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E�ective in-plane elastic moduli of quasi-random spatially irregular

hexagonal lattices

Abstract

An analytical framework is developed for predicting the e�ective in-plane elastic moduli (longitudinal

and transverse Young's modulus, Poisson's ratios and shear modulus) of irregular hexagonal lattices

with generalized form of spatially random structural geometry. On the basis of a mechanics based

bottom-up multi-step approach, computationally e�cient closed-form formulae are derived in this ar-

ticle. As a special case when there is no irregularity, the derived analytical expressions reduce to

the respective well known formulae of regular honeycombs available in literature. Previous analytical

investigations include the derivation of e�ective in-plane elastic moduli for hexagonal lattices with

spatially random variation of cell angles, which is a special case of the generalized form of irregular-

ity in material and structural attributes considered in this paper. The present study also includes

development of a highly generalized �nite element code for obtaining equivalent elastic properties of

random lattices, which is employed to validate the proposed analytical formulae. The statistical results

of elastic moduli obtained using the developed analytical expressions and using direct �nite element

simulations are noticed to be in good agreement a�rming the accuracy and validity of the proposed

analytical framework. All the in-plane elastic moduli are found to be signi�cantly in�uenced by spa-

tially random irregularity resulting in a decrease of the mean values for the two Young's moduli and

two Poisson's ratios, while an increase of the mean value for the shear modulus.

Keywords: Hexagonal lattice; Spatial irregularity; In-plane elastic moduli; Cellular structure;

Honeycomb, Quasi-periodicity

1. Introduction

Hexagonal lattices/ lattice-like structural forms are present as materials and structures in abun-

dance across various length-scales (nano, micro and macro) within natural systems and arti�cial prod-

ucts, as shown in �gure 1 (Gibson and Ashby, 1999). Such structures have received considerable

attention in last few decades as an advanced material because of the capability to meet high perfor-

mance application-speci�c demands in various critically desirable parameters such as speci�c strength
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and sti�ness, crushing resistance, fatigue strength, acoustic properties, shock absorption properties,

electro-mechanical properties, corrosion and �re resistance (Gibson and Ashby, 1999). The application

of honeycomb cores for lightweight sandwich structures is an active area of research (Mukhopadhyay

and Adhikari, 2016c; Yongqiang and Zhiqiang, 2008; Zenkert, 1995). Honeycomb grill is commonly

used to reduce noise and facilitate smooth air�ow in computer fans. An in-depth understanding of the

structural behaviour of such hexagonal lattices is useful in emerging research �elds of nano-materials

like Graphene and Boron Nitride, which are often idealized as hexagonal periodic structures (Liu et al.,

2012; Mukhopadhyay et al., 2016a; Pantano et al., 2004).

Figure 1: Occurrence and application of hexagonal lattices across the length scales

To eliminate the need of a detailed �nite element modelling for hexagonal lattices/ honeycombs as

a part of another complex structural system (host structure such as a sandwich panel), such lattices

are generally modelled as a continuous solid medium with equivalent elastic moduli throughout the

domain. For example, the e�ective elastic properties of the honeycomb-core are required to characterize

the static and dynamic response of the sandwich panels such as de�ection, natural frequency etc.
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Estimation of e�ective elastic properties is quite common in the literature of mechanical sciences

(Michel et al., 1999; Tang and Felicelli, 2015; Vilchevskaya and Sevostianov, 2015). A similar approach

is followed to evaluate the e�ective material properties of di�erent nano-structures having hexagonal

con�gurations (Mukhopadhyay et al., 2016a). It is a common practice to consider a representative

unit cell to model various other periodic structures (Javid et al., 2016). Extensive research has been

conducted so far to predict e�ective elastic properties of regular hexagonal lattices without any form

of irregularity (El-Sayed et al., 1979; Gibson and Ashby, 1999; Goswami, 2006; Malek and Gibson,

2015; Zhang and Ashby, 1992). Other crucial research areas concerning di�erent responses related to

honeycombs include crushing behaviour, low velocity impact, buckling analysis and wave propagation

through lattices (Gonella and Ruzzene, 2008a,b; Hu and Yu, 2013; Jang and Kyriakides, 2015; Jimenez

and Triantafyllidis, 2013; Klintworth and Stronge, 1988; Liu et al., 2016; Schae�er and Ruzzene,

2015; Wilbert et al., 2011; Zschernack et al., 2016). A substantial amount of scienti�c literature

is available dealing with perfectly periodic hexagonal auxetic lattices (Critchley et al., 2013; Evans

and Alderson, 2000). Recently theoretical formulations have been presented for equivalent elastic

properties of periodic asymmetrical honeycomb (Chen and Yang, 2011). Tailorable elastic properties

of hierarchical honeycombs and spiderweb honeycombs have also been reported (Ajdari et al., 2012;

Mousanezhad et al., 2015). Analysis of two dimensional hexagonal lattices/honeycombs, as presented

in the above literature review, are based on an unit cell approach, which can be applied only for

perfectly periodic lattice forms.

The major limitation of the aforementioned unit cell based approach is that it cannot be used

to analyse a system with spatial irregularity. Spatial irregularity/variability in lattices is practically

inevitable; it may occur due to structural defects, manufacturing uncertainty, variation in temper-

ature, micro-structural variability and pre-stressing. Moreover, development of novel metamaterials

(Mukhopadhyay and Adhikari, 2017; Srivastava, 2016) having hexagonal micro-structures may involve

spatially varying structural and material attributes. To consider the e�ect of irregularity in cellular

lattices, voronoi honeycombs are found to be considered in the literature (Li et al., 2005; Zhu et al.,

2001, 2006). Dynamic crushing of honeycombs with irregularity in cell wall thickness and cell shapes

have been investigated (Li et al., 2007). Triantafyllidis and Schraad (1998) have studied the failure

surface of aluminium honeycombs for general inplane loading considering micro-structural imperfec-

tions. Papka and Kyriakides (1994, 1998) and Jang and Kyriakides (2015) have reported numerical

and experimental study of honeycomb crushing and buckling behaviour accounting geometrical im-

perfections, such as over/ under expanded cells and variation in length of bond line. The e�ect due
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Figure 2: Typical representation for (a) a regular hexagonal lattice (b) an irregular hexagonal lattice with spatially
random cell angle (c) an irregular hexagonal lattice with generalized form of spatially varying structural randomness

to defects on regular as well as voronoi honeycombs and the e�ect of manufacturing uncertainty on

auxetic honeycomb have been reported by Ajdari et al. (2008) and Liu et al. (2014), respectively.

Though the above mentioned studies substantially investigate the e�ect of irregularities based on lim-

ited number of expensive samples, there is a further need to extend these works following a more

realistic and robust probabilistic framework for spatially random imperfections/irregularities in order

to develop appropriate uncertainty quanti�cation models. For voronoi honeycombs, the shape of all

the irregular cells may not be necessarily hexagonal that violates the presumption of hexagonal cell

structure. A thorough review of the literature on hexagonal lattices/ honeycomb dealing with dif-

ferent forms of structural irregularity reveals that the investigations are commonly based on either

expensive �nite element (FE) simulations or experimental investigations. As experimental investiga-

tions are expensive and time consuming, it is practically not feasible to quantify the e�ect of random

irregularities in lattice structures by testing huge numbers of samples. In the �nite element approach,

a small change in the geometry of a constituent cell may require a completely new mesh generation.

For dynamic and quasi-static analysis, separate �nite element modelling of the honeycomb core in a

sandwich structure may increase the degrees of freedom for the entire system up to such an extent

that makes the overall process unmanageably complex and prohibitively expensive for simulation. In

case of uncertainty quanti�cation using a Monte Carlo based approach, the problem aggravates as a

large number of expensive �nite element simulations are needed to be carried out (Dey et al., 2017a,b,

2016a,b,c,d; Hurtado and Barbat, 1998; Mahata et al., 2016; Mukhopadhyay, 2017; Mukhopadhyay

et al., 2015, 2016b,c). Application of surrogate based approaches to achieve computational e�ciency,

as adopted in many of these papers, does not make the analysis physically insightful and this approach
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often su�er from lack of con�dence in the predicted results. Moreover, surrogate based approaches

may not perform well in case of high non-linearity in the model and high dimensional input param-

eter space, which becomes a crucial factor in analysing spatially irregular lattices. Besides that, for

identifying application-speci�c lattice microstructure of novel materials following an inverse approach

based on optimization may also require large number of iterations. Moreover, a large scale numerical

simulation to quantify the e�ect of irregularity in cellular lattices may not necessarily yield proper un-

derstanding of the underlying physics of the system. An analytical approach for this purpose could be

a simple, e�cient, yet an insightful alternative. Recently an analytical framework has been reported

for in-plane elastic moduli of hexagonal honeycombs with spatially varying cell angles as shown in

�gure 2(b) (Mukhopadhyay and Adhikari, 2016a,b). However, this model of irregularity is of limited

practical resemblance and can be regarded as a random distribution of over and under expanded cells

only. Thus there exists a strong rationale to develop realistic analytical formulations for a generalized

spatially random irregularity model (as shown in �gure 2(c)), wherein the irregular cells are randomly

disordered following a generalized pattern, but they still maintain a hexagonal structural con�gura-

tion. Moreover, spatially random variation of intrinsic elastic modulus is also an important factor for

investigation in this regard.

In the present paper, we have developed an analytical model for generalized spatial randomness in

structural and material attributes (individual and compound e�ects) to quantify the e�ect of irreg-

ularity in the e�ective in-plane elastic properties. The previously developed formulation for in-plane

elastic moduli dealing with variation in cell angle only (Mukhopadhyay and Adhikari, 2016a,b) can

be treated as a special case of the present analytical model. The closed-form expressions developed

here can be a computationally e�cient and less-tedious alternative to the conventional expensive �nite

element simulation approach for various applications. This paper is organized hereafter as follows.

