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Abstract

Due to high nonlinearity, strong coupling and time-varying characteristics of

flexible joint robot manipulators, their control design is generally a challenging

problem. There are inevitable uncertainties associated with their kinematics

and dynamics, so that accurate models would not be available for control de-

sign. Furthermore, practically we may face the problem that state variables

required by the controller are not measurable. In this paper, we focus on the

study of control system design using a neural network observer to solve the

aforementioned unmeasurable problem. First, we propose an observer based on

Radial basis function (RBF) neural network to estimate state variables of the

normal system. We then design the controller based on dynamic surface control

method for a single link flexible joint manipulator whose model is unknown.

The unknown model of the manipulator is constructed by RBF neural network.

The stability of the observer and controller is shown by Lyapunov method. Fi-

nally, simulation studies are performed to test and verify the effectiveness of the

proposed controller.

Keywords: Flexible joint manipulator system; Dynamic surface control;

Neural network; State observer
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1. INTRODUCTION

Programmed robots performing repeated tasks play an important role in

automated manufacturing, especially on the assembly line, to reduce labor cost

through mass production. Towards Industry 4.0, mass customization is coming

because each individual customers need for a unique product is greatly pro-5

moted [1]. Highly increased product variety and production process variability

bring considerable uncertainty to assembly line design. Reconfiguration of the

assembly line involves reprogramming of robots, which involves more than 40%

of capitalized cost [2]. Modern manufacturing thus calls for a flexible approach

to managing production process variability. The most flexible factor in a man-10

ufacturing process is perhaps human operators, whom have natural abilities of

sensitivity and improvisation to unpredictable events, fast processing of varying

information as well as quick adaption when switching tasks. In fact, manual as-

sembly usually reduces initial investment, but cost significantly increases with

less automation thereafter. In this instance, the best solution seems to be to15

exploit human-robot physical cooperation to close the gap between fully auto-

mated manufacturing lines and fully manual assembly. It has been experimen-

tally demonstrated that human and robot working collaboratively will be more

efficient and flexible than human or robot working alone [3]. Enabled by the

revised ENISO 10218 standard Parts 1&2 and the ISO/TS 15066 specification,20

collaborative robots are now allowed to work hand in hand with our humans. It

is expected that these robots will eventually cost less and have a greater range of

capabilities than those used in manufacturing today. Meanwhile, collaborative

robots are required to safely perform physical interactions in the dynamically

changing and unstructured working environments [4]. A common approach to25

improve the physical interactiveness of the manipulators mechanical structure

is to make use of a flexible joint actuation. Flexible joints provide the manipu-

lator with a valuable compliant behaviour so if the flexible joint manipulators

encounter obstacles during operation, the contact force between manipulators

and obstacles may be relatively slight and manipulators may stop immediately.30
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Thus, flexible joint manipulators have been widely used in the fields of human-

robot physical cooperation. In [5], They propose a variable stiffness joint for

a robot manipulator, the leaf springs is used to generate compliance and the

position and stiffness of the joint are controlled by four-bar linkages. In [6]

a control method to regulate the driving torque of flexible joint manipulators35

is proposed, A servo-controller which can asymptotically regulate the driving

torque with unknown parameters is derived.

In recent years, there are many control methods of manipulator have been

proposed such as adaptive neural network control [7, 8, 9], robust control [10],

vibration control [11, 12], fuzzy control [13] and cooperative control [14]. For40

the complex nonlinear systems whose model is uncertain backstepping is an ad-

vanced control method. But it suffers from the curse of dimension in the process

of controller design. In order to avoid differentiating virtual control signals, dy-

namic surface control method was proposed in [15, 16] by using first-order filters

within the backstepping controller design. Thereby the control law is easier to45

compute and achieve. This method is suitable for high-dimensional nonlinear

systems such as flexible joint manipulators. Due to the uncertainties existing

in the dynamic models of flexible joint manipulator systems, it is difficult to

obtain the models of flexible joint manipulator systems accurately [17]. Neu-

ral network is an applicable method to approximate unknown models. In[18],50

the neural networks is employed to compensate for uncertainties in dynamics of

both the robot arms and the manipulated object . In [19], they use RBF neural

networks to compensate for the effect caused by the uncertainties from internal

and external. In [20, 21, 22, 23], neural networks are used to approximate the

unknown models.55

Due to constraints of sensor deployment, we may not be able to measure

all the state variables, then the controller based on state feedback is unavail-

able. Thus, observers which can estimate the state variables unmeasurable are

necessary. Conventional nonlinear observers are generally applicable to sys-

tems whose models are precisely known [24, 25], while we consider systems with60

unknown models. Neural network has become a powerful tool for state obser-

3
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vation with uncertain models. In [26] a Kalman filter is combined with a neural

network for a general multiple-input-multiple-output (MIMO) nonlinear system

and the multilayer feedforward neural network is used to deduce the gain of the

observer. In [27], they estimate the states of affine single-input-single-output65

