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QUANTUM BIANCHI IDENTITIES VIA DG CATEGORIES

EDWIN J. BEGGS & SHAHN MAJID

Abstract. We use DG categories to derive analogues of the Bianchi identities for the
curvature of a connection in noncommutative differential geometry. We also revisit the
Chern-Connes pairing but following the line of Chern’s original derivation. We show that
a related DG category of extendable bimodule connections is a monoidal tensor category
and in the metric compatible case obtain an analogue of a classical antisymmetry of
the Riemann tensor. The monoidal structure implies the existence of a cup product on
noncommutative sheaf cohomology. Another application shows that the curvature of a line
module reduces to a 2-form on the base algebra. We illustrate the theory on the q-sphere,
the permutation group S3 and the bicrossproduct quantum spacetime [r, t] = λr.

1. Introduction

Noncommutative differential geometry allows geometric ideas to extend to situations
where the ‘coordinate algebra’ A is noncommutative[12]. The formulation of vector bundles
as projective modules E, connections as maps ∇ : E → Ω1⊗AE obeying a left Leibniz-
type rule and principal bundles with quantum group fibre to which such E are sections of
associated bundles[10], are all well known and there is a large modern literature. We follow
here a constructive approach in which the structures of differential geometry are built up
layer by layer starting with the 1-forms Ω1 of which a recent review is [18]. As well as
left connections we will also need ‘bimodule connections’, being left connections for which
there exists a bimodule map σ : E⊗AΩ1 → Ω1⊗AE with respect to which a right Leibniz
rule also holds[14, 26]. This approach allows for the formulation of metric compatibility
and is an approach particularly to noncommutative Riemannian geometry[4, 5, 7].

In this paper we take a close look at the curvature of a connection in order to address
two fundamental issues that remain open within the constructive approach. Namely, we
establish the two Bianchi identities and in the metric bimodule connection case the antisym-
metry with respect to the metric of the Riemann tensor. The first of the Bianchi identities
is elementary and follows directly from definition of curvature, but the 2nd Bianchi identity
and further symmetry or the curvature are less immediate and arise in formulation in the
context of a certain DG category AG for noncommutative differential geometry, which in
classical geometry would simply be an implicit structure behind the symmetry rules for
permuting indices for covariant derivatives of tensors, but which in noncommutative geom-
etry we need to define more explicitly in order to understand the right formulation of such

Key words and phrases. Quantum Riemannian geometry, noncommutative geometry, Chern-Connes
pairing, Bianchi identity, tensor category, quantum group, q-sphere, quantum gravity, quantum spacetime.
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symmetries. As DG categories are now central to many approaches to algebraic geometry,
their natural appearance in noncommutative differential geometry is not unexpected. For
an excellent reference on DG categories see [16]. From the physics side, a deeper under-
standing of the full Bianchi identities and the symmetries of the Riemann tensor is likely a
necessary step towards the right concept of Einstein tensor in noncommutative geometries.
The latter is an open problem which is plausibly key to applications of noncommutative
geometry to model Planck scale or quantum gravity effects. Such effects are expected to
result in noncommutative or ‘quantum’ spacetime of which there are now numerous models;
see [5, 23] for two models that include noncommutative Riemannian curvature.

We also revisit the well-known Chern-Connes pairing between K-theory and cyclic co-
homology [12] in order more fully to connect the Chern and Connes approaches. At the
time of Chern’s work [11], cyclic homology and cohomology had yet to be invented and
instead of a pairing with K-theory, Chern’s proof relied on showing that the trace of a
power of the curvature was independent of the connection chosen on a particular vector
bundle. With the machinery of DG categories we now follow Chern’s original derivation
followed by Connes’ idea of n-cycles for the final pairing. The answers obtained are exactly
the same as those given by Connes’ theory, on substituting in the Grassmann connection
defined in terms of a matrix idempotent, but our input data and derivation of the formula
are different. Of course, Connes’ pairing with K-theory can make sense even when there
is no sensible differential structure to calculate with, whereas our construction is explicitly
differential geometric.

An outline of the paper is as follows. Section 2 has some preliminary definitions working
over a possibly non-commutative unital algebra A over a field k. Differential forms of
different degrees are specified together as a differential graded algebra (Ω,d) generated by
A,Ω1. We also define line bundles (‘line modules’) and the Fröhlich map. DG categories
are defined at the start of Section 3 but the key idea is that in classical differential geom-
etry, natural maps between vector bundles with connections do not always commute with
the connections; one also needs also to be able to covariantly differentiate bundle maps.
(Classically, a bundle map is simply a tensor with appropriate up and down indices, and
is covariantly differentiated by standard rules.) Section 3 then constructs the DG category

AG where objects are bundles with connection but morphisms include maps E → Ωn⊗A F
for each n. Theorem 3.2 proves the 2nd Bianchi identity and Corollary 3.4 revisits the
1st Bianchi identity in our formulation. Section 4 contains the Chern construction with
connection-independence proven in Theorem 4.3. Section 5.1 switches to bimodule con-
nections and introduces a notion of extendability that we need. Section 5 introduces the
bimodule version AGA of bundles with bimodule connections, this time with tensor product
over A i.e. we show that this is a monoidal category, which we do in Secton 5.3. Corol-
lary 5.8 is our Riemann curvature antisymmetry result when the connection preserves the
quantum metric g ∈ Ω1 ⊗AΩ1 (i.e., we prove a quantum version of the remaining classi-
cal symmetry of the Riemann tensor). A second application, Proposition 5.9, is to line
bundles where we show that the curvature canonically defines a 2-form on the base of the
bundle just as in classical electromagnetism. A third application, Corollary 5.10, uses a
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quantum metric on a module to take the trace of the curvature of a connection to give a
noncommutative de Rham class in the sense of the cohomology of (Ω,d).

The paper concludes in Section 6 with some detailed examples including the quantum
cotangent bundle on the group S3 of permutations of three elements, a standard 2-dimensional
quantum spacetime model and the standard q-sphere from the q-Hopf fibration with its
associated q-monopole bundles En and q-Riemannian geometry. These are basic ‘test ex-
amples’ of noncommutative differential geometry in our approach [4, 7, 5, 20, 18, 21]. For
examples like the q-sphere, extendability does not impose further restrictions thanks to
our basic Lemma 5.3. Thus all the charge n q-monopole connections and the canonical
torsion-free metric compatible or ‘quantum-Levi Civita’ connection ∇Ω1 in [20] are extend-
able. The quantum antisymmetry holds and we compute the quantum metric trace of the
curvature, which classically vanishes but now has a q4 − 1 factor. The other two examples
are at the other extreme in the sense that we show in these cases that extendability of a
connection on Ω1 is linked to flatness under certain homogeneity or symmetry conditions.
For the bicrossproduct model spacetime we find, in particular, a unique metric compatible
extendable connection among the homogenous type studied in [5], which is flat but with
torsion. For S3 with its 2-cycles calculus we find exactly four metric compatible extend-
able connections among the ad-invariant connections studied in [4]. Such flat connections
classically are data for the quantisation of the differential structure in Poisson-Riemannian
geometry[6] and it is remarkable that quantum versions arise now form our algebraic crite-
rion of extendability. We also exhibit the full moduli of torsion-free and cotorsion-free or
‘weak quantum Levi-Civita’ connections and of metric compatible with-torsion connections,
illustrating the Bianchi identities on these.

2. Preliminaries

We recall that a differential graded algebra (DGA) (Ω,d) means graded components Ωn

for n ∈ N, differentials d : Ωn → Ωn+1 and an associative product ∧ : Ωn⊗Ωm → Ωn+m

obeying

d(ξ ∧ η) = (dξ) ∧ η + (−1)n ξ ∧ (dη) , d2 = 0

for ξ ∈ Ωn and η ∈ Ωm. We suppose that A = Ω0 is a unital algebra, that Ω is generated
by A under d and ∧, and then call (Ω,d,∧) a differential calculus or ‘exterior algebra’ for
A. We shall work over the general field k where possible. Also well known (for example
in the works of Quillen in the 1970s) is the notion left connection (or covariant derivative)
∇E : E → Ω1⊗AE on a left A-module E as a linear map obeying the left Leibniz rule,

∇E(a.e) = da⊗ e+ a.∇E(e)

for all a ∈ A and e ∈ E. This can be extended to

∇E
[n] : Ωn ⊗A E → Ωn+1 ⊗A E , ξ⊗ e 7→ dξ⊗ e+ (−1)nξ ∧ ∇Ee(1)

for n ≥ 0, the n = 0 case giving ∇E . These extensions are used in [2] to define a sheaf
cohomology, and to write the curvature RE of (E,∇E) as the left module map

RE = ∇E
[1]∇E

[0] : E → Ω2 ⊗A E.
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We also need right connections, which we write as ∇̃F : F → F ⊗AΩ1 for a right A-module
F , and which obey the right Leibniz rule

∇̃F (f.a) = f ⊗ da+ (∇̃F f)a

for a ∈ A and f ∈ F .
In the special case where we have a left connection ∇Ω1 on the bimodule Ω1, we have

the further notion of ‘torsion’

T = ∧∇Ω1 − d : Ω1 → Ω2.

We may also be interested in a right connection ∇̃Ω1 in which case the formula for the
torsion is T̃ = ∧∇̃Ω1 + d : Ω1 → Ω2. A brief check shows that T is a left module map and
that T̃ is a right module map. A modest first result in this case, which we state for left
connections (there is a similar formula for right ones) is the following.

Lemma 2.1 (1st Bianchi identity). For a left connection on Ω1,

∧RΩ1 = dT − (id ∧ T )∇Ω1 .

Proof. We adopt the shorthand ∇Ω1ξ = ξ1 ⊗ ξ2 (summation understood) then

∧R1
Ω(ξ) = (dξ1) ∧ ξ2 − (ξ1 ∧ ξ21) ∧ ξ22

= d(ξ1 ∧ ξ2) + ξ1 ∧ (dξ2 − ξ21 ∧ ξ22) = d2ξ + dT (ξ)− ξ1 ∧ T (ξ2)
for all ξ ∈ Ω1. We use d2 = 0 and we used associativity of the wedge product. �

For quantum Riemannian geometry in the constructive approach one also has a metric
g ∈ Ω1⊗AΩ1 and in this context we define the ‘cotorsion’ of a left connection as

coT = (d⊗ id− id ∧ ∇Ω1)g

of which the vanishing is a weak notion of metric-compatibility[19, 4, 18]. For full metric
compatibility we will need more structure as we describe later, in Section 5.1.

Next we recall that a left A-module E has dual the right module E♭ = AHom(E,A) (the

left module maps from E to A) with evaluation a bimodule map ev : E⊗E♭ → A. By
definition, a left finitely generated projective (left fgp for short) A-module E has a dual

basis ei ∈ E and ei ∈ E♭ (for a finite number of indices i) so that (sum understood)

(ev⊗ id)(id⊗ ei⊗ ei) = id : E → E .(2)

In the case where E is also a bimodule we can define a coevaluation bimodule map coev :
A → E♭⊗AE so that coev(1) = ei⊗ ei (sum understood). There are formulae for the
change of dual basis which read

ei = cj(e
i).cj , ei = cj.ei(c

j), cj = ei(c
j).ei, cj = ei.cj(e

i).(3)

for an alternative dual basis cj ∈ E and cj ∈ E♭. We shall need a result on dual connections

on E♭ from [4]: For the left fgp module E with left connection ∇E, there is a unique right

connection ∇̃E♭ : E♭ → E♭ ⊗A Ω1 given by

∇̃E♭(α) = ej ⊗ d ev(ej ⊗α)− ej ⊗(id⊗ evE)(∇E(e
j)⊗α).
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so that

d ◦ ev = (id⊗ ev)(∇E ⊗ id) + (ev⊗ id)(id⊗∇̃E♭) : E⊗E♭ → Ω1.

