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ABSTRACT 
 

Heap leach stockpiles inevitably contain local voidage heterogeneities due to non-uniform 

particle size distributions of the ore and other factors that lead to preferential flow paths and 

solution channelling.   The stockpile can also encounter diverse flow conditions due to a 

number of factors, including storm events, infiltration into dry ore material, cyclic drain 

down, compaction, migration of fines, all contributing to large variations in local ore 

permeability and the creation of preferential flow pathways.  Non-uniform and adverse flow 

behaviour within the heap reduces the leaching efficiency which can lead to lower metal 

recoveries.  Therefore, capturing the local flow variations that affect the transport of leach 

solution within the heap is critical to accurately predicting the leaching kinetics. 

Experimental data shows how channelling develops due to local heterogeneities that cannot 

be eliminated by packing alone.  Thus, effective modelling of heap leach stockpiles should 

account for these channelling affects.  This paper utilises a robust computational fluid 

dynamics (CFD) framework that incorporates techniques to account for local preferential 

flow paths in the heap leach system.  The results are compared against liquid flow behaviour 

in a pseudo two-dimensional column of narrowly sized particles and a more realistic particle 

size distribution.  The methods are then applied to a hypothetical leach to assess the impact of 

accounting for the flow variability in the heap. 

 
KEYWORDS 

Heap leaching, preferential flow, channelling, Computational fluid dynamics (CFD), Hydrodynamics 

 

 

1. INTRODUCTION 

 

Heap leaching is often the preferred method for the extraction of base and precious metals 

from large volumes of low grade mineral deposits.  This method provides a cost effective 

technique for the recovery of a range of metals, such as copper, gold, zinc and uranium from 

low grade ores.  However, the efficiency of recovery can be quite variable with recovery rates 

typically ranging from 50% – 80%, with the more complex sulphide deposits providing lower 
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yields than a typical oxide deposit.  While leaching effectiveness is influenced by a range of 

factors, including surface chemistry, mass and heat transfer and biological activity (Petersen, 

2015), poor hydrodynamic performance within the heap is often a key factor in low overall 

recoveries.    

 

Stockpile leaching is a physico-chemical process, typically irrigating a crushed stockpile of 

low grade ore with a leaching solution.  An overview of leaching technologies is given by 

Bartlett (1992) and a review of its current state and future direction is given by Ghorbani et al 

(2016).  A lixiviant is applied to the top exposed surface of the stockpile and the solution 

percolates through the ore dissolving the metals from the rock often giving rise to complex 

hydrothermal chemical interactions  The dissolved metal in solution is then transported out of 

the base of the stockpile and into collection ponds for further processing to extract the 

valuable metals. For optimum recovery, the stockpile should have good hydrodynamic 

properties as local variability in liquid transport within the heap can limit the leach reaction 

kinetics and result in non-wetted and/or stagnant regions. Solution flow can be influenced by 

porosity of the packed particles, local voidage variability, changes in packing, compaction of 

the ore, percentage of fines and migration of fines within the heap. As Kunkel (2008) states, 

the recovery of the metal from the ore is more about the solution flow characteristics than the 

material, and unsaturated flow characteristics in heaps are more about the material than the 

fluids.   

 

Low liquid irrigation rates and the use of dripper emitters contribute to the non-uniformity 

and complexity of the resultant unsaturated flow conditions. Large rain events can increase 

the formation of channels and saturated regions within the heap. The solution spreads through 

the heap by formation of flow paths between particles driven by gravity and horizontal spread 

due to the capillary action of the micro-pores of the particles, as well as the dispersion due to 

the tortuous paths that the flow must follow. The Bond number, which is the ratio of gravity 

to capillary forces, is typically around one for gravity driven flow around the particles and 

many orders of magnitude less than one for capillary driven flow within the particles. These 

differences in length scales produce complex flow behaviours within the heap (Ilankoon and 

Neethling, 2012, 2013, 2016). Ideally, the uniform application of lixiviant would lead to a 

uniform wetting of particles. However, in practice the liquid applied to the top of the heap is 

not uniform and percolates through the heap along preferential channels (Petersen and Dixon, 

2007). Solution is generally applied by drip emitter lines, typically spaced about 50 cm apart 

to cover a targeted wetted area of approximately 0.25 – 1 m2.  A reduction in the spacing may 

lead to increased uniformity of wetting (Afewu, 2009), though it will not completely 

eliminate flow variability and has to be balanced against other factors (typically cost related). 

 

Strong structural heterogeneity and density changes across the heap due to particle 

segregation have been observed (Howard, 1968, Roman 1977, Yusuf, 1984, Bartlett, 1992).  

Localized pockets of high and low permeability regions often lead to preferential flow 

channels (Yusuf, 1984).  Flow channelling associated with strong structural heterogeneity 

that may occur over time has been observed in small scale laboratory columns and large scale 

heaps (Howard, 1968, Armstrong et al, 1971, Murr, 1979, Cathles and Murr, 1980, Murr et 

al, 1981, Wu et al. 2007, 2009, Fagan et al, 2014, Ilankoon and Neethling, 2016). When 

solution flows through preferential channels in the stockpile, the metal recovered is reduced 

due to limited solution-ore contact in regions away from these channels.  This can be the 

principle factor in reducing metal recovery in some stockpiles (Wu et al., 2007, 2009). Zhan 

et al. (2012) presented a summary of analytical and field studies, concluding that the 
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development of channelling and preferential flow paths in large heaps leads to incomplete 

mixing and a reduction in metal recovery. 

