoted by D(n)

k , is given
by

(D(n)
k f (n))(t1, . . . , tn)=

1
2
[
f (n)(t1, . . . , tn) − Q(tk , tk+1)f (n)(t1, . . . , tk+1, tk , . . . , tn)

]
.

Hence, the orthogonal projection of H⊗n onto Ker(1 + Ψk), denoted by E(n)
k , is given by

(E(n)
k f (n))(t1, . . . , tn)

=
1
2
χT (n)

k
(t1, . . . , tn)

[
f (n)(t1, . . . , tn) − Q(tk , tk+1)f (n)(t1, . . . , tk+1, tk , . . . , tn)

]
,
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where χA denotes the indicator function of a set A. Therefore, the orthogonal projection of H⊗n onto
Ker(1 + Ψk)⊥ = Ran(1 + Ψk), denoted by F(n)

k , is given by

(F(n)
k f (n))(t1, . . . , tn)= χT (n)\T (n)

k
(t1, . . . , tn)f (n)(t1, . . . , tn)

+
1
2
χT (n)

k
(t1, . . . , tn)

[
f (n)(t1, . . . , tn) + Q(tk , tk+1)f (n)(t1, . . . , tk+1, tk , . . . , tn)

]
.

Thus, the set Ran(1 + Ψk) consists of all functions from H⊗n that are Q-quasisymmetric in the
tk , tk+1-variables on the set T (n)

k , i.e., for σ⊗n-a.a (t1, . . . , tn) ∈ T (n)
k , equality (7) holds. From here and

formula (39), the theorem follows. �

Proof of Theorem 8. We start with the following lemma.

Lemma 20. (i) Let t(n) ∈ T (n). Then π ∈ S1
n(t(n)) if and only if π−1 ∈ S1

n(t(n)
π ).

(ii) Let t(n) ∈ T (n), let π ∈ S1
n(t(n)), and let ν ∈ S1

n(t(n)
π ). Then ϕ := πν ∈ S1

n(t(n)).
(iii) For each t(n) ∈ T (n) and π ∈ S1

n(t(n)), we have cn(t(n))= cn(t(n)
π ).

Proof. (i) By (22),

Rπ−1 (t(n))=Rπ(t(n)
π ). (41)

From here the statement follows.
(ii) Assume that ϕ < S1

n(t(n)). Then there exist i < j such that ϕ−1(i)> ϕ−1(j) and R(ti, tj) = 0. Let
us consider two cases.

Case 1: π−1(i)> π−1(j). But then (22) implies that Rπ−1 (t(n))= 0, hence π < S1
n(t(n)), which is

a contradiction.
Case 2: π−1(i)< π−1(j). We then have

ν−1(π−1(i))= ϕ−1(i)> ϕ−1(j)= ν−1(π−1(j)).

By (22),

Rν−1 (t(n)
π ) :=

∏
1≤a<b≤n

ν−1(a)>ν−1(b)

R(tπ(a), tπ(b)).

Choose a= π−1(i) and b= π−1(j). Then a < b, ν−1(a)> ν−1(b), and

R(tπ(a), tπ(b))=R(ti, tj)= 0.

Therefore, Rν−1 (t(n)
π )= 0, which implies ν < S1

n(t(n)
π ). This is again a contradiction. Thus, we

must have ϕ ∈ S1
n(t(n)).

(iii) By part (ii), if ν ∈ S1
n(t(n)

π ), then πν ∈ S1
n(t(n)). Hence, cn(t(n)

π ) ≤ cn(t(n)). On the other hand, by
part (i), π−1 ∈ S1

n(t(n)
π ). Hence, by part (i), if µ ∈ S1

n(t(n)) then π−1µ ∈ S1
n(t(n)

π ). Hence, cn(t(n))
≤ cn(t(n)

π ). �

We first show that the operator Pn is self-adjoint. By (21)–(24), we can write the operator Pn in
the form

(Pnf (n))(t(n))=
1

cn(t(n))