The description of the underlying concepts of the proposed bottom-up approach including detailed

explanation of the de�nition for degree of irregularity are described in section 2. Analytical derivation

of the expressions for the �ve in-plane elastic moduli is given in section 3. Validation of the closed-

form expressions for in-plane elastic moduli with the results of direct �nite element simulation and

detailed results with appropriate discussions on the e�ect of spatially random irregularity is furnished

in section 4. Summary of the results and discussion on the perspective of this paper is provided in

section 5. Finally, section 6 presents the conclusion and prospective future works on the basis of the

concepts developed in this paper.
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2. Spatially random irregularity in hexagonal lattices

2.1. The concept of a representative unit cell element (RUCE)

The aim of this work is to develop an analytical framework for deriving closed-form expressions of

e�ective in-plane elastic moduli for spatially irregular hexagonal lattices, wherein the structural units

are di�erent in geometry along a two-dimensional plane; but they do maintain a particular shape.

One structural unit may be considered as shown in �gure 3(b) and the entire lattice structure shown

in �gure 3(a) is basically a tessellation of the shape shown in �gure 3(b) with di�erent values of the

lengths of the three members and their orientations. Thus such repetition of the representative units

can be referred as quasi-periodicity. The underlying philosophy of the proposed idea is that the entire

irregular hexagonal lattice structure consists of several representative unit cell elements (RUCE) at

the elementary level as shown in �gure 3(a). Each of the RUCEs possess di�erent individual elastic

moduli depending on its structural geometry and intrinsic material properties (i.e. l1, l2, l3, α, β,

γ, Es are di�erent for the RUCEs in the present analysis; refer to �gure 5 for the symbols). The

e�ect of irregularity in material and geometric attributes are accounted in the elementary local level

�rst by analysing the RUCEs and then the e�ect of such irregularity is propagated to the global

scale (equivalent in-plane properties of the entire irregular lattice structure). This is achieved by

following a multi-scale and multi-stage framework as described in �gure 4. The closed-form formulae

for �ve in-plane elastic moduli of a single RUCE are derived as a function of their respective material

and geometric attributes. Thus the formulae developed for a single RUCE is e�ectively capable of

expressing the equivalent material properties at local scale. The RUCEs are idealized further in this

stage on the basis of the adopted assembling scheme. Subsequently, using the formulae for a single

idealized RUCE, the expressions for e�ective elastic moduli of the entire irregular lattice are derived

based on the basic principles of mechanics along with the equilibrium and deformation compatibility

conditions following a multi-stage approach.

The analytical framework of deriving closed-form formulae for elastic moduli of the entire irregular

lattice structure consists of the following four stages: selection of appropriate RUCE (for capturing

local behaviour) and adoption of a proper idealization scheme (for propagating the local attributes to

global level); derivation of expressions for in-plane elastic moduli of a generalized RUCE in terms

of material and geometric properties; derivation of equivalent elastic moduli for each strip (refer

to �gure 4) in terms of the equivalent material properties of individual constituent RUCEs of that

particular strip and �nally, derivation of the in-plane elastic moduli of the entire irregular lattice in

terms of the equivalent elastic moduli of the constituent strips. Thus, the expressions for equivalent
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Figure 3: (a) Typical representation of an irregular honeycomb (b) Representative unit cell element (RUCE) (c)
Illustration to de�ne degree of irregularity (d) Unit cell considered for regular hexagonal lattice by Gibson and Ashby
(1999)

elastic moduli of the entire irregular structure are necessarily developed in terms of the material and

geometric attributes at elementary local level.

In the proposed analytical approach, each representative units (structural elements) of the lattice

are considered to possess random structural and material attributes, instead of considering homoge-

nized properties like a conventional unit cell that remains constant throughout the entire domain. In

the traditional approach, typically one unit cell is considered for the purpose of analysis. It is assumed

that a single such unit cell represents the entire analysis domain. However, this way of analysis is

invalid for stochastic systems having spatially varying structural and material properties, because the

constituent unit cells are not identical. Through the introduction of the concept of RUCE, the random

structural attributes along the spatial location are accounted for analysing such irregular systems.

In the present bottom-up framework, the RUCEs are chosen from the viewpoint of the adopted dis-

cretization scheme (refer �gure 4) so that, being the smallest possible elementary units, they can be

used to capture the local material and geometric attributes e�ectively. Another crucial factor is that

the RUCEs should reasonably facilitate to assemble their individual local properties to the `strip' level

�rst, and thereby to the `global' level considering idealized blocks based on principles of mechanics.
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Figure 4: Idealization of RUCE and proposed bottom-up approach for propagation of the e�ect of irregularity from an
elementary level to the global level

Here the RUCEs are basically the representative elementary building blocks of the entire irregular

hexagonal lattice. For this reason, the word `element' is used in the nomenclature `RUCE'. It is com-
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mon in the literature of honeycombs and other lattice structures (Gibson and Ashby (1999)) to use the

phrase `unit cell' for analysing regular lattices, where the structure of the unit cell repeats in a plane.

However, the present analysis deals with irregular lattice that consists of several such unit cells, each

of them having di�erent structural geometry (though there exists a particular pattern in the structural

geometry). Thus each of the unit cells have di�erent equivalent properties in case of such irregular

lattice. Local elastic properties of the RUCEs are represented as a function of structural and material

irregularity ZU(ω), where the parameter ω is used to denote the random structural geometry/ irreg-

ularity. Here Z and U denote a particular in-plane elastic modulus and representative unit (RUCE),

respectively. To emphasize the fact that each `unit cell' has di�erent property in the present analysis,

the word `representative' is used. To portray all the above three characteristics simultaneously (`rep-

resentative', `unit cell' and `element') the word RUCE (representative unit cell element) is chosen in

context to the proposed analysis of irregular lattices.

It is noteworthy that e�ectively three di�erent loading directions are required to be analysed for

derivation of the expressions for �ve in-plane elastic moduli (refer �gure 4). Stress σ1 is applied in

direction-1 for longitudinal Young's modulus (E1) and Poisson's ratio ν12, while for analysing transverse

Young's modulus (E2) and Poisson's ratio ν21, stress σ2 is applied in direction-2. Shear stress τ is

applied to obtain the expression of shear modulus (G12). The directions used are indicated in �gure 3.

The notations used in the proposed multi-stage analysis for deriving the formulae of di�erent elastic

moduli throughout this article are as follows, ZU : elastic moduli of a single RUCE; ZI
U : elastic moduli

of a single idealized RUCE; Ẑ: e�ective elastic moduli of a single strip; Zeq: equivalent elastic moduli

of the entire irregular lattice, where Z represents a particular elastic modulus. For example, E1U

denotes the equivalent Young's modulus in direction-1 for a single RUCE. The subscripts i and j

(i = 1, 2, 3, ...,m and j = 1, 2, 3, ..., n) are used to indicate the location of the RUCE or a particular

strip under consideration. In the present analysis, the entire irregular lattice is assumed to have m

and n number of RUCEs in direction-1 and direction-2, respectively. Thus, to denote a particular

parameter, the subscript of ij is used when a RUCE (/idealized RUCE) is referred corresponding

to a position of ith column and jth row (Zij), while subscript j is used to refer a particular strip

corresponding to jth row (Zj). The formulae developed are applicable for both compressive as well as

tensile stresses.
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2.2. De�nition of the degree of irregularity

To put the results into a proper context, a mathematically consistent and physically relevant

measure of irregularity in a lattice structure is necessary. The e�ect of irregularity on the e�ective

in-plane material properties of the entire lattice is dependent on the degree of disorder in the structural

geometry with respect to the regular con�guration as shown in �gure 3(a). To de �ne the degree of

irregularity, it is assumed that each connecting node of the lattice moves randomly within a certain

radius (rd) around the respective node corresponding to the regular deterministic con�guration as

described in �gure 3(c). For physically realistic variabilities, it is considered that a given node do not

cross a neighbouring node, that is

rd < min

(
h

2
,
l

2
, l cos θ

)
(1)

In each realization of the Monte Carlo simulation, all the nodes of the lattice move simultaneously

to new random locations within the speci�ed circular bounds. Thus, the degree of irregularity (r) is

de�ned as a non-dimensional ratio of the area of the circle and the area of one regular hexagonal unit

as

r =
πr2d × 100

2l cos θ(h+ l sin θ)
(2)

The notations used in the above expression for the degree of irregularity are explained in �gure 3(d).

The degree of irregularity (r) has been expressed as percentage values for presenting the results in this

paper. The term `quasi' is used to denote the form of structural irregularity considered in this study

because of the fact that even though the type of irregularity is quite general in nature, the lattice still

maintains a hexagonal cellular con�guration following a practical and controlled variability depending

on the value of r.

3. Analytical derivation of the expressions for in-plane elastic moduli

The derivation of closed-form expressions for the �ve in-plane elastic moduli of irregular lattices as

a function of its material and geometric attributes is discussed in this section. The expressions for the

elastic moduli of a single idealized RUCE are obtained �rst and thereby the �nal closed-form formulae

for the entire irregular lattice are derived based on the expressions of equivalent material properties

for a single idealized RUCE.
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3.1. Longitudinal Young's modulus
3.1.1. Longitudinal Young's modulus for an idealized RUCE

Stress σ1 is applied in direction-1 (refer �gure 5) for deriving the expression of longitudinal Young's

modulus for a single RUCE (E1U). From the condition of vertical equilibrium the free-body diagram

as shown in �gure 5(c), it can be concluded that the vertical forces acting on points A and B should

Figure 5: RUCE and free-body diagram for the proposed analysis of E1U

be of equal magnitude and opposite sign. The horizontal forces acting on points A and B can be

expressed as P = σ1Lyb, where Ly represents the length CD and b is the height of honeycomb sheet

(dimension perpendicular to the 1-2 plane). M1 and M2 can be expressed as

M1 =
1

2
(Pl1 sinα− Cl1 cosα) (3)

M2 =
1

2
(Pl2 sin β − Cl2 cos β) (4)
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Considering the rotational equilibrium of the free-body diagram presented in �gure 5(c), the expression

for C can be obtained as

C = P

(
l1 sinα− l2 sin β

l1 cosα− l2 cos β

)
(5)

The horizontal de�ection of point A with respect to point O (δhAO) consists of the de�ection due to

force P and the force C (Roark and Young, 1976)

