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Effective in-plane elastic moduli of quasi-random spatially irregular

hexagonal lattices

Abstract

An analytical framework is developed for predicting the effective in-plane elastic moduli (longitudinal
and transverse Young’s modulus, Poisson’s ratios and shear modulus) of irregular hexagonal lattices
with generalized form of spatially random structural geometry. On the basis of a mechanics based
bottom-up multi-step approach, computationally efficient closed-form formulae are derived in this ar-
ticle. As a special case when there is no irregularity, the derived analytical expressions reduce to
the respective well known formulae of regular honeycombs available in literature. Previous analytical
investigations include the derivation of effective in-plane elastic moduli for hexagonal lattices with
spatially random variation of cell angles, which is a special case of the generalized form of irregular-
ity in material and structural attributes considered in this paper. The present study also includes
development of a highly generalized finite element code for obtaining equivalent elastic properties of
random lattices, which is employed to validate the proposed analytical formulae. The statistical results
of elastic moduli obtained using the developed analytical expressions and using direct finite element
simulations are noticed to be in good agreement affirming the accuracy and validity of the proposed
analytical framework. All the in-plane elastic moduli are found to be significantly influenced by spa-
tially random irregularity resulting in a decrease of the mean values for the two Young’s moduli and
two Poisson’s ratios, while an increase of the mean value for the shear modulus.

Keywords: Hexagonal lattice; Spatial irregularity; In-plane elastic moduli; Cellular structure;

Honeycomb, Quasi-periodicity

1. Introduction

Hexagonal lattices/ lattice-like structural forms are present as materials and structures in abun-
dance across various length-scales (nano, micro and macro) within natural systems and artificial prod-
ucts, as shown in figure 1 (Gibson and Ashby, 1999). Such structures have received considerable
attention in last few decades as an advanced material because of the capability to meet high perfor-

mance application-specific demands in various critically desirable parameters such as specific strength
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and stiffness, crushing resistance, fatigue strength, acoustic properties, shock absorption properties,
electro-mechanical properties, corrosion and fire resistance (Gibson and Ashby, 1999). The application
of honeycomb cores for lightweight sandwich structures is an active area of research (Mukhopadhyay
and Adhikari, 2016¢; Yonggiang and Zhigiang, 2008; Zenkert, 1995). Honeycomb grill is commonly
used to reduce noise and facilitate smooth airflow in computer fans. An in-depth understanding of the
structural behaviour of such hexagonal lattices is useful in emerging research fields of nano-materials
like Graphene and Boron Nitride, which are often idealized as hexagonal periodic structures (Liu et al.,

2012; Mukhopadhyay et al., 2016a; Pantano et al., 2004).

Structure of woods (like cork and balsa), bone structure, leaf tissues,
epidermal cells etc; Application in various engineering and medical
appliances like smart materials, angioplasty stents, smart bandage etc.
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Figure 1: Occurrence and application of hexagonal lattices across the length scales

To eliminate the need of a detailed finite element modelling for hexagonal lattices/ honeycombs as
a part of another complex structural system (host structure such as a sandwich panel), such lattices
are generally modelled as a continuous solid medium with equivalent elastic moduli throughout the
domain. For example, the effective elastic properties of the honeycomb-core are required to characterize

the static and dynamic response of the sandwich panels such as deflection, natural frequency etc.



Estimation of effective elastic properties is quite common in the literature of mechanical sciences
(Michel et al., 1999; Tang and Felicelli, 2015; Vilchevskaya and Sevostianov, 2015). A similar approach
is followed to evaluate the effective material properties of different nano-structures having hexagonal
configurations (Mukhopadhyay et al., 2016a). It is a common practice to consider a representative
unit cell to model various other periodic structures (Javid et al., 2016). Extensive research has been
conducted so far to predict effective elastic properties of regular hexagonal lattices without any form
of irregularity (El-Sayed et al., 1979; Gibson and Ashby, 1999; Goswami, 2006; Malek and Gibson,
2015; Zhang and Ashby, 1992). Other crucial research areas concerning different responses related to
honeycombs include crushing behaviour, low velocity impact, buckling analysis and wave propagation
through lattices (Gonella and Ruzzene, 2008a,b; Hu and Yu, 2013; Jang and Kyriakides, 2015; Jimenez
and Triantafyllidis, 2013; Klintworth and Stronge, 1988; Liu et al., 2016; Schaeffer and Ruzzene,
2015; Wilbert et al., 2011; Zschernack et al., 2016). A substantial amount of scientific literature
is available dealing with perfectly periodic hexagonal auxetic lattices (Critchley et al., 2013; Evans
and Alderson, 2000). Recently theoretical formulations have been presented for equivalent elastic
properties of periodic asymmetrical honeycomb (Chen and Yang, 2011). Tailorable elastic properties
of hierarchical honeycombs and spiderweb honeycombs have also been reported (Ajdari et al., 2012;
Mousanezhad et al., 2015). Analysis of two dimensional hexagonal lattices/honeycombs, as presented
in the above literature review, are based on an unit cell approach, which can be applied only for
perfectly periodic lattice forms.

The major limitation of the aforementioned unit cell based approach is that it cannot be used
to analyse a system with spatial irregularity. Spatial irregularity/variability in lattices is practically
inevitable; it may occur due to structural defects, manufacturing uncertainty, variation in temper-
ature, micro-structural variability and pre-stressing. Moreover, development of novel metamaterials
(Mukhopadhyay and Adhikari, 2017; Srivastava, 2016) having hexagonal micro-structures may involve
spatially varying structural and material attributes. To consider the effect of irregularity in cellular
lattices, voronoi honeycombs are found to be considered in the literature (Li et al., 2005; Zhu et al.,
2001, 2006). Dynamic crushing of honeycombs with irregularity in cell wall thickness and cell shapes
have been investigated (Li et al., 2007). Triantafyllidis and Schraad (1998) have studied the failure
surface of aluminium honeycombs for general inplane loading considering micro-structural imperfec-
tions. Papka and Kyriakides (1994, 1998) and Jang and Kyriakides (2015) have reported numerical
and experimental study of honeycomb crushing and buckling behaviour accounting geometrical im-

perfections, such as over/ under expanded cells and variation in length of bond line. The effect due
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Figure 2: Typical representation for (a) a regular hexagonal lattice (b) an irregular hexagonal lattice with spatially
random cell angle (c) an irregular hexagonal lattice with generalized form of spatially varying structural randomness

to defects on regular as well as voronoi honeycombs and the effect of manufacturing uncertainty on
auxetic honeycomb have been reported by Ajdari et al. (2008) and Liu et al. (2014), respectively.
Though the above mentioned studies substantially investigate the effect of irregularities based on lim-
ited number of expensive samples, there is a further need to extend these works following a more
realistic and robust probabilistic framework for spatially random imperfections/irregularities in order
to develop appropriate uncertainty quantification models. For voronoi honeycombs, the shape of all
the irregular cells may not be necessarily hexagonal that violates the presumption of hexagonal cell
structure. A thorough review of the literature on hexagonal lattices/ honeycomb dealing with dif-
ferent forms of structural irregularity reveals that the investigations are commonly based on either
expensive finite element (FE) simulations or experimental investigations. As experimental investiga-
tions are expensive and time consuming, it is practically not feasible to quantify the effect of random
irregularities in lattice structures by testing huge numbers of samples. In the finite element approach,
a small change in the geometry of a constituent cell may require a completely new mesh generation.
For dynamic and quasi-static analysis, separate finite element modelling of the honeycomb core in a
sandwich structure may increase the degrees of freedom for the entire system up to such an extent
that makes the overall process unmanageably complex and prohibitively expensive for simulation. In
case of uncertainty quantification using a Monte Carlo based approach, the problem aggravates as a
large number of expensive finite element simulations are needed to be carried out (Dey et al., 2017a,b,
2016a,b,c,d; Hurtado and Barbat, 1998; Mahata et al., 2016; Mukhopadhyay, 2017; Mukhopadhyay
et al., 2015, 2016b,c). Application of surrogate based approaches to achieve computational efficiency,

as adopted in many of these papers, does not make the analysis physically insightful and this approach



often suffer from lack of confidence in the predicted results. Moreover, surrogate based approaches
may not perform well in case of high non-linearity in the model and high dimensional input param-
eter space, which becomes a crucial factor in analysing spatially irregular lattices. Besides that, for
identifying application-specific lattice microstructure of novel materials following an inverse approach
based on optimization may also require large number of iterations. Moreover, a large scale numerical
simulation to quantify the effect of irregularity in cellular lattices may not necessarily yield proper un-
derstanding of the underlying physics of the system. An analytical approach for this purpose could be
a simple, efficient, yet an insightful alternative. Recently an analytical framework has been reported
for in-plane elastic moduli of hexagonal honeycombs with spatially varying cell angles as shown in
figure 2(b) (Mukhopadhyay and Adhikari, 2016a,b). However, this model of irregularity is of limited
practical resemblance and can be regarded as a random distribution of over and under expanded cells
only. Thus there exists a strong rationale to develop realistic analytical formulations for a generalized
spatially random irregularity model (as shown in figure 2(c)), wherein the irregular cells are randomly
disordered following a generalized pattern, but they still maintain a hexagonal structural configura-
tion. Moreover, spatially random variation of intrinsic elastic modulus is also an important factor for
investigation in this regard.

In the present paper, we have developed an analytical model for generalized spatial randomness in
structural and material attributes (individual and compound effects) to quantify the effect of irreg-
ularity in the effective in-plane elastic properties. The previously developed formulation for in-plane
elastic moduli dealing with variation in cell angle only (Mukhopadhyay and Adhikari, 2016a,b) can
be treated as a special case of the present analytical model. The closed-form expressions developed
here can be a computationally efficient and less-tedious alternative to the conventional expensive finite
element simulation approach for various applications. This paper is organized hereafter as follows.
The description of the underlying concepts of the proposed bottom-up approach including detailed
explanation of the definition for degree of irregularity are described in section 2. Analytical derivation
of the expressions for the five in-plane elastic moduli is given in section 3. Validation of the closed-
form expressions for in-plane elastic moduli with the results of direct finite element simulation and
detailed results with appropriate discussions on the effect of spatially random irregularity is furnished
in section 4. Summary of the results and discussion on the perspective of this paper is provided in
section 5. Finally, section 6 presents the conclusion and prospective future works on the basis of the

concepts developed in this paper.