∑
π∈Sn

Rπ−1 (t(n))f (n)(t(n)
π ).
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Hence using Lemma 20, (iii) and (41), we get, for any f (n), g(n) ∈H⊗n,

(Pnf (n), g(n))H⊗n =
∑
π∈Sn

∫
T (n)

1

cn(t(n))
Rπ−1 (t(n))f (n)(t(n)

π ) g(n)(t(n))σ⊗n(dt(n))

=
∑
π∈Sn

∫
T (n)

1

cn(t(n)
π−1 )

Rπ−1 (t(n)
π−1 )f (n)(t(n)) g(n)(t(n)

π−1 )σ⊗n(dt(n))

=
∑
π∈Sn

∫
T (n)

1

cn(t(n)
π )

Rπ(t(n)
π )f (n)(t(n)) g(n)(t(n)

π )σ⊗n(dt(n))

=
∑
π∈Sn

∫
T (n)

1

cn(t(n)
π )

Rπ−1 (t(n)) f (n)(t(n)) g(n)(t(n)
π )σ⊗n(dt(n))

=

∫
T (n)

f (n)(t(n))
∑

π∈S1
n (t(n))

1

cn(t(n)
π )

Rπ−1 (t(n)) g(n)(t(n)
π )σ⊗n(dt(n))

=

∫
T (n)

f (n)(t(n))
1

cn(t(n))

∑
π∈S1

n (t(n))

Rπ−1 (t(n)) g(n)(t(n)
π )σ⊗n(dt(n))

= (f (n),Png(n))H⊗n . (42)

Thus, P∗n =Pn.
Our next aim is to prove that P2

n =P, which will imply that Pn is an orthogonal projection in
H⊗n. For f (n) ∈H⊗n, we have, by Lemma 20, (ii) and (iii),

(P2
nf (n))(t(n))=

1

cn(t(n))

∑
π∈S1

n (t(n))

1

cn(t(n)
π )

∑
ν∈S1

n (t(n)
π )

(ΦπΦνf (n))(t(n))

=
1

cn(t(n))2

∑
π∈S1

n (t(n))

∑
ν∈S1

n (t(n)
π )

(ΦπΦνf (n))(t(n))

=
1

cn(t(n))2

∑
ϕ∈S1

n (t(n))

∑
π∈S1

n (t(n)),ν∈S1
n (t(n)

π )
πν=ϕ

(ΦπΦνf (n))(t(n)). (43)

Let ϕ ∈ S1
n(t(n)) and π ∈ S1

n(t(n)). By Lemma 20, (i), we have π−1 ∈ S1
n(t(n)

π ). Hence, by Lemma 20, (ii),
we get ν := π−1ϕ ∈ S1

n(t(n)
π ). From here and (43), we get

(P2
nf (n))(t(n))=

1

cn(t(n))
2

∑
ϕ∈S1

n (t(n))

∑
π∈S1

n (t(n))

(ΦπΦπ−1ϕf (n))(t(n)). (44)

Lemma 21. Let t(n) ∈ T (n), π ∈ S1
n(t(n)), and ν ∈ S1

n(t(n)
π ). Then, for each f (n) ∈H⊗n,

(ΦπΦνf (n))(t(n))= (Φπνf (n))(t(n)). (45)

Proof. We first note that equality (45) explicitly means that

Rπ−1 (t(n))Rν−1 (t(n)
π )f (n)(t(n)

πν)=Rν−1π−1 (t(n))f (n)(t(n)
πν),

which is equivalent to the equality

Rπ−1 (t(n))Rν−1 (t(n)
π )=Rν−1π−1 (t(n)). (46)

Since π ∈ S1
n(t(n)), ν ∈ S1

n(t(n)
π ), and πν ∈ S1

n(t(n)), we have

|Rπ−1 (t(n))| = 1, |Rν−1 (t(n)
π )| = 1, |Rν−1π−1 (t(n))| = 1. (47)

We define a Hermitian function G : T (2)→C by

G(s, t) :=



R(s, t), if |R(s, t)| = 1,

1, if R(s, t)= 0.
(48)
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For each π ∈ Sn, similarly to the operatorΨπ defined for the function Q and to the operatorΦπ defined
for the function R, we define an operator Γπ :H⊗n→H⊗n for the function G. Thus,

