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We propose a holographic computation of the 2 → 2 meson scattering in a curved string background, 
dual to a QCD-like theory. We recover the Veneziano amplitude and compute a perturbative correction 
due to the background curvature. The result implies a small deviation from a linear trajectory, which is a 
requirement of the UV regime of QCD.
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1. Introduction

The Veneziano amplitude, aimed at describing meson scatter-
ing, marks the birth of string theory [1]. While the Veneziano 
amplitude exhibits several attractive properties, such as the duality 
between the s-channel and the t-channel, and a phenomenological 
success in the Regge regime, it also suffers from an undesired ex-
ponential behaviour in the high energy regime.

The properties of the Veneziano amplitude are closely related 
to the phenomenon of confinement. Makeenko and Olesen [2]
showed that the amplitude can be reproduced from large-N QCD, 
by representing the amplitude as a sum over Wilson loops. A cru-
cial unrealistic assumption, is that all Wilson loops (even small 
loops) admit an area law.

In a recent attempt to derive the Veneziano amplitude from 
large-N QCD [3], the sum over Wilson loops of [2] was written by 
using holography [4] as a sum over string worldsheets. The sum in-
cludes all Wilson loops that pass via the positions of the mesons. 
The Veneziano amplitude was obtained under the assumption that 
Wilson loops are saturated by flat space configurations that sit on 
the IR cut-off (hence leading to an area law). The flat space ap-
proximation can be achieved by bringing the IR cut-off close to 
the UV cut-off (the space boundary).

Thus one can attribute the failure of the Veneziano amplitude 
in the high energy regime to the flat space approximation, which 
is identical to the assumption that all Wilson loops admit an area 
law. It is therefore desired to accommodate small Wilson loops. In 
the dual string theory it means that one has to calculate string 
amplitudes in curved space. Even if that could be done, an exact 
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dual of large-N QCD is not known, hence it is not clear which 
non-linear sigma model should be used.

In this paper we propose a method to improve the scattering 
amplitude, by incorporating curvature effects from the dual geom-
etry. In particular we study the effect of worldsheet fluctuations 
in the vicinity of the IR cut-off. As the worldsheet fluctuates it 
probes part of the UV geometry. To this end we include in the 
string sigma model an interaction term between the flat 4d coordi-
nates and extra dimensions and calculate a two-loop perturbative 
correction to the propagator. While we carry out the calculation by 
using Witten’s model of the dual of Yang–Mills theory [5], we be-
lieve that the sigma model we use characterizes generic confining 
holographic models. The result of the calculation is a correction to 
the Veneziano amplitude in the form of a deviation from a linear 
Regge trajectory α(s) ∼ s(1−ρ3 log2 s) , with ρ3 log2 s � 1.

Our approach is distinct from earlier studies of Pomeron scat-
tering using the AdS/CFT correspondence [6]. The novelty, apart 
from considering meson scattering (open string amplitude), is that 
we include a perturbative correction to the Xμ propagator.

Our conclusion about the non-linearity of the Regge trajectory 
at small angular momenta is similar to that of previous studies [7,
8]. It is consistent with empirical data [8].

2. Setting up the duality

The starting point of this framework is the aforementioned 
identity involving a sum over all sizes of Wilson loops. To compute 
this four-point function we make use of the Worldline formal-
ism, namely the following equality for the fermion determinant of 
SU (Nc) QCD with N f flavours, in terms of expectation values of 
super-Wilson loops of length T :

Z =
∫

D A exp(−SYM)
(
det

(
i /D

))N f ,
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(
det

(
i /D

))N f = exp

⎛
⎝− N f

2
Tr

∞∫
0

dT

T
〈WT [A]〉

⎞
⎠ , (1)

〈WT [A]〉 =
∫

DxDψe− 1
2

∫ T
0 dτ (ẋ2+ψ ·ψ̇)ei

∫ T
0 dτ (ẋ·A− 1

2 ψ ·F ·ψ).

