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Three-dimensional transverse vibration of microtubules 

Si Li, Chengyuan Wang*, Perumal Nithiarasu  

Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea 

University, Bay Campus, Fabian Way, Swansea, Wales SA1 8EN, UK 

 

Abstract A three-dimensional (3D) transverse vibration was reported based on the molecular 

structural mechanics (MSM) model for microtubules (MTs), where the bending axis of the 

cross section rotates in an anticlockwise direction and the adjacent half-waves oscillate in 

different planes. Herein, efforts were invested to capturing the physics behind the observed 

phenomenon and identifying the important factors that influence the rotation angle between 

adjacent two half waves. A close correlation was confirmed between the rotation of the 

oscillation planes and the helical structures of MTs, showing that the 3D mode is a result of the 

helicity found in MTs. Subsequently, the wave length-dependence and the boundary condition 

effects were also investigated for the 3D transverse vibration of MTs. In addition, the vibration 

frequency was found to remain the same in the presence or absence of the bending axis rotation. 

This infers that the unique vibration mode is merely due to the bending axis rotation of the 

cross section but no significant torsion occurs for MTs.   

 

Keywords: Microtubules; three-dimensional transverse vibration; Helical structure; structure 

mechanics model  
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1. Introduction 

Microtubules (MTs), as structural and functional components of cells, can maintain the 

cell shapes, generate the cell rigidity, provide tracks for molecular motors to transport 

organelles and facilitate the inter-cellular mobility and many other physiological processes [1]. 

The basic components of MTs are α–β heterodimers [2], which stack head to tail to form the 

protofilaments (PFs). MTs are finally constructed by a number of the PFs bonded laterally to 

form a cylindrical surface [3, 4]. MTs have various architectures characterized by the PF 

number N and the helix-start number S. For most MTs, N=13 and S=3 [5], but those with N = 

8 to 16 and S = 2 to 4 are also reported in the literature. In particular, the latter lead to misfit in 

MTs and accordingly, generate a skew angle between the PF and axis of the MTs. [6, 7].  

As one of the fundamental structural elements in cells MTs can withstand external load, 

detect the mechanical changes in the cellular environment and organize the remodeling of the 

whole cytoskeleton [8, 9]. Thus the mechanics of MTs has excited extensive studies in the last 

two decades [10-14]. Specifically, the vibration of MTs has drawn considerable attention from 

the communities of nano and biomechanics [10-17] as it has the potential to impact on the intra-

cellular physiological processes [18-21], provides a physical mechanism for the novel non-

invasive biosensors [22] and facilitates the development of advanced biomimetic nanomaterials, 

e.g., MT-graphene nanotubes, whose applications rely heavily on MT vibration [23, 24].  

Another fundamental issue in MT mechanics is the relation between the MT structures 

and their mechanical behavior and properties [25]. This however has not been examined in 

detail until a recent study on the elastic properties of MTs based on a recently developed 

molecular structural mechanics (MSM) model [15, 16, 26]. The possible reason is that the 
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previously used continuum models [12, 13] are unable to account for the structural details and 

the molecular dynamics simulations (MDS) [27] are computationally expensive for the 

analyses. This situation thus provides an impetus for us to further examine the possible 

structural effect on the vibration of MTs based on the MSM model [15, 16, 26], which enjoys 

highly improved efficiency as compared with MDS and largely enlarged scope relative to the 

continuum mechanics models.   

In the present paper, the MSM model [15, 16, 26] was employed to investigate the beam-

like bending vibration for MTs with an emphasis on its dependence on the structures and the 

geometric size of MTs. The layout of the paper is as follows. The MSM techniques and details 

of MT structures are introduced in Sec.2. Then Sec. 3 gives the description of the achieved 

novel vibration modes with the bending axis rotating on MT cross sections. It is followed by a 

discussion on the major factors that exert influence on the vibration mode. The new findings 

based on the results and discussions are summarized in Sec.4.  