δhAO =

(
Pl31 sinα

12EsI
− Cl31 cosα

12EsI

)
sinα (6)

where the �rst and second terms in the bracket represents the de�ection of point A with respect to

point O in the direction perpendicular to AO due to forces P and C respectively. The superscript h is

used to represent horizontal direction of the applied stress. Here, Es represents the intrinsic material

property of the material, by which the honeycomb cell walls (/connecting members) are made of. The

notation I represents the second moment of area of the cell walls, i.e. I = bt3/12, where t denotes the

thickness of honeycomb cell wall. In the derivation of the expression of E1U , the horizontal de�ections

away from point O are considered to be positive. In a similar way, the horizontal de�ection of point

B with respect to point O can be expressed as

δhBO =

(
Pl32 sin β

12EsI
− Cl31 cos β

12EsI

)
sin β (7)

The distance of the point vertically below joint O and on the line AB (refer �gure 5) is given by

δO =
l2 sin βl1 cosα− l1 sinαl2 cos β

l1 cosα− l2 cos β
(8)

Considering a linear strain �eld along the line AB, the e�ective horizontal deformation of the RUCE

is given by

δh1 = δhAO
δO

l1 sinα
+ δhBO

δO
l2 sin β

=
σ1Lyl

2
1l

2
2 (l1 + l2) (cosα sin β − sinα cos β)2

Est3 (l1 cosα− l2 cos β)2

(9)

The strain in direction-1 can be obtained from equation (9) as

εh1 =
σ1Lyl

2
1l

2
2 (l1 + l2) (cosα sin β − sinα cos β)2

Est3 (l1 cosα− l2 cos β)3
(10)

From equation (10), elastic modulus of a single RUCE in direction-1 is expressed as

E1U =
Est

3 (l1 cosα− l2 cos β)3

Lyl21l
2
2 (l1 + l2) (cosα sin β − sinα cos β)2

(11)

It is important to note here that the above expression of E1U is for a non-idealized RUCE having
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Figure 6: Idealization scheme of RUCE and the irregular lattice structure

a dimension of Ly in direction-2. However, for assembling the local properties of RUCEs conveniently

to the global level, it is essential to obtain the equivalent material property of an idealized RUCE

(EI
1U) that has a virtual dimension of Lj (dimension of the jth strip in direction-2) as shown in

�gure 6. Considering a linear strain �eld, EI
1U can be obtained based on the deformation compatibility

condition along direction-1, i.e. the deformation of the idealized RUCE and non-idealized RUCE in

direction-1 should be equal
PBij

ANIE1U

=
PBij

AIEI
1U

(12)

Here ANI = Lyb and AI = Ljb. The above equation can be reduced to

EI
1U = E1U

Ly
Lj

(13)

3.1.2. Longitudinal Young's modulus of the entire irregular lattice

To obtain the longitudinal Young's modulus of the entire irregular lattice (E1eq), a stress σ1 is

applied in direction-1 (refer �gure 4). The deformation compatibility of jth strip ensures that the

total deformation of the strip in direction-1 due to stress σ1 (∆1j) is the summation of individual

deformations in direction-1 of each idealized RUCE (∆1ij), while deformation of the idealized RUCEs

of that strip in direction-2 are same. Thus for the jth strip

∆1j =
m∑
i=1

∆1ij (14)

The equation (14) can be rewritten as

ε1jBj =
m∑
i=1

ε1ijBij (15)

where ε1j and Bj represent total strain and dimension in direction-1 for the jth strip (refer �gure 6(a)).

The notations used are described in subsection 2.1. Here Bij = (l1ij cosαij − l2ij cos βij) and Bj =
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∑m
i=1Bij. Equation (15) leads to

σ1Bj

Ê1j

=
m∑
i=1

σ1Bij

EI
1Uij

(16)

From equation (16), equivalent Young's modulus of jth strip (Ê1j) can be expressed as

Ê1j =
Bj

m∑
i=1

Bij

EI
1Uij

(17)

where EI
1Uij is the equivalent longitudinal elastic modulus in direction-1 of a single idealized RUCE

positioned at (i,j) that can be obtained from equation (13).

In the next step, closed-form expression for equivalent longitudinal Young's modulus of the entire

irregular lattice (E1eq) is obtained using the equivalent longitudinal Young's modulus for a single strip

(Ê1j). Employing the force equilibrium conditions and deformation compatibility condition we have

σ1Lb =
n∑
j=1

σ1jLjb (18)

where Lj is the dimension of jth strip in direction-2 and L =
n∑
j=1

Lj, as shown in �gure 6(a). The

notation b represents the dimension of the lattice in the perpendicular direction to 1-2 plane. As

strains in direction-1 for each of the n strips are the same to satisfy the deformation compatibility

condition, equation (18) leads to

E1eqL =
n∑
j=1

Ê1jLj (19)

Using equation (17) and equation (19), the equivalent Young's modulus in direction-1 of the entire

irregular honeycomb structure (E1eq) can be expressed as

E1eq =
1

L

n∑
j=1

BjLj
m∑
i=1

Bij

EI
1Uij

(20)

From equations (11), (13) and (20), the expression for the longitudinal elastic modulus of the entire

irregular lattice can be written as

E1eq =
Est

3

L

n∑
j=1

m∑
i=1

(l1ij cosαij − l2ij cos βij)

m∑
i=1

l21ijl
2
2ij (l1ij + l2ij) (cosαij sin βij − sinαij cos βij)

2

(l1ij cosαij − l2ij cos βij)
2

(21)

3.2. Transverse Young's modulus

3.2.1. Transverse Young's modulus for an idealized RUCE

Stress σ2 is applied in direction-2 to derive the expression of transverse Young's modulus for a RUCE

(E2U) as shown in �gure 7. Total deformation of the RUCE in direction-2 consists of two components,
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namely deformation of the cell wall OC in direction -2 and deformation of the cell walls OA and OB

in direction-2. Deformation of the cell wall OC in direction -2 has two components: bending and

rotation. Bending deformation of joint C with respect to O in direction-2 can be expressed as

δvbCO =
Wl33 cos2 γ

12EsI
(22)

where W = σ2b (l1 cosα− l2 cos β). The superscript v is used to represent vertical direction of the

Figure 7: RUCE and free-body diagram for the proposed analysis of E2U

applied stress. Expression of the bending moment acting at joint O of the free-body diagram of OC

is M ′ = −Wl3 cos γ

2
. The bending moment M ′ will be distributed to the members OA and OB

according to their respective bending sti�ness.Thus the components of M ′ to members OA and OB
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are: M ′
OA =

l2
l1 + l2

M ′ and M ′
OB =

l1
l1 + l2

M ′. Based on the standard formulae of Euler-Bernoulli

beam theory (de�ection at one end of a beam with length l due to application of moment M at the

other end is given by: δ =
Ml2

6EI
), rotation of joint O can be expressed as φ = −M

′
OAl1

6EsI
. Using the

expressions of M ′
OA and M ′, the vertical deformation of joint C with respect to joint O due to the

rotation of joint O is given by

δvrCO =
l1l2l

2
3 cos2 γ

12EsI(l1 + l2)
W (23)

The expressions of the bending moments acting at joints O, A and B of the free-body diagrams of OA

and OB are given by

M ′
1 =

(
W1l1 cosα

2
+

l2
l1 + l2

M ′
)

(24)

M ′′
1 =

(
W1l1 cosα

2
− l2
l1 + l2

M ′
)

(25)

M ′
2 =

(
−W2l2 cos β

2
− l1
l1 + l2

M ′
)

(26)

and M ′′
2 =

(
−W2l2 cos β

2
+

l1
l1 + l2

M ′
)

(27)

Considering rotational equilibrium of the free-body diagram shown in �gure 7(c), the expression of the

vertical forces acting on joints A and B can be written as

W1 = − l2 cos β

l1 cosα− l2 cos β
W (28)

and W2 =
l1 cosα

l1 cosα− l2 cos β
W (29)

Vertical de�ections of the joints A and B in reference with joint O can be expressed as

δvAO =
W1l

3
1 cos2 α

12EsI
(30)

and δvBO =
W2l

3
2 cos2 β

12EsI
(31)

Considering a linear strain �eld, the deformation in direction-2 of the point vertically below point O

and on the line joining A and B, with respect to joint O can be expressed as

δvO =
δAO(−l2 cos β) + δBO(l1 cosα)

l1 cosα− l2 cos β
(32)

Replacing the expressions of δvAO and δvBO, equation (32) can be written as

δvO =
l21l

2
2 cos2 α cos2 β(l1 + l2)

12EsI (l1 cosα− l2 cos β)2
W (33)
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The total deformation of a single RUCE in direction-2 can be expressed as

δv2 = δvbCO + δvrCO + δvO

=
W

12EsI

(
l23 cos2 γ

(
l3 +

l1l2
l1 + l2

)
+
l21l

2
2 (l1 + l2) cos2 α cos2 β

(l1 cosα− l2 cos β)2

) (34)

From equation (34), the strain in direction-2 can be obtained as

εv2 =
σ2 (l1 cosα− l2 cos β)

Est3Ly

(
l23 cos2 γ

(
l3 +

l1l2
l1 + l2

)
+
l21l

2
2 (l1 + l2) cos2 α cos2 β

(l1 cosα− l2 cos β)2

)
(35)

Using this, the transverse elastic modulus of the non-idealized RUCE can be given by

E2U =
Est

3Ly
(l1 cosα− l2 cos β)

(
l23 cos2 γ

(
l3 +

l1l2
l1 + l2

)
+
l21l

2
2 (l1 + l2) cos2 α cos2 β

(l1 cosα− l2 cos β)2

)−1
(36)

The above expression of E2U is for a non-idealized RUCE having a dimension of Ly in direction-2.