Now we apply the covariant derivatives to the dual basis to get

(∇̃E♭ ⊗ id + id⊗∇E)(ei⊗ ei)
= ej ⊗ d ev(ej ⊗ ei)⊗ ei − ej ⊗(id⊗ evE)(∇E(e

j)⊗ ei)⊗ ei + ei⊗∇E(e
i)

= ej ⊗ d ev(ej ⊗ ei)⊗ ei

where we have used (2). Now setting Pji = ev(ej ⊗ ei) we have

(∇̃E♭ ⊗ id + id⊗∇E)(ei⊗ ei) = ej ⊗ dPji⊗ ei = eq ⊗Pqj.dPji.Pik ⊗ ek

and applying d to the matrix product P 2 = P we get P.dP.P = 0, so

(∇̃E♭ ⊗ id + id⊗∇E)(ei⊗ ei) = 0.(4)

We also recall the definition of a line module, which is the direct noncommutative generali-
sation of a line bundle, over a unital algebra A. This mean a left fgp A-bimodule L for which
the bimodule maps of coevaluation coev : A → L♭⊗A L and evaluation ev : L⊗A L

♭ → A
are isomorphisms. Such modules were originally introduced as Morita contexts in algebraic
K-theory (see [1]), and later as geometric objects in [3]. A standard result we will need
later (from e.g. [1]) is:

Lemma 2.2. Let L be a line A-module. If T : L→ L⊗A F is a left A-module map for some
left A-module F then there is a unique f ∈ F such that T (e) = e⊗ f . If S : L → E⊗A L
is a right A-module map for some right A-module E then there is a unique g ∈ E so that
S(e) = g⊗ e.

It is shown in [15] that associated to a line module L is a unique unital algebra auto-
morphism ΦL of the centre Z(A) (we will call it the Fröhlich map) such that

z.e = e.ΦL(z)

for all e ∈ L and z ∈ Z(A). This map depends only on the isomorphism class of the
bimodule and obeys ΦL⊗M = ΦM ◦ ΦL.

3. DG category AG and the 2nd Bianchi identity

For any field k, we define (see [25]) a k-category to be an additive category with a ring
homomorphism from k to the natural transformations from the identity functor to itself.
An example of a k-category is the category of vector spaces and linear maps over k, wherek acts by multiplication on each object. Now we define a DG category (see [16]):

Definition 3.1. A differential graded category (or DG category) is a k-category where each
Mor(X,Y ) is a cochain complex (in a weak sense where we do not require the differential
squared to be zero) of k-vector spaces, and composition ◦ : Mor(Y,Z)⊗Mor(X,Y ) →
Mor(X,Z) is a map of cochain complexes.
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In what follows we use an order of products which is natural for modules and connections,
even if it is not standard for DG categories. Given two left A-modules with connection
(E,∇E) and (F,∇F ) a left module map φ : E → F is said to intertwine the connections if

∇F ◦ φ = (id⊗φ) ◦ ∇E : E → Ω1 ⊗A F.

If we generalise the maps which we consider to all left module maps then it is useful to
define the derivative of φ : E → F to be

∇∇(φ) = ∇F ◦ φ− (id⊗φ) ◦ ∇E : E → Ω1 ⊗A F

so ∇∇(φ) = 0 precisely when φ intertwines the connections. Note that ∇∇(φ) is a left
module map when φ is. It is convenient to form a category with objects left modules
with connections, and to grade the morphisms from E to F by N so that φ : E → F
is in Mor0(E,F ) and ∇∇(φ) is in Mor1(E,F ). Our basic example of a DG category for
noncommutative geometry will be based on the following category with graded morphisms.

Theorem 3.2. For an algebra with differential calculus (A,Ω,d,∧) we let AG be the cat-
egory with morphisms graded by N (including 0 ∈ N) as given by the table:

Name Objects Morn((E,∇E), (F,∇F )) derivative

AG (E,∇E) ψ : E → Ωn ⊗A F ∇∇ : Morn(E,F ) → Morn+1(E,F )

left modules & left module maps ∇∇(ψ) = ∇F
[n] ◦ φ− (id ∧ φ)∇E

left connections

Composition of morphisms is given by

φ ◦ ψ = (id ∧ φ)ψ : E → Ωn+m ⊗A G

for φ ∈ Morm((F,∇F ), (G,∇G)). Then AG is a DG category, with

∇∇(φ ◦ ψ) = φ ◦ ∇∇(ψ) + (−1)n∇∇(φ) ◦ ψ.
Moreover,

(1) (2nd Bianchi) The curvature RE ∈ Mor2((E,∇E), (E,∇E)) has ∇∇(RE) = 0;
(2) For all morphisms ψ : E → F , ∇∇(∇∇(ψ)) = RF ◦ ψ − ψ ◦RE.

Proof. We first show that ∇∇(ψ) is a left module map. For a ∈ A, e ∈ E, and ψ(e) = ξ⊗ f
(summation implicit),

∇[n]
F ◦ ψ(a.e) − (id ∧ ψ)∇E(a.e) = ∇[n]

F (a.ξ⊗ f)− (id ∧ ψ)(da⊗ e+ a.∇E(e))

= da ∧ ξ⊗ f + a.∇[n]
F (ξ⊗ f)− da ∧ ψ(e) + a.∇E(e) = a.(∇[n]

F ◦ ψ(e)− (id ∧ ψ)∇E(e)).

Next setting φ(f) = κ⊗ g (summation implicit),

∇G
[n+m](id ∧ φ)ψ(e) = ∇G

[n+m](ξ ∧ φ(f)) = ∇G
[n+m](ξ ∧ κ⊗ g)

= d(ξ ∧ κ)⊗ g + (−1)n+mξ ∧ κ ∧ ∇Gg = dξ ∧ φ(f) + (−1)nξ ∧ ∇G
[m](φ(f))

= (id ∧ φ)∇F
[n]ψ(e) + (−1)nξ ∧ ∇∇(φ)f

= (id ∧ φ)∇∇(ψ)e + (id ∧ (id ∧ φ)ψ)∇Ee+ (−1)nξ ∧ ∇∇(φ)f.
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For (1),

∇∇(RE) = ∇E
[2] ◦RE − (id ∧RE)∇E

= ∇E
[2] ◦ ∇E

[1] ◦ ∇E − (id ∧ (∇E
[1] ◦ ∇E))∇E .

Now set ∇Ee = ξ⊗h and ∇Eh = η⊗ f (summation implicit),

∇∇(RE)(e) = ∇E
[2](∇E

[1](ξ⊗h))− ξ ∧ (∇E
[1] ◦ ∇E)h

= ∇E
[2](dξ⊗h− ξ ∧ ∇Eh)− ξ ∧ (∇E

[1] ◦ ∇E)h

= − d(ξ ∧ η)⊗ f + dξ⊗∇Eh− ξ ∧ η ∧ ∇Ef − ξ ∧ dη⊗ f + ξ ∧ η ∧ ∇f = 0.

To prove (2) we begin by showing that for all n ≥ 0,

∇E
[n+1] ◦ ∇E

[n] = id ∧RE : Ωn ⊗A E → Ωn+2 ⊗A E.

Putting ∇Ee = ξ⊗h again for convenience, and for all ω ∈ Ωn,

∇E
[n+1](∇E

[n](ω⊗ e)) = ∇E
[n+1](dω⊗ e+ (−1)nω ∧ ∇Ee)

= (−1)n+1dω ∧∇Ee+ (−1)ndω ∧ ξ⊗ e+ ω ∧ dξ⊗h− ω ∧ ξ ∧∇Eh

= ω ∧ (dξ⊗h− ξ ∧ ∇Eh) = ω ∧RE(e).
To complete the proof of (2),

∇∇(∇∇(ψ)) = ∇F
[n+1] ◦ ∇∇(ψ)− (id ∧ ∇∇(ψ))∇E

= ∇F
[n+1] ◦ ∇F

[n] ◦ ψ −∇F
[n+1] ◦ (id ∧ ψ)∇E − (id ∧ (∇F

[n] ◦ ψ))∇E

+ (id ∧ ψ)(id ∧∇E)∇E

= (id ∧RF )ψ −∇F
[n+1] ◦ (id ∧ ψ)∇E − (id ∧ (∇F

[n] ◦ ψ))∇E

− (id ∧ ψ)RE + (id ∧ ψ)(d ∧ id)∇E .

and if ∇Ee = ξ⊗h and ψ(h) = η⊗ f then

∇F
[n+1] ◦ (id ∧ ψ)∇E(e) = ∇F

[n+1](ξ ∧ η⊗ f)
= dξ ∧ η⊗ f − ξ ∧ dη⊗ f − (−1)nξ ∧ η ∧ ∇F f,

(id ∧ (∇F
[n] ◦ ψ))∇E(e) = ξ ∧ ∇F

[n](η⊗ f)
= ξ ∧ dη⊗ f + (−1)nξ ∧ η ∧ ∇F f. �

In this result (1) becomes the usual 2nd Bianchi identity in the classical case when this
is viewed in Ω3, while (2) tells that the curvatures form an obstruction to the cochain
complex on each morphism space having differential ∇∇ that squares to zero. This means
that each (Mor(E,E),∇∇, RE) in AG forms a curved DGA as described in [8]. Now we show
how some almost tautological morphisms in AG can have a nice geometric interpretation,
including a version of the first Bianchi identity.

Example 3.3. Let A be an algebra with differential structure and consider (A,d) as a
bimodule with connection. Suppose that Ω1 has a left connection ∇ and consider the mor-
phism τ ∈ Mor1(Ω

1, A) given by ξ 7→ ξ⊗A 1. Then (∇∇τ)(ξ) = dξ⊗ 1 − (id ∧ τ)∇ξ =
(dξ − ∧∇ξ)⊗ 1 showing that ∇∇τ = −T∇ ∈ Mor2(Ω

1, A) where T∇ is the torsion.
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There is a corollary of Theorem 3.2 which will give us a more conceptual way of thinking
about the 1st Bianchi identity. We note that classically the vector fields are dual to the
1-forms, and this continues to provide a good definition of vector field in noncommutative
geometry (as opposed to the idea of identifying vector fields with derivations). Of course
in noncommutative geometry we have to choose a side.

Corollary 3.4 (1st Bianchi identity revisited). Suppose that Ω1 is right finitely generated
projective with dual XR (the right vector fields) and suppose XR has a left connection with
(XR,∇X) ∈ AG. Then for the coevaluation map coev : A→ Ω1 ⊗AXR,

∇∇(∇∇(coev)) = RX ◦ coev ∈ Mor3(A,X
R).

Proof. Under our assumptions, coev : A → Ω1 ⊗AXR is in Mor1(A,X
R) and from Theo-

rem 3.2 we have the 1st Bianchi identity as stated. �

At first sight this looks nothing like the first Bianchi identity but remember that if we
set E to be the left fgp module XR then its dual E♭ is Ω1 so we have a corresponding right
connection ∇̃ = ∇̃Ω1 on Ω1 such that (4) becomes

(∇̃Ω1 ⊗ id + id⊗∇X)coev(1) = 0 ∈ Ω1 ⊗A Ω1 ⊗A XR.(5)

Corollary 3.5. If the torsion T̃ of ∇̃ is a bimodule map then the 1st Bianchi identity in
Corollary 3.4 becomes

∇∇((T̃ ⊗ id)coev) = (id ∧RX)coev : A→ Ω3 ⊗A XR.

Proof. Applying ∧⊗ id to (5) gives

((∧∇̃Ω1)⊗ id + id ∧ ∇X)coev(1) = 0 ∈ Ω2 ⊗A XR

which we rewrite as

(d⊗ id + (∧∇̃Ω1)⊗ id)coev(1) = (d⊗ id− id ∧ ∇X)coev(1).