  

2. Methods 

2.1 MT Structure and MSM model 

    As mentioned above, MTs are long tubular structures with neighboring PFs shifted 

relatively to each other longitudinally, which results in helical structures as shown in Fig. 1a, 

b and c [28]. Various architectures are found for MTs with the PF number N varying from 8 to 

17 and helix-start number S changing from 2 to 4[28]. The most common configuration is the 

standard 13-3(N=13 S=3) MTs [6, 7, 29]. Others are the non-standard MTs showing the misfit 

in MTs, which is compensated by skewing PFs relative to the axial direction [6, 7].  
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Fig. 1a-c showed the parameterized MTs structure characterized primarily by N and S,  

which satisfy the equations below [7, 15, 16, 30]: 

r=
Sa

N
-δxtan(θ) 

(1) 

R=
Satan(θ)+Nδx

2π
 

Herein a is the subunit repeat, r is the subunit rise, R is the radius of the tube, δx is the PF 

separation, and θ is the skew angle of PF relative to the direction of the rolling axis of MT. The 

values of PF separation, subunit repeat and skew angles of various MTs are present in Table1 

and considered in the simulations of the present study.  

To account for the structural details of MTs an MSM model[15] was developed for MTs. 

Similar techniques were also applied to the carbon nanotubes [31]. The MSM model was 

further employed in the present study due to its high computational efficiency and capability 

of accounting for the structural details of MTs. In particular, the MSM method was efficiently 

used to characterize the mechanical responses of MTs and found to be in good agreement with 

available experiments or atomistic simulations [15, 26]. 

The space structure of MTs was shown in Fig. 1d, where the intra-PF αβ interactions, i.e., 

bond1(represented by the blue lines in Fig.1c), are modeled as the elastic space beam 1 and the 

inter-PF αα (ββ) interaction, i.e., bond 2 (denoted by the red lines in Fig.1c), are treated as the 

elastic space beam 2. Following previous studies [15, 16, 32], the small difference in αα and 

ββ interactions is neglected. Such a frame structure consisting of the space beams is then 

obtained as an MSM model for an MT. 

In the molecular mechanics, the force field is expressed in the form of steric potential 

energy. The major parts of the steric potential energy of an MT structure include the bond 
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stretching energy Ui
r, the angle bending energy Ui

φ
 and the dihedral angle torsional potential 

energy Ui
τ. The total potential energy U of an MT reads  

Ubonds= ∑ ( ∑ Ui
r + ∑ Ui

φ
+ ∑ Ui

τ )

i=1,2

 (2) 

where i denotes the types of bonds mentioned above（i=1 for the intra-PF bonds and i=2 for 

the inter-PF bonds）. The expressions for the three types of bond energy are as follows. 

Ui
r=

1

2
ki

r
(∆ri)

2
 , Ui

φ
=

1

2
ki

φ
(∆φ

i
)
2
, Ui

τ=
1

2
ki

τ
(∆Φi)

2
,(i=1,2) (3) 

Here, ∆ri is the change of bond length, ∆φ
i
 is the change of in-plane bond angle, ∆Φi is the 

change of out-of-plane angle, ki
r
  is the force constant for bond stretching, ki

φ
  is the force 

constant for bond angle bending and ki
τ
 is the force constant for bond torsion. The values of 

these force constants can be obtained in atomistic simulations or experiments. 

In addition, the total potential energy of the MSM model can be written as: 

Ubeams= ∑ (∑ Ui
A + ∑ Ui

M + ∑ Ui
T)

i=1,2

 (4) 

where, Ui
A is the strain energies of a beam in tension. Ui

M is the strain energy due to bending 

and Ui
T is the strain energy due to torsion. Here i specifies the quantities of beam i (i=1 for 

longitudinal beams and i=2 for lateral beams). The beam energy can be calculated by using the 

formulae below. 

Ui
A=

1

2

YiAi

li
(∆li)

2
, Ui

M=
1

2

YiIi

li
(2∆αi)

2
,Ui

T=
1

2

SiJi

li
(∆β

i
)
2
,(i=1,2)  (5) 

Here, ∆li  is the length change of the beam, ∆αi  is the bending angle, ∆β
i
  is the torsion 

angle, Yi Ai  is the extensional stiffness, Yi Ii  is the bending stiffness SiJi  is the torsional 

stiffness of the beam. 

The equivalency of the MT structure and its MSM model can be established when the 
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corresponding energy in Eqs. 3 and 5 are equal, which leads to the following relationship 

between the force constants of the bonds and the stiffnesses of the space beams. 