 

Many researchers have employed numerical techniques in order to predict the flow and leach 

behaviour within a heap.  Among the authors that have presented fluid flow models and 

investigated the hydrodynamic behaviour of the heap, are Munoz et al. (1997), Bouffard and 

Dixon (2001), Pantelis et al. (2002), Cariaga et al. (2005), Peterson and Dixon (2007), and 

Guzman et al. (2013).   Dixon and Petersen (2003) presented a model for column heap 

leaching using a model based on raffinate diffusing out to reaction sites from discrete 

channels through the ore and used comparisons to column test results to generate confidence 

in the model for predictions of behaviour in heaps. Computational Fluid Dynamics (CFD) 

technologies have enabled more complex multiphase transport in the modelling of the heap 

leaching process (Leahy et al., 2005, 2006, 2007; Leahy and Schwarz, 2009; Wu et al., 2010; 

Garcia et al., 2010; Bennett et al., 2012; Gebhardt et al., 2012; McBride et al., 2014, 2016).  

Cariaga et al. (2005) employed a mixed hybrid finite-element approach for two-phase flow in 

a two-dimensional heap.  Mostaghimi et al. (2014a, 2014b) employed a control volume finite 

element method with mesh adaptivity in three-dimensions to capture the hydrodynamics of 

heap leaching process at large scale.  The control volume finite volume method has also been 

applied to full scale three-dimensional industrial oxide heaps by McBride et al. (2012a, 

2012b).   Many authors employ soil-water retention curves to obtain the unsaturated soil 

hydraulic parameters to model the hydrodynamics of the heap. This requires fitting of data 

and/or some calibration of the model to experimental tests (McBride et al., 2013; Cariaga et 

al., 2015). In the modelling of heap leach systems, homogeneous ore properties or bulk 

heterogeneous ore properties are normally assumed (i.e., macro uniform voidage per 

material). However, in the modelling of preferential and non-equilibrium flow and transport 

in the vadose zone a range of numerical approaches have been proposed to account for spatial 

heterogeneity and are reviewed by Simunek et al. (2003). Although it is acknowledged that 

preferential flow paths have a significant effect on the leaching kinetics of the heap, this 

phenomena is often ignored by heap leach modellers and scale up factors are employed from 

small scale predictions to large scale heaps. An attempt to include the effect of preferential 

flow paths was included in the modelling work of McBride et al. (2012a, 2012b), who 

employed bulk heterogeneous materials. 

 

This paper employs a hydrodynamics model coupling variably saturated zone hydrology with 

CFD technology (McBride et al., 2006). The numerical procedure is based on the mixed form 

of the classical Richards' equation, employing an adaptive transformed mixed algorithm that 

is numerically robust and significantly reduces compute (or CPU) time. This paper 

investigates incorporating techniques into the model to account for preferential flow paths in 

the heap leach system via randomly applied voidage and source-sink terms.  The  approach of 

adding source and sink terms to the CFD model to incorporate local transport between 

different flow regions have been employed by Bujalski et al (2000, 2005).  In their 

formulation source terms represented transport between flowing and stagnant regions. In this 

paper the source term represents transport from the ore matrix into gravity driven open 

channels.  The focus of this paper is to capture the wetting behaviour and liquid flow path 

development (i.e., channelling) that occurs in heap leaching processes. The numerical 

predictions are compared with published experimental results (Ilankoon and Neethling, 

2016).  The experiments are designed to investigate the liquid spread mechanisms in packed 

beds and heaps using a laboratory scale pseudo 2-D system of both narrowly sized and 

realistic particle size distributions. The numerical technique is shown to implicitly account 

for the effects of flow channelling by reducing the solution-ore wetting by channelling flow 
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outside the matrix when uniform permeability/voidage has been assumed. However, to fully 

capture the flow channelling features, a dual permeability formulation incorporating local 

permeability/voidage variations is investigated.  The effect on leaching kinetics is then 

illustrated by simulating a hypothetical solute transport with a simple reaction.   

 

2. COMPUTATIONAL MODEL 

 

The heap leach model has been implemented within an in-house multi-physics computational 

fluid dynamics (CFD) framework. The multi-physics environment PHYSICA provides a 

three-dimensional finite volume unstructured mesh modular framework (Croft et al., 1995).  

The governing equations are discretised over a solution domain, a three dimensional mesh 

comprised of a mix of tetrahedral, wedge and hexahedral elements, employing cell-centred 

finite volume approximations.  The computational procedure employed for the solution of 

unsaturated-saturated flow through the porous media is based on the mixed form of the 

classical Richards’ equation.  The method is numerically robust, employing an adaptive 

transformed mixed algorithm on a three-dimensional finite volume unstructured mesh 

framework. A detailed description of the algorithm is given in McBride et al. (2006).  The 

liquid flow is coupled with transport equations within the CFD framework.   

 

2.1 Flow in porous media 

 

The variably saturated liquid flow through the porous media is modelled by solving the 

mixed form of the Richards’ equation (1) (Richards, 1931, McBride et al. 2006).  In this 

formulation, the influence of air on the movement of liquid is assumed to be insignificant, 

thus the gas flow does not influence the liquid flow but the fluid flow can influence the 

movement of gas.  The mixed form contains terms for the moisture content, θ (m3/m3) defined 

as the volume of liquid / total volume of solid-liquid-air space, and water pressure head, h. 