Hence if T̃ = d + (∧∇̃Ω1) : Ω1 → Ω2, i.e. the (right handed) torsion of ∇̃, is a left (and
hence bi-)module map then

∇∇(coev) = (T̃ ⊗ id)coev ∈ Mor2(A,X
R)

and we then use Corollary 3.4 to obtain the stated result. �

The form version of this is the right handed version of Lemma 2.1, for example ∧R̃ = 0
in the case of zero torsion, but the above gives the Bianchi identity more conventionally
expressed in terms of the curvature on vector fields. In the classical case with zero torsion
and using the usual conventions for the Riemann tensor, our result in Corollary 3.5 reads

Rabcd dx
b ∧ dxc ∧ dxd⊗ ∂

∂xa = 0

which is the familiar classical first Bianchi identity in the absence of torsion.
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4. Characteristic classes and invariance

Chern defined characteristic classes of a vector bundle in terms of the trace of powers
of the curvature [11]. To follow this construction literally in noncommutative geometry
would require a formulation of trace, which is problematic without additional structures
such as braiding. However, we can use a rather more limited version of trace.

Lemma 4.1. Let F be an A-bimodule, E a left finitely generated projective module and a
linear map φ : F → k have the trace property φ(a.f) = φ(f.a) for all a ∈ A, f ∈ F . Then
a left module map θ : E → F ⊗AE has a well defined trace

Trφ(θ) = φ((id⊗ ev)(θei⊗ ei)) ∈ k.
independently of the choice of dual basis ei of E and ei of E

♭.

Proof. We need to show that the formula does not depend on the choice of dual basis. If
we take a different dual basis cj , c

j of E♭, E then

φ((id⊗ ev)(θ(cj)⊗ cj)) = φ((id⊗ ev)(θ(ei(c
j).ei)⊗ ek.cj(e

k)))

= φ(ei(c
j).(id⊗ ev)(θ(ei)⊗ ek.cj(e

k))) = φ((id⊗ ev)(θ(ei)⊗ ek.cj(e
k) ei(c

j)))

= φ((id⊗ ev)(θ(ei)⊗ ek.ei(cj(e
k) cj))) = φ((id⊗ ev)(θ(ei)⊗ ek.ei(e

k)))

= φ((id⊗ ev)(θ(ei)⊗ ei))

on using the change of basis formulae in (3) and summing over i, j, k. �
The linear maps we use here will be n-cycles in the sense of [12], since we want to recover

the standard Chern-Connes pairing. Given a differential calculus Ω on A, Connes defines
an n-cycle as a linear map

∫
: Ωn → k satisying the conditions

∫
dξ = 0,

∫
ω ∧ ρ = (−1)|ω||ρ|

∫
ρ ∧ ω(6)

for all ξ ∈ Ωn−1 and all forms ω, ρ with sum of degrees |ω| + |ρ| = n. We now combine
n-cycles with the derivatives of morphisms in AG.
Proposition 4.2. Let E be a finitely generated projective left A-module and

∫
an n + 1-

cycle on Ω. If (E,∇E) ∈ AG then any θ ∈ Morn(E,E) has Tr∫ (∇∇(θ)) = 0.

Proof. Take a dual basis ei ∈ E and ei ∈ E♭. Using the dual connection,

Tr∫ (∇∇(θ)) =

∫
(id⊗ evE)(∇∇(θ)(ei)⊗ ei)

=

∫
(id⊗ evE)

(
(d⊗ id + (−1)n(id ∧ ∇E))θ(e

i)⊗ ei − (id ∧ θ)∇E(e
i)⊗ ei

)

=

∫
d(id⊗ evE)(θ(e

i)⊗ ei)− (−1)n
∫

(id ∧ evE ∧ id)(θ(ei)⊗∇̃E♭(ei))

−
∫

(id⊗ evE)((id ∧ θ)∇E(e
i)⊗ ei).
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Using that
∫
is an n+ 1 cycle and the shorthand ∇̃E♭(ei) = ej ⊗ ηji we have

(−1)n
∫

(id ∧ evE ∧ id)(θ(ei)⊗ ∇̃E♭(ei)) =

∫
(id⊗ evE)(ηji ∧ θ(ei)⊗ ej)

while using the explicit formula for ηji in the dual connection and the shorthand ∇E(e
j) =

κ⊗ f (summation implicit),

ηji ∧ θ(ei) = d ev(ej ⊗ ei) ∧ θ(ei)− (id⊗ evE)(∇E(e
j)⊗ ei) ∧ θ(ei)

= d ev(ej ⊗ ei) ∧ θ(ei)− κ evE(f ⊗ ei) ∧ θ(ei)
= d ev(ej ⊗ ei) ∧ θ(ei)− κ ∧ θ(evE(f ⊗ ei) ei)
= d ev(ej ⊗ ei) ∧ θ(ei)− (id ∧ θ)∇E(e

j).

Substituting our these expressions and setting Pji = ev(ej ⊗ ei) so that ei = Pike
k and

ej = em Pmj , we arrive at

Tr∫ (∇∇(θ)) = −
∫

(id⊗ evE)(d ev(e
j ⊗ ei) ∧ θ(ei)⊗ ej)

= −
∫

(id⊗ evE)(Pmj .dPji.Pik ∧ θ(ek)⊗ em).

But applying d to P 2 = P tells us that P.dP.P = 0. �
To apply these results to characteristic classes, we use powers of the curvature, and for

(E,∇E) ∈ AG it is natural to take these as RE
2 = RE ◦RE , RE3 = RE ◦RE ◦RE etc. Now

from Theorem 3.2 we have ∇∇(RE
n) = 0. The next result is a noncommutative version

of a standard classical result at the heart of Chern’s construction, that the cohomology
class of the trace of the curvature is independent of the connection. We do not construct
characteristic classes themselves but only their value against a cycle.

Theorem 4.3. Suppose that E is a finitely generated projective left A-module, and that
∫

is a 2n-cycle on the differential calculus Ω. Then for any left covariant derivative ∇E and
any n, the value of Tr∫ (REn) is independent of the choice of ∇E.

Proof. The set of left connections on E is an affine space, so any two left connections can
be connected by a straight line path. Take such a path, with connection ∇E

t parameterised
by t ∈ R, and define ∇̇E : E → Ω1A⊗AE by

∇̇E(e) =
d∇E

t(e)

dt
.

(As we are moving along a straight line interpolating two connections, ∇̇E does not depend

on t.) For all t, we have ∇E
t(a.e) = da⊗ e+ a.∇E

t(e) from which it follows that ∇̇E is a
left module map. Differentiating RE

t = (∇E
t)[1] ◦ ∇E

t (which is a quadratic function of
t), we obtain

ṘE
t = −(id ∧ ∇̇E)∇E

t + (∇E
t)[1]∇̇E = ∇∇t(∇̇E).
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Now omitting the explicit t dependence for clarity, by Theorem 3.2,

d
dtRE

n = ṘE ◦REn−1 +RE ◦ ṘE ◦REn−2 + · · ·+RE
n−1 ◦ ṘE

= ∇∇(∇̇E) ◦REn−1 +RE ◦ ∇∇(∇̇E) ◦REn−2 + · · · +RE
n−1 ◦ ∇∇(∇̇E)

= ∇∇(∇̇E ◦REn−1 +RE ◦ ∇̇E ◦REn−2 + · · · +RE
n−1 ◦ ∇̇E).

Then d
dtTr

∫ (REn) = 0 by Proposition 4.2. �
We still need to know that left connections actually exist. This is known for any pro-

jective module, although here we recall just the finitely generated case given in terms of
projection matrices. (By the Cuntz-Quillen theorem [13] a module is projective if and only
it has a connection for the universal calculus.) Thus, if E is an fgp left A-module and

ei ∈ E and ei ∈ E♭ a choice of dual bases, there is a well-known Grassmann connection
with left covariant derivative ∇E : E → Ω1⊗AE and curvature

∇Ee
i =

∑

i

dPij.Pjk ⊗ ek, REe
i = −

∑

j,k,m

dPij ∧ dPjk.Pkm⊗ em,

where Pij = ev(ei⊗ ej) = ej(e
i). Inserting this expression for RE into Theorem 4.3, we

clearly recover the usual formula for invariants associated to projection matrices in [12]. Of
course, this was exactly the motivation behind this Chern-Connes pairing formula in the
first place; the difference is that we do now follow Connes’ construction via cyclic theory
but stick to a noncommutative differential version of the original Chern one. In special
cases with more structure, such as Corollary 5.10 below, we can obtain actual cohomology
classes more like in Chern’s theory, rather than evaluating them against a cycle.

5. The DG category AGA
To proceed further, we will need our connections to be bimodule connections as these

allow tensor products, and therefore a decent notion of metric compatibility with respect
to a metric g ∈ Ω1⊗AΩ1. We start with a technical extendability property, then define
the DG category AGA, and then prove it is monoidal under tensor products of bimodules
over A. We assume throughout that A is equipped with a differential calculus (Ω,d,∧).

5.1. Bimodule connections and extendability. For bimodules over a noncommutative
algebra it turns out that asking for the left and right Leibniz rules to hold for a connection
simultaneously is too strong a condition, and instead we use the following definition going
back to [14, 26]. As mentioned in the introduction, a left bimodule connection (∇E, σE) on
a bimodule E is a left connection ∇E : E → Ω1 ⊗A E such that there exists a bimodule
map σE : E⊗AΩ1 → Ω1⊗AE obeying, for e ∈ E and a ∈ A,

∇E(e.a) = σE(e⊗ da) + (∇Ee).a.

Note that if it exists σ is uniquely determined so this is a property that some left connection
have rather than additional data. The most important feature of bimodule connections is
that we can tensor product them. Thus, if (E,∇E , σE) is a (left) bimodule connection on
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the bimodule E and that (F,∇F ) is a left connection on the left module F . Then we can
define a tensor product connection on E⊗A F by [9].

∇E⊗F = ∇E ⊗ id + (σE ⊗ id)(id⊗∇F ) : E ⊗A F → Ω1 ⊗A E ⊗A F.(7)

Further if F is a bimodule with (F,∇F , σF ) a (left) bimodule connection then we have a
tensor product bimodule connection (E⊗A F,∇E⊗F , σE⊗F ), where

σE⊗F = (σE ⊗ id)(id⊗σF ) : E ⊗A F ⊗A Ω1 → Ω1 ⊗A E ⊗A F.

This is key to applications in noncommutative Riemannian geometry[4, 5] as it means that
a bimodule connection on Ω1 acts on the metric tensor g ∈ Ω1 ⊗A Ω1 so that we can write
∇g = 0 (otherwise for general left connections one has only the weaker notion of cotorsion
free). It also means that we have the monoidal categories AEA, AEIA as in [4] where the
former has objects which are bimodules with bimodule connection and the latter is the
same with σ invertible. Morphisms were defined as bimodule maps which intertwine the
connections.

Before generalising AEA, we need to specify an additional possible property of bimodule
covariant derivatives, which is the ability to swap the order of n-forms and modules in the
same way that the definition of a bimodule connection incorporates swapping 1-forms and
modules.

Definition 5.1. An A-bimodule with left bimodule connection (E,∇E , σE) is called ex-
tendable if σE : E⊗AΩ1 → Ω1⊗AE extends for all n ≥ 1 to σE : E⊗AΩn → Ωn⊗A E
such that

(∧⊗ id)(id⊗σE)(σE ⊗ id) = σE(id⊗∧) : E ⊗A Ωn ⊗A Ωm → Ωn+m ⊗A E.

for all m ≥ 1. We include the case m,n = 0 with σE(e⊗ 1) = 1⊗ e.