This exponential can then be expanded in powers of N f /Nc , 
so that in the ’t Hooft large Nc limit only the linear term in Wil-
son loops needs to be considered. We will use this approximation 
(the so-called “quenched approximation”) for the following com-
putation of a generic meson 4-point function [3]:〈

4∏
i=1

qq̄(xi)

〉
= 1

Z

4∏
i=1

δ

δ J (xi)

∫
D A exp(−SYM)

×
⎛
⎝− N f

2
Tr

∞∫
0

dT

T
〈WT [A, J ]〉

⎞
⎠ | J=0 (2)

with 〈WT [A, J ]〉 the worldline action of a theory coupled to a 
meson source S J = ∫

d4x J q̄q [9]. Taking functional derivatives in 
terms of J creates delta functions constraining the various loops 
at hand to pass through the points where the operators are in-
serted. We therefore arrive at the following formal expression for 
the scattering amplitude〈

4∏
i=1

qq̄(xi)

〉
= 1

Z

∫
D A exp(−SYM)

×
⎛
⎝− N f

2
Tr

∞∫
0

dT

T
〈WT [A]〉 |x1,x2,x3,x4

⎞
⎠ , (3)

where the sum over all Wilson loops has been imposed to include 
only those loops passing through the 4 points where the meson 
operators have been inserted.

The gauge/gravity duality implies that, for the field theory on 
the boundary, a generic Wilson loop’s expectation value is related 
to the expectation value of a string worldsheet hanging from the 
loop on the boundary down into the bulk. More precisely, a sin-
gle Wilson loop expectation value is obtained as the saddle of a 
sum over string worldsheets, as explained in section 3 of [11]. It 
was then proposed that the contribution of “quenched flavours” to 
the gauge theory partition function is dual to a sum over all string 
worldsheet with a topology of a disk that terminate on the bound-
ary of the AdS space [10]

∫
D A exp(−SYM) ×

⎛
⎝−1

2
Tr

∞∫
0

dT

T
〈WT [A]〉

⎞
⎠

=
∫

[D X][Dg]exp

(
− 1

2πα′

∫
d2σ G MN∂α X M∂β X N gαβ

)
. (4)

This identification is possible because we have fixed a flat world-
sheet gauge gαβ = δαβ , we are not interested in higher genus 
contributions. Then, schematically, the above equality holds be-
cause both path integration measures on either side sum up area-
behaved integrands over all possible shapes and sizes of their 
boundaries. We are therefore able to write the following expres-
sion for the amplitude [10]

A (ki=1...4) =
∮ 4∏

i=1

dσi

∫
[D X]W eikμ

i Xμ(σi)

× exp

(
− 1

2πα′

∫
d2σ G MN∂α X M∂α X N

)
, (5)

where W eikμ
i Xμ(σi) are meson vertex operators in the dual string 

theory, inserted at different points on the worldsheet, each asso-
ciated to a momentum ki . W encodes details of spin (W = 1 for 
the tachyon and W = ε∂σ X for a vector for the bosonic string), 
which only really affects the intercept α0 of the Regge trajec-
tory, α(s) = α0 + α′s. As we shall see the calculated perturba-
tive correction is not valid near s = 0. In addition, there may be 
additional subleading phenomena contributing to a shift of the 
intercept, hence we can make no statements thereupon. The ex-
pectation values of the vertex operators are taken with respect to 
the Polyakov-type non-linear sigma model action over the string 
worldsheet into a curved space. Choosing the correct background 
is crucial in this matter. Since we have done away with flavour 
degrees of freedom via the worldline formalism, we only need to 
pick a space dual to pure Yang–Mills. For our purposes, we take 
Witten’s background of back-reacted D4-branes compactified on 
a thermal circle [5], whose dual, while not pure Yang–Mills, pos-
sesses enough similarities (confinement and a mass gap) that we 
can hope to make generic arguments thereupon. The chief property 
of this space is its metric G , inducing the following space–time 
line element where Xμ (μ = 0, 1, 2, 3) are boundary space–time 
coordinates, τ the compact direction, U the AdS direction and the 
remaining 4 coordinates parametrise a sphere:

ds2 = g(U )
(

dX2 + dτ 2 f (U )
)

+ 1

g(U )

(
dU 2

f (U )
+ U 2d�2

4

)

where g(U ) =
(

U

R

)3/2

, f (U ) = 1 − U 3
KK

U 3
. (6)

It admits a metric singularity at the point U = U K K , where the 
space has a horizon. As is usual, string worldsheets hanging from 
large loops (of size comparable to the horizon position) will ac-
cumulate on the horizon, providing an area-law scaling of their 
expectation value, rather than a perimeter-law, this is the usual 
tell-tale sign that confinement has taken place. Then, provided the 
strings do not have to go very far from the boundary to the hori-
zon, the classical saddle of this action is a string whose geometry 
is mostly flat, spread out on the horizon itself. By pushing U K K

close to infinity, this condition is broadly satisfied, turning the clas-
sical saddle of the path integral into a mostly-flat worldsheet. This 
was the claim proposed in a previous work [3], from which the 
4-point function we wish to compute fairly naturally reproduces 
the Veneziano amplitude as the behaviour associated to flat open-
string scattering.