 

  S
z

hK
hhK

t









 )(
)(


                                                           (1) 

 

In equation (1), K(h) is the hydraulic conductivity, which is a function of the pressure head 

(or capillary-suction), z is the direction of gravity, t is time and S is a source term which also 

includes the boundary conditions.   

 

The effect of solution channelling, where lixiviant travels through the media with limited 

solution-ore wetting, is incorporated into equation (1) as an additional volume sink/source, 

which is calculated as an area flux through the inlet area of a preferential flow channel.  The 

source term is re-written as; 

 

𝑆 = 𝑆𝐵𝐶 + 𝑆𝑐𝑙                                                                         (2) 

 

where SBC contains the boundary condition and volume source terms and Scl acts as a sink 

term that represents the transfer rate of the liquid from the matrix into preferential flow 

channels. The channelled liquid passes along preferential paths without interacting with the 

ore matrix.  The channelled solution sink term depends upon the local hydraulic properties of 

the media and saturation levels within the ore; 

 

𝑆𝑐𝑙 = ∇ (𝑘(ℎ)∇𝐻)                                                                  (3) 
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where H is the total hydraulic head and z is the gravitational head, with H=h+z, thus eqn (3) 

can be written as; 

 

                                        𝑆𝑐𝑙 = ∇ (𝑘(ℎ)∇ℎ) + ∇ (𝑘(ℎ)∇𝑧)                                                    (4) 

 

In the simulations reported here, the inlet face area, Acf, of the channel is assumed to be equal 

to the face area of the element containing the sink term with normal in the direction of 

gravity.  The pressure head gradient on a preferential flow channel face is assumed to vary 

predominately in the direction of gravity, thus only the z direction is significant.  Therefore 

integrating eqn (4) over elements containing the preferential flow channels and applying 

Gaussian theory, the discretised Scl becomes; 
                       

        𝑆𝑐𝑙 = ∑ (𝐾(ℎ)
𝜕ℎ

𝜕𝑧
+  𝐾(ℎ)

𝜕𝑧

𝜕𝑧
) 𝐴𝑐𝑓 . 𝑛𝑧𝑐𝑓 =  ∑ (𝐾(ℎ)

𝜕ℎ

𝜕𝑧
+  𝐾(ℎ)) 𝐴𝑐𝑓 . 𝑛𝑧𝑐𝑓                        (5) 

 

where nz is the face normal in the direction of gravity. 

 

In the formulation here the local pressure head is assumed constant and the channelled liquid 

is returned to the medium at the outlet element in the direction of gravity.  However, the 

channelled solution could enter and leave the medium via the pressure head gradient but this 

would require solution of the pressure head in the channels.  The Scl source term can be 

applied locally to elements on a specified or random basis. 

  

The volume of solution entering a channelled pathway is tracked and the time, t, taken for it 

to move through an elevation, z, will depend upon the tortuosity, τ, of the preferential paths.  

The solute is assumed to travel at a speed proportional to the saturated hydraulic conductivity 

of the local media, t = z τ/Ksat, where Ksat is the saturated hydraulic conductivity. 

 

The solution of equation (1) requires relationships for pressure head – liquid content – 

hydraulic conductivity to be specified to describe the moisture characteristics of the porous 

media.  The unsaturated moisture content (h) and hydraulic conductivity K(h) are nonlinear 

functions of the pressure head and are represented here, equations (6) and (7) by the van 

Genuchten-Mualem model (van Genuchten, 1980); 

 

𝜃(ℎ) = {
𝜃𝑟𝑒𝑠 +

𝜃𝑠𝑎𝑡−𝜃𝑟𝑒𝑠

[1+|𝛼ℎ|𝑛]𝑚 , ℎ < 0

𝜃𝑠𝑎𝑡 , ℎ ≥ 0
                                                      (6) 

 

𝐾(ℎ) = 𝐾𝑠𝑎𝑡 [
𝜃(ℎ)−𝜃𝑟𝑒𝑠

𝜃𝑠𝑎𝑡−𝜃𝑟𝑒𝑠
]

𝐿

[1 − (1 − [
𝜃(ℎ)−𝜃𝑟𝑒𝑠

𝜃𝑠𝑎𝑡−𝜃𝑟𝑒𝑠
]

1
𝑚⁄

)

𝑚

]

2

                                (7) 

 

where θsat is the saturated moisture content, θres is the residual moisture content, L is a pore 

tortuosity/connectivity dimensionless parameter normally assumed to be 0.5 (Mualem, 1976) 

but is often negative when empirically fitted.  Schaap and Leij (2000) found that to insure a 

physically realistic relationship the constraint 𝐿 > −2 −2 (𝑛 − 1)⁄  should be employed, α is 

related to the inverse of the air-entry pressure, n is a measure of the pore-size distribution and 

𝑚 = 1 − 1 𝑛⁄ .               

 

The equation for the solute transport in the porous media is, 
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t
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




)().(

)(
,


                                               (8) 

 

where Ci is the concentration of species i in the solution phase, q is the darcy flux (𝑞 =
−𝐾(ℎ)∇𝐻, where H is the total hydraulic head, 𝐻 = ℎ + 𝑧), jk are (x,y,z) directions, Si the 

production or consumption of species i, and Si
cl is the moles of species entering or leaving 

preferential paths, Si
cl = Scl

iC . The dispersion coefficient, Di,jk, is dependent upon the 

velocity components and longitudinal and transverse dispersivities.  The dispersion 

coefficient is often estimated from experimental data or derived from a relationship between 

water content and water velocity, Nutzmann et al (2002) discusses some formulations.  For 

the solute transport work given in this paper the dispersion coefficient is neglected as the 

experimental material did not contain fines, thus, greatly reducing the dispersion effect.  