However, for assembling the local properties of RUCEs conveniently to the global level, it is essential to

obtain the equivalent material property of an idealized RUCE (EI
2U) that has a virtual dimension of Lj

(dimension of the jth strip in direction-2) as shown in �gure 6. Considering a linear strain �eld, the EI
2U

can be obtained based on the deformation compatibility condition along direction-2, i.e. deformation

of the idealized RUCE and non-idealized RUCE in direction-2 should be equal. Enforcing this we have

WLy
AE2U

=
WLj
AEI

2U

(37)

where A = Bijb. Thus the above equation reduces to

EI
2U = E2U

Lj
Ly

(38)

3.2.2. Transverse Young's modulus of the entire irregular lattice

For deriving the expression of equivalent transverse Young's modulus for the entire irregular lattice

(E2eq), the transverse Young's modulus for the constituting idealized RUCEs (EI
2U) are assembled as

discussed in this section. Stress σ2 is applied in direction-2 as depicted in �gure 4. Considering the

force equilibrium of the jth strip under stress σ2,

σ2Bb =

(
m∑
i=1

σ2ijBij

)
b (39)

According to deformation compatibility condition, strains of each idealized RUCE in direction-2 (ε2ij)

of the jth strip are same. Equation (39) can be rewritten as

Ê2jε2jBj =
m∑
i=1

EI
2Uijε2ijBij (40)
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where ε2ij = ε2j, for i = 1, 2...m in the jth strip. Ê2j represents the equivalent elastic modulus in

direction-2 of the jth strip. equation (40) leads to

Ê2j =

m∑
i=1

EI
2UijBij

Bj

(41)

Total deformation of the entire lattice in direction-2 (∆2j) is the sum of individual deformations of

each strip in that direction,

εg2L =
n∑
j=1

ε2jLj (42)

where εg2 and ε2j represent total strain of the entire lattice and strain of jth strip in direction-2,

respectively. Lj is the dimension of jth strip in direction-2 (refer �gure 6(a)). Equation (42) can be

rewritten as
σ2L

E2eq

=
n∑
j=1

σ2Lj

Ê2j

(43)

From equation (41) and equation (43), the transverse Young's modulus of the entire irregular lattice

can be expressed as

E2eq =
L

n∑
j=1

LjBj
m∑
i=1

EI
2UijBij

(44)

From equation (36) and equation (38), the above expression can be re-written as

E2eq =
LEst

3

n∑
j=1

m∑
i=1

(l1ij cosαij − l2ij cos βij)

m∑
i=1

(
l23ij cos2 γij

(
l3ij +

l1ij l2ij
l1ij+l2ij

)
+

l21ij l
2
2ij(l1ij+l2ij) cos

2 αij cos2 βij

(l1ij cosαij−l2ij cosβij)2

)−1
(45)

3.3. Shear modulus

3.3.1. Shear modulus for an idealized RUCE

To derive the expression of shear modulus (G12U) for a single RUCE, shear stress τ is applied

as shown in �gure 8. Considering deformation compatibility and equilibrium conditions, it can be

established that there is no relative movement of joint O with respect to joints A and B. From the

deformation compatibility condition that the de�ection of point O for the members OA and OB should

be same in direction-2 (δsOA = δsOB) and the conditions of equilibrium for the free-body diagram of

18



AOB, the expressions of forces acting on points A and B can be written as

F1 =
cotα

cotα− cot β
F (46)

F2 = − cot β

cotα− cot β
F (47)

and Vs =
1

cotα− cot β
F (48)

The horizontal movement of point O with respect to point A is given by

δsOA =

(
F1 sinαl31

12EsI
− Vs cosαl31

12EsI

)
sinα (49)

Here the superscript s is used to represent the applied shear stress. Replacing the expressions of F1

Figure 8: RUCE and free-body diagram for the proposed analysis of G12U

and Vs in the above expression, it can be obtained that δsOA = δsOB = 0. Thus, shear deformation of

the entire unit cell is only contributed by the member OC. Deformation of point C in the direction of

application of τ with respect to joint O consists of two components, bending deformation and rotational

deformation. Bending deformation of point C in the direction of applied stress with respect to point

O can be expressed as

δsbCO =
Fl33 sin2 γ

12EsI
(50)
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where F = τb (l1 cosα− l2 cos β) and M s =
Fl3 sin γ

2
. The bending moment M s will be distributed

to the members OA and OB according to their respective bending sti�ness. Thus the components

of M s to members OA and OB are: M s
1 =

l2
l1 + l2

M s and M s
2 =

l1
l1 + l2

M s. Based on the standard

formulae of the Euler-Bernoulli beam theory (de�ection at one end of a beam with length l due to

application of moment M at the other end is given by: δ =
Ml2

6EI
), rotation of joint O can be expressed

as φ =
l1l2M

s

6EsI(l1 + l2)
. Using these, the rotational deformation of point C in direction-1 with respect

to point O can be expressed as

δsrCO = φl3 sin γ =
l1l2l

2
3 sin2 γF

12EsI(l1 + l2)
(51)

Total deformation of point C in direction-1 with respect to point O is given by

δsCO = δsbCO + δsrCO =
Fl23 sin2 γ

12EsI

(
l3 +

l1l2
l1 + l2

)
(52)

From equation (52), replacing the expression of F , total shearing strain can be written as

γs =
τ (l1 cosα− l2 cos β) l23 sin2 γ

Est3Ly

(
l3 +

l1l2
l1 + l2

)
(53)

Thus, the expression for the shear modulus of a non-idealized RUCE is given by

G12U =
τ

γs
=

Est
3Ly

l23 sin2 γ (l1 cosα− l2 cos β)
(
l3 + l1l2

l1+l2

) (54)

The above expression of G12U is for a non-idealized RUCE having a dimension of Ly in direction-2.

However, for assembling the local properties of RUCEs conveniently to the global level, it is essential

to obtain the equivalent shear modulus of an idealized RUCE (GI
12U) that has a virtual dimension of

Lj (dimension of the jth strip in direction-2) as shown in �gure 6. Considering a linear strain �eld,

the GI
12U can be obtained based on shear deformation compatibility condition i.e. shear deformation

of the idealized RUCE and non-idealized RUCE should be equal.

τ

G12U

Ly =
τ

GI
12U

Lj (55)

From the above equation, expression for equivalent shear modulus of an idealized RUCE can be

obtained as

GI
12U = G12U

Lj
Ly

(56)
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3.3.2. Shear modulus of the entire irregular lattice

Shear stress τ is applied as shown in �gure 4 for obtaining shear modulus of the entire irregular

lattice G12eq. Considering the application of shear stress τ in the jth strip,

τBj =
m∑
i=1

τijBij (57)

Equation (57) can be rewritten as

Ĝ12jγjBj =
m∑
i=1

GI
12UijγijBij (58)

where Ĝ12j denotes the equivalent shear modulus of the jth strip. The notations γj and γij represent the

shear strains of jth strip and individual RUCEs of the jth strip, respectively. In equation (56), GI
12Uij

is the shear modulus of an idealized RUCE positioned at (i,j). From the deformation compatibility

condition, γj = γij for i = 1, 2, ...,m in the jth strip. Therefore, equation (58) leads to

Ĝ12j =

m∑
i=1

GI
12UijBij

Bj

(59)

Total shear deformation of the entire lattice structure under the application of shear stress τ is

obtained by the summation of the individual shear deformations of n number of strips. Thus

γgL =
n∑
j=1

γjLj (60)

where γg denotes the shear strain of entire lattice. Using the de�nition of G12, equation (60) can be

written as
τ

G12eq

L =
n∑
j=1

τj
ˆG12j

Lj (61)

where τ = τj. Using equation (59) and equation (61), equivalent shear modulus of the entire irregular

lattice can be obtained as

G12eq =
L

n∑
j=1

LjBj
m∑
i=1

GI
12UijBij

(62)

Replacing the expression of GI
12Uij (refer equation (56)), the above equation leads to

G12eq =
LEst

3

n∑
j=1

m∑
i=1

(l1ij cosαij − l2ij cos βij)

m∑
i=1

(
l23ij sin2 γij

(
l3ij +

l1ij l2ij
l1ij+l2ij

))−1
(63)
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3.4. Poisson's ratio ν12

3.4.1. Poisson's ratio ν12 for an idealized RUCE

Poisson's ratio of a single RUCE for the loading direction-1 (ν12U) is obtained as (refer �gure 5)

ν12U = −ε
′
2

ε′1
(64)

where ε′1 and ε
′
2 are the strains of a non-idealized RUCE in direction-1 and direction-2 respectively due

to loading in direction-1. ε′1(= εh1) is obtained from equation (10). The vertical de�ections of point A

with respect to point O due to application of load in direction-1 (refer �gure 5) are obtained as

δ′AO = −
(
Pl31 sinα

12EsI
− Cl31 cosα

12EsI

)
cosα (65)

where the �rst and second terms in the bracket represents the de�ection of point A with respect to

point O in the direction perpendicular to OA due to forces P and C respectively. In a similar way,

the vertical de�ection of point B with respect to point O can be expressed as

δ′BO =

(
Pl32 sin β

12EsI
− Cl31 cos β

12EsI

)
cos β (66)

Similar to equation (32), deformation in direction-2 of the point vertically below point O and on the

line joining A and B, with respect to joint O can be expressed as

δ′O =
δ′AO(−l2 cos β) + δ′BO(l1 cosα)

l1 cosα− l2 cos β

=
σ1l

2
1l

2
2Ly (l1 + l2) cosα cos β (cosα sin β − sinα cos β)

Est3 (l1 cosα− l2 cos β)2

(67)

Thus the strain in direction-2 due to application of load in direction-1 can be obtained from equa-

tion (67) as

ε′2 =
σ1l

2
1l

2
2 (l1 + l2) cosα cos β (cosα sin β − sinα cos β)

Est3 (l1 cosα− l2 cos β)2
(68)

Using the de�nition of Poisson's ratio as shown in equation (64), the expression of Poisson's ratio

corresponding to loading in direcion-1 for a non-idealized RUCE can be obtained as

ν12U = −cosα cos β (l1 cosα− l2 cos β)

(cosα sin β − sinα cos β)Ly
(69)

The above expression of ν12U is for a non-idealized RUCE having a dimension of Ly in direction-2.