These final steps relied on many broad assumptions, namely 
that we ignore effects coming from the compact directions (jus-
tified through the hierarchy of scales at hand), from the fermionic 
degrees of freedom (justified by spacetime supersymmetry break-
ing, and by the insertion of purely bosonic operators), to impose 
that almost all worldsheets in the sum are heavily accumulating on 
the horizon, discarding those that do not and ignoring the contri-
bution of the edges of those that do (justified by the near-infinite 
size of U K K ), and to assume no string quantum corrections (both 
genus/ghost and α′). Our goal is to relax the latter, to allow string 
tension corrections to the computation at hand, which in physical 
terms corresponds to letting the string fluctuate around its classi-
cal position and experience the U direction curvature and (it will 
be shown) the compact direction τ .

2.1. Setting up an expansion

From the Polyakov action using the metric shown in Eq. (6), we 
wish to create a perturbation series for values of the AdS coor-
dinate U close to the horizon position, U K K , which for previously 
explained reasons should be thought of as a large length scale. The 



432 A. Armoni, E. Ireson / Physics Letters B 771 (2017) 430–434

first step is to provide an adequate parametrisation of the space, in 
which the coordinate singularity at the horizon is removed. Typi-
cally a set of Kruskal-like coordinates are desirable, as has been 
done in similar computations in the past [12], but unlike that par-
ticular example, they are non-trivial to compute in the case at 
hand, it is unclear whether a good new radial coordinate can be 
analytically computed over the entire AdS region. We will there-
fore assume that the string fluctuations are of small amplitude 
and only experience a small range of the target space curvature: 
in practice this means we can perform an expansion of the offend-
ing metric elements for values of U parametrically close to U K K

and compute near-horizon Kruskal coordinates, rather than try to 
globally define them.

At this cost, the operation can be done and results in the fol-
lowing coordinate definitions: introducing λ = U K K

R as an arbitrary 
constant, we define new coordinates by

U

U K K
= 1 + u2

U 2
K K

, ϒ = ue
i
√

9λ3

4U 2
K K

τ

e
u2

4U 2
K K , (7)

all power series in u/U K K can now be rewritten as series in 
|ϒ/U K K |, as the relation above is easily invertible. This produces 
a string action in a very appropriate form for interaction expan-
sions:

L = λ3/2∂α Xμ∂α Xμ + 4

3λ3/2
∂αϒ†∂αϒ + 6

T U 2
K K

ϒ†ϒ

+ 3λ3/2

2U 2
K K

ϒ†ϒ∂α Xμ∂α Xμ + . . . (8)

The last term is the direct result of this process, an interaction 
term between ϒ and Xμ , but we have also gained a mass term for 
this AdS coordinate: it has come from a Jacobian factor multiplying 
the invariant path integration measure. Note that it is parametri-
cally small as it depends both on the string tension T and U K K , 
also that this coordinate redefinition characterises not only verti-
cal motion of the worldsheet but also motion in the τ direction. 
We keep ignoring effects from the additional compact coordinates, 
seen as an unfortunate artefact of the string background. We also 
ignore the effects of supersymmetry: certainly, the string theory 
has explicit broken space–time supersymmetry, but one does not 
expect to see it explicitly from the worldsheet, and so we should 
include fermions in the action. However, we note that, firstly, we 
are inserting purely bosonic operators in the path integral, so we 
need to focus on interactions featuring those bosonic fields, sec-
ondly, that such terms connecting bosonic and fermionic fields in 
a generic non-linear sigma model (�μνρψ̄μ /∂ Xνψρ) vanish in our 
case, through specific properties of the Christoffel symbol in this 
background. For this reason the coupling to RR background fields 
is also expected to be subleading as they couple primarily to the 
worldsheet fermions.