(SISO) nonlinear systems by two separate linear-in-parameter neural networks

(LPNN). In [28], an RBF neural network was adopted to approximate the non-

linearities. In [29], they propose a recurrent neural network for a general MIMO

nonlinear systems. The weights of neural network were updated based on the

backpropagation (BP) algorithm. In this paper, we adopt RBF network to build70

the observer, then combined the observer with the controller to control the flexi-

ble joint manipulator system in which the angular position and angular velocity

of motor shaft is unknown.

Radial Basis Function (RBF) neural network which can approach to any

nonlinear function can replace the unknown nonlinear system, help us to design

the controller[30]. The structure of the RBF network is shown in Fig. 1 [31].

The input signal is transmitted to the hidden layer through the input layer.

The nodes in the hidden layer are the basis functions, and the output layer is a

linear function. There are many kinds of basis functions available. Here we use

the Gaussian function as the basis function.

Sj(x) = exp[−‖x− cj‖
2

b2j
] (1)

where j = 1, 2, 3, · · · , q, x = [x1, x2, · · · , xn]T is the input sample. cj is the

center of the hidden layer nodes, b2j is the width of the Gaussian function, Sj

is the output of the hidden layer, q is the number of nodes in the hidden layer.

The output of the RBF network is the linear superposition of the hidden layer

nodes

y =

q∑

j=1

WjSj(x) (2)

Wj is the weight vector of the neural network. By selecting the appropriate

weight vector, RBF network can approximate a continuous function with arbi-

4
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Figure 1: RBF neural network

trary precision.

h(Z) = WTS(Z) + ε (3)

where ∀Z ∈ ΩZ , W is the optimal weight vector, ε is approximation error.

In this paper, an observer based on RBF neural network is proposed for75

flexible joint manipulators with unknown systems in Section 2. In Section 3

we design the controller based on dynamic surface control method for a single

link flexible joint manipulator whose model is unknown. The unknown model

of the manipulator is constructed by RBF neural network. Finally, in Section

4 simulation studies are performed to test and verify the effectiveness of the80

proposed controller.

5
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2. NEURO-ADAPTIVE OBSERVER

2.1. The proposed neuro-adaptive observer

In this section we propose a state observer based on RBF neural network.

The general model of a nonlinear system is

ẋ(t) = f(x, u)

y(t) = Cx(t)
(4)

u ∈ RMu is the input, y ∈ RMy is the output, x ∈ RMx is the state vector of the

system, and f is an unknown function. C is the output matrix of the system.

Let us define g(x, u) = f(x, u)−Ax we can obtain:

ẋ(t) = Ax+ g(x, u)

y(t) = Cx(t)
(5)

A is a Hurwitz matrix, (C,A) is observable.85

First, we build the observer model as:

˙̂x(t) = Ax̂+ ĝ(x̂, u) +G(y − Cx̂)

ŷ(t) = Cx̂(t)
(6)

where x̂ is the state of the observer. We select the observer gain G ∈ Rn×my such

that A − GC is a Hurwitz matrix. We use RBF neural network approximates

the nonlinear system. Thus, g(x, u) can be represented as:

g(x, u) = WTS(x) + ε(x) (7)

W is the weight matrix of the output layer, x = [xT , uT ]T , ε(x) is the approx-

imation error of neural network. S(·) is the transfer function of the hidden

neurons which is a Gaussian function:

Sj(x) = exp(−‖x− cj‖
2

b2j
). (8)

6
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Assumption 1 : There is the upper bound on optimal weight matrices W such

that

‖W‖ ≤Wm. (9)

Property 1 : The Gaussian function is bounded by

‖S(x)‖ ≤ Sm. (10)

Let us assume g(x, u) can be approximated by

ĝ(x̂, u) = ŴTS(x̂). (11)