(Γπ f (n))(t(n))=Gπ−1 (t(n))f (n)(t(n)
π ),

where
Gπ(t(n)) :=

∏
1≤i<j≤n
π(i)>π(j)

G(ti, tj), t(n) ∈ T (n). (49)

For an adjacent transposition πj = (j, j + 1), we denote Γj := Γπj . By Lemma 2, the operators Γj satisfy
the braid relations. Furthermore, since |G(s, t)| = 1 for all (s, t) ∈ T (2), we get Γ2

j = 1. Using, e.g.,
Ref. 9, we therefore conclude that the operators Γπ with π ∈ Sn form a unitary representation of Sn,
i.e., for any π, ν ∈ Sn, it holds that ΓπΓν = Γπν , and in fact, for all t(n) ∈ T (n),

Gπ−1 (t(n))Gν−1 (t(n)
π )=Gν−1π−1 (t(n)). (50)

But if t(n) ∈ T (n), π ∈ S1
n(t(n)), and ν ∈ S1

n(t(n)
π ), then formulas (47)–(50) imply (46). �

Now formula (44) and Lemma 21 yield the equality

(P2
nf (n))(t(n))=

1

cn(t(n))2

∑
ϕ∈S1

n (t(n))

∑
π∈S1

n (t(n))

(Φϕf (n))(t(n))

=
1

cn(t(n))

∑
ϕ∈S1

n (t(n))

(Φϕf (n))(t(n))= (Pnf (n))(t(n)). (51)

Thus, Pn is an orthogonal projection in H⊗n.
It remains to prove that Ran(Pn)=Fn(H). Let f (n) ∈Fn(H). Theorem 7 and the construction of

the Φπ operators imply that for σ⊗n-a.a. t(n) ∈ T (n) and for each π ∈ S1
n(t(n)), we have (Φπ f (n))(t(n))

= f (n)(t(n)). Hence, by (24), Pnf (n) = f (n), i.e., f (n) ∈Ran(Pn).
Finally, we have to prove the inclusion Ran(Pn) ⊂Fn(H). This means that for any f (n) ∈H⊗n and

k ∈ {1, . . . , n − 1},

(ΦkPnf (n))(t(n))= (Pnf (n))(t(n)) forσ⊗n − a.a. t(n) ∈ T (n)
k . (52)

The proof of (52) is similar to the proof of the equality P2
n =P [formulas (43), (44), and (51)], so we

omit it. �

Proof of Corllary 10. We start with the following lemma

Lemma 22. For each n ∈N, we have

Pn+1(Pn ⊗ 1)=Pn+1, (53)

Pn+1(1 ⊗ Pn)=Pn+1. (54)

Proof. We will only prove equality (53), since the proof of (54) is similar. For a permu-
tation ν ∈ Sn, we denote by ν ⊗ id the permutation from Sn+1 defined by (ν ⊗ id)(i) := ν(i) for
i ∈ {1, . . . , n} and (ν⊗ id)(n+1) := n+1. Analogously to the proof of Theorem 8, we get, for any f (n+1)

∈H⊗(n+1),

(Pn+1(Pn ⊗ 1)f (n+1))(t(n+1))

=
1

cn+1(t(n+1))

∑
π∈S1

n+1(t(n+1))

1
cn(tπ(1), . . . , tπ(n))

∑
ν∈S1

n (tπ(1),...,tπ(n))

(Φπ(ν⊗id)f
(n+1))(t(n+1))

=
1

cn+1(t(n+1))

n+1∑
i=1

∑
ϕ∈S1

n+1(t(n+1))
ϕ(n+1)=i

∑
π∈S1

n+1(t(n+1))
π(n+1)=i

ν∈S1
n (tπ(1),...,tπ(n))
π(ν⊗id)=ϕ

1
cn(tπ(1), . . . , tπ(n))

