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Highlights 

 Showed the essential role of the effective geometric size of nanomaterials in studying 

nanoelasticity.  

 Identified the proper definition for effective diameter / thickness for nanowire and 

nanofilms. 

 Developed a simple model to explain the softening effect of surface bond loss on GaN 

nanowires.  

 Performed molecular static simulations to quantify the effect of the surface bond loss 

on GaN nanowires  
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Abstract This paper aims to identify a well-defined effective diameter of Nanowires (NWs) in 

evaluating their Young’s modulus and to investigate the physical mechanisms behind the 

achieved surface elasticity. To this end, GaN NWs were considered for which a layer-wise model 

was developed and the tensile tests were performed based on molecular statics simulations 

(MSS). It was shown that two previously defined effective diameters result in an opposing effect 

of the surface elasticity and reversed size-dependence of the overall Young’s modulus. 

Subsequently, a proper effective diameter was decided for the NWs, which enables one to 

correctly interpret atomistic simulations in terms of continuum mechanics concepts. In particular, 

clear evidence was attained showing that the bond loss on the NW surface results in around 43% 

surface softening relative to the NW interior and bulk material.  
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1. Introduction 

Elasticity at the nanoscale [1–4] has garnered diverse interests in the past decades 

following successful synthesis of nanowire and nanofilm structures. Research efforts have 

mainly focused on characterizing the distinguishing effect of surfaces [5–14] to understand and 

reliably exploit the size-dependent overall elasticity of nanowires (NWs) and nanofilms (NFs) 

for next-generation applications. In the majority of studies [1–14], continuum elastic quantities 

(Young’s modulus) defined for bulk materials has been directly adopted to assess the properties 

of nanomaterials.   

In doing this, an issue known as ‘Yakobson’s paradox’ [15-17] emerged in the effort of 

defining the effective thickness of carbon nanotubes (CNTs) to calculate their Young’s modulus 

and bending stiffness. As reviewed in [17], extensive studies were carried out to resolve the issue 

and establish a well-defined thickness for CNTs. This effort is worthwhile as the effective 

geometric size of nanostructures is a key parameter that strongly influences the continuum 

mechanics analysis of and consequent understandings drawn from the atomistic calculations and 

nanoscale experimental data. Despite different effective diameters (thicknesses) defined for NWs 

(NFs) in previous computational studies, its impact on the corresponding elasticity 

characterisations has yet to be examined [4,18,19]. Considering the characteristic size range of 

size-dependent elasticity is below 20 nm, substantial uncertainties may exist in the surface elastic 

property and size dependence of NW elasticity obtained through various diameter definitions 

regardless of modelling techniques. Therefore, it is necessary and beneficial to pursue this issue 

in detail for NWs.               

Concurrently, an array of studies was undertaken to elucidate the physical mechanisms 

underlying surface elastic property changes (softer or stiffer versus bulk) in NWs (/NFs). Based 
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on molecular statics (MS) and ab-inito calculation, Huang et. al. [20–22] demonstrated that the 

bulk deviating surface elasticity is a product of the competition between the surface coordination 

reduction or bond loss and the accompanying electron redistribution dependent surface 

relaxation or bond saturation. As the electronic structure is absent in empirical potential based 

studies, bond saturation can be broadly understood in terms of the resultant relaxation incited 

bond contraction strengthening as posited by Sun et. al. [23]. In particular, Agrawal and Bernal 

et al. [4,24] carried out a comprehensive study of semiconducting NWs via combined 

experiment and molecular dynamics simulations (MDS), and identified a correlation between the 

observed surface stiffening and the interatomic distance (d) contraction via the relation 
4 dY

(Y: Young’s modulus). On the other hand, bond loss is assumed to inflict elastic softening. 

Huang et. al. [20] estimated for Cu surface structures roughly 10%-25% stiffness reduction from 

bulk due to the bond loss. MDS of GaN nanostructures performed by Wang et al. [18,25] found, 

in agreement with experiments [26], softening of GaN NWs citing bond loss and weaker atomic 

cohesion at the surface. For NWs the bond loss effect remains to be quantified and its means of 

influencing elastic behaviour needs to be clarified. This provides impetus to carry out a detailed 

study of the bond loss effect on the surface elasticity of GaN NWs.   