However, for assembling the local properties of RUCEs conveniently to the global level, it is essential

to obtain the equivalent material property of an idealized RUCE (νI12U) that has a virtual dimension of

Lj (dimension of the jth strip in direction-2) in direction-2 as shown in �gure 6. Considering a linear

strain �eld, the νI12U can be obtained based on deformation compatibility conditions: ε′1Bij = ε′I1 Bij

and ε′2Ly = ε′I2 Lj, where (.)I is used to indicate a parameter corresponding to idealized RUCE. Thus
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the expression for Poisson's ratio of an idealized RUCE is given by

νI12U = ν12U
Ly
Lj

(70)

3.4.2. Poisson's ratio ν12 for the entire irregular lattice

To derive the expression of equivalent Poisson's ratio of the entire irregular lattice for loading

direction-1 (ν12eq), the Poisson's ratios for the constituting idealized RUCEs (νI12U) are assembled

as discussed below. For obtaining ν12eq, stress σ1 is applied as shown in �gure 4. Considering the

application of stress σ1 in the jth strip, the following equation can be obtained from equation (15)

using the basic de�nition of ν12,

− ε2j
ν̂12j

Bj = −
m∑
i=1

ε2ijBij

νIU12ij

(71)

where ε2j and ε2ij are the strains in direction-2 of jth strip and individual idealized RUCEs of jth

strip respectively. νIU12ij represents the Poisson's ratio for loading direction-1 of an idealized RUCE

positioned at (i,j). ν̂12j denotes the equivalent Poisson's ratio of the jth strip for loading direction-1.

To ensure the deformation compatibility condition ε2j = ε2ij for i = 1, 2, ...,m in the jth strip. Thus

equation (71) reduces to

ν̂12j =
Bj

m∑
i=1

Bij

νI12Uij

(72)

Total deformation of the entire lattice in direction-2 under the application of stress σ1 is summation

of the individual deformations of n number of strips in direction-2

εg122 L =
n∑
j=1

ε2jLj (73)

where εg122 is the total strain in direction-2. Using the basic de�nition of ν12 equation (73) can be

rewritten as

ν12eqε
g12
1 L =

n∑
j=1

ν12jε1jLj (74)

where εg121 and ε1j denote the strain of entire lattice in direction-1 and strain of jth strip in direction-1

respectively. From the condition of deformation comparability the following condition can be estab-

lished: εg121 = ε1j for j = 1, 2, ..., n. Thus from equation (72) and 74,

ν12eq =
1

L

n∑
j=1

BLj
m∑
i=1

Bij

νI12Uij

(75)

Replacing the expression of νI12Uij from equation (69) and (70) in the above equation, the expression
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of Poisson's ratio for loading direction-1 of the entire irregular lattice can be obtained as

ν12eq = − 1

L

n∑
j=1

m∑
i=1

(l1ij cosαij − l2ij cos βij)

m∑
i=1

(cosαij sin βij − sinαij cos βij)

cosαij cos βij

(76)

3.5. Poisson's ratio ν21
3.5.1. Poisson's ratio ν21 for an idealized RUCE

Poisson's ratio of a single RUCE for the loading direction-2 (ν21U) is obtained as (refer �gure 7)

ν21U = −ε
′′
1

ε′′2
(77)

where ε′′1 and ε′′2 are the strains of a non-idealized RUCE in direction-1 and direction-2 respectively

due to loading in direction-2. ε′′2(= εv2) is obtained from equation (35). For deriving the expression of

ε′′1, the horizontal de�ections of points A and B with respect to point O due to application of load in

direction-2 are obtained as

δ′′AO = −W1l
3
1 cosα sinα

12EsI
(78)

δ′′BO =
W2l

3
2 cos β sin β

12EsI
(79)

where W1 and W2 can be obtained from equation (28) and (29). Considering a linear strain �eld

along the line AB, the e�ective deformation of the RUCE in direction-1 due to application of load in

direction-2 is given by

δ′′1 = δ′′AO
δO

l1 sinα
+ δ′′BO

δO
l2 sin β

=
Wl21l

2
2 (l1 + l2) cosα cos β (cosα sin β − sinα cos β)

12EsI (l1 cosα− l2 cos β)2

(80)

where δO is the distance of the point vertically below point O and on the line AB (refer equation (8)).

From equation (80) the stain in direction-1 due to application of stress in direction-2 can be obtained

as

ε′′1 =
σ2l

2
1l

2
2 (l1 + l2) cosα cos β (cosα sin β − sinα cos β)

Est3 (l1 cosα− l2 cos β)2
(81)

Using the de�nition of Poisson's ratio (refer equation (77)), the expression of Poisson's ratio corre-

sponding to loading in direction-2 for a non-idealized RUCE can be obtained as

ν21U = − Lyl
2
1l

2
2 (l1 + l2) cosα cos β (cosα sin β − sinα cos β)

(l1 cosα− l2 cos β)3
(
l23 cos2 γ

(
l3 + l1l2

l1+l2

)
+

l21l
2
2(l1+l2) cos

2 α cos2 β

(l1 cosα−l2 cosβ)2

) (82)

The above expression of ν21U is for a non-idealized RUCE having a dimension of Ly in direction-2.

However, for assembling the local properties of RUCEs conveniently to the global level, it is essential
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to obtain the equivalent material property of an idealized RUCE (νI21U) that has a virtual dimension of

Lj (dimension of the jth strip in direction-2) in direction-2 as shown in �gure 6. Considering a linear

strain �eld, the νI21U can be obtained based on deformation compatibility conditions: ε′′1Bij = ε′′I1 Bij

and ε′′2Ly = ε′′I2 Lj, where (.)I is used to indicate a parameter corresponding to idealized RUCE. Thus

the expression for Poisson's ratio of an idealized RUCE is given by

νI21U = ν21U
Lj
Ly

(83)

3.5.2. Poisson's ratio ν21 for the entire irregular lattice

To derive the expression of equivalent Poisson's ratio for loading direction-2 of the entire irregular

lattice structure (ν21eq), the Poisson's ratios for the constituting idealized RUCEs (νI21U) are assembled

as discussed below. Stress σ2 is applied in direction-2 for obtaining ν21eq, similar to the derivation

of E2eq (as shown in �gure 4). If the application of stress σ2 in the jth strip is considered, total

deformation of the jth strip in direction-1 is summation of individual deformations of the idealized

RUCEs in direction-1 of that particular strip. Thus,

ε1jBj =
m∑
i=1

ε1ijBij (84)

Using the basic de�nition of ν21 equation (84) leads to

ν̂21jε2jBj =
m∑
i=1

νI21Uijε2ijBij (85)

where ν̂21j denotes the equivalent Poisson's ratio for loading direction-2 of the jth strip. ε2j and ε2ij

are the strains in direction-2 of jth strip and individual idealized RUCEs of jth strip, respectively. The

quantity νI21Uij represents the Poisson's ratio for loading direction-2 of an idealized RUCE located at

(i,j). To ensure the deformation compatibility condition ε2j = ε2ij for i = 1, 2, ...,m in the jth strip.

Thus equation (85) leads to

ˆν21j =

m∑
i=1

νI21UijBij

Bj

(86)

Total deformation of the entire lattice in direction-2 due to application of stress σ2 is summation of

the individual deformations in direction-2 of n number of strips. Thus

εg212 L =
n∑
j=1

ε2jLj (87)

where εg212 is the strain of the entire lattice in direction-2. By de�nition of ν21 equation (87) leads to

εg211

ν21eq
L =

n∑
j=1

ε1j
ˆν21j
Lj (88)
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where εg211 is the strain of the entire lattice in direction-1. From the condition of deformation com-

parability the following equality is established: εg211 = ε1j for j = 1, 2, ..., n. Using equation (86) and

(88), the equivalent Poisson's ratio for loading direction-2 of the entire irregular lattice structure can

be obtained as

ν21eq =
L

n∑
j=1

Bj

m∑
i=1

νI21UijBij

Ly

(89)

Replacing the expression of νI21Uij from equation (83), the above equation can be rewritten as

ν21eq = − L

n∑
j=1

m∑
i=1

(l1ij cosαij − l2ij cos βij)

m∑
i=1

l21ijl
2
2ij (l1ij + l2ij) cosαij cos βij (cosαij sin βij − sinαij cos βij)

(l1ij cosαij − l2ij cos βij)
2
(
l23ij cos2 γij

(
l3ij +

l1ij l2ij
l1ij+l2ij

)
+

l21ij l
2
2ij(l1ij+l2ij) cos

2 αij cos2 βij

(l1ij cosαij−l2ij cosβij)2

)
(90)

The negative sign in the expression of Poisson's ratios (refer equation (76) and equation (90)) does not

indicate any auxetic characteristics in the present context; rather it is due to the fact that βij > 90◦

as shown in �gure 7.

3.6. Remark 1: regular lattices

The closed-form expressions of all the in-plane elastic moduli for irregular lattices in subsection 3.1

- 3.5 can be reduced to the formulae provided by Gibson and Ashby (1999) in the special case of

uniform honeycombs as described in Table 1 (subscript GA is used as denotation for the formulae of

regular honeycomb). With reference to the notations used for a regular honeycomb by Gibson and

Ashby (1999) as shown in �gure 3(d), the notations of the present paper for regular honeycombs can

be expressed as: L = n(h + l sin θ); l1ij = l2ij = l3ij = l; αij = θ; βij = 180◦ − θ; γij = 90◦, for all

i and j. Using these transformations in equation (21), (45), (63), (76) and (90), the expressions of

longitudinal and transverse elastic moduli, shear modulus and Poisson's ratios for regular honeycomb

can be obtained, respectively.