(Φϕf (n+1))(t(n+1)). (55)
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Let ϕ, π ∈ S1
n+1(t(n+1)) be such that π(n+1)= ν(n+1)= i. Then ν′ := π−1ϕ ∈ S1

n+1(t(n+1)
π ) and ν′(n+1)=

n + 1. Therefore, ν′ = ν ⊗ id, where ν ∈ S1
n(tπ(1), . . . , tπ(n)). Hence, by (55),

(Pn+1(Pn ⊗ 1)f (n+1))(t(n+1))

=
1

cn+1(t(n+1))

n+1∑
i=1

∑
ϕ∈S1

n+1(t(n+1))
ϕ(n+1)=i

(Φϕf (n+1))(t(n+1))
∑

π∈S1
n+1(t(n+1))

π(n+1)=i

1
cn(tπ(1), . . . , tπ(n))

.

Therefore, it is sufficient to prove that for any t(n+1) ∈ T (n+1) and i ∈ {1, . . . , n + 1},∑
π∈S1

n+1(t(n+1))
π(n+1)=i

1
cn(tπ(1), . . . , tπ(n))

= 1. (56)

To this end, we denote

S1
n,i(t

(n+1)) := {π ∈ S1
n(t(n+1)) : π(n + 1)= i}

and let cn+1,i(t(n+1)) := |S1
n,i(t

(n+1))|. We state that for any t(n+1) ∈ T (n+1) and π ∈ S1
n,i(t

(n+1)),

cn+1,i(t(n+1))= cn(tπ(1), . . . , tπ(n)). (57)

Indeed, if ν ∈ S1
n(tπ(1), . . . , tπ(n)), then ν ⊗ id ∈ S1

n+1(t(n+1)
π ). Therefore, π(ν ⊗ id) ∈ S1

n+1(t(n+1)) and(
π(ν ⊗ id)

)
(n + 1)= π(n + 1)= i.

Hence, π(ν ⊗ id) ∈ S1
n+1,i(t

(n+1)). So cn(tπ(1), . . . , tπ(n)) ≤ cn+1,i(t(n+1)). On the other hand, take

any ϕ ∈ S1
n+1,i(t

n+1). Let ν′ := π−1ϕ. As shown above, ν′ = ν ⊗ id, where ν ∈ S1
n(tπ(1), . . . , tπ(n)).

Hence, cn+1,i(t(n+1)) ≤ cn(tπ(1), . . . , tπ(n)), and formula (57) is proven. Finally, formula (57)
implies (56). �

Lemma 23. For k ∈N, we denote by 1k the identity operator in H⊗k . Then, for each n ≥ 2,

Pn+k(Pn ⊗ 1k)=Pn+k , (58)

Pn+k(1k ⊗ Pn)=Pn+k . (59)

Proof. We will again only prove the first formula, (58), the proof of (59) being similar. We prove
(58) by induction on k. For k = 1, formula (58) becomes (53). Let k ≥ 2 and assume that formula (53)
holds for k � 1. We then have

Pn+k(Pn ⊗ 1k)=Pn+k(Pn+k−1 ⊗ 1)(Pn ⊗ 1k−1 ⊗ 1)

=Pn+k
[(
Pn+k−1(Pn ⊗ 1k−1)

)
⊗ 1

]
=Pn+k(Pn+k−1 ⊗ 1)=Pn+k .

�

Using Lemma 23, we get, for n ≥ 2 and k ∈ {1, . . . , n − 1},

Pn(Pk ⊗ Pn−k)=Pn(Pk ⊗ 1n−k)(1k ⊗ Pn−k)=Pn(1k ⊗ Pn−k)=Pn. �

Proof of Proposition 12. The result below was shown in the proof of Theorem 3.1 in Ref. 8.