2. Spatially random irregularity in hexagonal lattices
2.1. The concept of a representative unit cell element (RUCFE)

The aim of this work is to develop an analytical framework for deriving closed-form expressions of
effective in-plane elastic moduli for spatially irregular hexagonal lattices, wherein the structural units
are different in geometry along a two-dimensional plane; but they do maintain a particular shape.
One structural unit may be considered as shown in figure 3(b) and the entire lattice structure shown
in figure 3(a) is basically a tessellation of the shape shown in figure 3(b) with different values of the
lengths of the three members and their orientations. Thus such repetition of the representative units
can be referred as quasi-periodicity. The underlying philosophy of the proposed idea is that the entire
irregular hexagonal lattice structure consists of several representative unit cell elements (RUCE) at
the elementary level as shown in figure 3(a). Each of the RUCEs possess different individual elastic
moduli depending on its structural geometry and intrinsic material properties (i.e. [y, lo, I3, a, B,
v, Ey are different for the RUCESs in the present analysis; refer to figure 5 for the symbols). The
effect of irregularity in material and geometric attributes are accounted in the elementary local level
first by analysing the RUCEs and then the effect of such irregularity is propagated to the global
scale (equivalent in-plane properties of the entire irregular lattice structure). This is achieved by
following a multi-scale and multi-stage framework as described in figure 4. The closed-form formulae
for five in-plane elastic moduli of a single RUCE are derived as a function of their respective material
and geometric attributes. Thus the formulae developed for a single RUCE is effectively capable of
expressing the equivalent material properties at local scale. The RUCEs are idealized further in this
stage on the basis of the adopted assembling scheme. Subsequently, using the formulae for a single
idealized RUCE, the expressions for effective elastic moduli of the entire irregular lattice are derived
based on the basic principles of mechanics along with the equilibrium and deformation compatibility
conditions following a multi-stage approach.

The analytical framework of deriving closed-form formulae for elastic moduli of the entire irregular
lattice structure consists of the following four stages: selection of appropriate RUCE (for capturing
local behaviour) and adoption of a proper idealization scheme (for propagating the local attributes to
global level); derivation of expressions for in-plane elastic moduli of a generalized RUCE in terms
of material and geometric properties; derivation of equivalent elastic moduli for each strip (refer
to figure 4) in terms of the equivalent material properties of individual constituent RUCEs of that
particular strip and finally, derivation of the in-plane elastic moduli of the entire irregular lattice in

terms of the equivalent elastic moduli of the constituent strips. Thus, the expressions for equivalent
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Figure 3: (a) Typical representation of an irregular honeycomb (b) Representative unit cell element (RUCE) (c)
Tlustration to define degree of irregularity (d) Unit cell considered for regular hexagonal lattice by Gibson and Ashby
(1999)

elastic moduli of the entire irregular structure are necessarily developed in terms of the material and
geometric attributes at elementary local level.

In the proposed analytical approach, each representative units (structural elements) of the lattice
are considered to possess random structural and material attributes, instead of considering homoge-
nized properties like a conventional unit cell that remains constant throughout the entire domain. In
the traditional approach, typically one unit cell is considered for the purpose of analysis. It is assumed
that a single such unit cell represents the entire analysis domain. However, this way of analysis is
invalid for stochastic systems having spatially varying structural and material properties, because the
constituent unit cells are not identical. Through the introduction of the concept of RUCE, the random
structural attributes along the spatial location are accounted for analysing such irregular systems.
In the present bottom-up framework, the RUCEs are chosen from the viewpoint of the adopted dis-
cretization scheme (refer figure 4) so that, being the smallest possible elementary units, they can be
used to capture the local material and geometric attributes effectively. Another crucial factor is that
the RUCESs should reasonably facilitate to assemble their individual local properties to the ‘strip’ level

first, and thereby to the ‘global’ level considering idealized blocks based on principles of mechanics.
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Figure 4: Idealization of RUCE and proposed bottom-up approach for propagation of the effect of irregularity from an
elementary level to the global level

Here the RUCEs are basically the representative elementary building blocks of the entire irregular

hexagonal lattice. For this reason, the word ‘element’ is used in the nomenclature ‘RUCE’. It is com-




mon in the literature of honeycombs and other lattice structures (Gibson and Ashby (1999)) to use the
phrase ‘unit cell” for analysing regular lattices, where the structure of the unit cell repeats in a plane.
However, the present analysis deals with irregular lattice that consists of several such unit cells, each
of them having different structural geometry (though there exists a particular pattern in the structural
geometry). Thus each of the unit cells have different equivalent properties in case of such irregular
lattice. Local elastic properties of the RUCESs are represented as a function of structural and material
irregularity Zy(w), where the parameter w is used to denote the random structural geometry/ irreg-
ularity. Here Z and U denote a particular in-plane elastic modulus and representative unit (RUCE),
respectively. To emphasize the fact that each ‘unit cell’ has different property in the present analysis,
the word ‘representative’ is used. To portray all the above three characteristics simultaneously (‘rep-
resentative’, ‘unit cell’ and ‘element’) the word RUCE (representative unit cell element) is chosen in
context to the proposed analysis of irregular lattices.

It is noteworthy that effectively three different loading directions are required to be analysed for
derivation of the expressions for five in-plane elastic moduli (refer figure 4). Stress oy is applied in
direction-1 for longitudinal Young’s modulus ( E7) and Poisson’s ratio v, while for analysing transverse
Young’s modulus (F5) and Poisson’s ratio s, stress oy is applied in direction-2. Shear stress 7 is
applied to obtain the expression of shear modulus (Gi2). The directions used are indicated in figure 3.
The notations used in the proposed multi-stage analysis for deriving the formulae of different elastic
moduli throughout this article are as follows, Zy: elastic moduli of a single RUCE; Z{;: elastic moduli
of a single idealized RUCE; Z: effective elastic moduli of a single strip; Zeq: equivalent elastic moduli
of the entire irregular lattice, where Z represents a particular elastic modulus. For example, Ejy
denotes the equivalent Young’s modulus in direction-1 for a single RUCE. The subscripts ¢ and j
(t=1,2,3,....,mand j = 1,2,3,...,n) are used to indicate the location of the RUCE or a particular
strip under consideration. In the present analysis, the entire irregular lattice is assumed to have m
and n number of RUCESs in direction-1 and direction-2, respectively. Thus, to denote a particular
parameter, the subscript of ij is used when a RUCE (/idealized RUCE) is referred corresponding
to a position of i column and j™ row (Z;;), while subscript j is used to refer a particular strip
corresponding to 5 row (Z;). The formulae developed are applicable for both compressive as well as

tensile stresses.



2.2. Definition of the degree of irregularity

To put the results into a proper context, a mathematically consistent and physically relevant
measure of irregularity in a lattice structure is necessary. The effect of irregularity on the effective
in-plane material properties of the entire lattice is dependent on the degree of disorder in the structural
geometry with respect to the regular configuration as shown in figure 3(a). To de fine the degree of
irregularity, it is assumed that each connecting node of the lattice moves randomly within a certain
radius (ry) around the respective node corresponding to the regular deterministic configuration as
described in figure 3(c). For physically realistic variabilities, it is considered that a given node do not

cross a neighbouring node, that is
h 1
rg <min | =, =, lcos@ 1
o< min (. 5. feoso) ()
In each realization of the Monte Carlo simulation, all the nodes of the lattice move simultaneously
to new random locations within the specified circular bounds. Thus, the degree of irregularity (r) is

defined as a non-dimensional ratio of the area of the circle and the area of one regular hexagonal unit

as
mr2 x 100

p— 2
" 2l cosO(h + Isin6) 2)

The notations used in the above expression for the degree of irregularity are explained in figure 3(d).

The degree of irregularity (r) has been expressed as percentage values for presenting the results in this
paper. The term ‘quasi’ is used to denote the form of structural irregularity considered in this study
because of the fact that even though the type of irregularity is quite general in nature, the lattice still
maintains a hexagonal cellular configuration following a practical and controlled variability depending

on the value of 7.

3. Analytical derivation of the expressions for in-plane elastic moduli

The derivation of closed-form expressions for the five in-plane elastic moduli of irregular lattices as
a function of its material and geometric attributes is discussed in this section. The expressions for the
elastic moduli of a single idealized RUCE are obtained first and thereby the final closed-form formulae
for the entire irregular lattice are derived based on the expressions of equivalent material properties

for a single idealized RUCE.
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3.1. Longitudinal Young’s modulus
3.1.1. Longitudinal Young’s modulus for an idealized RUCFE

Stress o7 is applied in direction-1 (refer figure 5) for deriving the expression of longitudinal Young’s
modulus for a single RUCE (E}y). From the condition of vertical equilibrium the free-body diagram

as shown in figure 5(c), it can be concluded that the vertical forces acting on points A and B should

|

(a) (b)

(©)
Figure 5: RUCE and free-body diagram for the proposed analysis of Ey;

be of equal magnitude and opposite sign. The horizontal forces acting on points A and B can be
expressed as P = 01L,b, where L, represents the length CD and b is the height of honeycomb sheet

(dimension perpendicular to the 1-2 plane). M; and M, can be expressed as

1
M, = §(Pl1 sinaw — Cly cos «v) (3)

M, = %(Plg sin 8 — Cly cos f) (4)
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Considering the rotational equilibrium of the free-body diagram presented in figure 5(c), the expression

C_P(llsina—lgsin6> (5)

for C can be obtained as

[y cosa — lycos B
The horizontal deflection of point A with respect to point O (6%,) consists of the deflection due to
force P and the force C' (Roark and Young, 1976)