As Ω is generated by A,dA the extended σE (should they exist) are uniquely determined
by σE on the 1-forms. There is a useful property which holds when both extendability and
curvature being a right module map hold:

Lemma 5.2. Suppose that (E,∇E , σE) is an extendable left A-bimodule connection. Then
the curvature RE is a right module map if and only if

∇E
[n]σE = (id ∧ σE)(∇E ⊗ id) + σE(id⊗ d) : E ⊗A Ωn → Ωn+1 ⊗A E.

holds for n = 1. In this case it also holds for all n ≥ 0 and we also have

(id ∧RE)σE = (id ∧ σE)(RE ⊗ id) : E ⊗A Ωn → Ωn+2 ⊗A E .

Proof. For a ∈ A and e ∈ E and writing ∇e = η⊗ f (summation implicit), we have
∇E(e.a) = σE(e⊗ da) + η⊗ f.a and

RE(e.a) = (d⊗ id− id ∧∇E)σE(e⊗ da) + dη⊗ f.a− η ∧ ∇E(f.a)

= (d⊗ id− id ∧∇E)σE(e⊗ da) +RE(e).a− η ∧ σE(f ⊗ da) .

Thus RE is a right module map if and only if

(8) (d⊗ id− id ∧ ∇E)σE(e⊗ da) = (id ∧ σE)(∇Ee⊗ da), ∀e ∈ E, a ∈ A.
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In this case, applying this equation to e.c⊗ da for c ∈ A instead of e⊗ da gives

(d⊗ id− id ∧ ∇E)σE(e.c⊗ da) = (id ∧ σE)(∇E(e.c)⊗ da)

= (id ∧ σE)(∇Ee⊗ c.da) + (id ∧ σE)(σE(e⊗ dc)⊗ da).

Using extendability this is

(d⊗ id− id ∧ ∇E)σE(e⊗ c.da) = (id ∧ σE)(∇Ee⊗ c.da) + σE(e⊗ dc ∧ da),

or for ξ = c.da ∈ Ω1,

(d⊗ id− id ∧ ∇E)σE(e⊗ ξ) = (id ∧ σE)(∇Ee⊗ ξ) + σE(e⊗ dξ).

From this n = 1 case we prove the general equality by induction on n: Suppose that it is
true for n, and consider it for n+ 1. It is enough to check it on products ξ ∧ η, for ξ ∈ Ω1

and η ∈ Ωn,

∇E
[n+1]σE(e⊗ ξ ∧ η) = ∇E

[n+1](∧⊗ id)(id⊗σE)(σE(e⊗ ξ)⊗ η)

= (d ∧ σE − id ∧ ∇E
[n]σE)(σE(e⊗ ξ)⊗ η)(9)

by using extendability. Now by the n = 1 case and more extendability,

(d⊗ id)σE(e⊗ ξ) = (id ∧ ∇E)σE(e⊗ ξ) + (id ∧ σE)(∇Ee⊗ ξ) + σE(e⊗ dξ),

(d ∧ σE)(σE(e⊗ ξ)⊗ η) = (id ∧ σE)((id ∧ ∇E)σE(e⊗ ξ)⊗ η)

+ (id ∧ σE)((id ∧ σE)(∇Ee⊗ ξ)⊗ η) + (id ∧ σE)(σE(e⊗ dξ)⊗ η)
= (id ∧ σE)((id ∧ ∇E)σE(e⊗ ξ)⊗ η) + (id ∧ σE)(∇Ee⊗ ξ ∧ η) + σE(e⊗ dξ ∧ η).

Also the inductive hypothesis for n and more extendability gives

(id ∧ ∇E
[n]σE)(σE(e⊗ ξ)⊗ η)

= (id ∧ ((id ∧ σE)(∇E ⊗ id) + σE(id⊗ d)))(σE(e⊗ ξ)⊗ η)

= (id ∧ id ∧ σE)(id⊗∇E ⊗ id)(σE(e⊗ ξ)⊗ η) + (id ∧ σE)(σE ⊗ id)(e⊗ ξ⊗ dη)

= (id ∧ σE)((id ∧ ∇E)σE(e⊗ ξ)⊗ η) + σE(e⊗ ξ ∧ dη).

Combining these in (9) yields the required result,

∇E
[n+1]σE(e⊗ ξ ∧ η) = (id ∧ σE)(∇Ee⊗ ξ ∧ η) + σE(e⊗ dξ ∧ η)− σE(e⊗ ξ ∧ dη).
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For the converse, the n = 1 case of the equation here implies that RE is a right module
map by condition (8) since d2 = 0. Also in this case

(id ∧RE)σE = (id ∧ ∇E
[1])(id⊗∇E)σE

= (id ∧ ∇E
[1])(d⊗ id)σE − (id ∧ ∇[1])∇E

[1]σE = ∇E
[2]∇E

[1]σE

= ∇E
[2](id ∧ σE)(∇E ⊗ id) +∇E

[2]σE(id⊗ d)

= ∇E
[2](id ∧ σE)(∇E ⊗ id) + (id ∧ σE)(∇E ⊗ d) + σE(id⊗ d)(id⊗ d)

= (d ∧ σE)(∇E ⊗ id)− (id ∧ (id ∧ σE)(∇E ⊗ id))(∇E ⊗ id)

− (id ∧ σE(id⊗ d))(∇E ⊗ id) + (id ∧ σE)(∇E ⊗ d)

= (d ∧ σE)(∇E ⊗ id)− (id ∧ (id ∧ σE)(∇E ⊗ id))(∇E ⊗ id)

= (id ∧ σE)(∇[1]∇E ⊗ id) = (id ∧ σE)(RE ⊗ id).

Expressing the stated condition in diagrammatic form

E Ωn ΩnE

RE

RE

σE

σE

∧ ∧

Ωn+2 Ωn+2E E

=

is the easiest way to extended to other n by induction, a tedious but straightforward
exercise in associativity of wedge products. �

We give a class of examples where extendability of the bimodule connections is automatic
once the curvature is assumed to be a bimodule map. Recall that the maximal prolongation
differential calculus extends a given first order differential calculus to all orders by imposing
quadratic relations which are precisely da ∧ db + dr ∧ ds = 0 ∈ Ω2 for every relation
a.db = dr.s ∈ Ω1 (summation on both sides implicit, for some a, b, r, s ∈ A).

Lemma 5.3. Suppose that A is given the maximal prolongation differential calculus for
some first order differential calculus and that (E,∇E , σE) is a left bimodule connection
whose curvature RE is a right module map. Then (E,∇E , σE) is an extendable bimodule
connection.
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Proof. Suppose that a.db = dr.s ∈ Ω1 (summation implicit, for some a, b, r, s ∈ A). We
also set σE(e⊗ dr) = ξ⊗ f (summation understood) as a shorthand. Then

(id ∧ σE)(σE(e⊗ dr)⊗ ds) = ξ ∧ (∇E(f.s)− (∇Ef).s)

= dξ⊗ f.s− (d⊗ id− id ∧∇E)(ξ⊗ f.s)− ξ ∧ (∇Ef).s

= (d⊗ id− id ∧ ∇E)(ξ⊗ f).s− (d⊗ id− id ∧ ∇E)(ξ⊗ f.s)

= (d⊗ id− id ∧ ∇E)σE(e⊗ dr).s− (d⊗ id− id ∧∇E)σE(e⊗ dr.s)

= (d⊗ id− id ∧ ∇E)σE(e⊗ dr).s− (d⊗ id− id ∧∇E)σE(e.a⊗ db).

If we use the expression for RE(e.a) −RE(e).a from the proof of Lemma 5.2 then

(id ∧ σE)(σE(e⊗ dr)⊗ds)

=(id ∧ σE)(∇Ee⊗ dr.s−∇E(e.a)⊗ db) +RE(er)s−RE(e)rs−RE(eab) +RE(ea)b

=(id ∧ σE)(∇Ee⊗ a.db−∇E(e.a)⊗ db) +RE(er)s−RE(e)rs−RE(eab) +RE(ea)b

=(id ∧ σE)((∇E(e).a −∇E(e.a))⊗ db) +RE(er)s −RE(e)rs −RE(eab) +RE(ea)b

=− (id ∧ σE)(σE(e⊗ da)⊗ db) +RE(er)s−RE(e)rs−RE(eab) +RE(ea)b.

Hence

(id ∧ σE)(σE ⊗ id)(e⊗(da⊗db+ dr⊗ ds)) = RE(er)s−RE(e)rs−RE(eab) +RE(ea)b.

In particular, if RE is a right module map then the LHS vanishes for all e and all a, b, r, s
(sum of such) obeying the condition stated. The relations for the wedge product are given
by da⊗ db + dr⊗ ds whenever a.db = dr.s ∈ Ω1 (summation implicit). Hence if RE is a
right module map, for (id⊗σE)(σE ⊗ id) : E⊗AΩ1⊗AΩ1 → Ω1⊗AΩ1⊗AE then we find

(10) (id⊗σE)(σE ⊗ id)(E ⊗A ker∧) ⊂ ker∧ ⊗A E.

As Ω2 is Ω1⊗AΩ1 quotiented by ker∧, we find that (id⊗σE)(σE ⊗ id) induces a map σE :
E⊗AΩ2 → Ω2⊗AE so we have proven extendability in degree 2. The higher extendability
in the case of the maximal prolongation is then automatic. Thus for Ω3 consider the map

(id⊗ 2 ⊗σE)(id⊗σE ⊗ id)(σE ⊗ id⊗ 2) : E ⊗A Ω1 ⊗A Ω1 ⊗A Ω1 → Ω1 ⊗A Ω1 ⊗A Ω1 ⊗A E

By (10), this sends E⊗A ker∧⊗AΩ1 to ker∧⊗A E⊗AΩ1 and sends E⊗AΩ1⊗A ker∧ to
Ω1⊗AE⊗A ker∧. Then by definition of maximal prolongation there is a well defined map
from E⊗AΩ3 to Ω3⊗AE. Similary for higher degree. �

We can use extendability to give a simple statement about the curvature of a tensor
product:

Lemma 5.4. For a left A-module F and an A-bimodule E, suppose that (E,∇E , σE) is an
extendable bimodule connection whose curvature is a right module map and that (F,∇F ) is
a left connection. Then

RE⊗F = RE ⊗ id + (σE ⊗ id)(id⊗RF ) : E ⊗A F → Ω2 ⊗A E ⊗A F
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Proof. Using Lemma 5.2:

∇E⊗F
[1]∇E⊗F = ∇E⊗F

[1] (∇E ⊗ id + (σE ⊗ id)(id⊗∇F ))

= ∇E
[1]∇E ⊗ id− (id ∧ σE ⊗ id)(∇E ⊗∇F )

+ (∇E
[1] σE ⊗ id)(id⊗∇F )− (id ∧ σE ⊗ id)(σE ⊗∇F )(id⊗∇F )

= ∇E
[1]∇E ⊗ id + (σE ⊗ id)(id⊗ d⊗ id)(id⊗∇F )

− (id ∧ σE ⊗ id)(σE ⊗∇F )(id⊗∇F )

= ∇E
[1]∇E ⊗ id + (σE ⊗ id)(id⊗ d⊗ id)(id⊗∇F )

− (σE ⊗ id)(id⊗(id ∧∇F )∇F )

which gives the required formula �

5.2. Construction of AGA. Consider two A-bimodules with left bimodule connections
(E,∇E , σE) and (F,∇F , σF ), and suppose that φ : E → F is a bimodule map. We know
that ∇∇(φ) : E → Ω1 ⊗A F is a left module map, and we now check the right action:

∇∇(φ)(e.a) = ∇F φ(e.a)− (id⊗φ)∇E(e.a) = ∇F ((φe).a) − (id⊗φ)∇E(e.a)