However, the dispersion effect would need to be included for more realistic predictions of 

ores containing fines. 

 

Water retention curves were derived from one dimensional packed bed experiments (i.e., 

cylindrical column flow tests). In the simulations no-flow boundary conditions were applied 

to the side of the column and a Newmann boundary condition to the top surface. At the 

outlet, a free drainage condition was imposed assuming unit pressure gradient,(𝐾(ℎ)𝑓 +

𝑘(ℎ)𝑓𝑧)𝐴𝑓𝑛𝑓, where f denotes the boundary face, z the gravity component, A the face area 

and n the outward normal to the boundary. 

 

It is assumed that during the time the solute and species are travelling through a preferential 

pathway they have no interaction with the leaching kinetics of the ore.   

 

 

3. EXPERIMENTAL SETUP AND METHODS 

 

3.1. Flow Model Calibration Experiments 

 

The flow model calibration experiments were carried out by Ilankoon and Neethling (2012, 

2013) in a cylindrical column of diameter 243 mm and height of 500 mm.  The ore system 

used consisted of copper ore particles collected from Kennecott Utah Bingham Canyon Mine. 

The fluid flow experiments were performed with both a narrowly sized fraction of ore 

particles (20-26.5 mm) and a more realistic ore size distribution (2-26.5 mm). Heap 

stockpiles contain fines i.e. a percentage of particles less than 2 mm, which are not accounted 

for in this investigation. These fines act as a mechanism for spreading the solution by 

capillary action laterally; a small percentage of fines can prevent preferential flow channels 

developing, however a high percentage of fines can lead to compaction and the creation of 

preferential flow paths.  The liquid (water as this was a flow study rather than a leaching 

study) was evenly applied to the top of the packed bed until a steady state was reached.  The 

packed bed was initially micro-pore saturated so fluid could only flow between the particles.  

Once a steady state was obtained the liquid content was measured and the column was then 

allowed to drain down and the residual liquid content was obtained (40 min to obtain the 

short-term external residual holdup, not the final long-term residual holdup).  The solution 

was applied at an increasing rate of 1.26, 2.52, 5.04, 10.08 and 21.16 L/h, after each rate 

increase the bed was allowed to drain for 40 minutes.  The liquid application process was 

then reversed and the flow rate was decreased through the same sequence of flow rates. The 
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lower flow rates typically corresponds to application rates found in heap leaching but within 

the heap local flow fluctuations will occur with higher and lower flows occurring.   The 

higher flow rates employed in this investigation reflect the high flow rates seen directly under 

the drip emitter before the solution spreads and allows the effect of solution spread to be 

investigated on a material containing no fines. This experimental methodology is described in 

more detail in Ilankoon (2012) and Ilankoon and Neethling (2012, 2013). 

 

3.2. 2-D Liquid Flow Experiments 

 

A rectangular Perspex column with a width of 800 mm, a height of 600 mm and a depth of 

only 100 mm was designed (see Figure 1) by Ilankoon and Neethling (2016) in order to 

investigate vertical and horizontal liquid flow behaviour in ore systems and is referred to as 

the pseudo 2-D column due to its large horizontal aspect ratio. The fluid flow experiments 

were performed with a narrowly sized ore fraction (20-26.5 mm) and a more realistic ore 

mixture (2-26.5 mm). Typically, about 75 kg of particles were employed to randomly fill the 

2-D column. Especially during the packing of the realistic mixture, the column was packed 

using a series of thoroughly mixed small batches, rather than pouring in the whole mixture at 

once, in order to minimise particle segregation within the packed bed. A single horizontal 

drip point was located at the centre of the top of the bed (see Figure 1). This was done to 

mimic the behaviour around a single dripper (the width of the 2-D column is similar to the 

typical spacing between drippers in an industrial heap). Liquid (water) was continuously 

added at 4.2 L/h for 2 weeks.  

 

 
Figure 1: 2-D column rig and its main components (After Ilankoon and Neethling, 2016). 

 

At the bottom of the column there was a series of channels (25 in total) and collection ports 

spaced 30 mm apart from which the out-flowing liquid was collected (see Figure 1). In all 

experiments, the flow from each collection port was recorded separately and the wetting of 

the bed was also filmed. This experimental setup and the methodology is described in more 

detail in Ilankoon and Neethling (2016). 

 

4. FLOW SIMULATIONS 

 

Material properties were obtained from experimental data, i.e. porosity, bulk voidage, 

permeability, Ilankoon and Neethling (2016).  Model calibration simulations were performed 

600 mm 

Load cell 

Liquid 

distributor 

100 mm 

Liquid addition 
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on a one dimensional column (i.e., cylindrical column) to fit the van Genuchten parameters,  

n and L to the water retention curve seen in the experiments for both the narrowly-sized and 

realistic-size particle distributions. The van Genuchten parameter α, which controls the 

spread of liquid by capillary suction, cannot be fitted in one-dimensional analysis and 

although there is a large volume of published work on fitting van Gunchten parameters, there 

has been very little work on material of large particle sizes with diameters greater than 2 mm.  