PBsina CI?cosa
h 1 . 1 .
Do = ( 12,1  12E,1 )Smo‘ (6)

where the first and second terms in the bracket represents the deflection of point A with respect to

point O in the direction perpendicular to AO due to forces P and C respectively. The superscript h is
used to represent horizontal direction of the applied stress. Here, E, represents the intrinsic material
property of the material, by which the honeycomb cell walls (/connecting members) are made of. The
notation I represents the second moment of area of the cell walls, i.e. I = bt3/12, where t denotes the
thickness of honeycomb cell wall. In the derivation of the expression of E;y, the horizontal deflections
away from point O are considered to be positive. In a similar way, the horizontal deflection of point

B with respect to point O can be expressed as

PB3sin  Cldcosf
5h — 2 . 1 .
5O ( 12,1  12E.1 > sin § (7)

The distance of the point vertically below joint O and on the line AB (refer figure 5) is given by

[ sin Bl cos o — [ sin aly cos B
0o = (8)
lycosa — lycos B

Considering a linear strain field along the line AB, the effective horizontal deformation of the RUCE
is given by
do do
(Sh — 5h h
! Aollsina+ Bolgsinﬁ
o1 L, 2% (I + 1) (cos asin B — sin avcos )
Egt3 (14 cos oo — Iy cos B)Q

The strain in direction-1 can be obtained from equation (9) as

b o1 L1313 (Iy + 1y) (cos asin § — sin o cos B)° (10)
! Egt3 (14 cos oo — Iy cos 5)3
From equation (10), elastic modulus of a single RUCE in direction-1 is expressed as
Et3 (I cos v — Iy cos )°

B L, 213 (I, 4 Iy) (cos asin B — sin a cos ()°

Ew (11)

It is important to note here that the above expression of Fy is for a non-idealized RUCE having
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Figure 6: Idealization scheme of RUCE and the irregular lattice structure

a dimension of L, in direction-2. However, for assembling the local properties of RUCEs conveniently
to the global level, it is essential to obtain the equivalent material property of an idealized RUCE
(Ef,) that has a virtual dimension of L; (dimension of the j strip in direction-2) as shown in
figure 6. Considering a linear strain field, F;; can be obtained based on the deformation compatibility
condition along direction-1, i.e. the deformation of the idealized RUCE and non-idealized RUCE in

direction-1 should be equal

PB PB;

Y= 12
AniEw  ArE], (12)
Here Ay; = Lyb and Ay = L;b. The above equation can be reduced to
L
Ely = Bw=* (13)

J
3.1.2. Longitudinal Young’s modulus of the entire irreqular lattice

To obtain the longitudinal Young’s modulus of the entire irregular lattice (E\.,), a stress oy is
applied in direction-1 (refer figure 4). The deformation compatibility of j* strip ensures that the
total deformation of the strip in direction-1 due to stress oy (A;;) is the summation of individual
deformations in direction-1 of each idealized RUCE (Ay;;), while deformation of the idealized RUCEs

of that strip in direction-2 are same. Thus for the j strip

i=1
The equation (14) can be rewritten as
m
Elij = Z ElijBij (15)
i=1

where €;; and B; represent total strain and dimension in direction-1 for the j™ strip (refer figure 6(a)).

The notations used are described in subsection 2.1. Here B;; = (l1;; cos a; — lg;j cos ;) and B; =

13



>, Bij. Equation (15) leads to

O'1B " 0'1Bz
=D (16)
By i=1 Ui
From equation (16), equivalent Young’s modulus of j™ strip (Elj) can be expressed as
~ B
Eyj= g5 (17)
>
=1 E{Uz]

where E{Uij is the equivalent longitudinal elastic modulus in direction-1 of a single idealized RUCE
positioned at (i,7) that can be obtained from equation (13).

In the next step, closed-form expression for equivalent longitudinal Young’s modulus of the entire
irregular lattice (Ej.,) is obtained using the equivalent longitudinal Young’s modulus for a single strip
(Elj). Employing the force equilibrium conditions and deformation compatibility condition we have

n
o Lb = Z o1;L;b (18)

j=1
where L; is the dimension of j™ strip in direction-2 and L = z L;, as shown in figure 6(a). The
notation b represents the dimension of the lattice in the perpendlcular direction to 1-2 plane. As
strains in direction-1 for each of the n strips are the same to satisfy the deformation compatibility

condition, equation (18) leads to
ErgL =Y EyL; (19)
j=1
Using equation (17) and equation (19), the equivalent Young’s modulus in direction-1 of the entire

irregular honeycomb structure (E;.,) can be expressed as

n

1 B; L
iy = 7 P (20)
Jj=1 Z EI
1Uij

From equations (11), (13) and (20), the expression for the longitudinal elastic modulus of the entire

irregular lattice can be written as

E t3 n Z (llij COS (5 — lgij COS Bl])
B = s 1=1 21
leq L 12 lQ (llij + lQij) (COS Qg sin ﬂij — sin Q5 COS ﬁij)z ( )

j=1 Z 1257249

2
(llij COS Q5 — lgij COS ﬁ”)

3.2. Transverse Young’s modulus
3.2.1. Transverse Young’s modulus for an idealized RUCFE

Stress o9 is applied in direction-2 to derive the expression of transverse Young’s modulus for a RUCE

(Eqr) as shown in figure 7. Total deformation of the RUCE in direction-2 consists of two components,

14



namely deformation of the cell wall OC in direction -2 and deformation of the cell walls OA and OB
in direction-2. Deformation of the cell wall OC in direction -2 has two components: bending and

rotation. Bending deformation of joint C with respect to O in direction-2 can be expressed as
o _ Wigcos’y
bco 12E,1

where W = o3b (I3 cosaw — Iy cos ). The superscript v is used to represent vertical direction of the

(22)
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Figure 7: RUCE and free-body diagram for the proposed analysis of Foy

applied stress. Expression of the bending moment acting at joint O of the free-body diagram of OC
is M = ——Wl?’QCOS”.
according to their respective bending stiffness. Thus the components of M’ to members OA and OB

The bending moment M’ will be distributed to the members OA and OB
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lg ll

are: M,, = mM’ and M,z = mM’. Based on the standard formulae of Euler-Bernoulli
1+l 1+l
beam theory (deflection at one end of a beam with length [ due to application of moment M at the
MI? Mj Al

other end is given by: 0 = rotation of joint O can be expressed as ¢ = — Using the

6FE1 ) 66,1
expressions of M{, and M’, the vertical deformation of joint C with respect to joint O due to the

rotation of joint O is given by
v hblgcos®y
S DYON ()

The expressions of the bending moments acting at joints O, A and B of the free-body diagrams of OA

W (23)

and OB are given by

M = (W1l12cosa N - {i . M') (24)
MY = <W1l12cosa - {i - M’) (25)
M = <_W2122(:osﬁ - ii - M’> (26)
and M} = <—W2122C°SB 3 ii 3 M’) (27)

Considering rotational equilibrium of the free-body diagram shown in figure 7(c), the expression of the

vertical forces acting on joints A and B can be written as

Iy cos B

W= _l1 cosa — Iy cos 3 (28)
and W, = L cosl;CiSl?cos B W (29)
Vertical deflections of the joints A and B in reference with joint O can be expressed as
5 = % (30)
and 0%, = % (31)

Considering a linear strain field, the deformation in direction-2 of the point vertically below point O

and on the line joining A and B, with respect to joint O can be expressed as

da0(—lzcos B) + dpo(ly cos o)

0p = 32
© lycosa — Iy cos B (32)
Replacing the expressions of 6%, and 0%, equation (32) can be written as
1315 cos? 208(1; +1
v _ 212 cos® accos? B(1y + 1) (33)

 12E,1 (I cos o — Iy cos B)°
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The total deformation of a single RUCE in direction-2 can be expressed as
03 = 0o T 0rco + 00

w 2 9 i1y 1212 (I + 13) cos?® a cos? 3 (34)
= l5cos” vy [ I3+ + >
12,1 L+ (1 cos v — Iy cos B)

From equation (34), the strain in direction-2 can be obtained as
, 02 (ljcosa —lycosf) (l§ cos <l3 N Lily ) 1212 (I; + 1) cos? a cos? ﬁ) (35)

€4 =
2 E 3L, i+ 1y (I cos o — Iy cos 3)°
Using this, the transverse elastic modulus of the non-idealized RUCE can be given by
E3L i 12 (Iy + ly) cos? avcos? B
Eyy = it ) 12 cos® <l+ 12)—1—12 ) 36
v (l1 cos v — Iy cos ) < ’ T\ L+ (I cos a — I cos 3)° (36)

The above expression of Foy is for a non-idealized RUCE having a dimension of L, in direction-2.
However, for assembling the local properties of RUCEs conveniently to the global level, it is essential to
obtain the equivalent material property of an idealized RUCE (E%;) that has a virtual dimension of L;
(dimension of the j™ strip in direction-2) as shown in figure 6. Considering a linear strain field, the E;
can be obtained based on the deformation compatibility condition along direction-2, i.e. deformation

of the idealized RUCE and non-idealized RUCE in direction-2 should be equal. Enforcing this we have

WL, WL,

= 37
Ay ~ AL (37)
where A = B;;b. Thus the above equation reduces to
I
By = Eyy =L (38)
Ly

3.2.2. Transverse Young’s modulus of the entire irreqular lattice

For deriving the expression of equivalent transverse Young’s modulus for the entire irregular lattice
(Faeq), the transverse Young’s modulus for the constituting idealized RUCEs (El;;) are assembled as
discussed in this section. Stress o, is applied in direction-2 as depicted in figure 4. Considering the

force equilibrium of the j* strip under stress o,

O'QBb = <Z UQijBij) b (39)
=1

According to deformation compatibility condition, strains of each idealized RUCE in direction-2 (eg;;)

of the j strip are same. Equation (39) can be rewritten as

EyjesiBj = Y Ejyy62i; By (40)

=1
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where €y;; = €95, for i = 1,2...m in the ;™ strip. Egj represents the equivalent elastic modulus in
direction-2 of the j strip. equation (40) leads to

N ol
z:lE2Uz’jBij
=

B.