In the case of regular uniform honeycombs with θ = 30◦, we have

E∗1
Es

=
E∗2
Es

= 2.3

(
t

l

)3

(91)

where E∗1 and E∗2 denote the Young moduli of uniform regular honeycombs in longitudinal and trans-

verse direction respectively. Similarly, in the case of shear modulus for regular uniform honeycombs
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Table 1: Summary of formulae for e�ective in-plane elastic properties of hexagonal lattices
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(θ = 30◦)

G∗12
Es

= 0.57

(
t

l

)3

(92)

where G∗12 represents the shear modulus of uniform regular honeycombs. Regular honeycombs satisfy

the reciprocal theorem: E∗2ν
∗
12 = E∗1ν

∗
21, where ν

∗
12 and ν∗21 denote the Poisson's ratios of regular

honeycombs. It is noteworthy that for regular uniform honeycombs, the Poisson's ratios become unity

(i.e. ν∗12 = ν∗21 = 1) and the regular uniform honeycombs correctly obey the relation G = E/2(1 + ν),

where E, G and ν represent Young's modulus, shear modulus and Poisson's ratio of isotropic solids

respectively. These relationships in general do not hold for irregular honeycombs considered in this

work.

3.7. Remark 2: e�ects of spatially random variation of intrinsic material property

From the preceding sections it is observed that the in-plane Poisson's ratios do not depend on the

intrinsic material properties of the lattice. Thus the e�ect of spatially random variation of intrinsic

material properties (and the compound e�ects for spatial variation of both intrinsic material property

and structural geometry) on the two Young's moduli and shear modulus are investigated as a part of

this article.

3.7.1. Compound e�ects on the in-plane elastic moduli for spatial variation of both intrinsic material
property and structural geometry

Closed-form formulae are derived in this section to account for the compound e�ect on the in-

plane elastic moduli due to spatial variation of both material property and structural geometry. From

equation (10), elastic modulus of a single RUCE (located at ith column and jth row of the lattice) in

direction-1 with randomly varying properties can be expressed as

E1Uij =
Esijt

3 (l1ij cosαij − l2ij cos βij)
3

Lyl21ijl
2
2ij (l1ij + l2ij) (cosαij sin βij − sinαij cos βij)

2 (93)

Here Esij is the intrinsic material property of a RUCE located at ith column and jth row of the lattice.

Noting the relationship in equation (13) and using the expression in equation (20), the e�ective longi-

tudinal Young's modulus for compound spatial variation of intrinsic material properties and structural

geometry as

E1eq =
t3

L

n∑
j=1

m∑
i=1

(l1ij cosαij − l2ij cos βij)

m∑
i=1

l21ijl
2
2ij (l1ij + l2ij) (cosαij sin βij − sinαij cos βij)

2

Esij((l1ij cosαij − l2ij cos βij)
2)

(94)

This expression enables the consideration of simultaneous spatial variation of intrinsic material prop-

erty and spatially random structural geometry.
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From equations (36), (38) and (44), the e�ective transverse Young's modulus for compound spatial

variation of intrinsic material properties and structural geometry can be obtained as:

E2eq =
Lt3

n∑
j=1

m∑
i=1

(l1ij cosαij − l2ij cos βij)

m∑
i=1

Esij

(
l23ij cos2 γij

(
l3ij +

l1ij l2ij
l1ij+l2ij

)
+

l21ij l
2
2ij(l1ij+l2ij) cos

2 αij cos2 βij

(l1ij cosαij−l2ij cosβij)2

)−1
(95)

From equations equation (54), (56) and (62), the e�ective shear modulus for compound spatial

variation of intrinsic material properties and structural geometry can be obtained as:

G12eq =
Lt3

n∑
j=1

m∑
i=1

(l1ij cosαij − l2ij cos βij)

m∑
i=1

Esij

(
l23ij sin2 γij

(
l3ij +

l1ij l2ij
l1ij+l2ij

))−1
(96)

The above expressions can account for the e�ect of both spatially random variation of structural and

material property enabling us to quantify the compound e�ect arising due to the simultaneous variation

of both quantities on the in-plane elastic moduli. The in-plane Poisson's ratios do not depend on the

intrinsic material properties of the lattice. Thus we have investigated the compound e�ects for spatial

variation of both intrinsic material property and structural geometry in case of the Young's moduli

and shear modulus. The expressions of Poisson's ratios for the case of compound variation will remain

same as provided in equations (76) and (90).

3.7.2. E�ect on the in-plane elastic moduli for spatially random variation of intrinsic material prop-
erties only

With reference to the notations used for a regular honeycomb by Gibson and Ashby (1999) (as

shown in �gure 3(d)), the notations of the present paper for regular honeycombs can be expressed as:

L = n(h + l sin θ); l1ij = l2ij = l3ij = l; αij = θ; βij = 180◦ − θ; γij = 90◦, for all i and j. Using

these transformations in case of the variation of only material properties, the closed-form formulae for

compound variation of material and geometric properties (equations 94�96) can be reduced to:

E1eq = κ1

(
t

l

)3
cos θ

(h
l

+ sin θ) sin2 θ
(97)

E2eq = κ2

(
t

l

)3 (h
l

+ sin θ)

cos3 θ
(98)

and G12eq = κ2

(
t

l

)3
(
h
l

+ sin θ
)(

h
l

)2
(1 + 2h

l
) cos θ

(99)
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Resemblance of the above equations with the expressions provided by Gibson and Ashby (1999) is

noteworthy; the generalization in terms of spatially varying material properties are clearly accounted

by the two multiplication factors κ1 and κ2. These two factors arising due to the consideration of

spatially random variation of intrinsic material properties can be expressed as

κ1 =
m

n

n∑
j=1

1
m∑
i=1

1

Esij

(100)

and κ2 =
n

m

1
n∑
j=1

1
m∑
i=1

Esij

(101)

The in-plane Poisson's ratios do not depend on the intrinsic material properties of the lattice. Thus

we have investigated the individual e�ect for spatial variation of intrinsic material property in case of

the Young's moduli and shear modulus. The expressions of Poisson's ratios for the case of intrinsic

material property variation will remain same as the formulae provided by Gibson and Ashby (1999)

(i.e. ν12eq = ν12GA and ν21eq = ν21GA; refer to Table 1). In the special case when there is no spatial

variabilities in the intrinsic material properties of the lattice, all Esij becomes identical (i.e. Esij = Es,

for i = 1, 2, 3, ...,m and j = 1, 2, 3, ..., n) and subsequently κ1 and κ2 become exactly Es. This

con�rms that the expressions in equation (100) and equation (101) give the necessary generalisations

of the classical expressions of Gibson and Ashby (1999) through equation (97), equation (98) and

equation (99).

4. Results and discussion

A �nite element code is developed to obtain the in-plane elastic moduli numerically for lattices

with general spatial random structural variations. The developed �nite element code is capable of

accepting the number of cells in two perpendicular directions and spatially irregular structural forms/

intrinsic material property distribution as input to obtain the corresponding �ve in-plane elastic mod-

uli as output. The main purpose of the �nite element model in context of the present study is to

validate the proposed analytical formulae (refer to section 3) for equivalent in-plane elastic moduli

of irregular lattices. Each connecting member has been modelled as standard Euler-Bernoulli beam

element neglecting axial and shear deformation with the assumption of high axial rigidity and low cell

wall thickness respectively. The �nite element code is validated with the results from scienti�c liter-

ature corresponding to regular con�guration (Gibson and Ashby, 1999). The results for validation of

�ve in-plane elastic moduli are furnished in �gure 9 along with convergence study for a regular lattice
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with cell angle 30◦ and h/l = 1 (symbols are in accordance with the unit cell adopted by Gibson and

Ashby (1999); refer to �gure 3(d)). The convergence study is carried out for the �ve in-plane elastic

moduli with number of RUCEs to ensure that the equivalent global behaviour of the entire lattice

is accounted by avoiding any localised deformation due to boundary e�ect. The �nite element code

obtains the ratio reasonably close to 1 for 529 RUCEs or less. As considering a far smaller number

of RUCEs for the analysis may be insu�cient to account for the e�ect of structural randomness in

global behaviour of the entire lattice, a relatively larger size of lattice (having a total of 961 RUCEs) is

adopted for all the subsequent analyses to capture the e�ect of spatially random structural irregularity

comprehensively.

Figure 9: Convergence study and validation of �nite element model for obtaining elastic moduli of regular hexagonal
lattices. The results are shown as a ratio for a particular elastic modulus obtained using the �nite element code and
from the formula provided by Gibson and Ashby (1999)

The analytical formulae developed in section 3 are capable of obtaining the equivalent in-plane

properties for irregular hexagonal lattices from known spatial con�guration of structural geometry and

material properties. Characterization of such irregularities in material micro-structure with hexagonal

con�guration can be performed by common techniques like digital image analysis. To quantify the

variation in elastic moduli of hexagonal lattices due to spatial irregularity, structural geometry and

material properties can be perturbed as described in subsection 2.2 following a random distribution.

From the closed-form expressions of equivalent in-plane elastic moduli derived in section 3, it is evident

31



that all the in-plane elastic moduli depend on l1, l2, l3, α, β, γ and t (refer Table 1) of all the constituent

RUCEs. The dimension of the entire lattice in direction-2 (L) is an inherent function of the structural

geometries mentioned above. Two Young's moduli and the shear modulus are also dependent on

the intrinsic material property Es in addition to the geometric attributes. The formulae derived in

this paper are valid for small strain allowing the non-linearity caused by beam-column e�ect to be

neglected. Only bending deformation is considered as the e�ect due to axial and shear deformation are

negligible because of high axial rigidity and small bending thickness compared to the other dimensions

of a RUCE, respectively.

Figure 10: (a-c) Representative con�guration of spatially random irregular hexagonal lattices corresponding to dif-
ferent degree of irregularity for a single random realization (d) Simulation bound for the contour of irregular lattice
con�gurations considering multiple random realizations and statistical interpretation
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Figure 11: (a) E�ect of irregularity on mean normalized relative density of hexagonal lattices (b) Probabilistic charac-
terization for relative densities corresponding to di�erent degree of irregularity (r)

Here only spatially random structural variation is discussed (the case of random intrinsic material

property variation (including the compound e�ects) is discussed in subsection 3.7). Results have been

obtained following a probabilistic framework involving 10,000 random realizations. In each realization,

the nodes corresponding to deterministic con�guration are allowed to move randomly (following a

uniform random distribution) within a circular bound for obtaining the spatially random structural

con�guration as discussed in subsection 2.2. Thus each realization possess spatially random values of
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the structural attributes ( l1, l2, l3, α, β and γ) corresponding to each RUCE. Figure 10(a-c) show

representative structural con�gurations of spatially random irregular hexagonal lattices corresponding

to three di�erent degree of irregularities (r) considering a single random realization of the Monte Carlo

simulation. Figure 10(d) presents simulation bound for the contour of irregular lattice con�gurations

considering multiple random realizations indicating the contour of nodes and the connecting members.