YiAi

li
=ki

r
, 

YiIi

li
=ki

φ
,
SiJi

li
=ki

τ
,(i=1,2) (6) 

In this study the values of ki
r
 ,  ki

φ
 , ki

τ
  were obtained from the molecular dynamics 

simulations [15, 26, 33], i.e., k1
r
=3nN/nm , k1

φ
=2nN∙nm , k1

τ
= 0.04nN∙nm , k2

r
=14nN/nm , 

k2
φ
=8.5nN∙nm, k2

τ
=0.17nN∙nm. The mass of monomer was taken as Mmono= 55kDa [16, 34].  

In structural mechanics [35, 36], the vibration of an MT modeled as the above frame 

structure is governed by the following dynamic equation.  

[M]{χ̈}+[K]{χ}={0} (7) 

where [M] denotes the global mass matrices of the established frame structure,  [K] denotes 

the stiffness matrices, {𝜒̈}  denotes the acceleration vector and {χ}  denotes the nodal 

displacement vector. The mode shape and angular frequency ω (frequency f=ω/2π.) of MT 

vibration can then be obtained by solving the eigenvalue problems defined by the equation 

below [16]. The calculation was implemented via the Block Lanczos algorithm [37].  

([K]-𝜔2[M]){χ}={0} (8) 

The details about the mass and stiffness matrices of the frame structure in Eqs.7 and 8 can be 

found in an appendix attached.  

  

2.2 MSM simulation on MT vibration  

To examine the effect of structural details (especially the helicity) on MT vibration, MTs 

with different N and S were considered in the present study. Their structural details were 

tabulated in Table 1 including an imaginary (non-helical) MT with N = 13 but S = 0. During 
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these simulations, two different boundary conditions were considered, i.e. (1) two ends of the 

MTs were fixed and (2) one end is fixed and the other is free. The fixed boundary condition 

was implemented by imposing the translational restraints Ux=0, Uy=0, Uz=0  (Ux , Uy  and 

Uz  are displacements in x, y and z directions) and rotational restraints ROTx=0, ROTy=0, 

ROTz=0 (ROTx, ROTy, ROTz are rotation angles about x, y and z axes) on the nodes in a 

region close to MT ends.  

 

 

3. Results and discussions 

In this section, the MSM model introduced in the prior section was employed to perform 

simulations on the vibration of MTs with different configurations. The focus was placed on the 

unique features of MT vibration and the effect of structural details on the dynamic behaviors, 

such as the number of PFs, the helix-start number S and the characteristic length. 

3.1 3D transverse vibration of MTs   

Herein, the transverse vibrations were simulated for long 13-3 MTs (i.e., N =13 and S = 3) 

with two fixed ends and the length-to-diameter ratio L/D =113 or the contour length L=2.4μm. 

Its fourth vibration mode (i.e., the axial half wave number m = 4) was shown in a three- 

dimensional (3D) graph and projected to the three coordinate planes in Fig. 2. For the sake of 

comparison, the fourth mode was also shown for a non-helical 13 MT (i.e., N =13 and S = 0) 

with the same end conditions and the same length. It should be pointed out that the non-helical 

MT does not exist. It is an MSM model created merely for the comparison.  

As listed in Table 2, the frequencies of the 13-3 MTs and the non-helical MSM model 
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were almost the same, indicating that the helicity did not significantly affect the natural 

frequency of MTs. Thus, in what follows we focused our attention on the mode shapes of the 

transverse vibration shown in Fig. 2. It is seen from the figure that the vibration modes and 

their projections in the YOZ and XOZ planes are quite similar between the 13-3MT and its 

non-helical counterpart. On the other hand, a substantial difference was identified in the 

projections on the YOX plane, i.e., one straight line was observed for the non-helical MT, 

suggesting that the whole tube is vibrating in the same plane. This behavior was very similar 

to the one achieved for classical beams. Concurrently, four different straight lines were found 

in the XOY plane of the 13-3MT, showing that its four half waves are vibrating in four different 

planes. Thus, Fig.2 showed a 3D transverse vibration for 13-3 MTs.    