McBride et al (2014c) presented van Guenchten parameters for ores of various percent fines 

obtained from hydraulic testing.  The van Guenchten parameter α ranged from 0.15 cm-1 to 

0.3 cm-1 for ores with 25% fines to 15% fines.  Thoma et al (2014) performed field-scale 

infiltration experiments on mixed coarse sand and gravel, obtaining α parameters between 

0.04 cm -1 and 0.5 cm-1.  As the ore under investigation is a very coarse material with no 

particles less than 2mm a high value of α = 0.4 cm-1 was employed. 

 

Simulations were then performed on a two dimensional packed bed (Figure 1) with liquid 

applied to the center point of the top surface to simulate a single drip emitter.  Three sets of 

simulations on each material were performed assuming, a) homogeneous properties on 

uniformly packed beds without channelling of solution, b) homogeneous material properties 

and packing, but with preferential flow channels i.e the channelling source term (3) was 

applied to local elements using a uniform probability function, and lastly c) with 

homogeneous material properties but with variations in packing of the ore resulting in a 

random voidage distribution.  In the last case the average bulk voidage was kept as the 

previous cases but the local voidage values were randomly distributed using a uniform 

probability function with a maximum and minimum value of plus or minus 50% of the 

average bulk value.  As an increase in voidage will also increase the area available for flow 

the hydraulic conductivity was also adjusted assuming a linear void ratio versus log 

permeability relationship (Taylor 1948).  The liquid flow behaviour and distribution of liquid 

recovered is compared against experimental data. 

 

 

4.1 Liquid Holdup 

 

Slight liquid holdup hysteresis was observed in the experiments at the lower flow rates.  

Ilankoon & Neethling (2012) reported that columns that are started flooded will have a higher 

steady state holdup for the same liquid addition rate compared to those started dry. They 

demonstrated that the dominant cause of this hysteresis is a change in the number of liquid 

rivulets flowing through the ore rather than a change in their shape and structure. Hysteresis 

can be incorporated into the water retention curves by considering two functions, drying and 

wetting.  This requires some scaling from the main wetting curve or additional parameters to 

describe the hysteresis in the wetting function (Simunek et al, 1999). For the purposes of the 

modeling work reported here, a single value function between head and water content, i.e. the 

wetting and drying curves are assumed the same. 

 

 

4.1.1. Model Calibration 

 

The van Genuchten parameters were obtained by calibrating the simulated liquid holdup and 

residual moisture to the experimental values. Figures 2 and 3 show both the predicted and 

measured steady state and residual liquid holdups for the narrowly sized and realistic particle 

size distributions respectively.  The model predicted values could be improved by modifying 

the residual saturation in time to account for the hysteresis (Mostaghimi et al., 2014a).  
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However, for general prediction purposes, it is felt that a single set of parameters should be 

employed for all flow rates. 

 

The narrowly sized particles (20-26.5 mm) had a porosity of 2.16% and when packed resulted 

in a bulk voidage of 36.3% giving a saturated moisture fraction of 0.363.  The density and 

viscosity of the liquid were 1010 kg/m3 and 8.9 x 10-4 Pa.s. The permeability of the ore was 

4.29 x 10-9 m2 giving a calculated saturated conductivity of 4.77 x 10-2 ms-1.   The water 

retention curve fitted parameters were n = 4, α = 40 m-1 and L = -0.63. As can be seen in 

Figure 2 the model slightly under predicts the liquid holdup at the lower flow rates and 

slightly over predicts the liquid holdup at the high flow rate, but overall the model gives a 

reasonable approximation of the variation in water retention over the range of flow rates 

investigated.  

 
 

Figure 2:  Liquid holdup on narrow sized particle distribution. 

 

The realistic particle size distribution (2-26.5 mm) had a porosity of 4.19% and when packed 

resulted in a bulk voidage of 28.96% giving a saturated moisture fraction of 0.2896.  The 

density and viscosity of the liquid were 1010 kg/m3 and 8.9 x 10-4 Pa.s. The permeability of 

the ore was 2.33 x 10-9 m2 giving a calculated saturated conductivity of 2.59 x 10-2 ms-1.   The 

water retention curve fitted parameters were n = 3.6, α = 40 m-1 and L = -0.5.   As can be seen 

in Figure 3, there is less hysteresis seen in the realistic sized particle distribution and the 

model predicted holdup is in reasonable agreement with measured values. 
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Figure 3: Liquid holdup on realistic sized particle distribution 

 

 

4.2 Single drip emitter on packed bed 

 

The different simulation setups in this work are illustrated in Figure 4.  The geometry of the 

packed bed was represented by a two-dimensional hexahedral mesh, as shown in Figure 4a.  

A volume source of 4.2 L/h was introduced into the center element located on the top surface 

of the mesh.  The base of the mesh was split into 25 evenly spaced outlets assuming free 

drainage conditions.  The material properties for each particle size distribution were set to the 

experimental derived values and the van Genuchten parameters fitted in the one dimensional 

validation. Figure 4a assumes uniform material properties and voidage giving a homogeneous 

symmetric system. However, Figure 4b assumes uniform voidage but with volume sink terms 

applied randomly near the top of the packed bed which allows solution to travel straight to an 

outlet without interacting with the ore.  Figure 4c assumes the same bulk voidage but with 

local variations allowing a more realistic representation of the packed bed. The local voidage 

variations were applied to the mesh elements using a uniform distribution. 