The proposed observer is given by

˙̂x(t) = Ax̂+ ŴTS(x̂) +G(y − Cx̂)

ŷ(t) = Cx̂(t).
(12)

In order to prove the stability of the observer we define the weight error W̃ =

Ŵ −W and state variable error x̃ = x̂−x. According to (5) and (12) we obtain

˙̃x(t) =Ax̂+ ŴTS(x̂)−Ax−WTS(x)−G(Cx̂− Cx) + ε(x)

ỹ(t) =Cx̃(t).
(13)

By adding WTS(x̂) and subtracting WTS(x̂) on left hand side of (13), we obtain

˙̃x(t) = Acx̃+ W̃TS(x̂) + w(t)

ỹ(t) = Cx̃(t)
(14)

Ac = A − GC, w(t) = WT [S(x̂) − S(x)] + ε(x), wm > 0 satisfy ‖w(t)‖ ≤ wm

due to the boundedness of the optimal neural network weight.

7
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2.2. STABILITY ANALYSIS

Definition 1 : The adaptive update rate of weights is

˙̂
W = Γ[S(x̂)ỹTC − ρ‖Cx̃‖Ŵ ] (15)

where Γ = ΓT is a positive definite matrix.

Theorem 1 : Considering the general nonlinear system described by (4), the90

observer described by (12) and the adaptive update rates of weights described

by (15). For any bounded initial conditions, there exists suitable parameters G,

Γ and ρ such that the proposed observer scheme guarantees:

1) all the signals in the observer are uniformly ultimately bounded;

2) the estimated errors xi converges to a arbitrarily small neighborhood of zero.95

Proof : Since the optimal weight W is a constant matrix thus we obtain

Ẇ = 0. In terms of the weight errors W̃ = Ŵ −W we obtain

˙̃W =
˙̂
W = Γ[S(x̂)ỹTC − ρ‖Cx̃‖(W̃ +W )]

= Γ[S(x̂)x̃TCTC − ρ‖Cx̃‖(W̃ +W )].
(16)

Definition 2 : The Lyapunov function is

L =
1

2
x̃TPx̃+

1

2
tr(W̃TΓ−1W̃ ) (17)

where P is a positive definite matrix. Then, we define Q

Q = −(ATc P + PAc). (18)

Ac is Hurwitz matrix, Q is a positive definite matrix. Then, we obtain the time

derivative of L

L̇ =
1

2
x̃TP ˙̃x+

1

2
˙̃xTPx̃+ tr(W̃TΓ−1 ˙̃W ). (19)

8
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Now, by substituting (14), (16) and (18) into (19), we obtain

L̇ =− 1

2
x̃TQx̃+ x̃TPW̃TS(x̂) + x̃TPw + tr[W̃TS(x̂)x̃TCTC

− W̃T ρ‖Cx̃‖(W̃ +W )].

(20)

Using the property

tr[W̃T (−W − W̃ )] ≤Wm‖W̃‖ − ‖W̃‖2

tr(W̃TS(x̂)x̃TCTC) ≤ Sm‖C‖2‖x̃‖‖W̃‖ (21)

we obtain

L̇ ≤− 1

2
λmin(Q)‖x̃‖2 + Sm‖P‖‖x̃‖‖W̃‖+ wm‖P‖‖x̃‖+ Sm‖C‖2‖x̃‖‖W̃‖

+ ρWm‖C‖‖x̃‖‖W̃‖ − ρ‖C‖‖x̃‖‖W̃‖2

=M1

(22)

where λmin(Q) > 0 is the smallest eigenvalue of Q. Then, we obtain

M1 =− 1

2
λmin(Q)‖x̃‖2 + ‖x̃‖(Sm‖P‖‖W̃‖+ Sm‖C‖2‖W̃‖+ ρWm‖C‖‖W̃‖

− ρ‖C‖‖W̃‖2) + wm‖P‖‖x̃‖

=− 1

2
λmin(Q)‖x̃‖2 +

[
− ρ‖C‖

(
‖W̃‖ − Sm‖P‖+ Sm‖C‖2 + ρ‖C‖Wm

2ρ‖C‖

)2

+
(Sm‖P‖+ Sm‖C‖2 + ρ‖C‖Wm)2

4ρ‖C‖

]
‖x̃‖+ wm‖P‖‖x̃‖.