=(∇Fφe).a− ((id⊗φ)∇Ee).a + σF (φ(e)⊗ da)− (id⊗φ)σE(e⊗ da)

=(∇∇(φ)(e)).a + σF (φe⊗ da)− (id⊗φ)σE(e⊗ da)(11)

for a ∈ A and e ∈ E. So ∇∇(φ) is a bimodule map if and only if (id⊗φ)σE = σF (φ⊗ id). If
we have 0-morphisms being bimodule maps it is reasonable to expect that their derivatives,
the 1-morphisms, should also be bimodule maps. Thus we assume the additional condition
(id⊗φ)σE = σF (φ⊗ id) for 0-morphisms in our construction of a bimodule DG category.
The required generalisation for morphisms ψ : E → Ωn⊗A F of grade n is bimodule maps
obeying the condition

(12) (id ∧ ψ)σE = (−1)n(id ∧ σF )(φ⊗ id) : E ⊗A Ω1 → Ωn+1 ⊗A F

and Lemma 5.6 will say that ∇∇(ψ) is then an n+1-morphism. This gives the morphisms in
our bimodule category AGA. Remembering how important the curvature in the theory is,
it is reasonable to restrict to objects whose curvature is a bimodule map. Also as we wish
to take tensor products, it is reasonable to restrict to extendable bimodule connections
as then we have the result of Lemma 5.4 on the curvature of tensor products. (In fact
the technical result Lemma 5.2 will prove useful in numerous places.) We summarise our
proposed DG category by the following table:

Name Objects Morn((E,∇E , σE), (F,∇F , σF ))

AGA (E,∇E , σE) φ : E → Ωn ⊗A F
extendable left A−A-bimodule connections a bimodule map obeying (12)

with RE a bimodule map
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It is useful to note that by extendability and a use of induction a bimodule map φ
obeying (12) also obeys the following for all n,m ≥ 0:

(id ∧ φ)σE = (−1)nm(id ∧ σF )(φ⊗ id) : E ⊗A Ωm → Ωn+m ⊗A F(13)

Theorem 5.5. If we use the composition and derivative of morphisms as for AG, then

AGA as summarised above is a DG category and the conclusions of Theorem 3.2 hold but
now for AGA.
Proof. We begin by checking that AGA is a category, i.e. that we can compose morphisms.
This is shown using diagramatic notation to check that (12) holds for the composition of
φ ∈ Morn(E,F ) and ψ ∈ Morm(F,G):

=(−1)m =(−1)m+n

E Ω1

φ

ψ

∧

∧

σG

σF
σE

φ
ψ

φ

ψ

Ωn+m+1 G

It is clear that φ ◦ ψ is a bimodule map if φ,ψ are. Lemma 5.2 showed that the curvature
is a morphism and Lemma 5.6 will show that the differential of a morphism is a morphism.
The rest follows just as for AG. �

To conclude the proof of Theorem 5.5 we need the following:

Lemma 5.6. If φ ∈ Morn(E,F ) in AGA, then ∇∇(φ) ∈ Morn+1(E,F ).

Proof. First we check that ∇∇(φ) is a right module map. For all e ∈ E and a ∈ A and
setting φe = ξ⊗ f (summation understood),

∇∇(φ)(e.a) =∇[n]
F (φ(e.a)) − (id ∧ φ)∇E(e.a)

=∇[n]
F (ξ⊗ f.a)− (id ∧ φ)(∇Ee).a− (id ∧ φ)σE(e⊗ da)

= dξ⊗ f.a+ (−1)n ξ ∧ ∇F (f.a)− (id ∧ φ)(∇Ee).a− (id ∧ φ)σE(e⊗ da)

= ∇∇(φ)(e).a + (−1)n ξ ∧ σF (f ⊗ da)− (id ∧ φ)σE(e⊗ da) = ∇∇(φ)(e).a

where the last equality is the assumption (12). Now check that ∇∇(φ) itself obeys the
condition (12) in degree n+ 1. Here

(id ∧ ∇∇(φ))σE = (id ∧ ∇[n]
F φ)σE − (id ∧ φ)(id ∧ ∇E)σE : E ⊗A Ω1 → Ωn+2 ⊗A F.

From the definition of ∇F
[n+1],

∇[n+1]
F (id ∧ φ)σE = (d ∧ φ)σE − (id ∧ ∇[n]

F φ)σE ,
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so using Lemma 5.2,

(id ∧ ∇∇(φ))σE = (d ∧ φ)σE −∇[n+1]
F (id ∧ φ)σE − (id ∧ φ)(id ∧ ∇E)σE

= (id ∧ φ)∇E
[1]σE − (−1)n ∇[n+1]

F (id ∧ σF )(φ⊗ id)

= (id ∧ φ)(id ∧ σE)(∇E ⊗ id) + (id ∧ φ)σE(id⊗ d)− (−1)n ∇[n+1]
F (id ∧ σF )(φ⊗ id)

= (id ∧ (id ∧ φ)σE)(∇E ⊗ id) + (id ∧ φ)σE(id⊗ d)− (−1)n ∇[n+1]
F (id ∧ σF )(φ⊗ id).

Taking some care over the signs and using (13),

(−1)n (id ∧ ∇∇(φ))σE = (id ∧ (id ∧ σF )(φ⊗ id))(∇E ⊗ id)

+ (−1)n (id ∧ σF )(φ⊗ id)(id⊗ d)−∇[n+1]
F (id ∧ σF )(φ⊗ id)

= (id ∧ σF )(id ∧ φ⊗ id)(∇E ⊗ id) + (−1)n (id ∧ σF )(φ⊗ d)

− (d ∧ σF )(φ⊗ id)− (−1)n (id ∧∇[1]
F σF )(φ⊗ id)

= (id ∧ σF )(id ∧ φ⊗ id)(∇E ⊗ id) + (−1)n (id ∧ σF )(φ⊗ d)

− (id ∧ σF )((d⊗ id)φ⊗ id)− (−1)n (id ∧ (id ∧ σF )(∇F ⊗ id))(φ⊗ id)

− (−1)n (id ∧ σF (id⊗ d))(φ⊗ id)

= (id ∧ σF )
(
(id ∧ φ⊗ id)(∇E ⊗ id)− ((d⊗ id)φ⊗ id)− (−1)n (id ∧ ∇F ⊗ id))(φ⊗ id)

)

= − (id ∧ σF )(∇∇(φ)⊗ id) . �

5.3. Monoidal structure on AGA.

Theorem 5.7. There is an associative functor ⊠ from AGA×AGA to AGA, with product of
objects being the usual tensor product of bimodules with bimodule connection. The tensor
product of morphisms φ ∈ Morn(E,G) and ψ ∈ Morm(F,H) in AGA is

φ⊠ ψ = (id ∧ σF ⊗ id)(φ⊗ψ) : E ⊗A F → Ωn+m ⊗A G⊗A H.

There is a signed rule for composition of tensor products:

(φ⊠ κ) ◦ (ψ ⊠ τ) = (−1)|ψ| |κ| (φ ◦ ψ)⊠ (κ ◦ τ).

For the differential of morphisms,

∇∇(φ⊠ ψ) = ∇∇(φ)⊠ ψ + (−1)n φ⊠∇∇(ψ) ,

and for curvatures RE⊗F = RE ⊠ id + id⊠RF .

Proof. First show that given objects (E,∇E , σE) and (F,∇F , σF ) then (E⊗A F,∇E⊗F , σE⊗F )
is also an object. The extendable connection condition for E⊗A F follows fairly immedi-
ately from rearranging the crossings for E⊗A F (on the LHS of the following picture) in
terms of the crossings for E and the crossings for F on the RHS:
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E F Ωn Ω1

=

Next we check the displayed condition in Lemma 5.2 for RE⊗F to be a bimodule map
(with n = 1 there):

∇[1]
E⊗FσE⊗F = (d⊗ id⊗ id)σE⊗F − (id ∧ ∇E⊗F )σE⊗F

= (d⊗ id⊗ id)σE⊗F − (id ∧ ∇E ⊗ id)σE⊗F − (id ∧ σE ⊗ id)(id⊗ id⊗∇F )σE⊗F

= (id ∧ σE ⊗ id)(∇E ⊗ id⊗ id)(id⊗σF ) + (σE ⊗ id)(id⊗ d⊗ id)(id⊗σF )

− ((id ∧ σE)(σE ⊗ id)⊗ id)(id⊗ id⊗∇F )(id⊗σF )

= (id ∧ σE⊗F )(∇E ⊗ id⊗ id) + (σE ⊗ id)(id⊗ d⊗ id)(id⊗σF )

− (σE ⊗ id)(id⊗ id ∧ ∇F )(id⊗σF )
= (id ∧ σE⊗F )(∇E ⊗ id⊗ id) + (σE ⊗ id)(id⊗∇F

[1]σF )

= (id ∧ σE⊗F )(∇E ⊗ id⊗ id) + (σE ⊗ id)(id⊗(id ∧ σF )(∇F ⊗ id))

+ (σE ⊗ id)(id⊗σF (id⊗d))

= (id ∧ σE⊗F )(∇E⊗F ⊗ id) + σE⊗F (id⊗ id⊗ d).

For morphisms the formula for φ⊠ψ shows that it is a bimodule map, and we also check
that it satisfies the σ condition to be a morphism, which is best proved diagramatically:

=(−1)n =(−1)n+m

E F Ω1

Ωn+m+1 G H

φ ψ

At each stage we have used the morphism property for one of φ and ψ, and also associativity
of ∧ product. The diagram for the property used for a single morphism appears at the end
of the proof of Lemma 5.2, in the special case of the curvature (as (−1)2 = 1 the sign does
not appear there).

We also have to check associativity of ⊠ and the signed rule for compatibility with
composition, both of which are routine exercises using the definitions and associativity of
the wedge product (and best done diagrammatically). The more complicated case is the
composition of tensor products, which is represented by the following diagram, where we
use (13) and extendability:
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= (−1)|ψ| |κ|

φ φκ κ

ψ τ

ψ τ

∧

∧

∧

∧
∧

∧

Now we verify the formula for the derivative of a tensor product of morphisms: Suppose

AGA, for φ ∈ Morn(E,G) and ψ ∈ Morm(F,H), Then

∇G⊗H
[n+m] ◦ (φ⊠ ψ) = (d ∧ σG⊗ id)(φ⊗ψ) + (−1)n (id ∧ ∇G

[m]σG⊗ id)(φ⊗ψ)

+ (−1)n+m (id ∧ σG⊗ id)(φ⊗(id ∧ ∇H)ψ)

= (d ∧ σG⊗ id)(φ⊗ψ) + (−1)n (id ∧ (id ∧ σG)(∇G⊗ id)⊗ id)(φ⊗ψ)

+ (−1)n (id ∧ σG(id⊗ d)⊗ id)(φ⊗ψ)

+ (−1)n+m (id ∧ σG⊗ id)(φ⊗(id ∧ ∇H)ψ)

= (id ∧ σG⊗ id)(∇G
[n]φ⊗ψ + (−1)n φ⊗∇H

[m]ψ),

while
(
id ∧ (φ⊠ ψ)

)
∇E⊗F =

(
id ∧ (φ⊠ ψ)

)
(∇E ⊗ id) +

(
id ∧ (φ⊠ ψ)

)
(σE ⊗ id)(id⊗∇F )

= (id ∧ σG⊗ id)((id ∧ φ)∇E ⊗ψ) +
(
id ∧ (id ∧ σG⊗ id)(φ⊗ψ)

)
(σE ⊗ id)(id⊗∇F )

= (id ∧ σG⊗ id)((id ∧ φ)∇E ⊗ψ) + (−1)n (id ∧ σG⊗ id)(φ⊗(id ∧ ψ)∇F ).

