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Highlights

• We develop a method for simulating improvised explosive detonation with

fragments.

• The effect of charge shape on fragment acceleration is investigated.

• The probability of blast injuries is assessed from the simulations.

• The method is applied to model realistic scenarios involving improvised

explosives.
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Abstract

In this paper, we develop numerical methods for modeling blast and frag-

ments generated from explosive detonation and apply them to scenarios rep-

resenting improvised explosive devices in confined spaces. The detonation of

condensed phase explosives is modeled with a programmed burn method in a

three-dimensional multimaterial flow solver. This solver has been coupled with

a Lagrangian particle solver to model the acceleration of explosive-driven frag-

ments. We first simulate an explosion in a long cylindrical tube to validate

the fluid solver for a partially-confined blast. We then simulate explosions on

a subway train platform for 10 kg and 30 kg C4 charges. The maximum shock

overpressure and impulse are used to predict the risk of common blast injuries.

To represent improvised explosive threats, we model C4 charges with spherical,

cylindrical, and disk shapes that are surrounded by a layer of spherical frag-

ments. We find that the explosive charge shape plays an important role in the

acceleration of the spherical fragments. Finally, a realistic scenario of an im-

provised explosive detonation near a bomb technician is investigated to assess

fragment trajectory and blast loads in the near field.

Keywords: Computational fluid dynamics, Improvised explosives, Detonation,

Particles, Fragments, Shock waves
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1. Introduction

Improvised explosive devices (IEDs) represent a growing international threat,

as they are often used for terrorism or sabotage. Even a small person-borne IED

(PBIED) containing a few kilograms of explosive can be carried into crowded

areas, or near critical infrastructures, and detonated with devastating conse-5

quence [1, 2, 3]. Modeling and simulation can provide a means to assess IED

threats. Simple scenarios may be investigated with fast running engineering

tools based on simplified models, but more complex cases typically require com-

putational fluid dynamics (CFD) and multiphysics simulations. In the current

work, we develop numerical simulations to investigate the detonation of small10

explosive charges which are representative of PBIED threats. Improvised de-

vices are often packed with metal objects, such as nails, nuts, bolts, or ball

bearings, to generate shrapnel [2]. These fragments can increase the directional

force of the explosion and cause injuries at much greater distances than the blast

overpressure alone [4]. Historical analysis of bombings and IED attacks have15

shown that secondary blast injuries, such as ballistic wounds from fragments,

account for the majority of injuries observed in survivors [4, 2]. Primary blast

injuries, such as eardrum rupture or pulmonary barotrauma (blast lung), are

also commonly observed in bombing victims nearer to the explosion. In this

work, we present a method for simulating IEDs, which can generate high ve-20

locity fragments, and assessing blast injuries. The basic underlying numerical

schemes have been validated in our previous work [5, 6] and the current focus

is to demonstrate their predictive capability.

There is a considerable amount of previous work for modeling explosions

in urban areas. For example, Rose and Smith [7] conducted a comprehensive25

experimental and simulation campaign for blast propagation in various street

layouts. Their tests demonstrate the “channeling” effect which enhances blast

pressure and impulse when the explosion is confined by a narrow street. Ad-

vances in computing technology and numerical methods have made it possible

to run very large-scale simulations of air blasts in real city geometries. Löhner30
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et al. [8] presented results of urban explosion simulations with an impressive

1.5 × 109 elements which run on 5 × 104 cores of a distributed computing sys-

tem. Running simulations of this scale requires access to very large computing

systems, which are not always available to the researcher. Fortunately, it is

possible to achieve accurate blast predictions from coarser grid simulations on35

workstations, or even notebook computers [9], by using a multi-mesh approach

with careful attention to discretization in critical areas.

The above examples consider large explosions such as vehicle bombs in out-

door environments. However, PBIED threats are likely to be smaller charges

that are encountered indoors or in enclosed environments. In these cases, the40

confined space causes multiple internal shock reflections which lead to complex

pressure wave profiles. This amplifies the lethal effect of blast waves and is

associated with higher levels of injury [1, 2, 3]. The complexities of internal

blast loading are discussed by Baker [10] and can be observed in various sce-

narios such as explosions in tunnels [11], underground train stations and train45

carriages [12], and buses [3]. Trains and transit stations can be high-impact tar-

gets for terrorists, as demonstrated by recent attacks in London (2005), Moscow

(2004, 2010), and Madrid (2004) [13]. This provides an impetus for the tunnel

and subway explosion scenarios considered in our current work.

Predicting the acceleration of fragments is another important aspect of IED50

modeling. For cased charges, a first-principles model of fragmentation would

require coupling the detonation gases flow with a structural dynamics solver

that has a complete material model, constitutive model, and fracturing scheme

for the casing. Such methods have been applied to modeling warhead fragmen-

tation [14], but for the current work we seek a less computationally expensive55

model. Lagrangian particle methods can be used to represent fragments and

readily coupled with existing compressible flow solvers. Point-particle methods

are well-suited to represent small particles in flows with strong shocks [15, 16].

However, there are some notable limitations of the point-particle model when

applied to explosive-driven fragments [6]. The difficulty lies in representing typ-60

ical fragments, which have dimensions on the order of several millimeters. In
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conventional point-particle methods, the particle diameter (dp) should be less

than the fluid grid size (δ). We relax this requirement by assuming there are a

relatively small number of particles, which generally will not occupy the same

fluid cell. In practice, this allows smaller grid sizes of around δ = 0.5dp. Addi-65

tionally, the cell size over the explosive geometry needs to be sufficiently small

for an accurate resolution of the detonation shock. Programmed burn detona-

tion models do not resolve the reaction zone, but a pseudo-reaction zone with a

length of a couple computational cells is created. Experience has shown that the

detonation model works well when there are at least 20 cells across the explosive70

thickness. Combining these constraints effectively prohibits the point-particle

method from being used for very small (or thin) charges unless the fragments

are also small. On the other hand, the method is suitable for charge sizes of a

few kilograms with particles a few millimeters in diameter. The current work

investigates scenarios with IEDs in this range.75

In this paper, we describe the two-way coupled Euler-Lagrange point-particle

method for modeling explosive detonations and particle acceleration. This

builds upon our previous work [5, 6, 17]. We present the governing equations for

the fluid in Section 2.1 and particles in Section 2.2. Then, the underlying nu-

merical method is discussed in Section 2.3. In Section 3, we examine test cases80

of explosions in confined spaces. This includes blast in a semi-confined tube and

an explosion on a subway train platform to demonstrate key elements of blast

risk analysis with numerical models. The Euler-Lagrange particle method is

then used to model fragments accelerated by three different IED charge shapes.

Finally, we present a case of near field explosion with blast and fragments acting85

on a rigid model of a bomb technician. Some conclusions and implications of

this work are discussed in Section 4.