(23)

Since

−ρ‖C‖
(
‖W̃‖ − Sm‖P‖+ Sm‖C‖2 + ρ‖C‖Wm

2ρ‖C‖

)2

< 0 (24)

9
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we can obtain

M1 <−
1

2
λmin(Q)‖x̃‖2 + wm‖P‖‖x̃‖+

(Sm‖P‖+ Sm‖C‖2 + ρ‖C‖Wm)2

4ρ‖C‖ ‖x̃‖

=M2.

(25)

Let us define

K =
(Sm‖P‖+ Sm‖C‖2 + ρ‖C‖Wm)2

4ρ‖C‖ > 0 (26)

we can obtain

M2 =− 1

2
λmin(Q)‖x̃‖2 + wm‖P‖‖x̃‖+K‖x̃‖. (27)

And if

‖x̃‖ > 2Pwm + 2K

λmin(Q)
= v (28)

then

L̇ < M1 < M2 < 0. (29)

When x̃ > v, L̇ < 0 is negative, then x̃ is bounded. If we choose the observer

gain G such that the eigenvalue of Ac is big enough then the value of λmin(Q) is

small relative to 2Pwm + 2K. Thus, we can obtain a v small enough to ensure

the accuracy and stability of the system to meet the requirements.

Then, we notice that x̃, W, C and S(x̂) are all bounded, and ρ > 0. Thus100

according to (16) we obtain a system whose inputs Γ[S(x̂)x̃TCTC − ρ‖Cx̃‖W ]

are bounded and state matrix of the system −ρ‖Cx̃‖ is a Hurwitz matrix. Thus,

this system is stable, W̃ is also bounded.

10
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Figure 2: The model of single link flexible joint manipulator

3. CONTROLLER OF THE FLEXINLE JOINT MANIPULATOR

BASED ON NEURO-ADAPTIVE OBSERVER105

3.1. Problem formulation

First, we establish precise the mathematical model of flexible joint manip-

ulator [32, 33]. We consider a single-joint flexible joint manipulator which can

rotate in vertical plane. The joint can deform on the direction of rotation only

and the connecting rod is rigid, we ignore viscous damping [34]. The model of110

single link flexible joint manipulator is shown in Fig. 2. According to Fig. 2

we see the system consists of two parts. The left part is the motor while the

right part is the manipulator. In the middle there is a spring. Driving torque

provided by motor is u. Rotary inertia of motor is J. The angular position of

motor shaft is θ1. The stiffness of connecting rod is K. The angular position115

of manipulator shaft is θ2. The distance from the centroid of the link to the

axis of the joint is L. The quality and inertia of the manipulator are M and I

respectively. The angular velocity and angular acceleration of motor shaft are

denoted by θ̇1 and θ̈1 respectively. Similarly, the angular velocity and angular

acceleration of manipulator shaft are denoted by θ̇2 and θ̈2 respectively. Hence,120

the system can be described by following differential equation

{
Iθ̈2 +MgLsinθ2 +K(θ2 − θ1) = 0

Jθ̈1 −K(θ2 − θ1) = u
(30)

11
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Let us define: x1 = θ2. x2 = θ̇2. x3 = θ1. x4 = θ̇1. We can obtain the

equation of state as follows.





ẋ1 = x2

ẋ2 = −MgL
I sinx1 − K

I (x1 − x3)

ẋ3 = x4

ẋ4 = K
J (x1 − x3) + 1

J u

(31)

Then, we use Neuro-Adaptive Observer proposed in the Section 2 to estimate

the state variables of single link flexible joint manipulator with unknown model.125

We assume we can’t measure the angular position and angular velocity of motor

shaft directly. We obtain the state space of single link flexible joint manipulator

Ẋ =




0 1 0 0
−KI 0 K

I 0
0 0 0 1
K
J 0 −KJ 0


X −




0
MgL
I sinx1

0
0


+




0
0
0
1
J


u (32)

Y =
[
1 0 0 0

]
X (33)

where

X =




x1

x2

x3

x4




(34)

is the state variable of system. Y is the output of system. u is the input of

system. Let us define

f2(x2) = −MgL

I
sinx1 −

K

I
x1

f4(x4) =
K

J
(x1 − x3)

12
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where x2 = [x1, x2]T and x4 = [x1, x2, x3, x4]T then we can convert (31) into

Ẋ =




0 1 0 0
0 0 K

I 0
0 0 0 1
0 0 0 0


X +




0
f2(x2)

0
f4(x4)


+




0
0
0
1
J


u (35)

We assume f2(x2) and f4(x4) are unknown.