Lemma 24 (Ref. 8). Let a bounded linear operator Rn :H⊗n→H⊗n be defined by

Rn := 1n + Ψ1 + Ψ1Ψ2 + . . . + Ψ1Ψ2 . . .Ψn−1. (60)

Then, for n ∈N,
(n + 1)Pn+1 = (1 ⊗ Pn)Rn+1. (61)
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Analogously to Ffin(H), we define a linear space Ffin(H) that consists of finite sequence
(f (0), f (1), . . . , f (n), . . .) with f (i) ∈H⊗i. For h ∈H, we define a linear operator A−(h) : F fin(H)
→Ffin(H) by setting

(A−(h)f (n))(t1, . . . , tn−1) :=
∫

T
h(s)f (n)(s, t1, . . . , tn−1)σ(ds),

for f (n) ∈H⊗n, n ∈N, and A−(h)(1, 0, 0, . . .) := 0.
Let f (n) ∈Fn(H), g(n+1) ∈H⊗(n+1), and h ∈H. Then, by (26) and Lemmas 9 and 24, we get(

a+(h)f (n),Pn+1g(n+1)
)
Fn+1(H)

(n + 1)!

=
(
Pn+1Pn+1(h ⊗ f (n)),Pn+1g(n+1)

)
H⊗(n+1) (n + 1)!

=
(
Pn+1(h ⊗ f (n)), g(n+1)

)
H⊗(n+1) (n + 1)!

=
(
R∗n+1(1 ⊗ Pn)(h ⊗ f (n)), g(n+1)

)
H⊗(n+1) n!

=
(
h ⊗ (Pnf (n)),Rn+1g(n+1)

)
H⊗(n+1) n!

=
(
Pnf (n), A−(h)Rn+1g(n+1)

)
H⊗n n!

=
(
f (n),PnA−(h)Rn+1g(n+1)

)
Fn(H)

n! .

From here both formulas (27) and (28) follow. �

Remark 25. Note that formula (28) can now be written in the form

a−(h)Png(n) =Pn−1A−(h)Rng(n), (62)

for h ∈H and g(n) ∈H⊗n.

Proof of Theorem 14. By choosing an orthonormal basis (en)n∈N of H and writing the infinite
matrix of the operator Ψ [see (9)] in terms of the orthonormal basis (en ⊗ em)n,m∈N of H⊗2, one
can derive the commutation relation (34) from Sec. 3 of Ref. 8. For the reader’s convenience, we
will now present a complete proof of this commutation relation without use of an orthonormal
basis.

Let g, h ∈H and f (n) ∈Fn(H). By formulas (26) and (62), we get

a−(g)a+(h)f (n) =PnA−(g)Rn+1(h ⊗ f (n)). (63)

By (60),
Rn+1 = 1n+1 + Ψ1(1 ⊗Rn). (64)

Formulas (63) and (64) yield

a−(g)a+(h)f (n) = (g, h)Hf (n) + Pnu(n), (65)

where
u(n) :=A−(g)Ψ1

(
h ⊗ (Rnf (n))

)
.

A direct calculation shows that

u(n)(t1, . . . , tn)=
∫

T
σ(ds) g(s) h(t1)Q(s, t1)

(
Rnf (n))(s, t2, . . . , tn). (66)

On the other hand, using additionally (54), we get

a+(h)a−(g)f (n) =Pn

(
h ⊗ (Pn−1A−(g)Rnf (n))

)
=Pnv

(n), (67)

where
v (n) := h ⊗ (A−(g)Rnf (n)).
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Note that

v (n)(t1, . . . , tn)=
∫

T
σ(ds) g(s) h(t1)

(
Rnf (n))(s, t2, . . . , tn). (68)

Formulas (65)–(68) prove (34).
Corollary 10 and formula (31) show that for each ϕ(2) ∈H⊗2 and f (n) ∈Fn(H),∫

T2
σ(ds)σ(dt) ϕ(2)(s, t) ∂†s ∂

†
t f (n) =Pn+2

(
(P2ϕ

(2)) ⊗ f (n)) . (69)

By Theorem 7, since ϕ(2) has support in Θ, we get P2Ψϕ
(2) =P2ϕ

(2). Hence, formulas (32) and (69)
imply ∫

T2
σ(ds)σ(dt) ϕ(2)(s, t) ∂†s ∂

†
t f (n) =

∫
T2
σ(ds)σ(dt) Q(s, t)ϕ(2)(t, s) ∂†s ∂

†
t f (n)