 

 
Figure 4:  Point source simulation setup a) uniform properties, b) uniform properties with 

channel pathways, c) Bulk properties unchanged but with local variations in voidage 
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4.2.1 Narrow-size ore particles 

 

The steady state percent of liquid flow out of the bed at each of the 25 outlet collection points 

for uniform properties are shown in Figure 5.  A near steady state recovery is obtained in the 

experiments with slight recovery fluctuations occurring and a significant shift in the recovery 

distribution after 120 hours, observed in Figure 5.  However, the experimental results show 

the liquid behaviour with the bulk volume of fluid being recovered at a couple of collection 

points with half the fluid being recovered at a single central collection point.  The simulation 

assuming uniform properties predicts recovery at the outlet to be more evenly spread over a 

parabolic distribution, which agrees with random walk hypothesis. Mathematically Gaussian 

type probability distribution results at the exit for liquid fed from a point source through the 

packing media (Scott, 1935; Tour and Lerman, 1939). Furthermore, Dixon (2003) presented 

narrow Gaussian type liquid spread results around the axis of the dripper by solving the 

Richards’ equation at steady state in 2-D axisymmetric coordinates. Including channelling 

pathways in the simulation captures the peak in fluid recovery at the centre outlet but predicts 

asymmetric recovery at the other outlets.  Incorporating local voidage variations in the 

material properties gave a more random distribution at the outlets whilst still capturing the 

bulk liquid collection point at the centre.   

 

  
Figure 5: Narrowly-sized particle distribution: Percent of liquid recovered at each outlet 

 

A steady state was never quite reached in the experiments with initial preferential flow paths 

(gravity dominated flow) forming rapidly whilst the liquid horizontal spread (capillary 

transport) took many days to reach a near steady state (e.g., 14 days).  In the simulations, a 

steady state was reached in approximately one hour.  This is possibly due to the simulations 

assuming static idealized contact between particles in the packing.  Contour plots of the 

liquid flux and percent of liquid in the ore are shown in Figure 6 for each case simulated.  As 

seen in Figures 6a and 6d, which assume uniform properties, this produces an asymmetric 

fluid distribution with strong capillary forces acting to spread the solution over a larger area.  
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Including channelling flow pathways in the simulation provides stronger gravity dominated 

flow with a strong liquid flux into the channels, Figure 6b. However, liquid not entering the 

channel pathways is transported through the ore in a similar manner to that seen in the 

simulation without channelled flow. As can be seen in Figures 6d and 6e, the percent liquid at 

a steady state is very similar.  The simulation with local variations in voidage provides a 

random pattern to the liquid flux and percent liquid in the ore, Figures 6c and 6f.  The liquid 

is transported predominately by gravity with many interconnected preferential flow paths of 

varying sizes. 

 

 
Figure 6:  Narrow-sized particle distribution: Contour plots of liquid flux and liquid content, 

uniform properties a) and d), uniform with channelling b) and e), local variation in voidage c) 

and f).     

 

The wetted areas of the bed at steady state for the simulations and near steady state for the 

experiment are shown in Figure 7.  For the simulated results, the wetted area was assumed to 

be the area with moisture levels above the particle micro porosity.   Experimentally, the 

wetted area is seen initially as a narrow region from top to bottom beneath the drip emitter 

(see Figures 4 and 5 in Ilankoon and Neethling, 2016).  Capillary forces spread the liquid 

horizontally over a 14 day period to cover 61% of the bed.  In the simulation of the uniformly 

packed bed, the particle contact is idealized and the ratio of capillary forces to gravity forces 

is much stronger, with the inclusion of channelling effects achieving 87% wetting and 

without channelling 89% wetting.  Allowing for local variations in the voidage gave a wetted 

area much closer to that observed experimentally (61.1% vs 55%).   
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Figure 7: Narrow-sized particle distribution: Wetted area of bed at steady state, uniform 

properties (Case A), uniform with channelling (Case B), local variation in voidage (Case C), 

experimental wetted area profile.     

   

4.2.2 Realistic-size ore particles 

 

For the ore with a realistic particle distribution, the distribution of solution recovery at the 

outlets for the simulations and experiment is shown in Figure 8.  The simulated recovery of 

solution out of the packed bed is spread through a larger number of outlets than in the 

narrowly sized ore.  This is not seen experimentally (3 channels) and also in the experiment 

the solution exited the ore at a discrete number of non-neighbouring outlets.  The simulations 

predict a continuous spread of solution at the outlets, with uniform properties giving a wider 

parabolic distribution (agrees with random walk based probability distribution).  Including 

channelling effects gave a central outlet spike in recovery and local voidage variations gave 

off-centre fluctuations with a peak at the centre outlet.  The simulated distribution is probably 

influenced by the length scale and amplitude of the variation in porosity and a better match 

might be achieved by calibration of these parameters. 
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Figure 8:  Realistic-sized distribution: Percent of liquid recovered at each outlet 

 

As with the narrowly sized particle distribution, the experiment never quite reached steady 

state recovery and an occasional shift in the recovery distribution occurred.  The experimental 

recoveries for the initial test and for the test repeated again after the ore had been drained 

down and rested for 3 months are shown in Figure 8 along with the simulated results.  As can 

be seen in the experimental data, the exact fluid flow path is subject to subtle changes but the 

general flow channelling behaviour is observed in both tests.  Contour plots of the liquid flux 

and percent liquid in the ore for each case simulated are shown in Figure 9.  As seen in the 

narrow sized distribution, the ore with uniform properties results in asymmetric fluid 

distribution with strong capillary action.  The flux and fluid distribution in the ore with local 

voidage variations also has a wider solution spread with many preferential flow paths 

spreading over a much wider area. This is seen experimentally with a wider range of particle 

sizes allowing more connected inter-particle spreading of liquid, which increases the particles 

wetted surface area and transport through intra-particle pore space. As can be seen in Figures 

9d, 9e and 9f, the liquid spread horizontally through the ore by capillary suction is much 

greater than that seen in the narrowly sized distribution.   
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Figure 9: Realistic-sized particle distribution: Contour plots of liquid flux and liquid content, 

uniform properties a) and d), uniform with channelling b) and e), local variation in voidage c) 

and f).     