In the present paper, we carried out molecular statics calculations with Stillinger-Weber 

and Tersoff-Brenner semi-empirical potentials to examine the surface elastic behaviour of GaN 

NWs. Focus is placed on forming an appropriate effective diameter definition for accurate 

characterisation of NW surface elasticity in the size range where size-dependence manifests, and 

on investigating the physical mechanisms exhibited by the current models. The virtual tensile test 

procedure and a layer-wise model for GaN NWs are explained in Sec.2. The results and analysis 

are presented in Sec. 3, where the process to determine the effective geometric size and the 
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examination of the surface bond loss on the elasticity of GaN NWs are detailed. Conclusions are 

drawn in Sec.4.   

2. Methodology 

 

The following subsections detail the molecular statics (MS) tension procedure and the 

layer-wise modelling of GaN NWs. In particular, the latter is necessary for the quantitative 

profiling of the elastic property variations within the NW (especially on the surface), and 

provides insights into the impact of effective size measurements on the continuum mechanics 

based NW elasticity characterization. 

 

2.1 Uniaxial tension modelling procedure 

The elastic responses of GaN NWs were modelled via MS techniques utilizing the 

LAMMPS software package [27]. Following past MDS of GaN NWs and tubes [4,18,25,28] the 

Stillinger-Weber potential (SWp) was initially employed to describe interaction energies [29,30]. 

The specific form follows:                                                                                                                                             
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The total energy E of a system of atoms consists of two-body    and three-body    angular 

contributions.     is the relative distance between atoms i-j and      is the angle between    and    

subtended at the atom j as vertex.       is set to be the ideal tetrahedral angle to energetically 

favour the bulk wurtzite structure.     is the minimum pairwise interaction energy between atoms 
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i-j and    represents the cut-off distance. Other terms A, B, p, q,   and   are dimensionless 

fitting parameters to reproduce material properties. However, due to its formalism derived 

mostly under bulk assumptions, the SWp may not be able to reflect behavioral changes on 

surfaces [31]. Thus, the bond-order based Tersoff-Brenner potential (TFp), better suited for 

poorly coordinated surface environments, was also employed for comparisons and assessment of 

transferability [32,33]. The detailed form follows: 
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Here the total energy E is characterised by three functions    ,     and  ̅   respectively 

representing the i-j repulsion, the i-j attraction and the bond order term. Specifically,      

accounts for the impact of local bonding environment on pairwise attractive energy through the 

local angular-dependent variable    .     is a sinusoidal cutoff function, where        is the 

cut-off starting radius and        the distance where interaction energy vanishes. Both 

potentials were parameterized via lattice parameters, elastic constants and defect properties based 

on first principle and/or experimental measurements. The fitting parameter values for the SWp 

and the TFp can be found respectively in [30] and [33]. The fidelity of the SWp has been verified 

in the MD study of extended defects in GaN and the TFp based on accurate growth phase 

prediction for GaN vapor deposition.   
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As a prototypical case, this work considers hexagonal wurtzite GaN NWs with axis 

parallel to the [0001] crystallographic direction. The lateral facets comprise the nonpolar }0110{  

planes. To assess the size dependence of Young’s modulus in the [0001] direction, NWs of 

diameters 5 nm to 20 nm were subjected to tension in the axial direction. As a convention further 

usage of Young’s modulus refers to Young’s modulus in the [0001] direction unless stated 

otherwise. The NW length is set at five times the diameter for all cases and the periodic 

boundary condition was imposed along the loading direction to eliminate end effects.  

The tensile test procedure was adopted from the method outlined by Huang et al. [1,20]. 

First, the energy-minimized structure of the NW was found by the conjugate gradient method 

and the corresponding total energy E for the NW and its component layers are computed by 

summing energies of the constituent atoms. The atoms consisting a component layer are those 

encompassed within its representative geometry as defined in section 2.2. Then displacement 

loading was applied at increments of 0.05% and up to a total engineering strain of 2% (smaller 

strain increments produced similar results). After each loading, the NW was again relaxed to a 

local energetic minimum with the conjugate gradient method and the total energy computations 

for the NW and its component layers were repeated.  