J

By = (41)

Total deformation of the entire lattice in direction-2 (As;) is the sum of individual deformations of

each strip in that direction,
n
j=1

where € and ey; represent total strain of the entire lattice and strain of j™ strip in direction-2,
respectively. L; is the dimension of j™ strip in direction-2 (refer figure 6(a)). Equation (42) can be

rewritten as
n
O'2L 09 Lj

EQeq j=1 EQ]

(43)

From equation (41) and equation (43), the transverse Young’s modulus of the entire irregular lattice

can be expressed as

Pua= 3 Ir (44)
7= g:l E2IU”BZ]
From equation (36) and equation (38), the above expression can be re-written as
By — LE 3 (45)

s

. (llij COS Q5 — lgij COS 6Zj)

n K]
Z m 1212

—1

— o 2. (ly;+1245) cos? a4 cos? B

]71 2' ) 2 A . ll’LJIQ’Lj 1ij 21]( lij 213 ) 9
i=1 <13” oS4 (lglj + lijtlaig * (L1ij cos ajj—laij cos Bij)?

3.8. Shear modulus
3.8.1. Shear modulus for an idealized RUCE

To derive the expression of shear modulus (Gioy) for a single RUCE, shear stress 7 is applied
as shown in figure 8. Considering deformation compatibility and equilibrium conditions, it can be
established that there is no relative movement of joint O with respect to joints A and B. From the
deformation compatibility condition that the deflection of point O for the members OA and OB should

be same in direction-2 (05, = 0%5) and the conditions of equilibrium for the free-body diagram of

18



AOB, the expressions of forces acting on points A and B can be written as

cot o

F = 46
' cota — cot I5; (46)
t
F, = o otf L (47)
cot a — cot 8
1
and V,=————-"F (48)
cot a — cot 3
The horizontal movement of point O with respect to point A is given by
Fisinal  V,cosal}\ .
5%, = — 4
04 ( 12B,1 126,1 )" (49)

Here the superscript s is used to represent the applied shear stress. Replacing the expressions of F}

F

M

C
(0]
MS
F
T
T F | s PSI Fy

M

(@) (®)

Figure 8: RUCE and free-body diagram for the proposed analysis of G1ap

and V; in the above expression, it can be obtained that 67, = 055 = 0. Thus, shear deformation of
the entire unit cell is only contributed by the member OC. Deformation of point C in the direction of
application of 7 with respect to joint O consists of two components, bending deformation and rotational
deformation. Bending deformation of point C in the direction of applied stress with respect to point

O can be expressed as
Fl3sin® v
58 — 3
O = TIoR T (50)

19



Flssi
where ' = 7b(l; cosa — lycos ) and M*® = % The bending moment M?® will be distributed

to the members OA and OB according to their respective bending stiffness. Thus the components
l l
of M* to members OA and OB are: M = ——M?* and M5 = ——M?*. Based on the standard
ll + l2 ll + Z2

formulae of the Euler-Bernoulli beam theory (deflection at one end of a beam with length [ due to
2

6E1

. Using these, the rotational deformation of point C in direction-1 with respect

application of moment M at the other end is given by: § = ), rotation of joint O can be expressed

s l1ls M?

as ¢ = ——————
6EI(ly +12)
to point O can be expressed as

, L1513 sin® v F
0eo = ¢l == 51
Total deformation of point C in direction-1 with respect to point O is given by
FZQ sin2 Y lllQ
060 = 0jo0 + Oico = — o (I 02
co = %co t 0rco 1251 (‘H_ll—i—b) (52)
From equation (52), replacing the expression of I, total shearing strain can be written as
7 (11 cos a — Iy cos 3) 12 sin® i1y
s = l 53
7 E3L, EA (53)
Thus, the expression for the shear modulus of a non-idealized RUCE is given by
T E 3L
G12U = — = Y (54)
Ys o 12sin®y (I; cosa — Iy cos ) <l3 + zflﬁg)

The above expression of Goy is for a non-idealized RUCE having a dimension of L, in direction-2.
However, for assembling the local properties of RUCEs conveniently to the global level, it is essential
to obtain the equivalent shear modulus of an idealized RUCE (GI,;;) that has a virtual dimension of
L; (dimension of the j™ strip in direction-2) as shown in figure 6. Considering a linear strain field,
the G1,; can be obtained based on shear deformation compatibility condition i.e. shear deformation

of the idealized RUCE and non-idealized RUCE should be equal.

T T
G ™~ Gl
12U 12U

From the above equation, expression for equivalent shear modulus of an idealized RUCE can be

L; (55)

obtained as

L.
Gl = Grav =2 (56)
Ly
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3.8.2. Shear modulus of the entire irregular lattice
Shear stress 7 is applied as shown in figure 4 for obtaining shear modulus of the entire irregular

lattice G1aeq. Considering the application of shear stress 7 in the j™ strip,

TB]' = Z TijBij (57)
i=1
Equation (57) can be rewritten as
GleYgB = Z GlZUz]%J (58)
i=1

where élgj denotes the equivalent shear modulus of the 5 strip. The notations ; and ~;; represent the
shear strains of j strip and individual RUCEs of the j strip, respectively. In equation (56), Glavi;
is the shear modulus of an idealized RUCE positioned at (i,j). From the deformation compatibility
condition, ; = 7;; for i = 1,2,...,m in the j strip. Therefore, equation (58) leads to

Z GIQUZJ
B.

J

Gho; = (59)

Total shear deformation of the entire lattice structure under the application of shear stress 7 is

obtained by the summation of the individual shear deformations of n number of strips. Thus
VL= ki (60)
j=1

where 79 denotes the shear strain of entire lattice. Using the definition of G2, equation (60) can be

written as
n
T Tj

GlQeq j=1 Glgj !

where 7 = 7;. Using equation (59) and equation (61), equivalent shear modulus of the entire irregular

lattice can be obtained as

GlQeq i Lj B] (62)
=t ; G{2UUBU
Replacing the expression of Gy, (refer equation (56)), the above equation leads to
LEt®
Gzeq m (63)

Z ({145 cos aj — la;; cos Byj)

—1
j=1 l1igl2ig
Z ( 3ij sin? ;5 <l3u Ti; Hai;

21



3.4. Poisson’s ratio vio

3.4.1. Poisson’s ratio vio for an idealized RUCE
Poisson’s ratio of a single RUCE for the loading direction-1 (v15r) is obtained as (refer figure 5)
6,
Ny = _e_’2 (64)
1
where €] and €, are the strains of a non-idealized RUCE in direction-1 and direction-2 respectively due

to loading in direction-1. ¢;(= €?) is obtained from equation (10). The vertical deflections of point A

with respect to point O due to application of load in direction-1 (refer figure 5) are obtained as

Pl3sina ClPcosa
%0 =~ ( BT 1261 ) cosa (65)

where the first and second terms in the bracket represents the deflection of point A with respect to

point O in the direction perpendicular to OA due to forces P and C respectively. In a similar way,

the vertical deflection of point B with respect to point O can be expressed as

3 3
o= (Pl2s1nﬁ B Cllcosﬁ) cos 3 (66)

12E,1 12E,1

Similar to equation (32), deformation in direction-2 of the point vertically below point O and on the

line joining A and B, with respect to joint O can be expressed as
80(=lacos B) + 05 (l cos @)
[y cosa — Iy cos B
_ 01lf3L, (11 + l3) cos o cos B (cos acsin § — sin v cos 3)
B Et3 (Iy cosa — I cos 5)2

Thus the strain in direction-2 due to application of load in direction-1 can be obtained from equa-

5 =

(67)

tion (67) as
, o213 (Iy + Iy) cos accos B (cos asin 3 — sin av cos f3) (68)
€ =
? E,t3 (I cos o — Iy cos §)°

Using the definition of Poisson’s ratio as shown in equation (64), the expression of Poisson’s ratio

corresponding to loading in direcion-1 for a non-idealized RUCE can be obtained as

cos acos 3 (Iy cosa — Iy cos 3)
Vv = — (

69
cos asin f — sin acos f5) L, (69)

The above expression of 9 is for a non-idealized RUCE having a dimension of L, in direction-2.
However, for assembling the local properties of RUCEs conveniently to the global level, it is essential
to obtain the equivalent material property of an idealized RUCE (v/y;) that has a virtual dimension of
L; (dimension of the 4 strip in direction-2) in direction-2 as shown in figure 6. Considering a linear
strain field, the v{y; can be obtained based on deformation compatibility conditions: €| B;; = €] B;;

and €, L, = e L;, where (.)! is used to indicate a parameter corresponding to idealized RUCE. Thus
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the expression for Poisson’s ratio of an idealized RUCE is given by
Vigy = V12U§—j (70)
3.4.2. Poisson’s ratio vio for the entire irregular lattice
To derive the expression of equivalent Poisson’s ratio of the entire irregular lattice for loading
direction-1 (v12¢), the Poisson’s ratios for the constituting idealized RUCEs (v]y;) are assembled
as discussed below. For obtaining vy, stress o; is applied as shown in figure 4. Considering the

application of stress o; in the j* strip, the following equation can be obtained from equation (15)

using the basic definition of 4,
m

€2j Z €25 Bij
125 i—1 U12ij

where €;; and ey;; are the strains in direction-2 of 4% strip and individual idealized RUCEs of j*
strip respectively. 7/{]1% represents the Poisson’s ratio for loading direction-1 of an idealized RUCE
positioned at (,j). 19; denotes the equivalent Poisson’s ratio of the j™ strip for loading direction-1.
To ensure the deformation compatibility condition ey; = €g;; for ¢ = 1,2,...,m in the j™ strip. Thus

equation (71) reduces to

&

Dioj = 7 — (72)

m

>
1

i=1 Viouij

o

Total deformation of the entire lattice in direction-2 under the application of stress o is summation

of the individual deformations of n number of strips in direction-2
gL = Z €2 L; (73)
j=1

where €§'* is the total strain in direction-2. Using the basic definition of 15 equation (73) can be

rewritten as

V126q6$1712L = Z 1/12]'61ij (74)

j=1
where €/'* and €1; denote the strain of entire lattice in direction-1 and strain of j™ strip in direction-1
respectively. From the condition of deformation comparability the following condition can be estab-

lished: €/'* = €; for j = 1,2, ...,n. Thus from equation (72) and 74,

1 BL;
V12eq = z Z # (75)

Replacing the expression of U{QUU from equation (69) and (70) in the above equation, the expression
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of Poisson’s ratio for loading direction-1 of the entire irregular lattice can be obtained as

m
1 n Z (llij COS Oél'j — lgij COS B@])
V12eq = — 7 Z = : : (76)
L~ f: (cos a; sin fB;; — sin v cos fB;5)
‘]:
= COS (v €OS [3i;