 To confirm the observation in Fig. 2 the vibration mode with m = 4 was further enlarged 

in Fig. 3 for the two types of the nanoscale tubules. Herein Fig. 3a clearly indicated that the 13 

MT (S = 0) is oscillating in a single plane, i.e., all the four half waves stay in the same oscillation 

plane. In contrast, Fig. 3b demonstrated that for 13-3 MTs the half wave plane rotates in an 

anticlockwise direction. The rotation angles between adjacent planes are denoted by ξ1, ξ2 

and ξ3, respectively. It is understood that bending plays an important role in the transverse 

vibration of MTs. Thus the spin of the half wave planes suggested the rotation of the bending 

axis of MT cross section as the directions of oscillation and the bending axis are always 

perpendicular to each other. It should be noted that Fig.3b only gave a simplified model of the 

vibration. More detailed study showed that for 13-3MTs individual half waves do not really 

oscillate in the same plane. As can be seen in Fig. 3c, the anticlockwise rotation of the bending 

axis actually occurs continuously throughout the whole length of the MT.  
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To correlate the rotation of the oscillation planes and their bending axis we set up a 

Cartesian coordinate system on the MT (Fig. 3c) where the origin coincides with the cross 

section center on the left end, oz represents the longitudinal direction and oy shows the bending 

axis on the left end. Next let us consider the cross section at the middle point of the first half 

wave. The rotation angle δ1 of its bending axis relative to the oy was utilized to characterize 

the average rotation of the 1st half wave plane (or oscillation plane 1 in Fig. 3). Subsequently, 

we defined δ2 , δ3 and δ4 in a similar way for the 2nd, 3rd and 4th half waves to measure the 

average rotation of the oscillation planes 2, 3 and 4, respectively (Fig. 3c). The relative rotation 

angles ξ1 , ξ2  and ξ3  between the two adjacent oscillation planes shown in Fig. 3b were 

defined by ξ1=δ2-δ1, ξ2=δ3-δ2 and ξ3=δ4-δ3. Thus, the total rotation angle ξall is given by 

ξall=ξ1+ξ2+ξ3=δ4 − δ1.  

It is noted in the simulations that the rotation of oscillation planes was not uniformly 

distributed along the axial direction, for instance, the angles ξ1, ξ2, ξ3 of 13-3 MT (L=800 

nm, m=4) were measured as 3.79°, 2.58°, 3.53° respectively. The results showed that the 

rotation became more pronounced at the two ends of the MT. In addition, the total rotation 

angle ξall  increased as the half wave number m became larger, for instance, ξall  of the 

aforementioned MT was 2.32°, 5.35° and 9.9° for m = 2, 3 and 4, respectively. This issue was 

discussed in more detail in Sec. 3.2. Here it should be emphasized that, as shown above, the 

frequency and thus the energy of the vibration did not change significantly in the presence of 

the oscillation plane rotation. This suggested that no significant torsion occurred for the 

vibrating MTs. The rotation of the oscillation plane is merely due to the continuous rotation of 

the bending axis on the cross sections when z increases from 0 to L (MT length) (Fig. 3c).     
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To find a possible explanation of the observed phenomenon we restored to the bending 

theory of Euler beam model [38] as bending occurs for the MT in the transverse vibration. Thus, 

the vibration frequency is determined by the second moment of inertia I of the MT cross section. 

However, as shown in Fig. 4a-c, due to the helical structure of 13-3 MTs the material is not 

uniformly distributed along the perimeter of the MT cross section. In particular, the distribution 

varied with the S index as shown in Fig. 4e and was also found to change or rotate from cross 

section A to its adjacent cross section B. It is understood that the frequency was exactly the 

same everywhere on the MT, suggesting that the value of the inertia I on the individual cross 

sections of the MT should be nearly the same. Consequently, the different material distribution 

on the adjacent cross sections finally led to the rotation of the bending axis between the two 

adjacent cross sections to maintain the identical inertia I and accordingly, the same vibration 

frequency. Thus, the helical structure of MT can at least partially explain the physical 

mechanisms of the 3D transverse vibration. Here we are very keen to find direct evidence to 

confirm the existence of the 3D transverse vibration of MTs. Unfortunately, the experimental 

data are still not available in the literature. On the other hand, it is noted that this vibration 

mode is similar to the 3D bending reported for cantilevered MTs based on a finite element 

model in [39]. The finite element simulations can to some extent support the present study 

where the 3D transverse vibration was observed. 