Statistical distributions of normalized movement in terms of abscissa and ordinate (normalized with

respect to the corresponding value of deterministic abscissa and ordinate for the considered node) for a

particular node are shown in the zoomed in view. The distributions clearly indicate a uniform random

distribution, which is followed in this study. However, to understand the physical interpretation of

the disorder in terms of degree of irregularity (r), let us consider a regular uniform hexagonal lattice

with h = l and θ = 30◦. From the equation (2), it can be obtained that, rd = 0.257l, for r = 8 (refer

to �gure 3(d) for the dimensions h and l). Thus, it can be understood that simultaneously random

movement of all the nodes of lattice within a circular bound of radius rd = 0.257l results in a signi�cant

disorder in the lattice structure. This is also evident from the �gure 10(c).

Results are presented for three di�erent h/l ratios (1, 1.5 and 2) with a small t/l value (∼ 10−2)

corresponding to respective deterministic lattice con�gurations (refer �gure 3(d)) to quantify the vari-

ability in the in-plane elastic moduli due to structural irregularity. For each of the h/l ratios, three

di�erent cell angles (θ) are considered corresponding to deterministic con�guration (30◦, 45◦ and 60◦).

As the two Young's moduli and the shear modulus for low density lattices are proportional to Esρ
3 (Zhu

et al., 2001), the non-dimensional results for in-plane elastic moduli E1, E2, ν12, ν21 and G12 are pre-

sented as: Ē1 =
E1eq

Esρ3
, Ē2 =

E2eq

Esρ3
, ν̄12 = ν12eq , ν̄21 = ν21eq and Ḡ12 =

G12eq

Esρ3
respectively, where ` (̄.)

' denotes the non-dimensional elastic modulus and ρ is the relative density of the lattice (de�ned as a

ratio of the planar area of solid to the total planar area of the lattice).

Figure 11 presents the e�ect of irregularity on relative density of hexagonal lattices along with

their probabilistic characteristics for di�erent structural con�gurations. Non-dimensional results for

relative density have been obtained as a ratio of the relative density for a particular irregular structural

con�guration and relative density for the corresponding regular (/deterministic) con�guration. The

�gure shows that normalized relative density increases with the increase of irregularity for all the

deterministic structural con�gurations. It is interesting to notice that even though the regular uniform

deterministic hexagonal con�guration (θ = 30◦;h/l = 1) is the most e�cient space �lling pattern, it is

also the most sensitive con�guration to irregularity for relative density. The e�ect of spatially random

structural irregularity decreases with the increase of deterministic cell angle (θ) in terms of the mean
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(b) Probability density function plot

Figure 12: Representative scatter plot and probability density function plot for E1 considering a hexagonal con�guration
with θ = 30◦, h/l = 1 and r = 8.

values. On the other hand, the probability function plots furnished in �gure 11(b) show that the

standard deviation for relative density increases with the increase in cell angle (θ).

Figure 12(a) shows a representative scatter plot for E1, wherein low deviation of the points cor-

responding to di�erent samples from the diagonal line a�rms high level of precision of the developed

analytical formulae with respect to �nite element results for the irregular lattices. The low deviation

between results of the probability density function plots presented in �gure 12(b) using the analytical

formulae and �nite element method for E1 of irregular lattice further corroborates high level of ac-

curacy of the proposed approach. It is interesting to note that even though the nodes of the lattices

corresponding to regular con�guration are allowed to move within a circular bound following a ran-

dom uniform distribution for obtaining the irregular lattice con�gurations, the e�ective E1 of irregular

lattice follows a Gaussian distribution. A similar trend is found in the results for other in-plane elastic

moduli presented later (�gure 13 - 27). This observation agrees well with the central limit theorem of

probability theory (Rice, 1995).

The e�ect of irregularity on the �ve in-plane elastic moduli are presented in �gures 13 -27 consid-

ering di�erent degree of irregularity (r). The numerical values furnished in the left side of each `I'

shaped marks represent percentage errors in mean values of in-plane elastic moduli obtained using the

developed analytical formulae with respect to the �nite element results, while the numerical values

on top and bottom are the percentage errors corresponding to maximum and minimum values respec-

tively. Reasonably small values in the percentage errors is indicative of high precision of the proposed

analytical approach for irregular lattices compared to �nite element formulation. The probabilistic

description of the in-plane elastic moduli corresponding to di�erent lattice con�gurations are shown

35



(a) h/l = 1 (b) h/l = 1.5

(c) h/l = 2

Figure 13: E�ect of spatially random structural irregularity on non-dimensional E1 for θ = 30◦

(a) h/l = 1 (b) h/l = 1.5

(c) h/l = 2

Figure 14: E�ect of spatially random structural irregularity on non-dimensional E1 for θ = 45◦
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(a) h/l = 1 (b) h/l = 1.5

(c) h/l = 2

Figure 15: E�ect of spatially random structural irregularity on non-dimensional E1 for θ = 60◦

as inset of each �gure.

From �gures 13 - 27, it can be observed that the mean values of the two Young's moduli (E1 and

E2) and two Poisson's ratios (ν12 and ν21) reduce with the increase in degree of irregularity, while

the shear modulus (G12) is found to follow an increasing trend with higher degree of irregularity.

However, the upper bound for E1 and the lower bound for G12 are found to be respectively more

and less than the corresponding deterministic values, in some instances due to system randomness

depending on the respective standard deviations. The range of variations for all the in-plane elastic

moduli are found to increase with increasing degree of irregularity, as expected. From relative slope

of the lines joining mean values, it is observed that the e�ect of irregularity is more sensitive for

increasing value of deterministic cell angle (θ) in case of two Young's moduli (E1 and E2) and two

Poisson's ratios (ν12 and ν21), while a reverse trend is found for the shear modulus (G12). However,

all the in-plane elastic moduli are found to be more sensitive to structural irregularity as the h/l ratio

decreases. From the results presented in �gures 13 - 27, it is quite evident that the e�ect of spatially

random structural irregularity has considerable in�uence on the equivalent in-plane elastic properties

of hexagonal lattices (percentage variation are up to 27.22% and 13.41% for E1 and E2; 10.05% for
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(a) h/l = 1 (b) h/l = 1.5

(c) h/l = 2

Figure 16: E�ect of spatially random structural irregularity on non-dimensional E2 for θ = 30◦

(a) h/l = 1 (b) h/l = 1.5

(c) h/l = 2

Figure 17: E�ect of spatially random structural irregularity on non-dimensional E2 for θ = 45◦
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(a) h/l = 1 (b) h/l = 1.5

(c) h/l = 2

Figure 18: E�ect of spatially random structural irregularity on non-dimensional E2 for θ = 60◦

G12; 28.43% and 21.18% for ν12 and ν21, respectively in case of the analysed lattice con�gurations).

The overlapping zones of the probability density function plots for di�erent degree of irregularity

corresponding to a particular deterministic structural con�guration depends on the sensitivity of the

elastic modulus under consideration to structural irregularity and the respective standard deviation.

Probabilistic results concerning the spatially random variation of intrinsic material property and

the compound e�ect of material and structural variation are provided in �gure 28 and �gure 29, re-

spectively. The extent of the e�ect arising due to irregularity (both in terms of variation of intrinsic

material property and structural geometry) can be easily discerned from the probabilistic descriptions.

Two di�erent degree of randomness in the material properties (∆m) are considered in terms of percent-

age spatial variation for obtaining the results. The e�ect on the in-plane elastic moduli for combined

spatially random variation of intrinsic material property (∆m) and structural geometry (r) are shown

in �gure 29 considering di�erent degree of irregularity in random material property distribution and

structural con�guration. Even though the response bounds of the elastic moduli are found to increase

with increasing degree of randomness in intrinsic material property distribution, the e�ect of varia-

tion in material properties is less signi�cant compared to the spatially random variation in structural
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(a) h/l = 1 (b) h/l = 1.5

(c) h/l = 2

Figure 19: E�ect of spatially random structural irregularity on non-dimensional G12 for θ = 30◦

(a) h/l = 1 (b) h/l = 1.5

(c) h/l = 2

Figure 20: E�ect of spatially random structural irregularity on non-dimensional G12 for θ = 45◦
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(a) h/l = 1 (b) h/l = 1.5

(c) h/l = 2

Figure 21: E�ect of spatially random structural irregularity on non-dimensional G12 for θ = 60◦

geometries. Similar inference can be drawn by comparing the probability distributions of in-plane

elastic moduli for only variation of structural geometry and the compound e�ect of structural and

material property variation as presented in �gure 29. As the in�uence of the variability in structural

con�guration is quite signi�cant compared to the spatial variability in intrinsic material property, the

response bounds for the individual variation of structural con�guration and the combined variation

of structural and material property distribution do not have notable di�erence. However, the e�ect

of intrinsic material property variation is found to be relatively more accountable in case of the shear

modulus as the in�uence of structural irregularity is relatively lesser for the shear modulus compared

to the Young's moduli.