3.5. Poisson’s ratio vo
3.5.1. Poisson’s ratio vy for an idealized RUCE

Poisson’s ratio of a single RUCE for the loading direction-2 (v9y7) is obtained as (refer figure 7)
6//
oy = —E—/l/ (77)

2

where €] and €] are the strains of a non-idealized RUCE in direction-1 and direction-2 respectively
due to loading in direction-2. €j(= €%) is obtained from equation (35). For deriving the expression of
¢/, the horizontal deflections of points A and B with respect to point O due to application of load in

direction-2 are obtained as
51— _ Wil cosasina
A0 12F, 1

(78)

v _ Wsl3 cos Bsin 3
Bo 12E,1

where W) and W, can be obtained from equation (28) and (29). Considering a linear strain field

(79)

along the line AB, the effective deformation of the RUCE in direction-1 due to application of load in
direction-2 is given by
do do
6” — 5// 6//
! Aoll sin «v BOlgsinﬂ
W32 (I; + l5) cos acos B (cos asin 3 — sin av cos 3)
12E,1 (1y cos o — Iy cos 3)?

where 0o is the distance of the point vertically below point O and on the line AB (refer equation (8)).

(80)

From equation (80) the stain in direction-1 due to application of stress in direction-2 can be obtained

as
, 020312 (Iy + I3) cos accos B (cos asin 8 — sin v cos 3)
€, =
! Et3 (14 cos v — Iy cos 6)2

Using the definition of Poisson’s ratio (refer equation (77)), the expression of Poisson’s ratio corre-

(81)

sponding to loading in direction-2 for a non-idealized RUCE can be obtained as
L1313 (Iy + 12) cos accos B (cos asin 3 — sin v cos 3)
(I cos o — Iy cos 3)° <l§ cos? (lg + b > + zfzg(z1+z2)cos2acos2g>

1412 (11 cos a—l2 cos 6)2

(82)

v = —

The above expression of 151y is for a non-idealized RUCE having a dimension of L, in direction-2.

However, for assembling the local properties of RUCEs conveniently to the global level, it is essential
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to obtain the equivalent material property of an idealized RUCE (v4,;;) that has a virtual dimension of
L; (dimension of the 4t strip in direction-2) in direction-2 as shown in figure 6. Considering a linear
strain field, the v, can be obtained based on deformation compatibility conditions: €] B;; = €/’ B;;
and )L, = €4’ L;, where (.)! is used to indicate a parameter corresponding to idealized RUCE. Thus

the expression for Poisson’s ratio of an idealized RUCE is given by

L.
Uy = VleL—J (83)
Y

3.5.2. Poisson’s ratio vy for the entire irregqular lattice

To derive the expression of equivalent Poisson’s ratio for loading direction-2 of the entire irregular
lattice structure (va1.,), the Poisson’s ratios for the constituting idealized RUCEs (v4,,;) are assembled
as discussed below. Stress oy is applied in direction-2 for obtaining vs1¢,, similar to the derivation
of Fy, (as shown in figure 4). If the application of stress oy in the j™ strip is considered, total
deformation of the j™ strip in direction-1 is summation of individual deformations of the idealized

RUCEs in direction-1 of that particular strip. Thus,

€;B; = Z €155 Bij (84)
i=1
Using the basic definition of 15, equation (84) leads to
Va1j€2; By = Z ’/2[1Uz'j€2ijBij (85)
i=1

where 75;; denotes the equivalent Poisson’s ratio for loading direction-2 of the 4t strip. €25 and €g;;
are the strains in direction-2 of j** strip and individual idealized RUCEs of j* strip, respectively. The
quantity v3,,; represents the Poisson’s ratio for loading direction-2 of an idealized RUCE located at
(4,j). To ensure the deformation compatibility condition €y; = €g;; for i = 1,2,...,m in the j strip.

Thus equation (85) leads to

m

; V211Uz'jBij
Volj = sz (86)

J
Total deformation of the entire lattice in direction-2 due to application of stress o, is summation of

the individual deformations in direction-2 of n number of strips. Thus

n
6527211/ = Z EQij (87)
j=1
where €72! is the strain of the entire lattice in direction-2. By definition of V91 equation (87) leads to
2 y q
9?1 LY
1 j
L=>Y —LI; (88)
V9leq ; Va1j !



where €/*! is the strain of the entire lattice in direction-1. From the condition of deformation com-
parability the following equality is established: 6‘(1]21 = ¢; for j = 1,2,...,n. Using equation (86) and
(88), the equivalent Poisson’s ratio for loading direction-2 of the entire irregular lattice structure can

be obtained as
L

B .

(89)

>
Jj=1 i 21U1]B

y

Replacing the expression of V211Uij from equation (83), the above equation can be rewritten as
L

m
Z (llij COS Qv — lQij COS 62])

lh]l% (Liij + lgzj) cos av;; cos [B;; (cos oy sin f;; — sin oy cos B;;)
l%”lgu (l135+12i5) cos? ayj cos? By )

2
(l145 cos as5—laij cos Bijz)

(90)

Uleq = —

n
1350245

- 2
=1 (ly;5 cos a;j — lg;j cos 5@) <l3w cos? ;5 (lgzj + lliﬁl%)

The negative sign in the expression of Poisson’s ratios (refer equation (76) and equation (90)) does not
indicate any auxetic characteristics in the present context; rather it is due to the fact that 3;; > 90°

as shown in figure 7.

3.6. Remark 1: regular lattices

The closed-form expressions of all the in-plane elastic moduli for irregular lattices in subsection 3.1
- 3.5 can be reduced to the formulae provided by Gibson and Ashby (1999) in the special case of
uniform honeycombs as described in Table 1 (subscript GA is used as denotation for the formulae of
regular honeycomb). With reference to the notations used for a regular honeycomb by Gibson and
Ashby (1999) as shown in figure 3(d), the notations of the present paper for regular honeycombs can
be expressed as: L = n(h + 1sin®); l1;; = loy; = l3i; = ;5 oy = 0; Bi; = 180° — 6; ~;; = 90°, for all
i and j. Using these transformations in equation (21), (45), (63), (76) and (90), the expressions of
longitudinal and transverse elastic moduli, shear modulus and Poisson’s ratios for regular honeycomb
can be obtained, respectively.

In the case of regular uniform honeycombs with # = 30°, we have

Er  E; £\?
Fl ol _23(5) (91)

where E} and Ej denote the Young moduli of uniform regular honeycombs in longitudinal and trans-

verse direction respectively. Similarly, in the case of shear modulus for regular uniform honeycombs
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Table 1: Summary of formulae for effective in-plane elastic properties of hexagonal lattices
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(6 = 30°)

Gy £\°
B 0.57 (Z) (92)

where G7, represents the shear modulus of uniform regular honeycombs. Regular honeycombs satisfy
the reciprocal theorem: Ejvj, = Ejv;,, where v}, and vj, denote the Poisson’s ratios of regular
honeycombs. It is noteworthy that for regular uniform honeycombs, the Poisson’s ratios become unity
(i.e. vfy =5 = 1) and the regular uniform honeycombs correctly obey the relation G = E/2(1 + v),
where F/, G and v represent Young’s modulus, shear modulus and Poisson’s ratio of isotropic solids
respectively. These relationships in general do not hold for irregular honeycombs considered in this

work.

3.7. Remark 2: effects of spatially random variation of intrinsic material property

From the preceding sections it is observed that the in-plane Poisson’s ratios do not depend on the
intrinsic material properties of the lattice. Thus the effect of spatially random variation of intrinsic
material properties (and the compound effects for spatial variation of both intrinsic material property
and structural geometry) on the two Young’s moduli and shear modulus are investigated as a part of

this article.

3.7.1. Compound effects on the in-plane elastic moduli for spatial variation of both intrinsic material
property and structural geometry

Closed-form formulae are derived in this section to account for the compound effect on the in-
plane elastic moduli due to spatial variation of both material property and structural geometry. From
equation (10), elastic modulus of a single RUCE (located at i column and j row of the lattice) in

direction-1 with randomly varying properties can be expressed as

R 3
Esijtd (llij COS Oéij — lgij COS 51])

(93)

By = I 22 ; : : - 2
3350515 (L + Laij) (cos vy sin Bi; — sin v cos fBi;)

Here Ey; is the intrinsic material property of a RUCE located at i column and j™ row of the lattice.
Noting the relationship in equation (13) and using the expression in equation (20), the effective longi-
tudinal Young’s modulus for compound spatial variation of intrinsic material properties and structural
geometry as

m
Z (llij COS (¢ — lgij COS 5”)
i=1

t3 n
Eieg =+ . . (94)
e L =1 i l%z]l%’u (llij -+ lgij) (COS Q5 S1IL Bij — Sl &5 COS ﬁm‘)Q

i=1 Ei; (1145 cos a; — lagj cos Bij)Q)

This expression enables the consideration of simultaneous spatial variation of intrinsic material prop-

erty and spatially random structural geometry.
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From equations (36), (38) and (44), the effective transverse Young’s modulus for compound spatial

variation of intrinsic material properties and structural geometry can be obtained as:

Lt
E2eq == (95)

(llij COS Q5 — lgij COS 61])

s

1

L (2
2 12, .12

m —1
— g A2 (ly45+1245) cos? o, cos? B
‘771 . 2 2 A . l12]l21] 145 22]( 1570245 23 tJ

> Egij <l3ij COS? 4 (lgl] + 3 +

=1

. .. 2
1ij +l2zy (llij COS v —lgij CcOos 517)

From equations equation (54), (56) and (62), the effective shear modulus for compound spatial

variation of intrinsic material properties and structural geometry can be obtained as:

Lt3

Gloeq = (96)

m
({145 cos avj — lo;; cos Byj)
i=1

m -1
j=1 (12 sin2~e (1o, 4 trisleii

Z:IESU <l3ij S i <l3” + l1ij+l24;

1=

The above expressions can account for the effect of both spatially random variation of structural and

n

material property enabling us to quantify the compound effect arising due to the simultaneous variation
of both quantities on the in-plane elastic moduli. The in-plane Poisson’s ratios do not depend on the
intrinsic material properties of the lattice. Thus we have investigated the compound effects for spatial
variation of both intrinsic material property and structural geometry in case of the Young’s moduli
and shear modulus. The expressions of Poisson’s ratios for the case of compound variation will remain

same as provided in equations (76) and (90).