5
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2. Numerical Methodology

2.1. Governing equations for the multimaterial fluid

The unsteady inviscid compressible multimaterial flows are governed by the

Euler equations with the five-equation model proposed by Allaire, Clerc, and

Kokh [18]. The governing equations can be compactly expressed as

∂U

∂t
+∇ · F = S (1)

where the conserved variables vector U, flux vector F, and source vector S are

defined by

U =




z1ρ1

z2ρ2

ρu

ρE

z1




, F =




z1ρ1u

z2ρ2u

ρu⊗ u + p[I]

(ρE + p)u

z1u




, S =




0

0

−Sm

−Se
z1∇ · u




. (2)

Here, ρ is the mixture density, u is the velocity vector, E is the specific total

energy, p is pressure, z is volume fraction, and [I] is an identity tensor. The vol-

ume fraction of each fluid is zi ∈ [0, 1], such that
∑

i zi = 1. For two materials,

we have z2 = (1− z1). The five-equation model is expressed for two materials,

but can be extended to more materials by including another phasic mass equa-

tion and transport equation for each additional material. The model assumes a

single velocity and pressure for the materials. Total density and energy of the

fluid mixture are

ρ =
∑

i

ziρi, (3)

ρE = ρe+
1

2
ρu2. (4)

where ρi is the phase density, e is the specific internal energy of the multimaterial90

mixture. The interphase coupling terms for the Lagrangian particles, Sm and

Se, are defined in Section 2.2. The particles are assumed to be solid and non-

reactive, with inter-phase mass transfer (e.g. particle burning) and heat transfer

neglected.
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The five equation model is closed by a Mie-Grüneisen equation of state

(EOS),

p(ρ, e) = Γ(ρ)[ρe− ρeref(ρ)] + pref(ρ) (5)

which can be inverted to obtain specific internal energy,

e(ρ, p) =
p− pref(ρ)

ρΓ(ρ)
+ eref(ρ). (6)

The Grüneisen parameter Γ(ρ) and the reference states, pref(ρ) and eref(ρ), can

be defined to reproduce different EOSs for gas, liquid, and solid materials [18,

19, 20]. Internal energy for the multimaterial mixture is calculated as

ρe(ρi, p, zi) = p
∑

i

ziξi(ρi)−
∑

i

ziξi(ρi)βi(ρi) (7)

βi(ρi) = pref(ρi)− Γi(ρi)ρieref(ρi). (8)

In this manner, material EOS parameters are averaged through the reciprocal

of the Grüneisen gamma,

ξi(ρi) =
1

Γi(ρi)
. (9)

95

Simulations of explosive detonation use the ideal gas EOS for the air, shock-

wave EOS for the unreacted explosive, and Jones-Wilkins-Lee (JWL) EOS for

the detonation products. Nonlinear EOSs, such as the shock-wave and JWL

EOS, are necessary for modeling materials under very high pressures. Parame-

ters for the JWL EOS are ω,A,B,R1, R2, and initial density ρ0. JWL param-100

eter sets for many explosives can be found in the literature [21]. A generic set

of shock wave EOS parameters for the unreacted explosive are automatically

calculated by the programmed burn model [5].

The programmed burn model handles the conversion of the unreacted solid

explosive to reacted detonation products. It requires input of the detonation105

pressure pCJ, detonation velocity DCJ, and detonation energy edet. Ignition

time for explosive cells is calculated as the time taken for the detonation wave

to travel from the initiation point to the explosive cell center. Explosive burn-

ing is tracked by a reaction variable, λ ∈ [0, 1], which is incremented as the cell

7
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burns. EOS for the burning explosive is treated as a submodel in the multima-110

terial framework with internal energy and pressure calculated using λ-averaged

values of the EOS functions ξi(ρi) and βi(ρi). The initial internal energy of

the unreacted explosive includes edet, so that the products gain the detonation

energy after the reaction is complete. More details on this methodology can be

found in [5]. In practice, this provides an inexpensive method for handling an115

additional EOS without adding to the system of governing equations. However,

this method requires the explosive to be stationary during the simulation as λ

is not an advected quantity.

2.2. Governing equations for particles

From Newton’s law, the equations of motion for a particle are

dxp

dt
= up (10)

mp
dup

dt
= Fqs + Fpg + Fam (11)

where mp is the mass, xp is position, and up is velocity of the particle. Particle

forces include the quasi-steady drag Fqs, the pressure-gradient Fpg, and the

added-mass Fam forces. Particle heating under unsteady shock interactions is

included in some particle models in the literature [22, 15, 16], but typically for

small lightweight particles. For particles much larger that the reaction zone,

Ripley et al. [22] found that particle heating is mainly due to shock compression

and a non-heat-conducting assumption is valid. Therefore, heat transfer terms

are neglected for the large rigid particles assumed here. We neglect other forces,

such as body forces (buoyancy, gravity, electromagnetic, etc.), lift, and viscous

unsteady history forces. Particle-particle interactions are unlikely in the current

models and are also neglected. The forces on a spherical particle are

Fqs =
πd2

p

8
ρf,pCD|uf,p − up|(uf,p − up) (12)

Fpg = −Vp (∇pf,p) (13)

Fam = −CMVp

[
∇pf,p +

d (ρf,pup)

dt

]
(14)

8
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where Vp is the particle volume, and ρf,p and uf,p are the fluid density and ve-

locity at the particle location, respectively. The Eulerian fluid variables at the

Lagrangian particle locations (subscript ‘f,p’) are evaluated by a linear interpo-

lation from neighboring fluid grid points. The drag coefficient CD for spheri-

cal particles is found from empirical correlations as a function of the particle

Reynolds number (Rep) and Mach number (Mp),

Rep =
ρf,p dp
µf

|uf,p − up|, (15)

Mp = |uf,p − up|/cf,p. (16)

Here, cf is the fluid sound speed and µf is dynamic viscosity of the fluid from120

Sutherland’s law. Based on our previous studies [6], we have chosen the drag

correlation of Loth [23] because it includes the effects of fluid compressibility

at higher Mach numbers (Mp > 0.3) and also provides valid CD values at high

Reynolds numbers (Rep > 105) which occur during explosions. For the added

mass coefficient, CM, we adopt an expression which is a function of Mp to125

account for the effects of fluid compressibility [24]. CM has values between 0.5

and 1.0 [6].

The interphase coupling terms for particle momentum Sm and work transfer

Se are calculated for each fluid cell as

Sm(xc) =
1

Vf

N∑

i=1

Gi
(
xc,x

i
p

) (
Fi

qs + Fi
pg + Fi

am

)
, (17)

Se(xc) =
1

Vf

N∑

i=1

Gi
(
xc,x

i
p

) (
Fi

qs + Fi
pg + Fi

am

)
ui
p. (18)

The interpolation function Gi is used to transfer particle forces from the set of

particles N with coordinates xi
p to the associated fluid cell having coordinates

xc. The total particle force is averaged by the volume of the fluid cell, Vf . The130

acceleration of large particles from rest can cause a flow reversal, or possibly

even negative pressures, due to the excessive extraction of fluid momentum.