Then, according to (32) and (33) we can obtain

ẋ(t) = f(x, u)

y(t) = Cx(t)
(36)

f(x, u) =




0 1 0 0
0 0 K

I 0
0 0 0 1
0 0 0 0


X +




0
f2(x2)

0
f4(x4)


+




0
0
0
1
J


u

C =
[
1 0 0 0

]
.

Then by extracting Ax from (36), we obtain

ẋ(t) = Ax+ g(x, u)

y(t) = Cx(t)
(37)

where A is a Hurwitz matrix adjustable, g(x, u) = f(x, u) − Ax. Since g(x, u)

contains unknown parts we use the neural network shown in Section 2 to esti-

mate it, we build the observer as follows

˙̂x(t) = Ax̂+ ŴTS(x̂) +G(y − Cx̂)

ŷ(t) = Cx̂(t).
(38)

3.2. Controller design130

Assumption 2 : In this section we assume we can not measure the angular

position x3 and angular velocity x4 of motor shaft.

We use the observer proposed in the previous section estimate x3 and x4.

Thus, we define x̂3 − x3 = x̃3, x̂4 − x4 = x̃4. According to the previous section

13
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Figure 3: Controller structure based on neural network observer

we can obtain if ‖x̃‖ > v then L̇ ≤ 0. L̇ is negative definite outside the ball with135

radius v described as {‖x̃‖ | ‖x̃‖ > v}. Thus, ‖x̃‖ is bounded in this ball, by

the rational choice of parameters P and AC we can keep v get any small value.

Thus, we assume x̃3 and x̃4 can be ignored. x̂3 and x̂4 can substitute for x3 and

x4.





ẋ1 = x2
ẋ2 = f2(x2) + K

I (x̂3)
˙̂x3 = x̂4
˙̂x4 = f4(x4) + 1

J u

(39)

We rewrite x4 = [x1, x2, x̂3, x̂4]T . Since the model of the single joint flexible140

manipulator has a fourth order, there are four steps in the design [35]:

step 1: First notice the first subsystem

ẋ1 = x2 (40)

let us define the desired trajectory as yd. then we can define tracking error of

the first subsystem

e1 = x1 − yd. (41)

14
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Define the first virtual control variable x2d as

x2d = −c1e1 + ẏd (42)

where c1 is the design constant. Then we let x2d pass through a first-order

low-pass filter, we obtain a new variable x2c to be the expecting variable for the

next step

τ2ẋ2c + x2c = x2d, x2c(0) = x2d(0). (43)

The time constant τ2 is the design constant. Then we can obtain tracking error

of the second subsystem

e2 = x2 − x2c (44)

And the derivative of e1 can be obtained

ė1 = ẋ1 − ẏ

= x2 − ẏd

= −c1e1 + e2 + (x2c − x2d)

(45)

Notice that there is an error x2c − x2d in the above equation, to remove the

effect of it we define the compensating variable α1 as

α̇1 = −c1α1 + α2 + (x2c − x2d), α1(0) = 0 (46)

where α2 will be defined in the next step. Then we can obtain tracking error of

the compensating variable

v1 = e1 − α1 (47)

and

v2 = e2 − α2 (48)

step 2: Considering the second subsystem and using RBF neural network

15
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to approximate the unknown function f2(x2)

ẋ2 = f2(x2) +
K

I
x̂3 = WT

2 S2(x2) + ε2(x2) +
K

I
x̂3 (49)

where W2 is the optimal weight matrix, S2 is the basis function of RBF neural

network which is a Gaussian function and ε2(x2) is the approximation error of

RBF neural network with ‖ε2(x2)‖ ≤ ε2. We define the second virtual control

variable xd3 as

ẋ3d =
I

K

[
−ŴT

2 S(x2)− c2e2 − e1 + ẋ2c

]
(50)

where c2 is a design constant, Ŵ2 is the estimation of W2. Then we let x3d

pass through a first-order low-pass filter, we obtain a new variable x3c to be the

expecting variable for the next step

τ3ẋ3c + x3c = x2d, x3c(0) = x3d(0). (51)