3.7.2. Effect on the in-plane elastic moduli for spatially random variation of intrinsic material prop-
erties only

With reference to the notations used for a regular honeycomb by Gibson and Ashby (1999) (as
shown in figure 3(d)), the notations of the present paper for regular honeycombs can be expressed as:
L =n(h+1sinf); l;; = loy; = lsij = 1; ayy = 0; By = 180° — 0; ;5 = 90°, for all i and j. Using
these transformations in case of the variation of only material properties, the closed-form formulae for

compound variation of material and geometric properties (equations 94-96) can be reduced to:

3
Eleq = K1 (%) ( cosf (97)

b sin@)sin® 6

£\* (& +sin o)
B =ra ) Yoo (%)
3 by
t (— + sin 9)
and Glge = Ko (—> L (99)
! ! (%)2(1—|—2%)C089
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Resemblance of the above equations with the expressions provided by Gibson and Ashby (1999) is
noteworthy; the generalization in terms of spatially varying material properties are clearly accounted
by the two multiplication factors x; and k. These two factors arising due to the consideration of
spatially random variation of intrinsic material properties can be expressed as

m — 1
= — 100
i=1 Esz'j
1

(101)

and ke = 1

n

m n
>
=1

s

Esij

=1

The in-plane Poisson’s ratios do not depend on the intrinsic material properties of the lattice. Thus
we have investigated the individual effect for spatial variation of intrinsic material property in case of
the Young’s moduli and shear modulus. The expressions of Poisson’s ratios for the case of intrinsic
material property variation will remain same as the formulae provided by Gibson and Ashby (1999)
(i.e. V12¢q = Vi2ga and vo1., = Va16a4; refer to Table 1). In the special case when there is no spatial
variabilities in the intrinsic material properties of the lattice, all E,,; becomes identical (i.e. Ey; = E,
for i = 1,2,3,...,m and 5 = 1,2,3,...,n) and subsequently x; and ks become exactly E,. This
confirms that the expressions in equation (100) and equation (101) give the necessary generalisations
of the classical expressions of Gibson and Ashby (1999) through equation (97), equation (98) and
equation (99).

4. Results and discussion

A finite element code is developed to obtain the in-plane elastic moduli numerically for lattices
with general spatial random structural variations. The developed finite element code is capable of
accepting the number of cells in two perpendicular directions and spatially irregular structural forms/
intrinsic material property distribution as input to obtain the corresponding five in-plane elastic mod-
uli as output. The main purpose of the finite element model in context of the present study is to
validate the proposed analytical formulae (refer to section 3) for equivalent in-plane elastic moduli
of irregular lattices. Each connecting member has been modelled as standard Euler-Bernoulli beam
element neglecting axial and shear deformation with the assumption of high axial rigidity and low cell
wall thickness respectively. The finite element code is validated with the results from scientific liter-
ature corresponding to regular configuration (Gibson and Ashby, 1999). The results for validation of

five in-plane elastic moduli are furnished in figure 9 along with convergence study for a regular lattice
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with cell angle 30° and h/l = 1 (symbols are in accordance with the unit cell adopted by Gibson and
Ashby (1999); refer to figure 3(d)). The convergence study is carried out for the five in-plane elastic
moduli with number of RUCEs to ensure that the equivalent global behaviour of the entire lattice
is accounted by avoiding any localised deformation due to boundary effect. The finite element code
obtains the ratio reasonably close to 1 for 529 RUCEs or less. As considering a far smaller number
of RUCESs for the analysis may be insufficient to account for the effect of structural randomness in
global behaviour of the entire lattice, a relatively larger size of lattice (having a total of 961 RUCES) is

adopted for all the subsequent analyses to capture the effect of spatially random structural irregularity

comprehensively.
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Figure 9: Convergence study and validation of finite element model for obtaining elastic moduli of regular hexagonal
lattices. The results are shown as a ratio for a particular elastic modulus obtained using the finite element code and
from the formula provided by Gibson and Ashby (1999)

The analytical formulae developed in section 3 are capable of obtaining the equivalent in-plane
properties for irregular hexagonal lattices from known spatial configuration of structural geometry and
material properties. Characterization of such irregularities in material micro-structure with hexagonal
configuration can be performed by common techniques like digital image analysis. To quantify the
variation in elastic moduli of hexagonal lattices due to spatial irregularity, structural geometry and
material properties can be perturbed as described in subsection 2.2 following a random distribution.

From the closed-form expressions of equivalent in-plane elastic moduli derived in section 3, it is evident
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that all the in-plane elastic moduli depend on Iy, I3, I3, «v, 3, v and ¢ (refer Table 1) of all the constituent
RUCEs. The dimension of the entire lattice in direction-2 (L) is an inherent function of the structural
geometries mentioned above. Two Young’s moduli and the shear modulus are also dependent on
the intrinsic material property FE, in addition to the geometric attributes. The formulae derived in
this paper are valid for small strain allowing the non-linearity caused by beam-column effect to be
neglected. Only bending deformation is considered as the effect due to axial and shear deformation are
negligible because of high axial rigidity and small bending thickness compared to the other dimensions

of a RUCE, respectively.

(€)7¥=8

Density
= n w
o ©o © o ©

Ju10] BY3 4O BIRUIP.IO PIZIEWION

= simulation bound for

irregular lattice geometry 10
— regular lattice geometry
= simulation bound for Pog 0.99 1 1.01 1.02
locus of joints Normalized abscissa of the joint

(d) stochastic simulation corresponding to » = 8

Figure 10: (a-c) Representative configuration of spatially random irregular hexagonal lattices corresponding to dif-
ferent degree of irregularity for a single random realization (d) Simulation bound for the contour of irregular lattice
configurations considering multiple random realizations and statistical interpretation
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Figure 11: (a) Effect of irregularity on mean normalized relative density of hexagonal lattices (b) Probabilistic charac-
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Here only spatially random structural variation is discussed (the case of random intrinsic material
property variation (including the compound effects) is discussed in subsection 3.7). Results have been
obtained following a probabilistic framework involving 10,000 random realizations. In each realization,
the nodes corresponding to deterministic configuration are allowed to move randomly (following a
uniform random distribution) within a circular bound for obtaining the spatially random structural

configuration as discussed in subsection 2.2. Thus each realization possess spatially random values of
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the structural attributes ( Iy, lo, I3, @, B and ) corresponding to each RUCE. Figure 10(a-c) show
representative structural configurations of spatially random irregular hexagonal lattices corresponding
to three different degree of irregularities (r) considering a single random realization of the Monte Carlo
simulation. Figure 10(d) presents simulation bound for the contour of irregular lattice configurations
considering multiple random realizations indicating the contour of nodes and the connecting members.
Statistical distributions of normalized movement in terms of abscissa and ordinate (normalized with
respect to the corresponding value of deterministic abscissa and ordinate for the considered node) for a
particular node are shown in the zoomed in view. The distributions clearly indicate a uniform random
distribution, which is followed in this study. However, to understand the physical interpretation of
the disorder in terms of degree of irregularity (r), let us consider a regular uniform hexagonal lattice
with h = [ and 6 = 30°. From the equation (2), it can be obtained that, ry = 0.2571, for r = 8 (refer
to figure 3(d) for the dimensions h and [). Thus, it can be understood that simultaneously random
movement of all the nodes of lattice within a circular bound of radius ry = 0.2571 results in a significant
disorder in the lattice structure. This is also evident from the figure 10(c).

Results are presented for three different A/l ratios (1, 1.5 and 2) with a small ¢/l value (~ 1072)
corresponding to respective deterministic lattice configurations (refer figure 3(d)) to quantify the vari-
ability in the in-plane elastic moduli due to structural irregularity. For each of the h/l ratios, three
different cell angles () are considered corresponding to deterministic configuration (30°, 45° and 60°).
As the two Young’s moduli and the shear modulus for low density lattices are proportional to E,p® (Zhu
et al., 2001), the non-dimensional results for in-plane elastic moduli Ey, Es, v12, 191 and Gy are pre-
Fieq E, = Feq V12 = Vizeq » V21 = Valeq and Gz = Grzeq

Ep? 7 B E,p?
" denotes the non-dimensional elastic modulus and p is the relative density of the lattice (defined as a

sented as: B =

respectively, where ¢ (7)

ratio of the planar area of solid to the total planar area of the lattice).

Figure 11 presents the effect of irregularity on relative density of hexagonal lattices along with
their probabilistic characteristics for different structural configurations. Non-dimensional results for
relative density have been obtained as a ratio of the relative density for a particular irregular structural
configuration and relative density for the corresponding regular (/deterministic) configuration. The
figure shows that normalized relative density increases with the increase of irregularity for all the
deterministic structural configurations. It is interesting to notice that even though the regular uniform
deterministic hexagonal configuration (0 = 30°; h/l = 1) is the most efficient space filling pattern, it is
also the most sensitive configuration to irregularity for relative density. The effect of spatially random

structural irregularity decreases with the increase of deterministic cell angle (#) in terms of the mean
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Figure 12: Representative scatter plot and probability density function plot for F; considering a hexagonal configuration
with § = 30°, h/l =1 and r = 8.

values. On the other hand, the probability function plots furnished in figure 11(b) show that the
standard deviation for relative density increases with the increase in cell angle (6).