 

2.2 Layer-wise NW model 

To facilitate a similar layer-wise characterization of elasticity as [24] for GaN NWs, each 

NW was treated as an assembly of component atomic layers. Accordingly, by representing each 

layer (Fig.1(a)) with a continuous hexagonal cross-sectioned shell or prism, the equivalent 

volume of the layer (and total NW volume) can be estimated to enable Young’s modulus 

evaluation. The geometry definition for each layer is as follows. Examining the NW cross 
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section (in Fig.1 (b) layers are selectively illustrated), the core or layer 1 consists of the six 

central atoms. Its hexagonal contour is then specified by connecting the six interstitial sites 

around the atoms. Extruding this contour along the NW length forms the hexagonal prism 

representing the first layer. The diameter of this prism ( 12td  ) is then twice the distance 

between the diagonal interstitial sites leading to a cross-sectional area of
2

1
2

33
t . Ensuing layers 

are homogenized as hexagonal shells (Fig.1 (a)). For the n-th layer (n = 2, 3…, N-1) diameter 
nd  

is defined as the diagonal length nR2 , for instance in Fig.1(c) 
33 2Rd  . These layers exhibit a 

constant thickness defined as
1 nnn RRt , (

3t is illustrated in Fig.1 (c)).  The area of the n-th 

layer is thus equal to
 

2

33 2

1

2

 nn RR
.  

Crucially, due to the boundary ambiguity at the outmost or surface layer, its effective 

thickness
st  (i.e.

Nt ）is captured by two limiting schemes: 1) the same definition as layers 2 to     

N-1 giving st  of Fig.1 (d). This set an upper bound 
upD for the NW diameter definition with an 

effective cross sectional area of 
2

8

33
up

D . 
upD was used to estimate the NW diameter in [18]. 

2) Use the surface layer central line as the outer boundary of the associated hexagonal shell 

resulting in a thickness of 
2

st
 (Fig.1 (e)).  Accordingly, this establishes the lower bound 

lowD  for 

the NW diameter and the cross sectional area is
2

8

33
lowD . We note that lowD  is the adopted 

scheme in [4]. Finally, a continuous GaN NW body is formed by assembling individual layers 

with a continuous interface where identical stresses/strains and displacements are assumed 

between adjacent layers (or two neighbouring hexagonal prisms). 
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3. Results and discussion 

With the above methodology, the surface effect was examined for GaN NWs of varying 

sizes. Emphasis is placed on the reduction of uncertainty in effective size determination for 

accurate elasticity size-dependence profiling and clarification of physical mechanisms exhibited.  

 

3.1 Determination on the effective geometric size of NWs 

The total energy of the entire NW and each component layer is first plotted against the 

axial strain, , and the total energy-axial strain function,       , then is found via polynomial 

fitting. The equivalent axial Young’s modulus, Y, is computed for the NW and its constituent 

layers by taking the second derivative of        with respect to .                                                                                                               

                                                    

0
2

2
1























total

o

E

V
Y                                         (1) 

Here Vo is the volume of the unloaded NW structure or component layers. Based on SWp and 

TFp, the axial Young’s modulus of an NW ( NWY ) was calculated for NWs of different sizes. The 

overall NWY  obtained under 
upD and 

lowD  (used in Vo evaluation) are presented in Fig.2. It is 

interesting to see that no matter which interaction potential is used, lowD  always leads to 

increasing NWY  with decreasing diameter, whereas 
upD  gives the opposite size-dependence 

where NWY  declines as the diameter decreases.  In particular, the size-dependence associated 

with lowD agrees with the study by Bernal et al. [4] and the results from
upD  are consistent with 
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the findings by Wang et al. [25]. Thus, the present simulations are reliable, which indicates that 

the choice of the effective diameter is critical in predicting the size-dependence of 
NWY  for 

discrete NWs.   