Subtracting these gives ∇∇(φ⊠ ψ). �
We give three applications of this machinery. The first application is find another of

the symmetries of the Riemann curvature, this time involving a metric, written as g ∈
Ω1⊗AΩ1.

Corollary 5.8. Suppose that (Ω1,∇Ω1 , σΩ1) ∈ AGA and that g ∈ Ω1 ⊗AΩ1 is preserved in
the sense ∇Ω1 ⊗Ω1g = 0. Then

(RΩ1 ⊗ id + (σΩ1 ⊗ id)(id⊗RΩ1))g = 0.

(Riemann antisymmetry identity.)

Proof. Here ∇Ω1 ⊗Ω1g = 0 is equivalent to ∇∇(g) = 0 when g is viewed as a morphism in AG.
This in turn implies ∇∇(∇∇(g)) = 0 which is equivalent to RΩ1 ⊗Ω1g = 0 by Theorem 3.2.
Since (Ω1,∇Ω1 , σΩ1) ∈ AGA we can now use Theorem 5.7 to write RΩ1 ⊗Ω1 = RΩ1 ⊠ id +
id⊠RΩ1 which gives the answer. �

To find the classical identity corresponding to this we use

RΩ1(dxi) = −1
2 R

i
knm dxn ∧ dxm⊗ dxk.
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and then

RΩ1 ⊗Ω1(gij dx
i⊗ dxj) = −1

2 Riknm dxn∧dxm⊗ dxk⊗ dxi− 1
2 Riknm dxn∧dxm⊗ dxi⊗ dxk

so we get the classical symmetry Rabcd = −Rbacd of the Riemann curvature of the Levi-
Civita connection.

We now turn to a second application, which utilises the centre ZA(E) of a bimodule E,
whose elements commute with every a ∈ A.

Proposition 5.9. Let A be an algebra with exterior algebra Ω and (L,∇L, σL) an extend-

able bimodule connection on a line module. There is an algebra map Φ̂L : ZA(Ω) → ZA(Ω)

defined by Φ̂L(ξ)⊗ e = σL(e⊗ ξ) and if RL is a bimodule map (so (L,∇L, σL) ∈ AGA) then
there is a unique ωL ∈ ZA(Ω2) such that RL(e) = ωL⊗ e. If (M,∇M , σM ) is another such

line module then so is their tensor product and ωL⊗AM is given by ωL + Φ̂L(ωM ).

Proof. Here Φ̂L extends the (inverse of) the Fröhlich map to higher degree. If ξ ∈ ZA(Ω
n)

then the map e 7→ σL(e⊗ ξ) is a right module map from L to Ωn⊗A L, so by Lemma 2.2 it

is given by e 7→ Φ̂L(ξ)⊗ e for some Φ̂L(ξ). Uniqueness also tells us that Φ̂L⊗AM = Φ̂L◦Φ̂M .
Now suppose that RL is a bimodule map. The existence and uniqueness of ωL ∈ Ω2 follows
from applying Lemma 2.2 in the right A-module map case to RL. Taking this form of RL
and knowing that it is a left module map tells us that ωL is central. For the curvature of
the tensor product we use Theorem 5.7 and our observation about Φ̂L⊗M . �

Recall that in classical electromagnetism the curvature is often simply quoted as a 2-
form rather than an operator. The above generalise this to line modules with connection in

AGA, giving the curvature as a 2-form ωL. A third application is to take traces of operators
on objects E ∈ AGA equipped with a quantum metric. We are interested particularly in
the ‘trace’ of powers of the curvature.

Corollary 5.10. Let E ∈ AGA and suppose that g : A → E⊗AE and its inverse ( , ) :
E⊗AE → A are morphisms in AGA and that ∇∇(g) = 0. Then we have an element of de
Rham cohomology

[(id⊗(, ))(RE
n⊗ id)g(1)] ∈ H2n

dR(A).

Proof. In fact we only need to know that g is a bimodule map and ∇∇(g) = 0 to know that
it is a morphism. Here ∇∇(g) = 0 is equivalent to ∇E⊗E(g) = 0 for the corresponding
g ∈ E⊗AE. From the equation (( , )⊗ id)(id⊗ g) = id : E → E we deduce

(∇∇((, )) ⊠ id) ◦ (id ⊠ g) + (( , )⊠ id) ◦ (id⊠∇∇(g)) = ∇∇(id) = 0

so ∇∇((, )) = 0 also holds. Now by Theorem 3.2 and Theorem 5.7, for all n ≥ 0

∇∇((id⊗(, ))(RE
n⊗ id)g) = 0

which implies the result. �
In the n = 0 case we call this trace the ‘metric dimension’ dimE = ( , )(g) of E since

classically the metric dimension will just recover the fibre dimension. For example, if
Ω1 ∈ AGA and ∇Ω1 is metric compatible as in Corollary 5.8 then the above implies that
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the quantum dimension is in the kernel of d and hence constant if the differential calculus is
connected. In the case of the line module L with connection in Proposition 5.9 preserving
a metric as just discussed we get the class of ωL

n times the metric dimension in H2n
dR(A).

6. Examples

We collect some examples at the end of the paper in order not to distract from the general
results. Since our results are very general there are plenty more examples, although for the
Chern theory we have the same limitations as in cyclic cohomology due to the lack of cycles
of the relevant dimension (eg for the q-sphere we would need twisted cycles as in [17] which
requires more analysis for our results). We also discover that in some noncommutative
models, extendability is linked to zero curvature.

6.1. Connections on Ω1(S3). Finite groups G provide nice examples where the differen-
tials are noncommutative even though coordinate algebra A = k(G) is commutative. A
bicovariant calculus here is fixed by C ⊆ G \ {e} stable under conjugation and has left
invariant basis elements ea for a ∈ C and relations and exterior derivative

ea.f = Ra(f)ea, df =
∑

a∈C
(Ra(f)− f)ea

where f ∈ k(G) and Ra(f)(x) = f(xa). The canonical ‘Woronowicz construction’[27] exte-
rior algebra in this case is defined via the crossed module braiding Ψ(ea⊗ eb) = eaba−1 ⊗ ea
and in degree 2 consists in setting ker(id − Ψ) to zero. The above is immediate from a
general theory of Hopf algebras in [27], while a recent nontrivial result [22] is that the
noncommutative de Rham cohomology for the calculus is H1(G) = kθ with θ =

∑
a ea,

when k has characteristic zero and C as a quandle is ‘locally skew’ (a concept that includes
all Weyl groups of complex semisimple Lie algebras with C given by reflections). We refer
to [22] for details. We use this setting to illustrate our above results on G = S3, the per-
mutation group of 3 objects, and C = {u, v, w} the set of 2-cycles (or transpositions) in S3
where u2 = v2 = e and w = uvu = vuv. The quantum metric here is the Euclidean one
g = eu⊗ eu + ev ⊗ ev + ew ⊗ ew.

(i) Then the canonical exterior algebra Ω(S3) in for this calculus is well-known to have
relations

eu ∧ ev + ev ∧ ew + ew ∧ eu = 0, ev ∧ eu + eu ∧ ew + ew ∧ ev = 0, e2u = e2v = e2w = 0

deu + ev ∧ ew + ew ∧ ev = 0, dev + ew ∧ eu + eu ∧ ew = 0, dew + eu ∧ ev + ev ∧ eu = 0

which imply dimensions 1 : 3 : 4 : 3 : 1 and in particular a unique up to scale ‘top form’

Vol = eu ∧ ev ∧ eu ∧ ew = ev ∧ eu ∧ ev ∧ ew = −ew ∧ eu ∧ ev ∧ eu = −ew ∧ ev ∧ eu ∧ ev
and equal to the two cyclic permutations u→ v → w → u.

We now observe that this exterior algebra has a well-defined 4-cycle defined by
∫
(fVol) =∫

f =
∑

g∈S3
f(g). First, from the above versions of Vol we see that swapping eu ∧ ev ∧ eu

with ew gives a minus sign and similarly for other identities for (6) for ω, ρ 1- and 3-forms
with constant coefficients. Here eu∧ ev ∧ ew = ew ∧ ev ∧ eu = −ew ∧ eu∧ ew = −eu∧ ew ∧ eu
and its two cyclic permutations are a convenient basis of 3-forms. Similarly in degree 2 we
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have basis eu ∧ ev , ev ∧ eu, ev ∧ ew, ew ∧ ev and these mutually commute so that (6) holds
on basic 2-forms as well. Also note that Vol is zero unless the total degree given by the
product of the basis labels is e as it is known that Vol here is central (these basic facts
were used recently in [21]). Then for the general case (where we sum over labels belonging
to our declared bases)

∫
(ω ∧ ρ) =

∫
ωaea ∧ ρbcdeb ∧ ec ∧ ed =

∫
ωaRa(ρbcd)ea ∧ eb ∧ ec ∧ ed

= −
∫
Rbcd(ωa)ρbcdeb ∧ ec ∧ ed ∧ ea = −

∫
ρbcdeb ∧ ec ∧ ed ∧ ωaea = −

∫
ρ ∧ η

for degrees 1,3 (and similarly for degrees 3,1), and
∫

(ω ∧ ρ) =
∫
ωabea ∧ eb ∧ ρcdec ∧ ed =

∫
ωabRab(ρcd)ea ∧ eb ∧ ec ∧ ed

=

∫
Rcd(ωab)ρcdec ∧ ed ∧ ea ∧ eb =

∫
ρcdec ∧ ed ∧ ωabea ∧ eb =

∫
ρ ∧ η

for degree 2,2. We used of course that
∑

over S3 is translation invariant. We have∫
dω =

∫
[θ, ω} = 0 (where we use the graded-commutator) since the calculus is inner by

θ = eu + ev + ew.
(ii) Next we look at connections on Ω1. We focus on left-invariant connections, which

means of the form
∇Ω1ea = −

∑

b,c∈C
Γabc eb⊗ ec

where Γabc ∈ k. For simplicity, we further restrict to the case where ∇Ω1 is also right-

invariant, which reduces to Γgag
−1

gbg−1,gcg−1 = Γab,c for all a, b, c ∈ C and g ∈ G in the case
of general group. In our case, as conjugation induces all possible permutations of the set
C, we deduce that there are only 5 possible different values of the Christoffel symbols Γabc,
namely of the form Γxxx, Γ

x
yz, Γ

x
yx, Γ

x
xy and Γyxx (where x, y, z are all different). We

set

Γxxx = a− 1, Γxyz = c, Γxyx = d− 1, Γxxy = e, Γyxx = b(14)

with parameters a, b, c, d, e ∈ k (these should not be confused with generic elements of C
which we won’t need at this point) and since we use computer algebra we assume k has
characteristic zero. The curvature in our context is

RΩ1(ea) = −
(
Γabcdeb + ΓabsΓ

s
rceb ∧ er

)
⊗ ec.

which in terms of the parameters works out as the curvature given by the following (and
permutations of this),

RΩ1(eu) = ew ∧ eu⊗
(
(−b2 − ad+ d2 + ce)eu + (d− c)(b− e)ev + (b2 + ac− c2 − de)ew

)

+ eu ∧ ev ⊗
(
(bc− ad+ d2 − e2)eu + (−ab+ bd+ cd− ae− be+ ce)ev + (b− e)(b+ d+ e)ew

)

+ eu ∧ ew ⊗
(
(bc− ad+ d2 − e2)eu + (b− e)(b+ d+ e)ev + (−ab+ bd+ cd− ae− be+ ce)ew

)

+ ev ∧ eu⊗
(
(−b2 − ad+ d2 + ce)eu + (b2 + ac− c2 − de)ev + (d− c)(b− e)ew

)
.
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Using the relations and monomial equalities in (i) one can check that the first Bianchi
identity holds in the form

∧RΩ1(eu) = 0

and similarly for ev, ew as it must in the absence of torsion by Lemma 2.1. The 2nd Bianchi
identity

(d⊗ id + id ∧ ∇Ω1)RΩ1 = (id ∧RΩ1)∇Ω1

in Theorem 3.2 must also hold and can be verified. A short compatutation gives

(id⊗( , ))(RΩ1 ⊗ id)g = TrRΩ1 = 0

where the metric trace and usual trace coincide because of the trivial Euclidean form of
the metric. The same is true for the trace of RΩ1

2 but we check it in the following more
manageable case.