Figure 12(a) shows a representative scatter plot for E;, wherein low deviation of the points cor-
responding to different samples from the diagonal line affirms high level of precision of the developed
analytical formulae with respect to finite element results for the irregular lattices. The low deviation
between results of the probability density function plots presented in figure 12(b) using the analytical
formulae and finite element method for E; of irregular lattice further corroborates high level of ac-
curacy of the proposed approach. It is interesting to note that even though the nodes of the lattices
corresponding to regular configuration are allowed to move within a circular bound following a ran-
dom uniform distribution for obtaining the irregular lattice configurations, the effective E; of irregular
lattice follows a Gaussian distribution. A similar trend is found in the results for other in-plane elastic
moduli presented later (figure 13 - 27). This observation agrees well with the central limit theorem of
probability theory (Rice, 1995).

The effect of irregularity on the five in-plane elastic moduli are presented in figures 13 -27 consid-
ering different degree of irregularity (r). The numerical values furnished in the left side of each ‘T’
shaped marks represent percentage errors in mean values of in-plane elastic moduli obtained using the
developed analytical formulae with respect to the finite element results, while the numerical values
on top and bottom are the percentage errors corresponding to maximum and minimum values respec-
tively. Reasonably small values in the percentage errors is indicative of high precision of the proposed
analytical approach for irregular lattices compared to finite element formulation. The probabilistic

description of the in-plane elastic moduli corresponding to different lattice configurations are shown
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Figure 15: Effect of spatially random structural irregularity on non-dimensional F; for § = 60°

as inset of each figure.

From figures 13 - 27, it can be observed that the mean values of the two Young’s moduli (E; and
E,) and two Poisson’s ratios (v42 and vg) reduce with the increase in degree of irregularity, while
the shear modulus (Gi2) is found to follow an increasing trend with higher degree of irregularity.
However, the upper bound for F; and the lower bound for G5 are found to be respectively more
and less than the corresponding deterministic values, in some instances due to system randomness
depending on the respective standard deviations. The range of variations for all the in-plane elastic
moduli are found to increase with increasing degree of irregularity, as expected. From relative slope
of the lines joining mean values, it is observed that the effect of irregularity is more sensitive for
increasing value of deterministic cell angle (6) in case of two Young’s moduli (£, and FE,) and two
Poisson’s ratios (v19 and v91), while a reverse trend is found for the shear modulus (Gi2). However,
all the in-plane elastic moduli are found to be more sensitive to structural irregularity as the h/l ratio
decreases. From the results presented in figures 13 - 27, it is quite evident that the effect of spatially
random structural irregularity has considerable influence on the equivalent in-plane elastic properties

of hexagonal lattices (percentage variation are up to 27.22% and 13.41% for E; and Es; 10.05% for

37



150 ‘ |
1.45 o;:gs N
Tj8~7~4“‘ """"""" :
L i T — |
1.4 124 0-13
5‘1_35’ B 1-24 | i ..........
é 03 =
133
0.82
1.25¢
) 2 — : ‘ ;
Degree of iregularity (r) Degree of irregularity (r)
(@ Bt =1 (b) bl =15
| .
I 0.453 |
00224
46 -0.431 b -
: OBt
) o 0.816 T26
42  [12d
g g :
. aui |
38 T I |
Iy
3.6 ‘ ! | |
Degree of irregularity (r)
(©) b/t =2
Figure 16: Effect of spatially random structural irregularity on non-dimensional Es for 6§ = 30°
2.6 ‘ I | o —— 196
o 0.02 0.07
. | N 1.26 2 | T
) 186 P
| i Ll CTE T T ‘
i N S T ; ] |
g 0.091+- m . 1-32
- 3 0.978+ :
= J‘ | !’\ |
2303 -0.925 | 1 T .
(=] ( !y
3.6 3.8 4 42 4.4
7 _0149 E)
] 2 4 . 8 3.65 2 ‘ ‘ 8
- Degree of irregularity (r)
(@) hi=1 (b) b1 =15
6.8 I
6.68 |
6.4 |
0.0937
62 o8 -0.479
LA] 0.6254--._
6
z N .
X I |
5.6 ) - |
545 6 |
Degree of irregularity (r)
CRIUEE

Figure 17: Effect of spatially random structural irregularity on non-dimensional Es for 6 = 45°

38




9 3758 i
__________________ T 0.797 0.274
0404 +-...._ T '8
Jd A 5 038 | S T 0.76
: 0109 0333 ot T
-OT95*‘ 5.6F 1;8 s S i 007
1 s &) 209* ~~~~~~~~~~~~
. + X 166 i ot
0719 A e
. VY 153
a2 167 Tyo| 8 i 109
K s2F & S O.NE
0— e ANASAN
5 52 5.4 5.6
32 I ” . 1 L =
B . ; . . 5% 8
Degree of irregularity (r) Degree of irregularity (r)
(a) b/l =1 (b) h/l=1.5
8.5
____________ 0.54
o ic; S 092
. 0.24 omes.._ OH 082
L TEeh
[<§) ’ i \.2...68‘
0.28
7.5 278
7.5 8
7 —
0 2 4 6 8
Degree of irregularity (r)

(c) h/l =2

Figure 18: Effect of spatially random structural irregularity on non-dimensional Fy for 8 = 60°

G12; 28.43% and 21.18% for 119 and vs, respectively in case of the analysed lattice configurations).
The overlapping zones of the probability density function plots for different degree of irregularity
corresponding to a particular deterministic structural configuration depends on the sensitivity of the
elastic modulus under consideration to structural irregularity and the respective standard deviation.
Probabilistic results concerning the spatially random variation of intrinsic material property and
the compound effect of material and structural variation are provided in figure 28 and figure 29, re-
spectively. The extent of the effect arising due to irregularity (both in terms of variation of intrinsic
material property and structural geometry) can be easily discerned from the probabilistic descriptions.
Two different degree of randomness in the material properties (A,,) are considered in terms of percent-
age spatial variation for obtaining the results. The effect on the in-plane elastic moduli for combined
spatially random variation of intrinsic material property (A,,) and structural geometry (r) are shown
in figure 29 considering different degree of irregularity in random material property distribution and
structural configuration. Even though the response bounds of the elastic moduli are found to increase
with increasing degree of randomness in intrinsic material property distribution, the effect of varia-

tion in material properties is less significant compared to the spatially random variation in structural
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Figure 21: Effect of spatially random structural irregularity on non-dimensional G715 for 8 = 60°

geometries. Similar inference can be drawn by comparing the probability distributions of in-plane
elastic moduli for only variation of structural geometry and the compound effect of structural and
material property variation as presented in figure 29. As the influence of the variability in structural
configuration is quite significant compared to the spatial variability in intrinsic material property, the
response bounds for the individual variation of structural configuration and the combined variation
of structural and material property distribution do not have notable difference. However, the effect
of intrinsic material property variation is found to be relatively more accountable in case of the shear
modulus as the influence of structural irregularity is relatively lesser for the shear modulus compared
to the Young’s moduli.

Typical movement of nodes for regular lattices under the application of three different stress con-
ditions (as described in figure 4) with two levels are shown in figure 30. Location of nodes for the
deformed lattices can be visualized relative to respective undeformed configuration in the figures. Due
to the cumulative effect, deflection of nodes for a particular level and condition of stress are higher
as the distance from support increases. Movement of the nodes are higher in respective directions for

stress level 2 compared to level 1, as expected. It is interesting to notice that the deformed location
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42




0.16 T T T T
______ 081 0.69 0.14r
R I 0.22 067
0.15 5'Eg 2:94 s
: [ o 0.12]
0619 283 '
2014 : 0792 g o1t
z .
g § N i
g i\ [ L
o3k 2 [\ J | 0.08 I
T 0145 015 0155 0405 011 0115 012 0125
e 150]
B 0.06} &
0.12, 3 1 3 8 0 2 4 6 8
Degree of irvegularity (r) Degree of irregularity (r)
(a) h/l =1 (b) h/l =15
0.11 T
0. 1= Z%c.)_g_?, 221 3.08
B o7 S yr 279
1.72 L 2.7+
1.02 :
0.09
144 1.27
L0.08F  1500——
N r=4
£1000|71 =0
0.07-F r=38
& 500
0.06 ) ‘ XY
0085 009 _ 0095 0.1
0.05 .
0 2 4 6 8
Degree of irregularity (r)

(c) h/l =2

Figure 24: Effect of spatially random structural irregularity on non-dimensional v45 for 8 = 60°

of the nodes for the stresses applied in direction-1 and direction-2 (figure 4(a) and 4(b)) allow the
lattice to expand in the direction of applied stress while contract in the direction perpendicular to
application of stress in the 1-2 plane, conforming non-auxetic property of the considered lattice con-
figuration. If the cell angle corresponding to deterministic configurations () is considered negative,
a reverse trend (expansion/contraction for both the directions) would be followed. Figure 31 shows
typical irregular lattices for different random configurations along with location of nodes under the
application of three different stress conditions. Figure 31(a), 31(c) and 31(e) present the movement
of nodes for three different stress conditions considering a single random realization with structural
irregularity, while figure 31(b), 31(d) and 31(f) show the bound of movements for different nodes and
the connecting members in randomly irregular lattices in an ensemble form considering 10,000 random
structural configurations. It is noteworthy that movement of the nodes in direction-1 and direction-2
(refer figure 31(a) - 31(d)) increases for randomly irregular structural geometries compared to the
respective regular configurations, while for the application of shear stress (refer figure 31(e) - 31(f)),
an opposite trend is noticed. This observation, in turn indicates reduction in F; and FE, values of

the lattice owing to effect of irregularity, while an increase in the value for GG15. Thus the results in
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Figure 27: Effect of spatially random structural irregularity on non-dimensional v5; for 6 = 60°

figure 31 agree well with the results presented in figures 13 - 21.