To understand the divergence caused by 
lowD  and

upD  in Fig.2, the radial Young’s 

modulus distribution was constructed by calculating the axial Young’s modulus for individual 

layers, lY , of the NW using the SWp generated total energy data (TFp gives similar results). The 

radial distributions of 
bulkl YY /  are shown in Fig.3, where 

bulkY  is the bulk value. As evident for 

all NW sizes, the Young’s modulus of the outmost layer 
s

lY  is 50% higher than
bulkY  when 

lowD  

or the effective surface thickness 
2

st
 is assumed. On the contrary, 

s

lY  becomes 25% lower than 

bulkY when
upD  or the effective surface thickness 

st  is used. All layers in the interior, however, 

hold 
lY  equal to or slightly above 

bulkY . Consequently, the sense of 
NWY  deviation from 

bulkY  is 

controlled by 
s

lY which scales with the effective surface thickness, i.e.
lowD   leads to bulk

s

l YY   

and accordingly bulkNW YY  , whereas
upD  yields bulk

s

l YY   and
bulkNW YY  . Finally, as the atomic 

percentage of surface atoms rises with the NW size decreases (e.g., 6% for 20nm NW and 20% 

for 5nm NW) the contribution of surface Young’s modulus 
s

lY to NW Young’s modulus NWY  

increases and hence an opposing size-dependency of NWY  manifests as in Fig.2. 

Clearly, the wide discrepancy observed in Fig.2 stems from the ambiguous thickness 

measurement on the discretized surface layer. As reviewed before, the effective thickness (or 

size) of nanostructures has been studied extensively for single-atom layer CNTs [17] and single-

protein layer microtubules [34]. However, so far, this issue has not been discussed for NWs, 
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which are an assembly of many atom layers and thus are tacitly assumed to be a continuous 

body. Nevertheless, as shown above, for small (< 20 nm) NWs with a high atomic percentage of 

surface atoms, effective size determination becomes crucial to correctly characterizing the 

overall elastic property and elucidating the underpinning mechanisms.  

Consequently, current estimation schemes for the effective surface thickness or NW 

diameter need to be refined to resolve the response obfuscation observed in Fig.2. To this end, an 

equivalent axial elastic modulus (Sp) defined in Eq.2 is adopted for an NW and its component 

layers, independent of the definition of their effective volume:  

                                                 

0
2

2


















 d

total

p
N

E
S                                                         (2) 

As the stoichiometric ratio is maintained within each NW and its component layers, totalE  in Eq.2 

is normalized with Nd, the number of Ga-N dimer or formula unit (f.u.), instead of Vo, to give the 

average energy per f.u. (Ep) of an NW or its individual layers.  

The calculated radial distributions of Sp and Ep are presented for all NWs in Fig.4 (SWp) 

and Fig.5 (TFp). Evident from Figs.4a and 5a, the surface elastic modulus declined by ~25% 

versus the constant bulk values held by the interior. This surface modulus modification 

quantitatively matches the surface Young’s modulus reduction present in Fig.3 (a) based on
upD

and disagrees with the surface Young’s modulus rise predicted in Fig.3 (b) using 
lowD  . The 

radial distribution of stored strain energy per f.u. in Figs. 4b and 5b further corroborates this 

behavior, as the absolute strain energy absorption is minimal on the outmost atom layer. The 

coherence with upD  results identifies the upper bound diameter and the effective surface 

thickness t as the more appropriate choice for evaluating the effect of surface elasticity and the 

size-dependence of Young’s modulus of an NW. This is simply because between the surface 
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layer and an inner layer, the volume ratio is equal to the atom number ratio when the surface 

thickness t is assumed. On the other hand, the previously used
lowD  is likely biased and thus 

should be avoided in the future study of the elasticity of thin NWs.  

As shown above, the definition of effective size or thickness is essential for the study of 

nanostructures as it serves as a linkage between atomistic simulations and equivalent continuum 

mechanics models. This is especially important for thin NWs where the effective diameter 

definition greatly impacts on the equivalent Young’s modulus valuation at the surface layer and 

through it on the change of NW Young’s modulus from the bulk. 

 

3.2 Physical mechanisms of surface effect 

In past studies of nano-elasticity the combined effects of surface bond loss and resulting 

surface relaxation incited bond contraction were purposed to elucidate the divergence of surface 

elastic behavior from the bulk material [1,4,20]. For GaN NWs, bond contraction was indeed 

observed in structural studies based on density functional theory (DFT) [35,36], which may yield 

elastic stiffening via the relation 4 dY [4,37]. Bond loss is generally considered to be 

responsible for elastic softening but the extent and specific mechanisms of its influence on the 

surface elasticity has not been detailed for GaN NWs.  