Typical movement of nodes for regular lattices under the application of three di�erent stress con-

ditions (as described in �gure 4) with two levels are shown in �gure 30. Location of nodes for the

deformed lattices can be visualized relative to respective undeformed con�guration in the �gures. Due

to the cumulative e�ect, de�ection of nodes for a particular level and condition of stress are higher

as the distance from support increases. Movement of the nodes are higher in respective directions for

stress level 2 compared to level 1, as expected. It is interesting to notice that the deformed location
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(a) h/l = 1 (b) h/l = 1.5

(c) h/l = 2

Figure 22: E�ect of spatially random structural irregularity on non-dimensional ν12 for θ = 30◦

(a) h/l = 1 (b) h/l = 1.5

(c) h/l = 2

Figure 23: E�ect of spatially random structural irregularity on non-dimensional ν12 for θ = 45◦
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(a) h/l = 1 (b) h/l = 1.5

(c) h/l = 2

Figure 24: E�ect of spatially random structural irregularity on non-dimensional ν12 for θ = 60◦

of the nodes for the stresses applied in direction-1 and direction-2 (�gure 4(a) and 4(b)) allow the

lattice to expand in the direction of applied stress while contract in the direction perpendicular to

application of stress in the 1-2 plane, conforming non-auxetic property of the considered lattice con-

�guration. If the cell angle corresponding to deterministic con�gurations (θ) is considered negative,

a reverse trend (expansion/contraction for both the directions) would be followed. Figure 31 shows

typical irregular lattices for di�erent random con�gurations along with location of nodes under the

application of three di�erent stress conditions. Figure 31(a), 31(c) and 31(e) present the movement

of nodes for three di�erent stress conditions considering a single random realization with structural

irregularity, while �gure 31(b), 31(d) and 31(f) show the bound of movements for di�erent nodes and

the connecting members in randomly irregular lattices in an ensemble form considering 10,000 random

structural con�gurations. It is noteworthy that movement of the nodes in direction-1 and direction-2

(refer �gure 31(a) - 31(d)) increases for randomly irregular structural geometries compared to the

respective regular con�gurations, while for the application of shear stress (refer �gure 31(e) - 31(f)),

an opposite trend is noticed. This observation, in turn indicates reduction in E1 and E2 values of

the lattice owing to e�ect of irregularity, while an increase in the value for G12. Thus the results in
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(a) h/l = 1 (b) h/l = 1.5

(c) h/l = 2

Figure 25: E�ect of spatially random structural irregularity on non-dimensional ν21 for θ = 30◦

(a) h/l = 1 (b) h/l = 1.5

(c) h/l = 2

Figure 26: E�ect of spatially random structural irregularity on non-dimensional ν21 for θ = 45◦
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(a) h/l = 1 (b) h/l = 1.5

(c) h/l = 2

Figure 27: E�ect of spatially random structural irregularity on non-dimensional ν21 for θ = 60◦

�gure 31 agree well with the results presented in �gures 13 - 21.

5. Summary and perspective

A careful review of the scienti�c literature reveals that previous investigations have dealt with the

e�ect of under and over-expansion of cells in hexagonal honeycomb with regular con�guration using

numerical and experimental studies (Papka and Kyriakides, 1994) concluding that under-expansion

results in a response that has a higher elastic moduli, while over-expansion has the opposite e�ect.

The e�ect of spatially random variation of under and over expanded cells (refer to �gure 2(b)) on the

in-plane elastic moduli for irregular honeycombs are presented recently (Mukhopadhyay and Adhikari,

2016a,b), which reveal that E2, ν21 and G12 reduce signi�cantly due to such variations in cell angle,

while the e�ect on E1 and ν12 is negligible. Liu et al. (2014) have reported, based on numerical

investigation, that irregularity in auxetic hexagonal honeycombs reduces the e�ective in-plane Young's

moduli and auxetic property of the system. The present paper develops an analytical framework

to obtain e�ective in-plane elastic moduli of hexagonal lattices with a generalized form of random

structural irregularity. The previous works (Mukhopadhyay and Adhikari, 2016a,b) on the development
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(a) Normalized longitudinal Young's modulus

(b) Normalized transverse Young's modulus

(c) Normalized shear modulus

Figure 28: E�ect on the in-plane elastic moduli (probabilistic descriptions) for spatially random variation of intrinsic
material property only (the results are presented as a ratio of the elastic moduli for irregular lattice and that of the
corresponding regular con�guration)
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(a) Normalized longitudinal Young's modulus

(b) Normalized transverse Young's modulus

(c) Normalized shear modulus

Figure 29: E�ect on the in-plane elastic moduli (probabilistic descriptions) for combined spatially random variation
of intrinsic material property and structural geometry (the results are presented as a ratio of the elastic moduli for
irregular lattice and that of the corresponding regular con�guration)
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Figure 30: Typical location of nodes for a regular lattice under the application of three di�erent stress conditions

of analytical formulae for randomly varying cell angles is a specialized case of the formulation presented

here. In contrast to the previous observations related to spatially varying cell angles, the present

study shows that all the in-plane elastic moduli are signi�cantly a�ected by generalized randomness in

structural con�guration. The generalized form of spatially random irregularity, as considered in this

study, results in decrease of mean for the two Young's moduli (E1 and E2) and two Poisson's ratios

(ν12 and ν21), while an increase of mean for the shear modulus (G12) is observed. The closed-form

expressions developed for the two Young's moduli, and shear modulus are functions of both structural
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Figure 31: Typical representation for deformation of an irregular lattices along with location of nodes under the
application of three di�erent stress conditions
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con�guration and material properties of irregular lattice, while the two Poisson's ratios depend only on

structural con�guration. In addition to the other parameters the member with inclination angle γ plays

a vital role in variation of the elastic moduli for irregular lattices, as this member contributes towards

the bending deformation signi�cantly in the present analysis. Thus the form of irregularity in hexagonal

lattices has considerable in�uence in the e�ective global behaviour (in-plane elastic properties) of the

entire lattice. However, it is found that spatially random variation of intrinsic material property has less

signi�cant e�ect on the in-plane elastic moduli compared to the structural irregularity. Consideration

of the shape of RUCE and adopted idealization scheme depends on the form of irregularity in the

lattice. However, being the most generalized formulation, the present approach can account for all the

above mentioned forms of irregularity.

E�ect of di�erent irregularities and defects in various forms of solids have received immense atten-

tion from the scienti�c community. E�ect of material anisotropy on the e�ective elastic moduli has

been investigated for solids (Sevostianov and Sabina, 2007; Tsukrov and Kachanov, 2000). Researchers

have studied the e�ect of cracks in solids on the global behaviour such as e�ective elastic moduli, vi-

bration etc. (Kachanov, 1987, 1992; Naskar et al., 2017) . The in�uence of such material anisotropy

or defect in the form of multiple cracks on the e�ective elastic properties of solids are reported to be

rather minimal. Though the con�guration of lattice structures, as considered in this article, is quite

di�erent from these solids considered in the above-mentioned studies, we �nd a striking resemblance in

the behaviour for variation of material properties. The e�ect of spatially random variation of intrinsic

material property on the e�ective elastic moduli is found to be negligible compared to the structural

randomness. This is because of an inherent averaging e�ect in the deformation of the randomized

RUCEs with relatively lower and higher e�ective sti�ness compared to their deterministic con�gura-

tion. However, the spatially random variation of structural geometry can cause a signi�cant change

in the values of elastic moduli due to a change in the deformation mechanics of di�erent members

(percentage variation are up to 28.43% with respect to the deterministic values). In case of voronoi

honeycombs, the elastic moduli have been reported to be signi�cantly in�uenced (Zhu et al., 2001).

Thus an important inference can be noted in this context that the in�uence of irregularity in a struc-

tural/ material system depends on their structural con�guration and the type of irregularity under

consideration.

Literature concerning di�erent forms of irregularity in lattices as mentioned above are mostly

based on either experimental investigation or numerical simulation. However, for characterizing the

e�ect of random structural irregularity in lattice structures, it is essential to follow a probabilistic
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framework requiring multiple numerical simulations/experiments. As detailed numerical simulations/

experiments are often expensive and time consuming, majority of the previously reported studies are

performed based on an inadequate number of samples and semi-realistic irregularity models. Though an

analytical approach has been recently reported (Mukhopadhyay and Adhikari, 2016b), that is limited

to the variation of cell angles only. An e�cient and realistic analytical framework capable of accounting

generalized form of structural irregularity has been developed in the present paper including the e�ect

of spatially varying structural con�guration and intrinsic material property. Noteworthy is the fact

that it has become possible to e�ciently characterize the e�ect of structural irregularity including the

probabilistic descriptions using a robust framework with adequate number of samples only because of

development of the computationally e�cient analytical approach.

6. Conclusion

A bottom-up analytical framework is developed for predicting equivalent in-plane elastic moduli

of irregular hexagonal lattices having spatially random structural irregularity and intrinsic material

property. In the proposed approach, e�ect of structural irregularities are accounted in the local level

through representative unit cell elements (RUCE) �rst and thereby the e�ect of irregularity is propa-

gated to the global level following a mechanics based multi-step approach to obtain e�ective in-plane

properties of the entire irregular lattice. The results obtained using the developed analytical formulae

for in-plane elastic moduli of irregular lattices are compared with the results from direct �nite element

simulations to establish the validity of the proposed approach. Noteworthy is the fact that equivalent

in-plane elastic properties of irregular lattices can be obtained following a robust probabilistic frame-

work using the closed-form formulae more e�ciently compared to expensive �nite element simulations

(/experiment) without compromising the accuracy of results. All the in-plane elastic moduli are found

to be a�ected signi�cantly due to the consideration of spatially random structural con�guration of

lattices. Such variation in the elastic moduli of hexagonal lattices would have signi�cant in�uence on

the subsequent process of analysis, design and control.

Since the basic physics behind the elastic deformation of spatially irregular lattices is scale-independent,

the developed closed-form formulae are applicable across di�erent length scales. The developed for-

mulae can be extended to predict e�ective in-plane elastic moduli of irregular lattices with spatial

variation in the thickness of the connecting members. The analytical framework can be utilized for

e�cient stochastic analysis of such structures and material responses accounting the irregularity and

uncertainty associated with spatial distribution of structural geometry and intrinsic material proper-
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ties. Moreover, the generalized closed-form expressions accounting spatially varying structural con-

�guration, thickness of connecting members and intrinsic material properties can be quite attractive

in the development of novel meta-materials adopting a proper optimization algorithm to �nd the be-

spoke material micro-structure. The proposed analytical framework to analyse irregular hexagonal

lattices can be extended further to other forms of cellular structures by considering an appropriate

representative unit cell element.
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