 

The wetted area of the wider particle-sized ore bed is shown in Figure 10 at steady state for 

the simulations and near-steady state for the experiment. In the experiment, the wetted area 

rapidly spreads throughout the bed with 63% of the bed wetted after 6 hours (only 21% after 

the same time in the narrowly sized bed) and 96.5% wetted after 5 days (wetted area of the 

narrowly sized fraction was 47% after 5 days). The capillary spread of solution is also much 

stronger in the simulation with the uniformly packed bed achieving 95% wetting and with the 

inclusion of channelling effects 90% wetting. Allowing for local variations in the voidage 

gave a reduced wetted area of 84%. However, as the voidage distribution is randomly applied 

a slightly different configuration would produce a different set of inter-connected pathways, 

inter-particle contact and intra-particle spreading of solution. The simulation was rerun with a 

different random voidage configuration which still gave the same bulk voidage, i.e. different 

specific configuration but same amplitude and length scale.  The wetted area for the new 

voidage configuration was 90%.   

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

16 

 

 
Figure 10:  Realistic-sized particle distribution: Wetted area of bed at steady state, uniform 

properties (Case A), uniform with channelling (Case B), local variation in voidage (Case C), 

experimental wetted area profile. 

 

4.2.3 Discussion 

 

The techniques employed to account for preferential flow and channelling of solution 

provided better representation of the solution distribution and recovery at the base of the ore 

bed than that obtained assuming homogeneous conditions.  However, none of the simulations 

gave an exact match to that seen experimentally.  This is not unexpected as small differences 

occur in the local voidage distribution of each packed bed and slight changes in inter-particle 

flow are observed over time. Changes in the distribution of liquid recovered at the outlets and 

the occasional significant shift at the outlet with the highest percentage of liquid recovered is 

probably due to minor particle shifting or solution fluctuations causing variations in inter-

particle flow paths. These slight variations are observed in the experiments (Ilankoon and 

Neethling, 2016) and can be seen in Figures 5 and 8. They were also observed experimentally 

by Fagan et al. (2014).  However, the critical flow features observed in the experiments are 

similar, and the simulations accounting for the preferential flow paths have captured these 

critical features, i.e., initially strong inter-particle flow with little horizontal spread with the 

bulk liquid exiting at a central outlet followed by slower intra-particle wetting. Accounting 

for random variations in local voidage distributions, Figures 6c and 9c gave many 

interconnecting flow paths. This could be further observed in packed bed systems by non-

invasive visualization of the flow paths, which is not the objective of the current work. 

Although this is more in line with the flow path development seen in the experiment, see 

Figure 10, the inter-particle flow paths observed experimentally had fewer small flow paths 

and were dominated by a number of stronger flow channels. 
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Figure 10: Experimental ultraviolet images of initial flow paths 

 

In the experiments, the inter-particle flow paths form quickly and are reasonably steady 

within an hour but the intra-particle wetting takes several days to reach a pseudo steady state. 

The work of Ilankoon and Neethling (2013, 2016) confirm that the difference in time scales 

of liquid transport through inter-particle voids and intra-particle pore space has a large impact 

on the flow behaviour in the vicinity of the drip emitters.  This difference in time scales is 

strongly influenced by the particle size distribution with the narrowly-sized fraction having 

less overall horizontal spread, but more and different flow paths. The intra-particle pore space 

is a material property which experiments show decreases as the particle size increases. Thus 

the more realistic size particle distribution, which has a smaller average particle size, has 

higher intra-particle porosity.  Realistically sized distributions with a larger range of particles 

sizes allow smaller particles to fill the space between larger particles allowing more 

connected inter-particle spreading of liquid, which increases the particles wetted surface area 

and transport through the intra-particle pore space.  Although numerically a steady state 

solution was obtained within hours for both size distributions investigated, the difference in 

the inter-particle spreading of liquid of the different particle sizes was captured. The 

difference in time scales is probably due to the model failing to capture the differences in 

inter- and intra-particle permeability.  Experimental data shows that the permeability of the 

saturated particles are a few orders of magnitude smaller than that of the inter-particle spaces 

and the model does not capture this sharp drop in permeability when the only connections are 

within the intra-particle spaces.  A possible solution would be to employ a dual permeability 

model with different inter and intra-permeability’s. 

 

In general, the techniques investigated to account for channelling in the ore capture the 

implied fluid behaviour. Assuming uniform properties with random preferential flow 

channels, where solution travelling in the channels does not interact with the ore, captures the 

peak in recovery at the central outlet. Only the solution that does not enter the channel 

pathways is spread through the ore via capillary action. The numerical method that accounts 

for local variability in the ore void space allows for many inter-connected flow pathways, 

thus solution can move from inter-particle to intra-particle transport at any point in the ore.  