The time constant τ3 is the design constant. Then we can obtain tracking error

of the third subsystem

e3 = x3 − x3c (52)

And the derivative of e2 can be obtained

ė2 = ẋ2 − ẋ2c

= W̃T
2 S(x2) + ε(x2)− c2e2 − e1 +

K

I
[e3 + (x3c − x3d)]

(53)

where W̃2 = W2 − Ŵ2. Notice that there is an error x3c − x3d in the above

equation, to remove the effect of it we define the compensating variable α2 as

α̇2 = −c2α2 − α1 +
K

I
α3 +

K

I
(x3c − x3d), α2(0) = 0 (54)

where α3 will be defined in the next step. Then we can obtain tracking error of
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the compensating variable

v3 = e3 − α3 (55)

We define the prediction error

α2NN = x2 − x̂2 (56)

where x̂2 is defined as

˙̂x2 = ŴT
2 S2(x2) +

K

I
x̂3 + β2α2NN , x̂2(0) = x2(0) (57)

with β2 > is a design constant. we choose the update law of Ŵ2 as

˙̂
W2 = Γ2

[
(v2 + Γz2α2NN )S2(x̃2)− ρ2Ŵ2

]
(58)

where Γ2 > 0,Γz2 > 0 and ρ2 > 0 are design constants.

step 3: Then notice the third subsystem

˙̂x3 = x̂4 (59)

Define the third virtual control variable x4d as

xd4 = −c3e3 −
K

I
e2 + ẋc3 (60)

where c3 is the design constant. Then we let x4d pass through a first-order

low-pass filter, we obtain a new variable x4c to be the expecting variable for the

next step

τ4ẋ4c + x4c = x4d, x4c(0) = x4d(0). (61)

The time constant τ4 is the design constant. Then we can obtain tracking error

of the fourth subsystem

e4 = x̂4 − x4c (62)
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And the derivative of e3 can be obtained

ė3 = ˙̂x3 − ẋ3c

= −c3e3 −
K

I
e2 + e4 + (x4c − x4d)

(63)

Notice that there is an error x4c − x4d in the above equation, to remove the

effect of it we define the compensating variable α3 as

α̇3 = −c3α3 −
K

I
α2 + α4 + (x4c − x4d), α3(0) = 0 (64)

where α4 will be defined in the next step. Then we can obtain tracking error of

the compensating variable

v4 = e4 − α4 (65)

step 4: Considering the fourth subsystem and using RBF neural network

to approximate the unknown function f4(x4)

˙̂x4 = f4(x4) +
1

J
u = WT

4 S4(x4) + ε4(x4) +
1

J
u (66)

where W4 is the optimal weight matrix, S4 is the basis function of RBF neural

network which is a Gaussian function and ε4(x4) is the approximation error of

RBF neural network with ‖ε4(x4)‖ ≤ ε4. We define the final control variable u

as

u = J
[
−ŴT

4 S(x4)− c4e4 − e3 + ẋ4c

]
(67)

where c4 is a design constant, Ŵ4 is the estimation of W4. Then we can obtain

the derivative of e4

ė4 = ˙̂x4 − ẋ4c

= W̃T
4 S(x4) + ε(x4)− c4e4 − e3

(68)

18



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

where W̃4 = W4 − Ŵ4. The compensating variable α4 is defined as

α̇4 = −c4α4 − α3, α4(0) = 0 (69)

We define the prediction error

α4NN = x̂4 − ˆ̂x4 (70)

where ˆ̂x4 is defined as

˙̂
x̂4 = ŴT

4 S4(x4) +
1

J
u+ β4α4NN , ˆ̂x4(0) = x̂4(0) (71)

with β4 > is a design constant. we choose the update law of Ŵ4 as

˙̂
W4 = Γ4

[
(v4 + Γz4α4NN )S4(x4)− ρ4Ŵ4

]
(72)

where Γ4 > 0,Γz4 > 0 and ρ4 > 0 are design constants.

3.3. Stability analysis

Theorem 2 : Considering the single-joint flexible joint manipulator described145

by (31), the dynamic surface controller described by (67), the observer described

by (12) and the adaptive update rates of weights described by (15),(58) and (72).

For any bounded initial conditions, there exists suitable parameters G, ci, βi

(i = 1, 2, 3, 4) and Γ, Γ2, Γ4, ρ, ρ2, ρ4 such that the proposed control scheme

guarantees:150

1) all the signals in the controller system are uniformly ultimately bounded;

2) the tracking errors vi and ei converges to a arbitrarily small neighborhood of

zero.