The issue of the dilaton coupling to the worldsheet Ricci ten-
sor (Fradkin–Tseytlin coupling) is more subtle. In our setup we 
consider the kinematical regime (Regge regime) where the sum 
over string worldsheets is dominated by large area and flat-
space worldsheets, calculated in the vicinity of U = U K K . For 
such worldsheets we may take the approximation 

∫
d2σ �R ≈∫

d2σ �(U K K )R , where the contribution is similar to the flat space 
case and the “area term” 

∫
∂ X∂ X is expected to be the dominant 

contribution to the action.
We can now proceed to perform perturbation theory around 

the U = U K K “vacuum” of the effective field theory described by 
this Lagrangian.

Fig. 1. The first diagram leading to qualitative corrections to the Veneziano ampli-
tude.

3. Evaluation of loop integrals

This action now having a well-defined vacuum to expand 
around, we set out to compute the quantity we defined previ-
ously in Eq. (5). From general considerations on the tower-like 
structure of string excited states we argue that considering ver-
tex operators of the form eiki ·X(σi) should be informative enough 
(again noting that we are not interested in the intercept). The 
purely classical approximation immediately reproduces the Beta 
function behaviour of the amplitude. By adding these operators in 

the action as a current J (σ ) =
4∑

i=1
ki · X(σ )δ(σ − σi), this essen-

tially maps the computation onto the calculation of the partition 
function around a non-zero current (suitably normalised by that 
without any sourcing). As a result we are computing “vacuum” di-
agrams with no in/out states, but not vacuum bubbles–rather, all 
those whose legs are stopped at the positions where the current 
is being introduced. These effectively 1-leg vertices are dimension-
ful, thus the more legs a diagram has, the higher its order is in 
our series expansion, the dimensions being soaked up by powers 
of 1/U K K . Thus we will focus on worldsheet 2-point corrections.

Now, given the form of the interaction at hand, and the fact 
we are dealing with a 2D QFT, we will frequently have to deal 
with logarithmically divergent integrals, starting with the propa-
gators, and thus have to work to remove regulator poles but also 
logarithms of vanishing or asymptotic quantities. For this purpose 
we will use analytic regularisation of the propagators, along with 
a convenient version of the M S scheme. Once this is done, our 
framework has the particularity of making a large class of dia-
grams, that we can write with this new interaction vertex, trivial in 
a sense. The lowest order diagrams in our expansion, the 2-point 
1-loop graphs with no momentum transfer, factorise into a number 
of “vacuum bubble”-like integrals times an overall propagator, our 
regulation scheme makes such diagrams finite. This corresponds to, 
equivalently, a finite shift of the wavefunction normalisation, or a 
finite shift of the string tension T . As the bare value of T is tun-
able, we should consider that at the end of the procedure, once all 
the finite shifts in tension at all orders have been applied, the new, 
effective string tension is the physical QCD one. We will hereafter 
always refer to the effective string tension when writing T or α′ .

Next, we are brought to study a two-loop correction to the 
two-point amplitude (curiously lower order in U K K than lower-
loop, higher-point amplitudes by dimensional analysis) taking the 
form of a “sunset” diagram (Fig. 1), corresponding to the following 
integral

I =
∑
i< j

ki · k j
81(πα′)3λ3/2

64U 4
K K

×
∫

d2 pd2q1d2q2

(2π)6

ei(p·(σi−σ j
)
)(p · (q1 + q2))

2

p4(p − q1 − q2)2(q2
1 + m2)(q2

2 + m2)
(9)

This integral is not trivial – especially given that only two out 
of the three internal lines are massive. Some work has been done 
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on the analytics of similar diagrams [13], but not using a regu-
lation scheme adapted to logarithmic divergences as is our case. 
However, at this point we use the fact that the mass in question 
is parametrically small: it is of the same order as the coupling 
constant of our interaction term. Since the massless diagram is 
well-defined, we should therefore think of it as truly being the 
lead source of qualitative corrections to the Veneziano regime, the 
mass inducing higher-order corrections. At this cost, the diagram is 
then well-suited to treatment in our set-up, and we obtain a finite 
value for it:

I = − 1

8π3

27λ3/2

64T 3U 4
K K

∑
i< j

ki · k j

(
log3

((
σi − σ j

)2
))

. (10)

The computation closes as we insert this result in the overall 
expectation value and averaging over all possible insertion posi-
tions described above in Eq. (5). We encapsulate the expansion pa-
rameter and the numerical factors by defining, ρ3 = 1

4π2
27λ3/2

64T 3U 4
K K

, 
and we will write scalar products of space–time momenta ki ·k j as 
Mandelstam variables s, t: s = −k1 · k2, t = −k1 · k3. Systematically 
these variables come with a factor of α′ , which we will absorb in 
the definition of these variables to make them dimensionless.