This is more likely to occur when particles are large (dp > δ) or closely spaced.

To prevent large forces concentrated at single fluid grid points, the forces are

9
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spread over a larger region of surrounding fluid cells [6]. For extreme cases,135

limiters may also be applied to the interphase source terms.

2.3. Spatial and temporal discretization

The Euler equations for fluid flow are solved with a vertex-centered, edge-

based finite volume method on unstructured grids. The three-dimensional com-

putational domain is discretized into non-overlapping tetrahedral elements using140

a robust Delaunay mesh generation method [25]. A median dual mesh is con-

structed by connecting edge midpoints, element centroids, and face centroids

such that only one node is present in each control volume. The HLLC approx-

imate Riemann solver [26] is used for calculation of the inviscid flux of conser-

vative variables and the advection equation. Second-order accuracy is achieved145

by solving the local Riemann problem with reconstructed values at the left and

right states [17]. Gradients are computed from a Green-Gauss method using

the primitive variables (ρ1z1, ρ2z2, u, v, w, P, z), to avoid pressure oscillations

at the interface [18]. The Barth-Jespersen limiter is used to control instabilities

near steep gradients after reconstruction [27].150

Time discretization of the governing fluid equation utilizes a minimal storage

Runge-Kutta formulation [28] which requires only one extra copy of the right

hand side terms and unknowns be stored. The time step (∆t) is calculated

through the Courant-Friedrichs-Lewy condition. For a second-order accurate

solution, the two-stage scheme has coefficients α1 = 0.5 and α2 = 1.0. The155

system of nonlinear ordinary differential equations for the particles is solved

sequentially with the fluid equations using the same time step and temporal

discretization method.

2.4. 1D multimaterial solver

A one dimensional Eulerian multimaterial solver, “1DMM”, has been de-160

veloped which employs the same methodology as the 3D compressible fluid

solver described above. Specifically, it solves the five-equation multimaterial

model using an HLLC approximate Riemann solver and the programmed burn

10
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detonation model. The 1D solver is able to represent planar, cylindrical, and

spherical symmetry conditions through the use of geometric source terms. With165

the 1DMM solver, we are able to study one dimensional problems with much

finer grid resolutions than is feasible for 3D models. 1DMM solutions can also

be used to initialize 3D explosion and air blast models, for a combined 1D-3D

approach.

2.5. Blast risk evaluation170

During an explosion, the rapid expansion of detonation gases compresses

the surrounding air and creates a shock wave. The air is initially at an ambient

pressure, p0, but jumps to the peak overpressure, pm, at the shock arrival time,

ta. The pressure then rapidly decays until it reaches p0, marking the end of

the positive phase. This is usually followed by a negative phase, when the175

overpressure temporarily drops below the ambient pressure, due to the over-

expansion of the high velocity detonation products. Gas-filled organs of the

body, such as the ears, lungs, sinuses, and bowels, are susceptible to rupture

from both positive and negative pressure waves. The effect of explosions on the

brain, i.e. traumatic brain injuries, are now more widely recognized [4]. While180

some thresholds for brain injuries have been suggested, they are not assessed

in the current work as there are multiple injury mechanisms and they remain

difficult to predict and diagnose [29].

Blast severity is commonly characterized by values of peak overpressure and

maximum positive phase impulse, Im. Negative phase pressure and impulse

are generally neglected in risk analysis because they are much lower and less

likely to cause injury [4]. For explosions in confined spaces, multiple secondary

shocks can contribute to the positive phase impulse. The peak overpressure and

maximum impulse in the simulations are evaluated as

pm = max (p(t)− p0) ∀ t ∈ [0, tsim], (19)

Im = max

(∫ t

0

[p(t)− p0] dt

)
∀ t ∈ [0, tsim], (20)

on all wall surfaces over the entire simulated time, tsim.

11
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Comprehensive reviews of models predicting injury from explosions are given

by Baker [10] and Lees [30]. Probit equations, which relate the statistical proba-

bility unit (Y ) to injury factors, are widely used to assess hazards in the process

industries and are also straightforward to apply during post-processing of the

numerical results. First we consider primary blast injuries, which result from di-

rect interaction of the high pressure waves. These include tympanic membrane

(eardrum) rupture and lung hemorrhage. Eardrum injuries have lowest thresh-

old (i.e. greatest chance of occurring), but are nonfatal. The probit equation

for eardrum rupture,

YE = −12.6 + 1.524 ln(pm) (21)

is solely a function of pm (Pa) [30]. The mechanisms of blast induced lung in-

juries are complex and remain a topic of considerable research [31, 29]. Bowen et

al. [32] analyzed a large collection of experimental data on thirteen mammalian

species and developed 24-hour survival curves for a 70 kg man at different ori-

entations with respect to the blast wave. While the Bowen curves are usually

plotted against pressure and positive phase duration, they can also been pre-

sented as pressure-impulse (PI) graphs [10]. Probit equations developed from

PI graphs in the TNO Green Book [33] can be simplified to

YL = 5− 5.74 ln

(
4.26×105

peff
+

1705

Im

)
(22)

where Im has units (Pa-s). The effective peak overpressure, peff (Pa), can vary

depending on the orientation of the person to the blast and nearby surfaces.

To represent the worst-case, peff is assumed to be the peak reflected overpres-

sure [30], and calculated as

peff = pr = 2pm

(
7p0 + 4pm

7p0 + pm

)
. (23)

185

Although the Bowen curves are considered a standard in evaluating lung

injury, they were developed from free-field blasts and have questionable appli-

cability for more complex blast scenarios. Consequently, several improved or

alternative models have been developed [4, 29, 34]. Bass et al. [35] analyzed a

12
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large set of animal experiments for short duration blasts (< 30 ms) and pro-

posed somewhat improved curves. Axelsson and Yelverton [36] developed a

mathematical model linking chest wall velocity to injuries and validated it with

blast testing on sheep in various enclosed areas. The level of trauma to the lungs,

upper respiratory tract, gastrointestinal tract and solid intra-abdominal organs

was quantified by the adjusted severity of injury index (ASII). van Doormaal et

al. [37] proposed a simplified single point approach to the Axelsson model. In

their approximate approach, the inward chest wall velocity VAx (m/s) due to a

shock load with a single peak is

VAx

pm
=




−4.1863 t2eq + 2.003×10−2 teq + 7.982×10−9, if teq ≤ 0.001 s

f1(pm, Im) f2(pm) + 1.589×10−5, otherwise

(24)

where teq = 2 Im
pm

is the equivalent triangular pulse duration and

f1(pm, Im) =
4.5×10−5

1 + exp
[
−6.806−ln(teq)

0.845

] − 2.1147×10−5, (25)

f2(pm) = −7.3786×10−19p3
m + 1.8576×10−12p2

m − 2.0727×10−6pm + 1.579.