Proof : Definition 3 : The Lyapunov function of the controller is

H =
1

2

4∑

i=1

v2i +
1

2

∑

i=2,4

W̃T
2iΓ

−1
I W̃2i +

1

2

∑

i=2,4

Γziα
2
iNN +

1

2
x̃TPx̃+

1

2
tr(W̃TΓ−1W̃ ).

(73)
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Consider the time-derivative of the tracking error, we can get

v̇1 =ė1 − α̇1

=− c1(e1 − α1) + (e2 − α2)

=− c1v1 + v2 (74)

v̇2 =ė2 − α̇2

=W̃T
2 S2(x2) + ε2(x2)− c2(e2 − α2)− (e1 − α1) +

K

I
(e3 − α3)

=W̃T
2 S2(x2) + ε2(x2)− c2v2 − v1 +

K

I
v3 (75)

v̇3 =ė3 − α̇3

=− c3(e3 − α3)− K

I
(e2 − α2) + (e4 − α4)

=− c3v3 −
K

I
v2 + v4 (76)

v̇4 =ė4 − α̇4

=W̃T
4 S4(x4) + ε4(x4)− c4(e4 − α4)− (e3 − α3)

=W̃T
4 S4(x4) + ε4(x4)− c4v4 − v3 (77)

α̇2NN = ẋ2 − ˙̂x2 (78)

= W̃T
2 + ε2(x2)− β2α2

2NN (79)

α̇4NN = ˙̂x4 − ˙̂
x̂4 (80)

= W̃T
4 + ε4(x4)− β4α2

4NN (81)

Then we obtain the time-derivative of the Lyapunov function

Ḣ =
1

2
x̃TP ˙̃x+

1

2
˙̃xTPx̃+ tr(W̃TΓ−1 ˙̃W ) +

4∑

i=1

viv̇i +
∑

i=2,4

ΓziαiNN α̇iNN

−
∑

i=2,4

W̃T
i Γ−1

i
˙̂
Wi

=

4∑

i=1

(−civ2i ) +
∑

i=2,4

[
viεi(xi) + ΓziαiNN εi(xi)− Γziβiα

2
iNN − ρiW̃T

i W̃
]

+ L̇

(82)
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According to the stability analysis of observer, we can see if

‖x̃‖ > 2Pwm + 2K

λmin(Q)
= v (83)

then

L̇ < 0. (84)

Then we obtain

Ḣ <
4∑

i=1

(−civ2i ) +
∑

i=2,4

[
ΓziαiNN εi(xi) + viεi(xi)− Γziβiα

2
iNN − ρiW̃T

i W̃
]

(85)

Let us define

V =
1

2

4∑

i=1

v2i +
1

2

∑

i=2,4

W̃T
2iΓ

−1
I W̃2i +

1

2

∑

i=2,4

Γziα
2
iNN (86)

We can obtain if

‖x̃‖ > 2Pwm + 2K

λmin(Q)
= v (87)

then Ḣ < V̇ . Consider the following inequality

viεi(x̃i)− civ2i ≤ −ci
(
vi −

εi(x̃i)

2ci

)2

+
1

4ci
εi(x̃i)

2 (88)

αiNN εi(x̃i)− βiα2
iNN ≤ −β

(
αiNN −

εi(x̃i)

2βi

)2

+
1

4βi
εi(x̃i)

2 (89)

W̃T
i Wi − W̃T

i W̃i ≤ −
∥∥∥∥W̃i −

W

2

∥∥∥∥
2

+
1

4
‖Wi‖2 (90)
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Then we can obtain

V̇ ≤−
∑

i=1,3

civi −
∑

i=2,4

[
cmin

(
vi −

εi(x̃i)

2ci

)2

+ Γzminβmin

(
ziNN −

εi(x̃i)

2βi

)2

+ ρmin

∥∥∥∥W̃i −
W

2

∥∥∥∥
2]

+
1

2cmin
ε2max +

Γzmax
2βmain

ε2max +
ρmax

2
W 2
max

(91)

where cmin = min[ci], βmin = min[β], Γzmin = min[Γzi], ρmin = min[ρi],

Γzmax = max[Γzi], Wmax = max[‖W‖] and ρmax = max[ρi]. Let us defined

D =
1

2cmin
ε2max +

Γzmax
2βmain

ε2max +
ρmax

2
W 2
max (92)

If ∣∣∣∣vi −
εi(x̃i)