=

∫
T2
σ(ds)σ(dt) ϕ(2)(s, t)Q(t, s) ∂†t ∂

†
s f (n),

which gives (35).
Finally, formula (36) is obtained by taking the adjoint operators on the left and right hand sides

of formula (35), see (33). �

Proof of Theorem 18. Using Corollary 10, we get, for each f (n) ∈Fn(H) and h ∈H,

a+(h)mf (n) =Pm+n(h⊗m ⊗ f (n))=Pm+n((Pmh⊗m) ⊗ f (n)).

Hence, it suffices to prove that Pm(h⊗m)= 0.
Denote by (et)t∈T the canonical orthonormal basis in H= `2(T→C), i.e., et(s) = 1 if s = t and

et(s) = 0 if s, t. In view of (9), we get

Ψes ⊗ et =Q(t, s)et ⊗ es, (s, t) ∈ T2.

Note that the operators (Ψπ)π∈Sm
form a unitary representation of the group Sm, see the proof of

Lemma 21. Therefore, for each k ∈ {1, . . . , m − 1}, we have PmΨk =Pm. Hence, for any t1, . . . ,
tm ∈ T ,

Pm(et1 ⊗ . . . ⊗ etk−1 ⊗ etk+1 ⊗ etk ⊗ etk+2 ⊗ . . . ⊗ etm )=Q(tk , tk+1)Pn(et1 ⊗ . . . ⊗ etm ).

This implies that
Pm(et1 ⊗ . . . ⊗ etm )= 0 if |{t1, . . . , tm}| <m (70)

(i.e., if some index ti appears twice or more times). Analogously, for any (t1, . . . , tm) ∈ Tm and
π ∈ Sm,

Pm(etπ(1) ⊗ . . . ⊗ etπ(m) )=Qπ(t1, . . . , tm)Pm(et1 ⊗ . . . ⊗ etm ). (71)

Let h=
∑

t∈T htet ∈H. We get, by (70) and (71),

Pmh⊗m =
∑

t1,...,tm∈T

ht1 . . . htmPm(et1 ⊗ . . . ⊗ etm )

=
∑

t1,...,tm∈T
ti,tj if i,j

ht1 . . . htmPm(et1 ⊗ . . . ⊗ etm )

=
∑

t1,...,tm∈T
t1<t2 ...<tm

∑
π∈Sm

htπ(1) . . . htπ(m)Pm(etπ(1) ⊗ . . . ⊗ etπ(m) )

=
∑

t1,...,tm∈T
t1<t2 ...<tm

ht1 . . . htm

∑
π∈Sm

Pm(etπ(1) ⊗ . . . ⊗ etπ(m) )

=
∑

t1,...,tm∈T
t1<t2 ...<tm

ht1 . . . htm
*.
,

∑
π∈Sm

Qπ(t1, . . . , tm)+/
-
Pm(et1 ⊗ . . . ⊗ etm ), (72)
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where we used that htπ(1) . . . htπ(m) = ht1 . . .mhtm for any permutation π ∈ Sm. It can be easily proven
by induction on m that for any t1, . . . , tm ∈ T with t1 < t2 . . . < tm, we have∑

π∈Sm

Qπ(t1, . . . , tm)= [m]q! . (73)

Here we used the notation, for m ∈N and q, 1,

[m]q! :=
m∏

i=1

[i]q, where [i]q := 1 + q + q2 + . . . + qi−1 =
1 − qi

1 − q
.

Since qm = 1, we get [m]q! = 0. Hence, the theorem follows from (72) and (73). �
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statistics,” Commun. Math. Phys. 313, 535–569 (2012).
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35 Śniady, P., “Factoriality of Bożejko–Speicher von Neumann algebras,” Commun. Math. Phys. 246, 561–567 (2004).
36 Speicher, R., “Generalized statistics of macroscopic fields,” Lett. Math. Phys. 27, 97–104 (1993).