(26)

The correlation between ASII and chest wall velocity determined from the ex-

periments and models is

ASII = (0.124 + 0.117VAx)
2.63

(27)

The ASII value can be associated with varying levels of injury. In this study,

we consider only a lethality of ≥ 50%, which corresponds to ASII ≥ 3.6. The

Axelsson model can assess injury from multiple shocks in enclosed environments.

However, the procedure for approximating injury from a shock with two peaks

using the single-point approach is significantly more complex [37]. This would190

require tracking peak pressures and impulse of individual shocks, which is not

practical in large simulations. Instead, a single teq for the entire blast event is

calculated directly from pm and Im.

Other fatal injury modes include whole body displacement with either whole

body impact or head impact (skull fracture). These are evaluated from the

13
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probit equations in Lees [30]:

Yhead = 5− 8.49 ln

(
2430

pm
+

4×108

pm Im

)
(28)

Ybody = 5− 2.44 ln

(
7380

pm
+

1.3×109

pm Im

)
(29)

Probit values are transformed to a probability of occurrence (percentage of the

affected population), R, through the correlation

R(%) = −3.25Y 3 + 48.76Y 2 − 206.60Y + 270.35 (30)

which is valid over the range 3.36 < Y < 6.64 (i.e. 5% < R < 95%) [38].

A review of fragment injuries and models is provided by Baker [10] and195

Lees [30]. Incapacitating injury from fragment penetration are classified as per-

foration of the skull, trunk, penetration to half-depth, or penetration hitting

central supporting bones of the limbs. Experiments show that the impact of

fragments traveling at more than a couple hundred meters per second are gen-

erally associated with fatal or incapacitating injuries [30]. As IED fragment200

velocities are expected to be much higher than this threshold, they are assumed

to be nearly always fatal and probabilities of fragment injuries are not assessed

in the current work.

While experiments are limited to recording pressures at a few specific loca-

tions, simulations can store pertinent blast data at every grid point within the205

computational domain. Key blast and fragment loading criteria can then be

determined through post-processing (e.g. via probit equations). However, one

should exercise caution when interpreting results from probit equations as they

have validity ranges corresponding to the experimental data. For example, pro-

bit equations for death by body displacement (skull and whole body) are limited210

to pm < 400 kPa [30]. For simulation-based risk predictions, the accuracy of the

numerical models should also be considered. The resolution of peak pressures

and impulse are directly related to the grid spacing and particular numerical

method. As an example, if pm is under-predicted by 10% then the probability

of eardrum rupture would only be 2− 6% lower, but if pm is under-predicted by215

30% then the probability of eardrum rupture is 10− 20% lower.
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3. Results and discussion

Several IED scenarios are presented to demonstrate the methodology for

simulating bare charge explosions in confined spaces, and explosives with frag-

ments. Validation of the multimaterial solver and the Euler-Lagrange particle220

method are described in earlier works [5, 6]. In the first scenario, experimental

data from an explosion in a semi-confined tube (i.e. tunnel-like geometry) pro-

vides additional validation of the flow solver. Next, an explosion on a subway

platform is simulated and the potential for human injuries is assessed. In the

third example, IEDs with fragments are modeled to understand the effect of225

charge shape on fragment acceleration. Finally, we present a case representing

the detonation of an IED with fragments very near a bomb disposal technician.

A multi-step approach is used to reduce computational cost for the larger

simulation cases. This technique is common in blast simulations [9, 39], because

a large portion of the computational domain further away from the explosion230

is quiescent in early simulation times. Simulations were run on an HP Z800

workstation which has 12 processors (Intel Xeon X5650 @2.67GHz) and 32 Gb

RAM. For blast simulations in the multimaterial solver, the 3D domains are first

filled with the ambient air using an ideal gas EOS with γ = 1.4, ρ0 = 1.2 kg/m3,

and p0 = 101325 Pa. The explosive material is then patched into the domain235

to initialize cells in the appropriate region. The JWL EOS and detonation

parameters for explosives used in this work are given in Table 1. Parameters

are taken from Dobratz [21] for TNT and C4, and from Zakrisson [40] for the

Swedish m/46 explosive.

3.1. Semi-confined explosion in a tube240

Studies of explosions in tubes are useful in understanding the risks of IED

attacks in tunnels. For example, Pennetier, William-Louis, and Langlet [11]

conducted scaled tests of propane-oxygen explosions in square tubes designed

to represent railway tunnels and a subway station. At full scale, their tests

represented TNT charges of 0.5− 20 kg with a tunnel cross-section of 5× 5 m.245
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Table 1: JWL EOS and detonation parameters for the explosive materials.

ρ0 A B DCJ pCJ edet

Explosive (kg/m3) ω (GPa) (GPa) R1 R2 (m/s) (GPa) (MJ/kg)

TNT 1630 0.30 371.2 3.231 4.15 0.95 6930 21.0 4.294

m/46 1500 0.29 759.9 12.56 5.10 1.50 7680 21.25 4.700

C4 1601 0.25 609.8 12.95 4.50 1.40 8193 28.0 5.621

The current test is based on experiments of a detonation inside a long cylindrical

steel tube, as described in [41] and illustrated in Figure 1. The tube has a

diameter of 1.5 m and length of 24 m. One end is closed while the other is open

to the outside environment. A 0.5 kg spherical charge of PETN-based Swedish

plastic explosive (m/46) was detonated in the center of the tube at 1.0 m from250

the open end. It is worth noting that when scaled up by a factor of four, this test

represents a 32 kg charge of m/46 in a 6 m diameter cylinder (i.e. approximate

dimensions of an underground train tunnel). The external volume surrounding

the open end of the cylinder is included in the model to allow for expansion of

the detonation products outside of the tube. The 3D simulation is split into255

two steps. The first step includes a section of the tube which extends up to

nine meters from the open end of the tube. Pressure measurements from two

identical experiments were recorded on the cylinder wall at 12 m and 21 m from

the open end of the tube.

Figure 1: Schematic of the tube explosion model showing locations of the gauges and explosive

(dimensions in meters). Distances from the open end of the tube (x = 0) are noted.
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The m/46 charge is modeled with the programmed burn model and JWL260

EOS parameters in Table 1. The 1DMM solver is used to provide an initial

solution of the detonation which is interpolated into the step 1 domain. The 1D

simulation was finely resolved, with a cell size of 1.0 mm, and were run until

the shock was nearly 0.75 m from the origin (t = 0.30 µs). In steps 1 and 2, a

constant cell size of 0.03 m is prescribed up to 0.75 m from the explosive origin.265

The cell size increases up to 0.05 m along the tube, and gradually increases up

to a maximum of 0.15 m outside of the tube. These cell sizes were determined

from mesh studies and previous work [41] to provide a good resolution of the

propagating shocks. After 10 ms, the step 1 solutions are interpolated into the

full domain of step 2 and the simulation continued until a final time of 120 ms.270

Figure 2 shows pressure contours on a cut plane at the end of step 1.