(iii) Geometrically speaking, we are interested in ad-invariant connections that are tor-
sion free, which is c− 1 = e = d− 1, and cotorsion-free, which is c− 1 = b = d− 1. These
are as close as one can come to ‘Levi-Civita’ in this example with respect to the Euclidean
metric g =

∑
a ea⊗ ea. There is a two-parameter moduli space of such connections and we

write the parameters as λ = c− a− 2 and µ = −c. Then one can compute that

RΩ1(eu) = − deu⊗ eu − dev ⊗ ew − dew ⊗ ev

− (3 + λ)
(
µ deu⊗ eu + (2(1 + µ)eu ∧ ev − µev ∧ eu)⊗ ev

)

− (3 + λ)
(
2(1 + µ)eu ∧ ew − µew ∧ eu)⊗ ew

)

with the same under eu → ev → ew → eu. We write the curvature in the shorthand form

RΩ1(eu) = α(ev ∧ew+ew∧ev)⊗ eu+(βeu∧ev+γev∧eu)⊗ ev+(βeu∧ew+γew∧eu)⊗ ew)

for coefficients α = (3 + λ)µ + 1, β = −1 − 2(3 + λ)(1 + µ), γ = (3 + λ)µ − 1 and the
same under u → v → w → u. Then trace of RΩ1

2 is given by the ⊗ ea coefficient of
RΩ1

2(ea) = (∧⊗ id)(id⊗RΩ1)RΩ1(ea), summed over a = u, v, w. Here

RΩ1
2(eu)|⊗ eu =α2(ev ∧ ew + ew ∧ ev)2 + (βeu ∧ ev + γev ∧ eu) ∧ (βev ∧ eu + γeu ∧ ev)

+ (βeu ∧ ew + γew ∧ eu) ∧ (βew ∧ eu + γeu ∧ ew)
where in the first term we apply RΩ1 to the ⊗ eu term of RΩ1(eu), for second term we
apply it to the ⊗ ev term of RΩ1(eu) and for third term we apply it to the ⊗ ew terms of
RΩ1(eu), and in all cases we pick off the ⊗ eu term of this second application of RΩ1 . Now
using the relations of the exterior algebra we obtain

RΩ1
2(eu)|⊗ eu = α2((ev∧ew)2+(ew∧ev)2)+βγ((eu∧ev)2+(ev∧eu)2+(eu∧ew)2+(ew∧eu)2) = 0

since all of these squares vanish using the commutation relations (for example, eu∧ev∧eu∧
ev = −eu ∧ (eu ∧ ew + ew ∧ ev)∧ ev = 0). Similarly for the ev, ew terms of the trace. Hence∫
TrRΩ1

2 = 0, at least for this class of connections, as each term in the trace vanishes.
Here integration just sums over the group but all our coefficients are constant so this just
multiplies by the order of the group.
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(iv) We next ask when (Ω1,∇Ω1) is an objects of AGA for A = C(S3) with the same
calculus. From the bimodule commutation relations we have

(
Γabcdeb + ΓabsΓ

s
rceb ∧ er

)
f = Rac−1(f)

(
Γabcdeb + ΓabsΓ

s
rceb ∧ er

)

for any f and the ⊗ ec component of RΩ1(ea) for a connection in setting above. In view of
this, a calculation for our full 5-parameter moduli space of bicovariant connections gives
the following conditions on the parameters for the curvature being a right- and hence
bi-module map:

(1) b = c = d = e = 0,
(2) a = −b(b+ c)/c, c 6= 0, d = c, e = −b− c,
(3) d = a, e = c = b,
(4) a = c, e = d = b,
(5) a = b+ c− b2/c, c 6= 0, d = c, e = b.

of which one can check using the formula for R∇ in part (ii) that (1)-(4) are just the cases
of zero curvature and the only possibly nonzero case of the curvature a bimodule map is
(5), where

R∇(eu) =
(c− e)2(c+ 2e)

c
(eu ∧ ev ⊗ ev + eu ∧ ew ∧ eu).

Here e = c,−c/2 fall back to an instance of cases (4),(2) respectively.
Moreover, it is known [4] that all left connections on Ω1 as in (ii) are bimodule ones and

using the tensor product basis {eI} in the lexicographical order eu⊗ eu, eu⊗ ev , eu⊗ ew,
ev ⊗ eu to ew ⊗ ew that

σ =




a 0 0 0 b 0 0 0 b

0 e 0 0 0 c d 0 0

0 0 e d 0 0 0 c 0

0 0 c e 0 0 0 d 0

b 0 0 0 a 0 0 0 b

0 d 0 0 0 e c 0 0

0 c 0 0 0 d e 0 0

0 0 d c 0 0 0 e 0

b 0 0 0 b 0 0 0 a




where σΩ1(eI) =
∑

J σI
JeJ and {σI J} is the matrix as shown (for example σΩ1(eu⊗ ev) =

e eu⊗ ev + c ev ⊗ ew + d ew ⊗ eu according to the second row).
We also ask which of our 5-parameter moduli of connections is extendable. Here the

extended σΩ1 : Ω1⊗AΩ2 → Ω2 ⊗A Ω1, if it exists, must obey

σΩ1(ω⊗ η ∧ ζ) = (∧⊗ id)(id⊗σΩ1)(σΩ1 ⊗ id)(ω⊗ η⊗ ζ)

and if so then it further extends to higher forms to give an extendable bimodule connection
in the sense of Definition 5.1 since the relations of the exterior algebra in the present
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example are quadratic. We ask when this is well defined. For example

0 = σΩ1(eu⊗ eu ∧ eu) = (∧⊗ id)(id⊗σΩ1)(aeu⊗ eu + bev ⊗ ev + bew ⊗ ew)⊗ eu)

= aeu ∧ (bev ⊗ ev + bew ⊗ ew) + bev ∧ (ceu⊗ ew + dew ⊗ ev) + bew ∧ (ceu⊗ ev + dev ⊗ ew)
which given the quadratic relations of the algebra requires ba = bd = bc. Similarly 0 =
σΩ1(eu⊗ ev ∧ ev) gives us ea = ed = ec and cd = eb. Proceeding in the same way,
σΩ1(eu⊗( )) applied to the two 3-term relations give us

e2 + ad+ ec = b2 + ad+ bc = d2 + bc+ ce, e2 + ac+ ed = b2 + ac+ bd = c2 + bd+ de

Taken together, these nine equations have six 1-parameter moduli of solutions as follows:
(1) b = c = d = e = 0
(2) a = c = d, b = q−1a, e = qa where q is any cube root of 1 (three cases)
(3) a = d, b = c = e = 0
(4) a = c, b = d = e = 0.

We have done this by hand but a general approach is to ask which σΩ1 obey the mixed
braid relation

(id⊗σΩ1)(σΩ1 ⊗ id)(id⊗Ψ) = (Ψ⊗ id)(id⊗σΩ1)(σΩ1 ⊗ id),(15)

where Ψ(eu⊗ ev) = ew ⊗ eu etc. is the crossed-module braiding that defines the calculus
quadratic relations in our case. Such σΩ1 extend to the standard exterior algebra at least
to degree 2 where the relations are given by ker(id−Ψ). In the present example, we obtain
all extendable σΩ1 , i.e. the same moduli (1)-(4) as found directly. On the other hand, one
can easily see that these cases are all instances of the corresponding moduli of RΩ1 = 0
connections already computed:

Lemma 6.1. All six 1-parameter moduli of ad-invariant extendable connections make Ω1

a flat object of C(S3)GC(S3).

Exactly two points among all six moduli are cotorsion-free, namely

a = c = d = b+ 1 =
1

1− q−1
, e = qd

where q 6= 1 is a cube root of unity, but neither of these is torsion-free. Exactly two points
among all six moduli are torsion free, namely

a = c = d = e+ 1 =
1

1− q
, b = q−1d

where q 6= 1 is a cube root of unity, but neither of these is cotorsion-free.
(iv) We can also ask about full metric compatibility. For the full 5-parameter moduli of

connections, the equations of ∇Ω1 ⊗Ω1g = 0 of metric compatibility come down to

a2 + 2be = 1 , bc+ ed+ cd = 0 , be+ c2 + d2 = 1 , ab+ ae+ be = 0 , ec+ bd+ cd = 0.

This has a discrete moduli of solutions as follows.

(a): a = ±1, b = d = e = 0, c = ǫa where ǫ = ±1.

(b): a = ±1, b = c = e = 0, d = ǫa where ǫ = ±1.
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(c): a = c = d = ±1/
√
3, b = q−1a, e = qa where q 6= 1 is a cube root of 1.

(d): a = ± i, b = za, c = d = 0, e = −z−1a where z2 − z − 1 = 0 (for the golden ratio).

(e): a = ±1/3, b = e = −2a, c = xa, d = 2xa
x−2 where (x− 1)(x+ 2)(x2 − 5x+ 10) = 0.

None of these are torsion free, so there are no strict quantum Levi-Civita connections
as fore-warned already in part (ii).

We also see that the metric preserving bimodule connections which are extendable are
the four cases (a),(b) both with ǫ = 1, and (c) with the two values of q. These are flat as
we know from the above. The other curvatures are respectively,

(a) ǫ = −1 : RΩ1(eu) = −2(ew ∧ eu⊗ ew + ev ∧ eu⊗ ev)
(b) ǫ = −1 : RΩ1(eu) = −2(ev ∧ ew + ew ∧ eu)⊗ eu

(d) RΩ1(eu) = z2 (ew ∧ eu⊗(eu − ew) + ev ∧ eu⊗(eu − ev))

+
1

z2
eu ∧

(
ev ⊗(eu + (1− z4)ew) + ew ⊗ eu + (1− z4)ev

)

(e) RΩ1(eu) =
(x− 4)(x − 1)(x+ 2)

9(x− 2)2(
2(ev ∧ ew + ew ∧ ev)⊗ eu + (2− x)(ew ∧ eu⊗ ew + ev ∧ eu⊗ ev)

)
.

6.2. Bicrossproduct model quantum spacetime revisited. Here we look at the 2D
noncommutative model with curvature found in [5] for the quantum spacetime A with
differential algebra

[r, t] = λr, [r,dt] = λdr, [t,dt] = λdt, [r,dr] = 0 = [t,dr]

with dt,dr anticommuting, which admits a unique form of central quantum metric

g = ((1 + bλ2)dr − λbv)⊗ dr + bv⊗ v, v = rdt− tdr.

Here dr, v are central and dr∧ v+ v ∧ dr = 0, (dr)2 = 0 but v2 = λVol, where Vol = v ∧ dr
is of top degree. It is already known [5] that there are two moduli of ∗-preserving metric
compatible bimodule connections for this model when b is real and λ imaginary, namely
a line and a conic, with a unique torsion free ‘quantum Levi-Civita connection’ in each
component. Only one of these, on the conic, has a classical limit as λ → 0 so there is a
unique quantum Levi-Civita connection with classical limit.