    

3.2 Factors influencing the 3D vibration  

The novel 3D transverse vibration mode was achieved in the previous section for 13-3 

MTs. In this section, we further examined the effect of the major factors that may exert 
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significant effects on this vibration mode or the rotation angle. The factors can be categorized 

into two groups including the internal factors, i.e., the structural details of MTs and the external 

factors, such as length, vibration modes and the boundary conditions.  

3.2.1 Internal factors 

To examine the effect of MT structures 10 MTs with different N-S parameters were 

considered (Table 1) and the rotation angle ξall defined in Sec.3.1 and shown in Fig. 3c was 

calculated for the 4th mode of these sample MTs. The results were shown as a function of 

helix-start S in Fig. 5a and PF number N in Fig. 5b, respectively. It is noted in Fig. 5a that the 

angle increases linearly with rising S. The slope of the curve is around 1.42° / per unit S. Fitting 

the data in Fig. 5a yielded the following linear relation between the total rotation angle ξall and 

the helix start number S, showing a strong dependency of ξall on the helical structures of MTs.  

ξall=-0.195+1.422∙S     (S = 1, 2, 3)    (9) 

These results provided clear evidence that, as commented in Sec.3.1 the helical structures of 

MTs should be responsible for the rotation of the oscillation planes or the bending axis of the 

cross sections shown in Fig. 3. On the other hand, it is seen from Fig. 5b that, for a given S the 

angle ξall remains nearly a constant independent of the PF number N. Thus, the PF number N 

does not exert significant influence on the rotation angle directly. Here it is noted that, for 

13MTs with skew angle  = 0 Eq. 1 reduces to 
N

Sa
r  . Thus when S is fixed and N changes, 

while the rotation angle remains constant, the subunit rise r and also the helical angle 
x

r


 will 

change substantially. Here δx is the PF separation (Fig.1). From these analyses it follows that 

the rotation of the bending axis is independent of the subunit rise or the helical angle of MTs. 
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It is primarily controlled by the helicity start number S describing the periodic change of 

structure in the axial or PF direction. 

Furthermore, in Fig. 6 we calculated the frequency for the MTs considered in Fig. 5. The 

results showed that the frequency generally increased with rising N or the diameter of MTs. 

This N-dependency turned out to be more significant for higher modes with larger m. On the 

contrary, for a given N the frequency of all the modes selected remains unchanged when the 

helical start number S varying between 2 to 4. These results are found to be consistent with the 

results obtained previously in [16].   

 

3.2.2 External factors 

In addition to the MT structures there also exist some external factors that may affect the 

rotation angle. These factors may include the contour length (or wavelength) of MTs, the mode 

number of the vibrations and the boundary conditions on the two ends of MTs. It is thus of 

interest to measure their effects on the rotation angle ξall for MTs. To this end we calculated 

the angle ξall of 13-3 MTs with different lengths. The results obtained for the 3 modes with m 

= 2, 3, 4 were plotted in Fig.7 against the contour length of MTs. As shown in the figure, for a 

given vibration mode the angle ξall decreases monotonically with the increasing contour length. 

The rate of change increases when the contour length becomes shorter. The second order 

polynomial fitting for m = 2, 3, 4 was also given in Fig. 7 with R-square of 0.89045, 0.98056, 

0.98496, respectively.  

In addition, Fig. 7 indicated that, for a given contour length the rotation angle ξall 

increases with rising mode number m. The rate of change in angle ξall is found to increase with 
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decreasing contour length. As mentioned above, when the contour length decreases or the mode 

number m increases the rotation angle ξall becomes greater. This can be attributed to the fact 

that the (half) wave length declines in these two processes. Thus we came to the conclusion 

that the rotation angle 𝜉all is larger for the vibration with a shorter wave length. Further it was 

seen from Fig. 7 that, for the same wave length the total rotation angle ξall increases with 

increasing half wave number m. For example, in Fig. 7 MT vibrations with (m, L) = (2, 1000nm), 

(m, L) = (3, 1500nm) and (m, L) = (4, 2000nm) have the same half wave length 500nm but the 

corresponding rotation angle ξall increases from 1.58°, to 2.96° and to 3.99° when m rises from 

2 to 3 and to 4. This showed the relation between the rotation angle ξall and the half wave 

number m when the half wave length is kept constant. It is thus evident that, for a fixed (half) 

wavelength ξall increases with rising m and thus growing contour length. The decrease of ξall 

with rising length observed in Fig. 7 is due to the fact that for a given m the (half) wavelength 

increases with growing contour length. It is thus evident that the key external factors 

determining the rotation angles are the (half) wavelength and half wave number (or mode 

number) m rather than the contour length.   