Figure 2: Pressures at t = 10 ms on a slice of the step 1 domain in the tube explosion.

Overpressures from the simulations are compared with test data for the two

gauge locations in Figure 3. The experimental data has been processed with

a low-pass filter to reduce noise. After detonation, there are multiple shock

reflections from the tube walls. These shocks coalesce as they propagate down275

the tube forming a single shock wave that is essentially one-dimensional by

the time it reaches gauges #1 and #2. Streak diagrams, shown in Figure 4,

were created from the simulation using a line that runs along the tube axis

through the entire domain. These can be correlated with the gauge locations
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Figure 3: Pressure histories from the simulation and experiment at (a) 12 m and (b) 21 m

from the tube opening.

for insight into the shock dynamics. Near the explosion there is a strong shock280

that propagates down the tube, and rarefaction waves from the tube opening

which cause the pressure to drop significantly below the ambient value. This

occurs because the explosive detonation products expand into the large external

volume of air outside the tube, creating a very low pressure region inside the

tube. When the shock reaches the closed end of the tube, there is a strong285

reflected shock which then interacts with the rarefaction wave. This reflected

shock causes the large secondary pressure peak observed (at t ≈ 70 ms for

gauge #1 and at t ≈ 50 ms for gauge #2). The jump in pressure for gauge #1

at t ≈ 50 ms is due to the rarefaction wave from the open end. The other peaks

at gauge #2 (t ≈ 80 and 100 ms) are due to the interaction of the rarefaction290

wave and the reflected shock.

With the current set of JWL parameters for m/46, the simulations have

slightly earlier arrival times and higher peak pressures than the experiments.

This is possibly due to a difference in the chemical energy between the actual

explosive and JWL, or because the spherical explosive in the experiments was295

hand-packed and at a lower density than the JWL parameters. Nonetheless,

the overall agreement with the test data is very good.
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Figure 4: Streak diagrams of (a) density and (b) pressure for a line along the tube axis.

3.2. Explosion on a subway train platform

This numerical test demonstrates application of the simulation method for

risk assessment of explosions and terrorist attacks on land mass transport infras-300

tructures. We investigate explosions on an underground train platform, which

is similar to previously studied cases in the literature [12, 13]. Explosive charges

of 10 kg and 30 kg C4 were chosen to represent backpack or briefcase bombs

(common PBIED threats). A short section of the train platform is modeled, as

shown in Figure 5. The tunnel section is 28.5 m long with a diameter of 6 m.305

There are two entrances to the platform and three benches along the wall. A

hemispherical explosive charge is located on top of the middle bench.

Gauge points are located near the entrances to the platform and in front of

each bench. They are at 1 m height above the platform and 1 m in front of

the benches (roughly centered along the platform width). The simulation has310

two steps. Step 1 has a reduced domain size of approximately 3×4×4.5 m to

allow a finer mesh for the detonation calculation. The cell size is 8 mm near the

explosive and increases to a background size of 80 mm. Step 2 has a cell size

of 30 mm near the explosive which increases to a background size of 100 mm.

At the end of step 2 (t = 100 ms), the reflected shock pressures are reduced to315

near ambient conditions and the maximum impulse has been captured. Table 5

gives a summary of mesh and run times on the HP Z800 workstation. The total

number of elements (nel), number of processors used (nCPU), simulation time
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Figure 5: Computational domain, IED location, and gauge locations for the subway platform

explosion models.

(tsim), and actual run time (tsolve) are given for the 10 kg C4 simulations. The

30 kg C4 simulations were run on the same grids, but step 1 run time and total320

solve times differ slightly.

Table 2: Simulation details for the 10 kg C4 subway explosion.

Step# nel nCPU tsim (ms) tsolve (hr)

1 4.35×106 10 0 − 0.6 2.2

2 4.23×106 10 0.6 − 4 ∼24

Pressure and impulse histories from gauges in the 10 kg C4 simulation are

plotted in Figure 6. Gauges #2 and #4 are approximately 6 m from the charge

and have nearly identical blast wave profiles. Likewise, pressures at gauges

#1 and #5 are similar. Gauge #3 has not been included in this comparison325

because it has much higher pressures due to its proximity to the explosion.

There are many secondary shocks which contribute to the impulse. One of the

challenges for assessing internal blast loads is determining how many of the

secondary shocks to include in the impulse calculations (i.e. how long to run
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Figure 6: Pressure (a) and impulse (b) histories at gauges in the subway explosion with 10 kg

of C4.

the simulation).330

The probability of eardrum rupture in the 10 kg subway explosion is shown

in Figure 7. There are four regions of probability ranges indicated. The region

of > 90% risk of eardrum rupture charge covers the area up to roughly 6.5 m

from the explosive. Further from the explosive, the risk drops rapidly to below

50% but remains above 5% throughout the rest of the domain. In this scenario,335

shock reflections from the wall behind the charge will also cause higher pressures

and injury risks on the opposite side of the tunnel (near the train tracks).

Peak overpressures from an unconfined explosion have been calculated using the

empirical correlations of Kingery and Bulmash [42] for a hemispherical TNT

surface burst (assuming a TNT equivalency of 1.37 for C4 [42]). Empirical340

methods are often used to predict pressure and impulse, but they do not include

confinement effects. This comparison demonstrates how reflected shocks in the

enclosed tunnel increase the risk of eardrum injury. Empirical blast calculations

also cannot account for the shock diffraction around corners, which results in

lower pressures at the entrances observed in the simulations.345

Figure 8 shows the regions of 50% lethality from lung injury evaluated using

the Bowen curve based probit equation (Eq. 22) and the ASII criteria from the

Axelsson model. Disagreement between Bowen curves and the Axelsson model

has been reported in the literature [31, 34], but typically the Bowen curves
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Figure 7: Probability of eardrum rupture on the subway platform from (a) the 10 kg C4 charge

simulation and (b) an empirical-based calculation of a 13.7 kg TNT hemispherical blast.

give a higher injury prediction for a given pressure and duration. However,350

R(YL) > 50% for the 10 kg charge covers only a small area near the charge and

is much lower than the Axelsson model. The reason for this can be understood

through inspection of the PI graph for the Bowen curves [10, 30]. For a particular

injury level, there is a minimum value of impulse that must be exceeded. For a

50% lung injury, this impulse is roughly 1705 Pa-ms, which occurs only in a few355

small areas of the 10 kg simulation. Interestingly, the predicted 50% lethality

regions are roughly the same for the 30 kg charge. Teland et al. [34] note some

shortcomings in the method used to derive the Bowen curves. For example, the

blast wave duration was calculated and not measured from experiments. They

found that the Axelsson model agrees with the Bowen curves for large charges360

and is better for complex blast scenarios. While it is tempting to favor the

Axelsson model for lung injury predictions, the assumptions of the model should

be kept in mind. In particular, the current analysis assumes a single pressure

wave with duration estimated from an equivalent triangular pulse. With the

30 kg charge, the region of 50% risk probability extends further along the tracks365

than it does along the platform. This is due to the higher impulse along the

tracks as the blast wave is reflected off the opposite side of the tunnel and is

channeled along the tracks.