To address these issues, we examined the initial energy minimized NW structure found via 

both the SWp and the TFp to characterise the surface relaxation in terms of local and overall 

structural alterations. Under the SWp, no variation from the bulk bond geometry was produced 

on the surface and the layer structures do not sustain any residual axial strain. In the TFp 

simulation, the minimized structure showed 1-1.2% contraction of the Ga-N back bond on the 

surface and 0.6-1.5% contraction of the axial bond (Fig. 6a). The former is relatively closer to 
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the DFT benchmark (2%) whereas the latter (more important for axial elastic modulus) is much 

lower than the 7% found by the DFT [35,36]. This generates 1.6% axial compressive strain on 

the surface layer and corresponding tensile strains of 0.27-0.59% on the interior layers. The 

employed TFp offers improvements but, obviously, still cannot well reproduce the }0110{  

surface relaxation. Thus, the surface softening seen in TFp (Fig. 5) and SWp (Fig. 4) should 

dominantly reflect the action of the bond loss mechanism [20].  

This elastic softening of the GaN surface layer in the [0001] direction can be understood 

through a simplified account of the structural effect due to surface coordination reduction. A 

bulk Ga-N pair aligned to the [0001] direction and its nearest neighbors can be considered as a 

tetrahedrally braced structural element (Fig. 6b). On }0110{ surfaces, the coordination number is 

reduced to three. Two bonds or braces that are not perpendicular to the loading direction are lost, 

and consequently, the structural elements on surfaces become poorly reinforced against a [0001] 

directed strain. As a result, the constraints imposed on the surface atomic chains is less than in 

the core of the NW. From the point of view of continuum mechanics, this leaves the surface 

layer in plane stress state while the interior region of NWs is in the three dimensional stress state. 

The surface layer therefore becomes more compliant compared to the interior layers. As such, 

the equivalent elastic modulus Sp of the outmost layer should be lower than the interior layers to 

reflect such a decline in structural rigidity.  

For quantitative confirmation, the outmost layer structure of the NW is further divided, 

based on coordination number, into two sub-layers for which the Sp is calculated respectively. 

From Fig. 6c, the outer sub-layer consists of all under-coordinated atoms (with bond loss) while 

the inner sub-layer contains the fully coordinated atoms (no bond loss). To account for different 

bulk values given by the potentials, Sp in Table 1 is normalized by the bulk value for all layers of 
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the 5 nm NW.  By both potentials, the Sp of under-coordinated atoms (the outer sub-layer) is 

~43% lower than the bulk; while the Sp of the fully coordinated atoms (the inner sub-layer) holds 

less than 3% difference from the bulk Sp. This calculation provides direct evidence that the 

surface softening achieved in the simulations is indeed a result of the bond loss on the outmost 

layer of the NWs. In particular, the 43% reduction of Sp in the outer sub-layer of the outmost 

layer (Table 1) or the 25% reduction achieved for the whole outmost layer (Figs.4a and 5a) based 

on the SWp and the TFp can be considered as a quantitative measurement on the direct impact of 

the bond loss.   

In addition, the TFp reported a normalised Sp of 1.019 for the inner sub-layer – with an 

increase of 4.3% over the 0.976 given by the SWp – showing a detectable stiffening effect of 

bond contraction. However, with similar magnitude of bond contraction across the surface layer 

(unlike DFT predictions [35,36]) potential stiffening effect on the outer sub-layer of remains 

minor. Specifically, the contribution of bond contraction to surface elasticity should remain 

around an order of magnitude lesser than the impact of the bond loss, and thus, negligible in 

overall surface elasticity shown in the TFp results (Fig. 5). 