Another external factor that may significantly alter the rotation angle of ξ all is the 

constrains imposed on the two ends of MTs. To examine the boundary condition effects, we 

considered the transverse vibration of the 13-3 MTs with the same the contour length 1200nm 

but two different boundaries conditions, i.e., (1) the two ends are fixed (i.e., fixed-fixed 

condition) and (2) one end is fixed and the other free (i.e., cantilever condition). The shapes of 

mode 4 (m = 4) were shown in Fig.8 for the MTs and the rotation angle ξall measured for the 

MTs were 6.63±0.09° and 6.15±0.09°, respectively, when fixed-fixed and cantilever boundary 



14 

 

conditions are considered. When mode number decreases from 4 to 3 and 2, the angle 

associated with fixed-fixed ends decreases from 6.63±0.09° to 3.62±0.09° and 1.31±0.09°. 

Those obtained for the cantilever boundary condition declines from 6.15±0.09° to 3.16±0.09° 

and to 1.19±0.09°. These results clearly showed that the fixed-fixed ends lead to the rotation 

angles significantly larger than those associated with the cantilever boundary condition. In 

other words, the rotation of the bending axis of the cross section would become more 

substantial when more constrains are enforced on the two ends of MTs.  

As shown above, the 3D transverse vibration mode is achieved as a result of the helix 

structures of MTs. This shows clear evidence that the unique structures of MTs lead to a 

deformation pattern significantly different from that of an elastic beam. The new finding is a 

step forward in gaining an in-depth understanding of the mechanisms via which the MT 

structures deform in a unique way to fulfill their functions in various physiological processes. 

The vibration mode-structure relation may also provide useful guidance for the development 

of the MT-based biomimetic materials whose performance depends heavily on its transverse 

vibration. Herein, another thing worth mentioning is the damping effect of cytosol, which has 

to be taken into consideration for MTs in vivo. This issue has not been discussed here as this 

work is focused on the structure-property relation of individual MTs, e.g., MTs in vitro. The 

damping effect however deserves to be examined in details in future studies.  

 

 

4. Conclusions: 

A unique transverse vibration of MTs is achieved via a recently developed MSM model. 
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In sharp contrast to the vibration of classical beams, the bending axis of the cross section of 

vibrating MTs rotates throughout the length of the MTs. As a result, the adjacent half-waves 

vibrate approximately in two different oscillation planes, showing a 3D transverse vibration 

for MTs. Nevertheless, no real torsion occurs for the MTs and thus the frequency remains nearly 

the same in the absence or presence of the bending axis rotation.  

In addition, the rotation angle was found to increase almost linearly with the increasing 

helical start number S but remains independent of the PF number N. These indicate that the 

helical structures of MTs are responsible for the 3D transverse vibration of MTs, and the 

rotation angle of the bending axis is primarily determined by the periodic arrangement of 

protein monomers in the axial direction. The helical angle, however, does not play a significant 

role in determining the rotation angle of the bending axis on MT cross sections.    

Furthermore, the wavelength of vibration is identified as a characteristic length that can 

significantly change the rotation angle of the bending axis. The angle is found to rise with the 

decreasing wavelength or the growing wavenumber (for a given contour length). Additionally, 

the rotation angle can be further raised by imposing more constraints on MT ends.       
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Table captions 

Table 1 The structural details of various MTs[7] 

Table2 Natural frequencies of different vibration modes of models (MHz) 
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Tables 

 

 

Table 1 The structural details of various MTs[7] 