Regions of 50% probability of death from whole body displacement with

body impact or head impact are shown in Figure 9. While the risk of death370
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Figure 8: Probability of death due to lung hemorrhage during an explosion of (a) 10 kg and

(b) 30 kg C4 on the subway platform. 50% risk probability regions evaluated using the Bowen

curves R(YL) and chest wall velocity (ASII) methods.

from this type of injury covers a larger region than the lung injury, it is not a

direct blast injury. Rather, it requires that the person be thrown by the blast

into a hard surface. The risk of impact resulting in head injury (skull fracture)

is higher than the body injury. For the 10 kg charge, the 50% skull fracture

injury risk covers an area up to roughly 5 m from the explosive. Beyond this, the375

probability drops very rapidly to < 5%. The 30 kg charge size results in a much

larger area for risk of death from whole body displacement injuries. The current

simulations do not account for people or obstructions on the subway platform

which would alter the blast propagation and injury risks. If the explosion were

to occur when a train was present at the station, then the reduction in enclosed380

volume is expected to amplify the blast and increase the injury risks. The

presence of people or movable objects in the model would potentially decrease

the size of the injury regions as some of the blast energy would be absorbed [13].

3.3. Explosive geometry influence on fragment acceleration385
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Figure 9: The 50% probability of death due to whole body displacement with body impact

or head impact during an explosion of (a) 10 kg and (b) 30 kg C4 on the subway platform.

Many factors can influence the acceleration of fragments during an IED det-

onation. These include the mass and distribution of fragments, properties of

the metal, mass and energy output of the explosive, and the explosive configu-

ration. The Gurney model is commonly used to predict velocities of fragments

in contact with an explosive, such as from cased charges [42, 43]. For common

symmetric configurations, the Gurney equations can be generalized as

VG =
√

2E

[
C/M

Φ

]1/2

,where Φ =





(
1 + 3

5
C
M

)
for a sphere

(
1 + C

2M

) (
1 + D

2L

)
for a cylinder

(
1 + C

3M

) (
1 + 2L

D

)
for a disk

(31)

where
√

2E is the Gurney characteristic velocity, which is related to the chemi-

cal energy of the explosive, and C/M is the ratio of charge mass to metal mass.

These expressions account for energy losses due to finite sized charges [43]. As

L→∞ for a cylinder, the equation reduces to an infinite-length cylinder config-

uration. Likewise, as D →∞ for a disk, the equation reduces to the symmetric390

sandwich configuration. For a given C/M , Gurney analysis predicts that a

symmetric sandwich will produce the highest fragment velocities, followed by

an infinite-length cylinder, and finally a spherical charge. This can be attributed
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to the confinement of the detonation gases provided by each configuration.

The Gurney model assumes that most of the detonation energy is trans-395

ferred into kinetic energy of the metal casing before it fractures. As the casing

breaks apart, there is gas leakage and the energy transfer is terminated. Gurney

characteristic velocities are based on carefully controlled experiments, and are

known to overpredict velocities if fracturing occurs early [42]. Consequently, the

Gurney equations are not well-suited for predicting the velocities of preformed400

fragments with gaps. This situation arises with IEDs which contain preformed

fragments, such as nuts, bolts, nails, or ball bearings packed around an ex-

plosive. Preformed fragments have also been used in experiments, such as the

dense fragment generator described by Lixin et al. [44] which used a tamped

conical/disk-shaped charge to drive 5 mm steel balls. In their Gurney analysis,405

Lixin et al. applied a ‘correction factor’ which reduced the predicted VG by 10%.

The objective of the current numerical study was to investigate IED frag-

ment acceleration for different charge geometries. The 3D simulations consist of

symmetric configurations of spherical, cylindrical, and disk shaped C4 explosive

charges surrounded by a layer of spherical fragments. The simulations utilized

three symmetry planes to reduce computational cost. Simulation domains with

dimensions are shown in Figure 10 for the different configurations. The frag-

ments were modeled as Lagrangian particles which were located around the

radius of the sphere and cylinders, and on the ends of the disks. In each case,

the effective charge thickness (the distance from the center of the explosive to

the nearest surface) was 50 mm. However, this constraint results in a varying

charge mass for the different explosive geometries. Computational domain sizes

were large enough to allow the particles to reach a constant terminal velocity,

V i
T ≡ max | ui

p(t) |, ∀ t ∈ [0, tsim]. (32)

The study included two length-to-diameter (L/D) ratios for cylindrical and

disk charges to assess the effect of increased geometric confinement (reduced

side/end losses). With L/D = 1.0, the cylinder and disk explosive dimensions

are identical. The particles were steel (ρ = 7800 kg/m3) with a diameter of410
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dp = 5 mm. To generate the initial locations of the closely packed particles, a

mesh of triangular elements covering the surface of the explosive was generated

with a cell size of 5 mm. Initial particle locations were then defined using

the coordinates of the mesh vertices. The surface meshes were shrunk slightly

to ensure that no particles were located on the symmetry planes. Table 3415

gives the explosive radius D/2, explosive half length L/2, number of Lagrangian

particles np, explosive mass mc, and total particle mass
∑
mp for the charge

configurations as modeled (one-eighth of the full geometry).

Figure 10: Simulation domains with dimensions for the sphere, cylinder, and disk charges

with particles. Three symmetry planes are used in the 3D models.

Table 3: Explosive dimensions, explosive mass, number of particles, and total particle mass

in the IED charge shape simulations.