For heap leach simulations, both methods initially reduce the solution-ore contact and hence, 

limit the particle reaction kinetics, thus better representing the physical leaching process in 

ore stockpiles.  However, applying channelling pathways removes a fraction of the solution 

from being transported by capillary action and reacting with the ore. Applying local spatial 

variations in voidage allows solution to flow preferentially through conductive regions whilst 

still interacting with the ore.  The effect on the leaching kinetics based on these factors is 

investigated in a hypothetical leach in the following section. 
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4.3 SOLUTE TRANSPORT 

 

In order to investigate the effect of employing the techniques detailed in this paper to account 

for preferential flow and solution channelling on the leaching kinetics in a heap leach 

simulation, a hypothetical reactant was applied to the realistic sized ore system assuming a 

simple shrinking core linear reaction.  The dispersion coefficient is set to zero, as the aim is 

to investigate how the solute is transported throughout the ore by the bulk fluid.  The rate at 

which the ore particles react is modelled by equation 7.  It is assumed that the dissolution of 

one mole of mineral requires two moles of reactant.  This hypothetical leach employs a 

simple fast reaction with the species reacting on contact with the reactant.  The aim was to 

investigate how the different channelling assumptions affected the efficiency of the reactant 

transport and does not represent the complex kinetics of a copper leach. 

 

iore

oeffim

x

cDM

dt

dr


                                                                     (9) 

where rm is the mineral radius, Mi is the molecular weight of the mineral, Deff is the effective 

particle diffusion coefficient, co is reactant concentration, ρore is the ore density and xi is the 

mass fraction of the mineral. 

 

The simulations assumed one averaged sized particle of radius of 7.78 mm with density of 

2700 kg/m3 and 1 ppm of reactive mineral of molecular weight of 0.1 kg/mol.  A particle 

diffusion coefficient of 1.0 x 10-9 m2/s was assumed.  The ore was irrigated with 25 ppm of a 

reactant of molar mass 26 g/mol at a rate of 4.2 L/h.  A single drip emitter was employed 

with simulation setup as described in section 4.2.   

 

The percent of mineral reacted over time is shown in Figure 11 for the first 8 days.  The 

mineral reacted is reduced in the early stages for both of the simulations accounting for 

preferential flow and channelling.  This is due to solution traveling rapidly through the 

quickly formed inter-particle flow paths, thus the intra-particle wetting is reduced and hence 

so is the reactant-particle wetting and mineral dissolution.  However, after approximately 4 

days the simulation assuming spatially varying voidage increases to the highest percent of 

mineral reacted and this continues for the rest of the simulation.  This is due to the reactant 

being spread more effectively through the ore due to the large number of inter-connected 

preferential pathways transporting the solute over a wider region, thus allowing solute to 

diffuse into the particle micro pores of the non-wetted area.   This is probably an over 

prediction in mineral recovery as the inter-particle flow paths observed experimentally had 

fewer smaller flow paths and were dominated by a number of strong flow channels which is 

likely to reduce the reactant-particle interaction. The time scale over which this occurred was 

also under-predicted in the simulations compared to the experimental values.   The simulation 

with uniform properties and channelling assumes large flow channels where the reactant does 

not interact with the ore.  In both simulations assuming uniform properties, with and without 

channelling, the reactant spreads slower throughout the ore.  After 10 days of leaching the 

reactant had been transported to 75 %, 71 % and 79 % of the ore bed, increasing to 91 %, 88 

% and 97 % after 50 days, for simulations with uniform properties, with channelling and non-

uniform properties, respectively.  
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Figure 11: Mineral Recovery variation with time for a hypothetical heap 

 

5. CONCLUSIONS 

 

Experimentally it is shown that gravity driven flow in inter-connected preferential pathways 

and solution channels establish quickly, whilst horizontal solution transport due to particle-

particle contact acts over a much longer time. In industrial heap leaching, the convective 

transport through inter-connected pathways and channels will dominate the recovery.  The 

slower diffusive transport will spread the reactant to a wider region, but the solution may 

stagnate locally with the dissolved species not being recovered until later. The spatial 

delivery of the reactant to different regions of the heap will be highly dependent upon the 

number of inter-connected preferential flow paths and the scale of the flow channelling. To 

ensure optimum recovery, the reactant and dissolved species transported by channelling in 

the ore needs to be eliminated.  However in practice, although channelling can be minimized 

by good packing and heap management, it cannot be completely eliminated and local micro-

scale heterogeneities will inevitably occur.   

 

This non-uniform and adverse flow behaviour within the heap reduces the solution-ore 

contact, and hence, impedes leaching kinetic resulting in lower metal recoveries. Therefore 

effective modelling of the local flow variations is critical in capturing the leaching kinetics 

and thus metal recovery. This paper has investigated the implementation of techniques into 

the CFD model to account for local preferential flow paths in the heap leach system. The 

results show that the critical behaviour in a pseudo 2-D column, of a narrowly sized ore 

particles and a more realistic particle size distribution, is comparable to that seen 

experimentally for the simulations incorporating preferential flow paths. However, the results 

also highlight the need for good characterization of the ore for recovery predictions. In 

reality, the network of inter-connecting void space in a heap is inevitably unknown but not 

accounting for any channelling will clearly lead to an overestimation in the recovered species, 

especially in the early stages of leaching. 
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HIGHLIGHTS 

 

 Experimental data shows liquid spread and flow channel development in packed beds 

 Techniques are incorporated into CFD numerical model to capture flow channelling 

 Results show capture of channel flow paths comparable to that seen experimentally  

 Simulation of a drip leach shows channelling assumptions effect on solute transport 
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