As shown above, DFT predicted greater surface relaxation and hence increased amount 

of surface elasticity stiffening. Therefore, the resultant surface effect obtained by the TFp here 

will deviate from the accurate value for GaN NW. Adequate capture of poorly coordinated states 

by an empirical potential remains an eminent challenge in further understanding of GaN NW 

surface effect and size-dependence at the current scale. The difficulty is rooted in the mixed 

ionic-covalent nature of Ga-N bonds and variation of bonding nature with the electron 

redistribution. The modified Tersoff potential incorporating ionicity based long-range 

interactions and a simple core-shell potential may offer a possible solution [38,39].  
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4. Conclusion  

A layer-wise model developed for GaN NWs and the MS technique were employed to 

examine the role of the effective diameter in studying the surface elasticity and the size-

dependence of overall elasticity for the NWs. Subsequently, the physical mechanisms behind the 

surface softening were discussed and the bond loss effect was evaluated based on the SWp and 

the TFp. The conclusions drawn in the present study are as follows.  

The effective diameter plays an important role in studying the elasticity of thin GaN NWs 

(diameter smaller than 20 nm) as it alters the effective thickness of the outmost atom-layer and 

thus, the value of surface Young’s modulus. Different effective diameters are shown to inflict 

substantial divergence or even the opposite size-dependence of overall Young’s modulus. 

Herein, the upper bound diameter in Sec.2.2 is found to be well-defined and is able to 

consistently reflect the surface elasticity and the size-dependent Young’s modulus of GaN NWs.          

The bond loss on the surface layers is found to be responsible for surface softening 

achieved in the present MS simulations relative to the corresponding bulk. This arises from the 

reduction of constrains on surface atoms as compared to the NW core. As a result, the surface 

layer is more compliant when subjected to an axial deformation. Specifically, the decrease of the 

surface elasticity due to the bond loss is measured to be around 43% for GaN NWs.   

          In addition, it should be pointed out that the net surface effect on GaN NWs includes both 

the bond loss and the bond contractions. Its proper determination and confirmation still awaits 

the development of an empirical potential that can appropriately describe the various poorly 

coordinated states of the materials system.           
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Tables 

 

Normalized Sp FCN UCN Ls2 Interior 

Tersoff 1.019 0.564 1.0272 1 

SW 0.976 0.576 1.0238 1 

Table 1. Bulk value normalized elastic modulus (Sp) of the component layers and atom 

groups for the 5 nm nanowire. From left to right: the surface layer (Ls) separated into its 

fully coordinated (FCN) atom group and under-coordinated (UCN) atom group, the last 

interior layer (Ls2) and the average of all interior layers. 
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Figures 

 

Figure 1. Nanowire and component layer effective thickness (or volume) estimation scheme 
 

Figure 2. Overall NW Young’s modulus calculated using SWp and TFp for the entire size 

range  

 

Figure 3. Distribution of Effective Layer Young’s Modulus or Young’s Modulus Radial 

Distribution of each NW (SWp)  

 

Figure 4. SWp based Strain Energy and Sp Radial Distribution 

 

Figure 5. TFp based Strain Energy and Sp Radial Distribution 

 

Figure 6. From left to right a) GaN bond types b) Coordination state of atoms in GaN NW 

(left) fully coordinated or bulk atom and (right) under coordinated or outermost surface 

atom c) Side view of the NW surface layer ( ]0110[ plane). Illustrates the division of the 

surface layer into under-coordinated (UCN) group (green) and fully-coordinated (FCN) 

group (orange)  
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Figure 2. Nanowire and component layer effective thickness (or volume) estimation scheme 

[40] 
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Figure 2. Overall NW Young’s modulus calculated using SWp and TFp for the entire size 

range  
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Figure 3. Distribution of Effective Layer Young’s Modulus or Young’s Modulus Radial 

Distribution of each NW (SWp)  
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                           Figure 4. SWp based Strain Energy and Sp Radial Distribution 
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 Figure 5. Tersoff based Strain Energy and Sp Radial Distribution 
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Figure 6. From left to right a) GaN bond types b) Coordination state of atoms in GaN NW (left) 

fully coordinated or bulk atom and (right) under coordinated or outermost surface atom c) Side 

view of the NW surface layer ( ]0110[ plane). Illustrates the division of the surface layer into 

under-coordinated (UCN) group (green) and fully-coordinated (FCN) group (orange) [40] 
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