Charge shape D/2 L/2 mc np
∑
mp

(mm) (mm) (g) (g)

Sph 50 - 105 167 85

Cyl (L/D = 1.0) 50 50 157 173 88

Cyl (L/D = 1.2) 50 60 188 205 105

Disk (L/D = 1.0) 50 50 157 83 42

Disk (L/D = 0.833) 60 50 226 125 64

A uniform cell size of δ = 2.5 mm was used for the simulations. This gives 20

cells through the explosive thickness, and a particle diameter to cell size ratio of
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δ/dp = 0.5. The explosives were center-initiated and the simulations were run to

tsim = 80 µs. Each simulation domain contained approximately 106 tetrahedral

cells and required less than one hour to complete, running on 10 processors of

the HP Z800 workstation. We define the variable

Ψ ≡ | xi
p(t0)− xd |

min | xi
p(t0)− xd |

(33)

to express the initial particle position relative to the detonation point, xd. Par-

ticles at Ψ = 1 are nearest to the detonation point and expected to have the420

highest velocity. Figure 11 shows the particle terminal velocities plotted against

Ψ. The multimaterial initialization on the unstructured grid gives a rough rep-

resentation of the explosive surface, as shown in Figure 10. Because the particles

are initially located on the explosive surface, interpolations between fluid and

particles in the numerical model are subsequently affected. This causes a varia-425

tion in VT for particles at the same Ψ, as observed in the simulations. Limiting

of the interphase coupling terms also contributes somewhat to the scatter in VT .

However, this limiting accounts for less than a 0.05% error in the total energy

conservation for these simulations. Cubic polynomial curve fits to the termi-

nal velocities, ṼT (Ψ), are plotted. The average deviation relative to the fitted430

curves is ≤ 40 m/s for all cases. With the spherical charge, all particles are at

Ψ = 1 as they are equidistant from the detonation point. As Ψ increases in the

cylindrical and disk charges, the interaction between the detonation wave and

particles transitions from a head-on to a side-on shock impact. Consequently,

VT rapidly decreases and particles on the edge of these charges have a smaller435

velocity component normal to the explosive surface.

Table 4 gives C/M ratios for the configurations, particle velocities from simu-

lations, calculated Gurney velocities, and a ratio of simulated and Gurney veloc-

ities. Two Gurney velocities are given, the first assumes infinite length cylinders

and infinite diameter disks (VG,∞) and the second uses equations with side/end440

losses (VG,losses). Gurney calculations assume a value of
√

2E = 2.68 km/s

for C4. Note that C/M is increasing between the sphere, cylinder, and disk

charges. The simulated fragment velocities are ∼40-55% of the VG,∞ predic-
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Figure 11: Final particle velocities versus relative initial positions, Ψ. Sphere, cylinder (L/D =

1.2), and disk (L/D = 0.833) charges are plotted in (a) and cylinder and disk with (L/D = 1.0)

are in (b).

tions, implying that a large amount of energy is not transferred to the particles.

Calculations with end losses show a somewhat better agreement, but the trend445

in fragment velocity versus configuration has reversed (i.e. the disk charges have

to lowest VG,losses). The modified Gurney approach for finite charge sizes as-

sumes a reduction in explosive energy due to explosive not in contact with

metal [43]. However, this approach is not suited for the current configurations

which have gaps between each particle. Nonetheless, simulations show that the450

side/end losses are important and there is a slight increase in ṼT for the larger

charges (∼3% increase for the L/D = 1.2 cylinder and ∼10% increase for the

L/D = 0.833 disk).

Previous work [6] has shown that the point-particle approach underestimates

the velocity of explosive driven fragments. However, the current analysis pro-455

vides relative comparison of VT from various IED charge configurations. As a

point of comparison, the experiments of Lixen et al. [44] with a conical/disk-

shaped dense fragment generator produced fragment velocities ranging from

1.70 km/s at the center to 1.20 km/s in the periphery. These velocities are

roughly 10-20% higher than those of the disk shaped IEDs in the current work,460

but had more confinement (i.e. a 5 mm casing around the charge and a 20 mm

steel tamper).
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Table 4: IED charge shape study results: charge to metal ratio, predicted fragment velocities

from simulations and Gurney equations, and the ratio of predicted velocities.

Charge shape
C/M ṼT (Ψ = 1) VG,∞ VG,losses ṼT (Ψ = 1)

VG,∞(km/s) (km/s) (km/s)

Sph 1.23 1.21 2.25 2.25 0.54

Cyl (L/D = 1.0) 1.78 1.33 2.60 2.12 0.51

Cyl (L/D = 1.2) 1.80 1.37 2.61 2.19 0.52

Disk (L/D = 1.0) 3.71 1.41 3.45 1.99 0.41

Disk (L/D = 0.833) 3.55 1.55 3.42 2.09 0.45

If we examine a particle at Ψ = 1 for each configuration, we observe that

the particles accelerate rapidly after the shock passage, and nearly reach their

terminal velocity after 30 µs. In each case, the unsteady forces (Fpg and Fam)465

account for more than 90% of the total particle force. In the cylinder and disk

configurations, the unsteady forces continue to act on the particle for a longer

duration, contributing to higher velocities for those geometries.

3.4. IED blast on a bomb disposal technician

This numerical test case is inspired by the full-scale experiments on Explosive470

Ordinance Disposal (EOD) bomb suits described by Dionne et al. [45] and Bass

et al. [31]. In the tests, a mannequin representing a 50th percentile North

American male (height = 1.75 m, weight = 77 kg) was dressed in the EOD suit

and placed in a kneeling positions to represent a common EOD work condition.

The EOD mannequin was subjected to close range explosions from a 0.567 kg475

spherical C4 charge at chest height (77 cm) and approximately 60 cm standoff

from the kneeling mannequin. The EOD suit is specifically designed to dissipate

the blast and protect vital organs in the chest from compressive pressure loads

and fragments.

We consider a scenario with a similar charge weight and standoff distance480
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from a kneeling anthropometric figure (the “bomb tech”). A schematic of the

problem and computational domains are shown in Figure 12. The dimensions

and shape of the bomb tech represent a 50th percentile male wearing an EOD

suit with arms extended towards the IED. In the current models, the bomb tech

figure is modeled by rigid surfaces. This will allow us to assess risks from the485

primary blast and fragments, but not injuries related to the body acceleration

(e.g. head and neck injury criteria). The explosive is a 0.5 kg cylinder of C4

(L/D = 1.5) which is surrounded by Lagrangian particles representing IED

fragments. The particles are 6 mm steel spheres with an inter-particle spacing

of 2 mm. This gives 288 particles around the full charge with a total particle490

mass of 0.25 kg. The explosive is located in the middle of a bench that is 45 cm

high, 40 cm wide, and 150 cm long. There is a solid wall behind the bench

which reflects the blast wave. The center of the explosive is approximately

50 cm above the ground and 60 cm from the bomb tech. The simulation was

conducted in two steps. Step 1 has a domain size of 40×30×30 cm and includes495

the region surrounding the explosive, up to the edge of the bench. Step 2 has a

larger domain size of 170×135×175 cm. Both domains assume symmetry along

the y = 0 plane.

In step 1, the explosive is center-initiated and the simulation progresses until

the blast wave nearly reaches the domain boundary. Step 1 has a cell size of500

2 mm near the explosive (giving 16 cells across the radius), then the cell size

increases gradually to a maximum background cell size of 10 mm. The step 2

domain uses cell sizes of 8 mm over the initial explosive region, 12 mm near the

bomb tech, and δ = 40 mm for the background mesh. A summary of the mesh

and run times on the HP Z800 workstation is given in Table 5.505

Simulation results at the end of step 1 (t = 0.03 ms) are shown in Figure 13.