5. Summary and perspective

A careful review of the scientific literature reveals that previous investigations have dealt with the
effect of under and over-expansion of cells in hexagonal honeycomb with regular configuration using
numerical and experimental studies (Papka and Kyriakides, 1994) concluding that under-expansion
results in a response that has a higher elastic moduli, while over-expansion has the opposite effect.
The effect of spatially random variation of under and over expanded cells (refer to figure 2(b)) on the
in-plane elastic moduli for irregular honeycombs are presented recently (Mukhopadhyay and Adhikari,
2016a,b), which reveal that Es, 151 and G1o reduce significantly due to such variations in cell angle,
while the effect on E; and v, is negligible. Liu et al. (2014) have reported, based on numerical
investigation, that irregularity in auxetic hexagonal honeycombs reduces the effective in-plane Young’s
moduli and auxetic property of the system. The present paper develops an analytical framework
to obtain effective in-plane elastic moduli of hexagonal lattices with a generalized form of random

structural irregularity. The previous works (Mukhopadhyay and Adhikari, 2016a,b) on the development

45



350 =
300 P 1
250~ ‘ ‘ i
2 200" 1
[0 i 1
c i i
8 o
150 ' 1
100- 1
50- / .
o | | k| ) [
0.(\975 0.98 0.985 0.99 0.995 1 1.005
Young's modulus in direction 1
(a) Normalized longitudinal Young’s modulus
120 _‘ ;
100 |
80+ Py .
2z P
o i i
400 A |
20t 1
-------- g - 4"! \\““1“ ! I
P 097 09 0.99 1 102 103 104 105
Young's modulus in direction 2
(b) Normalized transverse Young’s modulus
400
A =01
350f AN m i
i A =02
i H m
300+ [ 1
2 250 P .
[7) i N
5 [
Q 200- ' .
150 ,
'l.'f \1\
501 // ,!_f' "w\‘ “\‘\ _
I ‘ N e J
Pao 0.995 1 1.005 1.01 1.015

Shear modulus

(c) Normalized shear modulus

Figure 28: Effect on the in-plane elastic moduli (probabilistic descriptions) for spatially random variation of intrinsic
material property only (the results are presented as a ratio of the elastic moduli for irregular lattice and that of the

corresponding regular configuration)

46



30

----- r=8,A_ =0
m
25 |- r=4,A =0 i
m
—r=8,A =02
m
20 |—r=4;A =02 R
- m
-‘é ----- r=8;Am=0.1
8 15+ r=4;Am=0.1 b

10+ B
5, -
"\ 4
I 2 | s
0965 0.7 0.75 0.8 0.85 1
Young's modulus in direction 1
(a) Normalized longitudinal Young’s modulus
60 T T T T T T
_____ r= 8; Am =0
S0 | r=4:A =0 ]
m
—r=28; Am =0.2
O _r=44 =02 |
m

N I r=8A =01
2 30- oom i
8 r=4 A= 0.1

20

10

™ | [ Gl Sy
(978 0.8 0.82 0.84 0.86 0.88 0.9
Young's modulus in direction 2
(b) Normalized transverse Young’s modulus

90 -

8o o Eh e r=84,=0 y

70- Ny r=4, Am =0 i

—r=8; Am =0.2

oo —r=4A =02 |
- m
@ 501 f”r=8;/\m=0_1 B
3 400 r=4;A =01 |

30- A

20- ]

10+ \\ .

0 . e I \ WS I I
0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 1.06

Shear modulus

(¢) Normalized shear modulus

Figure 29: Effect on the in-plane elastic moduli (probabilistic descriptions) for combined spatially random variation
of intrinsic material property and structural geometry (the results are presented as a ratio of the elastic moduli for
irregular lattice and that of the corresponding regular configuration)

47



EETA S T T I S Mt it s e e S e e Tl e S O PO
------- - -

=

N LI =
XELLLL

! DD DD
5 ) 5 ) ol e

= LI T o i i o 4 6 5 i
: X REIR
=

I DD W o e
= 4 >
) ) 5 M e

# WM 4 i
o ] L =
<" =

. =

e ~
=

. =
=

o ~

(b)

....................

— Regular undeformed lattice
configuration

¢  Location of nodes in underformed
regular lattices

¢  Location of nodes in regular lattices

N for stress level 1
L ' Location of nodes in regular latti
rjj %%Ifffililﬁii : rg;);l for strems fevel 2 S
OO0 008080809E! Ili stress level 1 < stress level 2
§]Ij]j§]]]]JJ]]I]]]]]J]j]j]j]j]jjjljjjij ]]

]j‘i]W]W]T:JTjTjW]W]WJTj\|j‘\j‘\j‘\jT]W]TjTjT WJT

e e e o o o o o o o o o P o o o

Figure 30: Typical location of nodes for a regular lattice under the application of three different stress conditions

of analytical formulae for randomly varying cell angles is a specialized case of the formulation presented
here. In contrast to the previous observations related to spatially varying cell angles, the present
study shows that all the in-plane elastic moduli are significantly affected by generalized randomness in
structural configuration. The generalized form of spatially random irregularity, as considered in this
study, results in decrease of mean for the two Young’s moduli (F; and E,) and two Poisson’s ratios
(r12 and vy), while an increase of mean for the shear modulus (G13) is observed. The closed-form

expressions developed for the two Young’s moduli, and shear modulus are functions of both structural
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configuration and material properties of irregular lattice, while the two Poisson’s ratios depend only on
structural configuration. In addition to the other parameters the member with inclination angle v plays
a vital role in variation of the elastic moduli for irregular lattices, as this member contributes towards
the bending deformation significantly in the present analysis. Thus the form of irregularity in hexagonal
lattices has considerable influence in the effective global behaviour (in-plane elastic properties) of the
entire lattice. However, it is found that spatially random variation of intrinsic material property has less
significant effect on the in-plane elastic moduli compared to the structural irregularity. Consideration
of the shape of RUCE and adopted idealization scheme depends on the form of irregularity in the
lattice. However, being the most generalized formulation, the present approach can account for all the
above mentioned forms of irregularity.

Effect of different irregularities and defects in various forms of solids have received immense atten-
tion from the scientific community. Effect of material anisotropy on the effective elastic moduli has
been investigated for solids (Sevostianov and Sabina, 2007; Tsukrov and Kachanov, 2000). Researchers
have studied the effect of cracks in solids on the global behaviour such as effective elastic moduli, vi-
bration etc. (Kachanov, 1987, 1992; Naskar et al., 2017) . The influence of such material anisotropy
or defect in the form of multiple cracks on the effective elastic properties of solids are reported to be
rather minimal. Though the configuration of lattice structures, as considered in this article, is quite
different from these solids considered in the above-mentioned studies, we find a striking resemblance in
the behaviour for variation of material properties. The effect of spatially random variation of intrinsic
material property on the effective elastic moduli is found to be negligible compared to the structural
randomness. This is because of an inherent averaging effect in the deformation of the randomized
RUCEs with relatively lower and higher effective stiffness compared to their deterministic configura-
tion. However, the spatially random variation of structural geometry can cause a significant change
in the values of elastic moduli due to a change in the deformation mechanics of different members
(percentage variation are up to 28.43% with respect to the deterministic values). In case of voronoi
honeycombs, the elastic moduli have been reported to be significantly influenced (Zhu et al., 2001).
Thus an important inference can be noted in this context that the influence of irregularity in a struc-
tural/ material system depends on their structural configuration and the type of irregularity under
consideration.

Literature concerning different forms of irregularity in lattices as mentioned above are mostly
based on either experimental investigation or numerical simulation. However, for characterizing the

effect of random structural irregularity in lattice structures, it is essential to follow a probabilistic
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framework requiring multiple numerical simulations/experiments. As detailed numerical simulations/
experiments are often expensive and time consuming, majority of the previously reported studies are
performed based on an inadequate number of samples and semi-realistic irregularity models. Though an
analytical approach has been recently reported (Mukhopadhyay and Adhikari, 2016b), that is limited
to the variation of cell angles only. An efficient and realistic analytical framework capable of accounting
generalized form of structural irregularity has been developed in the present paper including the effect
of spatially varying structural configuration and intrinsic material property. Noteworthy is the fact
that it has become possible to efficiently characterize the effect of structural irregularity including the
probabilistic descriptions using a robust framework with adequate number of samples only because of

development of the computationally efficient analytical approach.
6. Conclusion

A bottom-up analytical framework is developed for predicting equivalent in-plane elastic moduli
of irregular hexagonal lattices having spatially random structural irregularity and intrinsic material
property. In the proposed approach, effect of structural irregularities are accounted in the local level
through representative unit cell elements (RUCE) first and thereby the effect of irregularity is propa-
gated to the global level following a mechanics based multi-step approach to obtain effective in-plane
properties of the entire irregular lattice. The results obtained using the developed analytical formulae
for in-plane elastic moduli of irregular lattices are compared with the results from direct finite element
simulations to establish the validity of the proposed approach. Noteworthy is the fact that equivalent
in-plane elastic properties of irregular lattices can be obtained following a robust probabilistic frame-
work using the closed-form formulae more efficiently compared to expensive finite element simulations
(/experiment) without compromising the accuracy of results. All the in-plane elastic moduli are found
to be affected significantly due to the consideration of spatially random structural configuration of
lattices. Such variation in the elastic moduli of hexagonal lattices would have significant influence on
the subsequent process of analysis, design and control.

Since the basic physics behind the elastic deformation of spatially irregular lattices is scale-independent,
the developed closed-form formulae are applicable across different length scales. The developed for-
mulae can be extended to predict effective in-plane elastic moduli of irregular lattices with spatial
variation in the thickness of the connecting members. The analytical framework can be utilized for
efficient stochastic analysis of such structures and material responses accounting the irregularity and

uncertainty associated with spatial distribution of structural geometry and intrinsic material proper-
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ties. Moreover, the generalized closed-form expressions accounting spatially varying structural con-
figuration, thickness of connecting members and intrinsic material properties can be quite attractive
in the development of novel meta-materials adopting a proper optimization algorithm to find the be-
spoke material micro-structure. The proposed analytical framework to analyse irregular hexagonal
lattices can be extended further to other forms of cellular structures by considering an appropriate

representative unit cell element.
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