Parameter Sym Value 

Proto- 

filament 

number 

N 12 12 13 13 14 14 14 15 15 16 13* 

helix-start  

number 
S 2 3 2 3 2 3 4 3 4 4 0 

Proto- 

Filament 

separation 

δx 

(nm) 
5.18 5.27 5.02 5.13 5.08 5.16 5.05 5.07 5.06 5.19 5.13 

Subunit 

repeat 

a 

(nm) 
4.05 4.04 4.07 4.05 4.06 4.05 4.05 4.05 4.04 4.04 4.05 

skew angle 

 
θ(°) -1.02 0.85 -1.64 0 

-

2.34 
-0.68 0.87 -1.33 1.81 1.17 0 

* Imaginary (non-helical) MT 
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Table 2 Natural frequencies of different vibration modes of models (MHz) 

Models 
13-3 MSM 

model of MT 

Non-helical 

MSM model 

Half wave 

Numbers  

 

m=1 λ/2D=113 3.4154 3.4156 

m=2 λ/2D=56.5 9.4014 9.4019 

m=3 λ/2D=37.7 18.3960 18.3970 

m=4 λ/2D=28.25 30.3360 30.3390 
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Figure captions  

Fig. 1 Parameterized MT structure and its MSM model; Here a is the subunit repeat, r is the 

subunit rise, R is the radius of the MT, δx is the protofilament separation and θ is the skew 

angle of protofilament relative to the direction of the axis of the MT. Vertical blue lines 

represent the intra-PF bonds of the MT and beam 1 of the MSM model, and the red ones denote 

the inter-PF bonds of the MT and beam 2 of the MSM model. 

 

Fig. 2 Transverse vibration modes (m = 4) and its the projection to the YOX, YOZ, XOZ planes 

obtained for (a) an imaginary non-helical 13 MT and (b) a 13-3 MT;  

 

Fig. 3 The simplified mode shape (m = 4) for (a) an imaginary 13MT and (b) a 13-3 MT where 

the rotation of the half wavelength planes (or oscillation planes) is shown. The real mode shape 

of the 13-3MT is shown in (c) where the bending axis rotates throughout the whole length of 

the MT. 

 

Fig. 4 The material distribution on the perimeter of MTs with different S.  

 

Fig. 5 Dependence of the rotation angle 𝜉all (L=2000nm) on (a) the helical start number S and 

(b) the number of protofilaments N obtained for the 4th model of the MT vibration. 

 

Fig. 6 The effect of structural details on the frequency of MTs with different S and N. Here the 

half wave number m changes from 1 to 4.  

  

Fig. 7 The length dependenence of the angle ξall of standard 13-3 MTs 

 

Fig. 8 Mode shapes of a vibrating MT with (a) fixed-fixed ends and (b) fixed-free ends; The 

YOX projections of the mode shapes are shown in (c) and (d), respectively. 
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(a) 

(b) 

(c) (d) 

Fig. 1 Parameterized MT structure and its MSM model; Here a is the subunit repeat, r is the subunit 

rise, R is the radius of the MT, δx is the protofilament separation and θ is the skew angle of 

protofilament relative to the direction of the axis of the MT. Vertical blue lines represent the intra-

PF bonds of the MT and beam 1 of the MSM model, and the red ones denote the inter-PF bonds of 

the MT and beam 2 of the MSM model. 
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(b) 

Fig. 2 Transverse vibration modes (m = 4) and its the projection to the YOX, YOZ, XOZ planes 

obtained for (a) an imaginary non-helical 13 MT and (b) a 13-3 MT;  
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(a) 

(b) 

Fig. 3 The simplified mode shape (m = 4) for (a) an imaginary 13MT and (b) a 13-3 MT where the 

rotation of the half wavelength planes (or oscillation planes) is shown. The real mode shape of the 

13-3MT is shown in (c) where the bending axis rotates throughout the whole length of the MT. 
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Bending axis corresponding to lowest I 

Fig. 4 The material distribution on the perimeter of MTs with different S.  
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Fig. 5 Dependence of the rotation angle 𝜉all (L=2000nm) on (a) the helical start number S and (b) 

the number of protofilaments N obtained for the 4th model of the MT vibration. 
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Fig. 6 The effect of structural details on the frequency of MTs with different S and N. Here the 

half wave number m changes from 1 to 4.  
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Fig. 7 The length dependenence of the angle ξall of standard 13-3 MTs 
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Fig. 8 Mode shapes of a vibrating MT with (a) fixed-fixed ends and (b) fixed-free ends; The YOX 

projections of the mode shapes are shown in (c) and (d), respectively. 
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