The blast wave forms a bell-shape, due to the cylindrical charge geometry and

shock reflection off the bench surface. The particles have reached their maximum

velocity of approximately 1100 m/s. The z = 0 isosurface denotes the interface

between the explosive detonation products and air.510

In step 2, the blast wave and fragments propagate outward and impact the
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Figure 12: Schematic of the EOD blast problem setup. Computational domains utilize a

symmetry plane at y = 0.

Figure 13: Velocity contours for the fluid (|uf |) and particles (|up|) from step 1.
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Table 5: Simulation details for the IED blast on an EOD bomb tech.

Step# nel nCPU tsim (ms) tsolve (hr)

1 2.21×106 10 0 − 0.03 0.7

2 2.73×106 10 0.03 − 4 8.0

Figure 14: Contours of fluid pressure and particle velocities from step 2.

bomb tech. Blast pressures and fragment velocities at 0.4 ms after detonation

are shown in Figure 14. There are Mach reflections along the bench surface

and the back wall, resulting in high pressure shocks traveling outward along

these surfaces. The shock wave impacts the front surface of the bomb tech515

at t = 0.17 ms, but the particles do not arrive until t ≈ 0.6 ms. Figure 15

shows contours of maximum pressure and impulse on the domain surfaces of

the completed simulation. Pressure and impulse around the explosive charge

are very high, especially in the axial and radial directions due to the cylindrical

charge shape. The high shock pressures attenuate rapidly with expansion, but520

shock reflections from the back wall and chest surface of the bomb tech cause

localized high pressures in those regions. The shock is diffracted around the

bomb tech and the blast impulse on the top (head), sides, and back are greatly
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Figure 15: Maximum (a) pressure and (b) impulse tracked on the domain surfaces (contours

plotted on a log scale). The IED is shown at the initial location.

reduced. Shocks reflected from the back wall and bench surfaces reach the bomb

tech at ∼1.0 ms after the initial shock, but do not significantly contribute to525

the impulse.

The models can be used to determine probable locations of fragment impacts,

fragment velocity, and impulse. The protection levels of EOD suits are typically

quantified by a “V50” ballistic rating, which expresses the velocity at which 50%

of projectiles are stopped by the armor. These ratings are based on military530

standards, such as the STANAG 2920 which uses a 1.1 g fragment simulating

projectile. The V50 ratings vary between suit manufacturers, designs, and the

various suit components [46]. The 6 mm spherical fragments in the simulation

have a mass of 0.88 g and velocities greater than 1000 m/s, which exceeds the

V50 rating for many areas of the EOD suit. Therefore, it is possible that they535

could penetrate the EOD suit. However, critical areas of the suit, such as the

chest, neck, and groin, can have additional reinforcement and a higher V50

rating (e.g. > 1500 m/s) and may be able to withstand IED fragments. This

type of simulation can provide insight into specific EOD scenarios with IEDs,

and can easily be modified for parameter studies of different IED types and540

environments.
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4. Conclusions

This work has demonstrated the capabilities of a coupled Euler-Lagrange

simulation method for assessing risk from IED threats in realistic scenarios.

The increasing power of personal computers makes it possible to run larger and545

more detailed physics-based simulations which can play an important role in

countering the growing threat of terrorism and IEDs.

The CFD solver has been validated using test data from an explosion in

a partially confined cylinder. In this tunnel-like geometry, the blast quickly

evolves into a one-dimensional type shock wave that is more powerful than550

an unconfined air blast. Two cases of explosions on a subway train platform

have been simulated, with the predicted peak pressure and impulse were used

to develop 3D visualizations of predicted injury probabilities in the domain.

The enclosed geometry produces a complex blast wave profile with the impulse

increasing over a period of tens of milliseconds. With the smaller 10 kg C4555

charge, the extent of fatal lung injuries predicted by probit equations (based on

the Bowen curves) are much lower than the Axelsson method. This highlights

the need for more validation and improved human injury models which can be

adopted in blast simulations. IED fragments have been modeled by coupling

the CFD solver with a Lagrangian point-particle approach. Geometry of the560

IED directly influences the acceleration and terminal velocities of fragments

surrounding the charge. Particles around cylindrical and disk charges (both with

L/D = 1.0) have terminal velocities that are 10% and 16% higher, respectively,

than a spherical charge with the same effective charge thickness (albeit different

C/M ratios). Fragment velocities predicted by Gurney equations without end565

losses were higher than the simulations by roughly 40-55%. This implies that

a large amount of detonation energy is not transferred to the metal due to

gaps between the particles. Numerical simulation of an IED blast on a bomb

disposal technician shows the ability to assess risks from shock and fragment

loading in the near field. While EOD suits are designed to withstand close570

range detonation, IEDs produce high speed fragments which may exceed the
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suits’ ballistic rating.

Developing better predictive tools for real-life IED scenarios is valuable for

the future of emergency response planning. Future work will investigate increas-

ing robustness of the particle method, for larger particles and smaller charges,575

and extending the blast risk evaluation models for scenarios of crowded areas.
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[40] B. Zakrisson, B. Wikman, H.-Å. Häggblad, Numerical simulations of blast

loads and structural deformation from near-field explosions in air, Int. J.

Impact Eng. 38 (2011) 597 – 612.695

[41] M. A. Price, V.-T. Nguyen, H. H. Nguyen, J. K. Tan, C. Chew, T. Karasek,

Computational framework for simulation of air blast and structural inter-

actions, in: 22nd Int. Symp. Mil. Aspects of Blast and Shock, Bourges,

France, 2012.

[42] W. E. Baker, J. J. Kulesz, P. S. Westine, P. A. Cox, J. S. Wilbeck,700

Manual for the Prediction of Blast and Fragment Loadings on Structures

(DOE/TIC-11268), 1992.

[43] D. Crabtree, S. Waggener, Gurney-type formulas for estimating initial

fragment velocities for various warhead geometries, Naval Surface Weapons

Center, Dahlgren, VA, NSWC TR 86–241 (1987) 1–44.705

39



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[44] Q. Lixin, Q. Ming, W. Yu, Z. Yongqing, J. Daojian, Dense fragment gen-

erator, Propell. Explos. Pyrot. 27 (2002) 267–278.

[45] J. Dionne, J. Nerenberg, A. Makris, Reduction of blast-induced concussive

injury potential and correlation with predicted blast impulse, in: 17th Int.

Symp. Mil. Aspects of Blast and Shock, Las Vegas, USA, 2002.710

[46] G. Winfield, Bomb suit roundup, CBRNe World Summer (2009) 100.

40