(i) Here we will look at bimodule connections more generally but still of the homogeneous
form studied in [5], where

∇Ω1dr =
1

r
(αv⊗ v + βv⊗ dr + γdr⊗ v + δdr⊗ dr)

∇Ω1v =
1

r
(α′v⊗ v + β′v⊗ dr + γ′dr⊗ v + δ′dr⊗ dr)

for constants α, · · · , δ, α′, · · · , δ′. These have braiding σΩ1(dr⊗ dr) = dr⊗ dr, σΩ1(v⊗ dr) =
dr⊗ v and

σΩ1(dr⊗ v) = λαv⊗ v + (1 + λβ)v⊗ dr + λγdr⊗ v + λδdr⊗dr
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σΩ1(v⊗ v) = (1 + λα′)v⊗ v + λβ′v⊗ dr + λγ′dr⊗ v + λδ′dr⊗ dr,

torsion [5]

T (dr) =
1

r
(λα+ β − γ)Vol, T (v) =

1

r
(λα′ + β′ − γ′ + 2)Vol)

and curvature of the form

RΩ1(dr) = − 1

r2
Vol⊗(c1v + c2dr), RΩ1(v) = − 1

r2
Vol⊗(c3v + c4dr)

for some constant coefficients ci given explicitly in [5] in terms of our eight parameters. Both
the torsion and curvature are bimodule maps. The Bianchi identities are also automatic
as Ω3 = 0. The quantum dimension from[5] and now the quantum metric trace of the
curvature using

(RΩ1 ⊗ id)(g) = −(1 + bλ2)

r2
Vol⊗(c1v + c2dr)⊗ dr − b

r2
Vol⊗(c3v + c4dr)⊗(v − λdr)

are

dimΩ1 =
2 + bλ2

1 + bλ2
, (id⊗( , ))(RΩ1 ⊗ id)(g) = − 1

r2
Vol

(
λc1 + c2 +

c3 − λc4
1 + bλ2

)

which deforms the usual trace. Note that in general in Section 3 we combined a usual trace
and a cycle to give a well defined Tr∫ when taken together. The metric trace, by contrast,

is always well-defined but in general will depend on the metric in the noncommutative case.
(ii) We check when we have an extendable connection. In fact the result is surprising:

Lemma 6.2. Bimodule connections of the above homogeneous form are extendable if and
only they are flat. In this case

σΩ1(dr⊗Vol) = Vol⊗((1 + λβ)dr + λαv), σΩ1(v⊗Vol) = Vol⊗(λβ′dr + (1 + λα′)v).

Proof. We set

σΩ1(dr⊗ v ∧ dr) = (∧⊗ id)(id⊗σΩ1)(σΩ1 ⊗ id)(dr⊗ v⊗ dr)

etc, and find the values stated, while σΩ1(( )⊗(dr)2) = 0, σΩ1(( )⊗(dr)∧v) = −σΩ1(( )⊗Vol)
when computed in the same way. The only extendability constraints then come from
σΩ1(( )⊗ v2) = λσΩ1(( )⊗Vol) which gives 4 equations

(β − α′)γ + α(1 − δ + γ′ + λα′ + λβ) = 0, β + αδ′ − γβ′ + λβ2 + λαβ′ = 0

α′ − αδ′ + γβ′ + λα′2 + λαβ′ = 0, (α′ − β)δ′ + β′(1 + δ − γ′ + λα′ + λβ) = 0

for extendability. Remarkably, the four expressions here being set to zero are exactly the
coefficients c1, c2, c3, c4 for the curvature listed in [5]. �

Using Mathematica, we find two 4-parameter moduli of bimodule connections of the
homogeneous form that are flat/extendable and non-singular in the classical limit:

(1) We take α, β, γ, δ as the parameters and

α′ = −β, β′ = −β
2

α
, γ′ = δ − 1− 2βγ

α
, δ′ = −β(α+ βγ)

α2
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(2) We take γ, γ′, δ, δ′ as the parameters and α = α′ = β = β′ = 0.
So these are all the connections of our restricted form that make (Ω1,∇Ω1 , σΩ1) objects

of AGA and are non-singular as λ→ 0, and all necessarily flat.
(iii) Next we ask which of our two 4-parameter moduli of nonsingular extendable connect-

ions in (ii) are metric compatible. In fact the family (1) have no intersection with metric
compatibility for generic or nonsingular b. The family (2) has a 1-parameter sub-family of
metric-compatible connections, namely α = α′ = β = β′ = 0 and

γ′ = −δ = γ λ

2
, δ′ = − γ(1 + b λ2)

b

where we take γ to be the free variable. Their torsion is always nonzero,

T (dr) = −γ r−1Vol , T (v) = 2 r−1Vol

and the only ∗-preserving connection in this 1-parameter family is the one with γ = 0.
This unique point has ∇Ω1(dr) = ∇Ω1(v) = 0 and hence exactly quantises the flat metric-
compatible Poisson-compatible connection which underlies the quantisation of the differ-
ential calculus and metric in Poisson-Riemannian geometry[6]. This is the quantum con-
nection ∇Q constructed in the latter paper at semiclassical order. In particular, the unique
∗-preserving non-singular quantum Levi-Civita connection in [5] cannot be extendable by
our above analysis as it is not flat.

(iii) As is often the case in noncommutative geometry, one may need something weaker
than metric compatibility, namely cotorsion-free, and in our case extendable connections.
Here of type (1) we have two cases

(1a) : γ = −α
(
2αbλ2 + α+ βbλ+ b

)

b(αλ+ β)
, δ = −α

(
2βbλ2 + β + 2bλ

)
+ βb(βλ + 3)

b(αλ+ β)

where α, β are the parameters, and

(1b) : β = −αλ, δ =
α

b

(
1 + bλ2

)
− γλ− 1

where α, γ are the parameters. Of type (2) we have another two-parameter family, namely
α = α′ = β = β′ = 0 and

γ′ = γλ− 2, δ′ = (δ + 2)λ

where γ, δ are the parameters. Thus, we have three 2-parameter moduli of extendable
cotorsion free connections, all of them necessarily flat.

If we now also impose torsion-free then we have a unique torsion free cotorsion-free or
‘weak quantum Levi-Civita’ extendable connection of type (1b) with

α =
4b

1 + bλ2
, γ = 0.

In the classical limit this gives us a natural connection

∇dr =
1

r
(4bv⊗ v + 3dr⊗dr), ∇v =

2

r
dr⊗ v
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on our curved manifold which is torsion free and weakly metric compatible in the sense
(∧⊗ id)∇g = 0. Unlike the Levi-Civita connection, this one is extendable on quantisation.

6.3. Extended connections on the q-sphere. We study A = Cq[S2] the standard q-
sphere appearing in the base of the q-Hopf fibration cf[10, 20] as the degree 0 component
of Cq[SL2] for a Z-grading corresponding to a diagonal coaction of C[t, t−1]. Here the
standard quantum group generators a, c have grade 1 and b, d grade -1 while the q-sphere
generators are z = cd = q−1dc, z∗ = −qab = −ba, x = −q−1bc with the inherited relations

zz∗ = q2x(1− q2x), z∗z = x(1− x), zx = q2xz, z∗x = q−1xz∗.

The quantum principal bundle here has associated quantum vector bundles or projective
modules En for each integer n realised as the grade −n component of Cq[SL2]. These
are each bimodules by multiplication in the quantum group and have an induced charge n
q-monopole connection ∇En with curvature REn(e) = q3[n]q2Vol⊗ e, see [20, 18], where we

used [n]q2 = (1− q2n)/(1− q2). This is a bimodule map as Vol is central. It is also possible
to show that ∇En is a bimodule connection. This was already explained for charge ±1 in
[7] in our geometric realisation of the q-Dirac operator but the same argument applies also
for all n. Then Lemma 5.3 tells us that ∇En is extendable with

σEn(f ⊗Vol) = q2nVol⊗ f

for f ∈ En. In this way (En,∇En , σEn) are objects of Cq[S2]GCq[S2]. Clearly the curvature

2-form according to Proposition 5.9 is ωEn = q3[n]q2Vol.
To give details of the braiding we will focus on E1 = Cq[SL2]−1 with module genera-

tors b, d and the Grassmann connection for a standard choice of projector matrix, which
equivalently constructs the q-monopole. This can be written as cf. [18],

∇E1f = d(fa)⊗ d− q−1d(fc)⊗ b

for all f ∈ E1. This is a bimodule connection with

σE1(b⊗ dz) = ∇E1(bz) − (∇E1b)z = d(bza)⊗ d− q−1d(bzc)⊗ b− d(ba)⊗ dz + q−1d(bc)⊗ bz

= d(cdab)⊗ d− d(bcz)⊗ b− q (d(ba))z⊗ d+ q−2(d(bc))z⊗ b

= − q−1d(zz∗)⊗ d+ q d(xz)⊗ b+ q (dz∗)z⊗ d− q−1(dx)z⊗ b

= (q d(xz)− q−1(dx)z)⊗ b+ (q (dz∗)z − q−1d(zz∗))⊗ d

=qxdz⊗ b+ q((q2 − 1)xdx− z∗dz)⊗ d

where we move z from the right using the commutation relations in Cq[SL2] and through
⊗A. We then identify resulting expressions in terms of the q-sphere generators, use the
module relations

(x− 1)b = z∗d, zb = −q2xd
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and the q-sphere relations for the final form. In the same way one can find

σE1(b⊗ dz∗) = −qd(z∗)2 ⊗ d+ q((dz∗)(q2x− 1) + q−2d(xz∗)− (dx)z∗)⊗ b

= q(xdz∗ − (q2 − 1)z∗dx)⊗ b− qz∗dz∗ ⊗ d

σE1(b⊗ dx) = xdx⊗ b− q2z∗dx⊗ d.
These σE1 are necessarily compatible with the sphere projector relation

qz∗dz + q−1zdz∗ + q2((2)qx− q−1)dx = 0

where (2)q = q+ q−1, which is a nice check of the formulae using the holomorphic calculus
in [20]. This gives us the charge 1 q-monopole more explicitly as an object of Cq[S2]GCq[S2].

The curvature 2-form according to Proposition 5.9 comes out as ωE1 = q3Vol.
We also conclude that Ω1∼=E2 ⊕ E−2 from [20] together with the induced connection is

an object of Cq[S2]GCq[S2]. This connection ∇Ω1 is torsion-free and metric-compatible or
‘quantum Levi-Civita’ for the metric

g = qdz∗⊗ dz + q−1dz⊗ dz∗ + q2(2)qdx⊗dx

as essentially shown in [20]. That work did not consider ∇Ω1 as a bimodule connection
and hence only showed the weaker cotorsion freeness, but it is a bimodule connection and
full metric compatibility can be checked after constructing the braiding σ by the method
in [7]. We can therefore apply Corollary 5.8 and Corollary 5.10. Here[20]

RΩ1(∂f) = q4(2)qVol⊗ ∂f, RΩ1(∂̄f) = −(2)qVol⊗ ∂̄f

for f ∈ Cq[S2] so that

(RΩ1 ⊗ id + (σΩ1 ⊗ id)(id⊗RΩ1))g = 0

as one can also see directly given that g has only mixed terms in the decomposition into
holomorphic and holomorphic parts. For example, if the first tensor factor of a part of g is
holomorphic, we have q4(2)q from the first term. RΩ1 in the second term is −(2)q and σΩ1

acting on the holomorphic factor ⊗Vol gives q4 as this part is in E2. This illustrates the
antisymmetry of the Riemann tensor in Corollary 5.8. There are no non-trivial Bianchi
identities to illustrate here as Ω3 = 0.

For the metric traces in Corollary 5.10, we find similarly find

dimΩ1 = (2)q2 , (id⊗( , ))(RΩ1 ⊗ id)g = (q4 − 1)(2)q(2)q2Vol

where 1,Vol are the generators of HdR. We see that the metric traces q-deform their
classical values.
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