Then the amplitude becomes

A(s, t) =
1∫

0

dzz−s−1(1 − z)−t−1

×
(

1 + ρ3
(

s log3(z) + t log3(1 − z)
))

, (11)

which, one can quickly recognize, has a leading term correspond-
ing precisely to the Veneziano Beta-like functional form, with extra 
logarithmic corrections. The corrective integrals can be computed 
explicitly and give third derivatives of the Beta function,

A(s, t) =
(

1 − ρ3
(

s
∂3

∂s3
+ t

∂3

∂t3

))
B(−s,−t). (12)

This expression is actually composed of many terms of varying rel-
evance due to properties of Beta and associated functions.

4. Consequences on the Regge trajectory

To recover the incidence of these corrections on the Regge be-
haviour, we will express the amplitude in an approximate form, in 
the so-called Regge regime.

We then take the limit |s| � |t|, |t| fixed. We expect to have 
B(−s, −t) ∝ (−s)t (ignoring the purely t-dependent part of the 
amplitude, which contains the pole at zero in t). This form is still 
valid in the elastic collision regime, as long as one moves a lit-
tle away from the positive real s-axis, as is routinely done in such 
matters. This ensures that the influence of the poles and the zeroes 
of the function do not disrupt this approximate form too much. 
The nature of the Beta function means that this limit is quite lax, 
|s| need not be large in magnitude for it to be adequate, simply 
comparatively larger than |t|. Remarking that every s derivative 
lowers the order of the asymptotic behaviour of the function, the 
main contributions come from the t derivatives. Generically either 
of these derivatives involve the Polygamma functions {�i∈N}, all 
of which vanish as powers of their argument asymptotically, save 
for the first one, �0, which diverges logarithmically. These terms 
will dominate the functional form of the correction in the limit we 
have chosen. With this prescription we find an approximate form 
for the amplitude

A(s, t) = exp
(

t(log(−s) − ρ3 log3(−s))
)

(13)

Fig. 2. Comparing the new Regge trajectory (dashed) to linear behaviour (solid), for 
ρ3 = 0.2.

and correspondingly a Regge trajectory of the form

α(−s) ∼ (−s)1−ρ3 log2(−s) (14)

where α(s) = s would be the leading order, purely classical string 
result. This is a satisfactory result, in that the Regge behaviour for 
values of |s| < 1 starts to deviate away from the linear behaviour, 
in qualitatively similar ways as in previous efforts, namely, when 
plotted on the (s, α(s)) plane, the curve bends towards the α(s)
axis, as shown in Fig. 2.

It is divergent at the origin, but at this point our approxima-
tions no longer hold, as is the case generically in similar studies. 
This does not result in any predictions for the spectrum of the the-
ory.

5. Conclusions and outlook

We have considered a computation of 2 → 2 meson scattering 
using holography, recovering the Veneziano amplitude and com-
puting a correction due to interactions between the spacetime co-
ordinates and bulk coordinates U and τ , whose form we expect to 
be generic, this can be argued from properties of confining space-
times.

Our main result is (13), valid in the Regge regime where the 
tree level Veneziano amplitude is a good approximation. The cor-
rection we found affects the low energy regime (low s) of the 
Regge trajectory, as depicted in Fig. 2. Such a correction is required 
in QCD, since perfectly linear Regge trajectories mean a linear con-
fining potential even at short distances. This is in conflict with 
asymptotic freedom.

It is encouraging to note that our results compare well with 
other studies and empirical data. For example, in ref. [8] the author 
finds a similar qualitative correction to the Regge trajectory in the 
low s regime and claims that the empirical data of heavy meson 
spectra is better fitted by such a non-linear trajectory. Moreover, in 
ref. [7] the authors calculate a correction to the meson spectrum 
due to the curvature of the background. They also find a qualitative 
non-linear behaviour similar to Fig. 2 and fit it to the ρ-meson 
spectrum. Both cases plot M2 as a function of J , the mirror of our 
graph, and get a bending towards J .

Encouraged by our results, we hope to apply our approach to 
other models and consider other processes such as meson-baryon 
scattering.
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