2ci

∣∣∣∣ ≥
√

D

cmin
(93)

or ∣∣∣∣αiNN −
εi(x̃i)

2βi

∣∣∣∣ ≥
√

D

Γzminβmin
(94)

or ∥∥∥∥W̃i −
W̃i

2

∥∥∥∥ ≥
√

D

ρmin
(95)

then Ḣ ≤ V̇ ≤ 0. Thus, we can obtain vi, αiNN and ‖W̃i‖ are bounded in the

sets defined as follows

Ωvi =

(
vi

∣∣∣∣|vi| ≤ |
√

D

cmin
+

εmax
2cmin

)
(96)

ΩαiNN
=

(
αiNN

∣∣∣∣|αiNN | ≤ |
√

D

Γzminβmin
+

εmax
2βmin

)
(97)

ΩW̃i
=

(
W̃i

∣∣∣∣‖W̃i‖ ≤ |
√

D

ρmin
+
Wmax

2

)
(98)

Moreover x̃ is bounded in the set defined as {‖x̃‖ | ‖x̃‖ > v} and W̃ is also

bounded. Thus, all the signal in the system is bounded. If we choose the value155
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of ci and βi big enough then the error of vi and αiNN is arbitrarily small.

4. SIMULATION

To demonstrate the effectiveness of the controller , we perform simulation

studies with the following model of a robot manipulator. First of all, we select

the parameters of the manipulator system as follows:160

L = 1m, M = 2kg, I = 2kg · m2, J = 0.5kg · m2, K = 10N · m/rad,

g = 9.8m/s2.

The reference trajectory is





ẋd1 = xd2

ẋd2 = 2sin( 3
2 t)− 1

2xd1 − 3
2xd2

yd = xd1

(99)

Results of simulation are shown as follows.

First we remove the state observer to examine the performance of the con-

troller.165
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Figure 4: The relationship between reference trajectory yd and actual output y
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Figure 5: The relationship between reference trajectory xd2 and actual state variable x2

Fig. 4 and 5 are the relationship between reference trajectory yd and xd2

with actual variables y and x2. It’s clear that the actual output y and x2 can

track reference trajectory yd and xd2 accurately and quickly.

Then we assume that x3 and x4 is not measurable and use the estimate

x̂3 and x̂4 from state observer instead of x3 and x4. Results of simulation are170

shown as follows.

Figs. 6-9 is the relationship between the state variable x and estimated

value x̂. From Figs. 6-9 we can see the states of the observer follow those

of the actual system accurately and quickly. Thus, the tracking performance

of the observer is satisfactory. Fig. 10 and 11 are the relationship between175

reference trajectory yd and xd2 with actual variables y and x2. We can see

the actual output y and x2 can track reference trajectory yd and xd2 as well

as the simulation which running without the action of state observer. Thus,

we can confirm the reliable performance of the observer and controller. Figs.

12-14 is the weights of neural network. It can be seen the weights of neural180

network converge to the optimal value in a short time. To sum up, the proposed

controller based on neural network observer is able to achieve good transient
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Figure 6: The relationship between state variable x1 and estimated value x̂1
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Figure 7: The relationship between state variable x2 and estimated value x̂2

tracking performance of tracking errors in the presence of unknown model.
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Figure 8: The relationship between state variable x3 and estimated value x̂3
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Figure 9: The relationship between state variable x4 and estimated value x̂4

5. CONCLUSION

A controller for flexible joint manipulator with unknown model is designed in185

this paper. We design an observer based on RBF neural network to estimate the
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Figure 10: The relationship between reference trajectory yd and actual output y
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Figure 11: The relationship between reference trajectory xd2 and actual state variable x2

state variables unmeasurable of the robot manipulator. We design the controller

based on dynamic surface control method. RBF neural network is used to

construct the unknown model. Stability and performance of the overall system

combining observer and controller are rigorously established by the Lapunov190

27



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 12: Weights of neural network W1

Figure 13: Weights of neural network W2

method. Simulation studies are performed to test and verify the effectiveness

of the proposed controller. Simulation results from an application to a single

link flexible joint manipulator confirm the reliable performance of the proposed

controller.
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Figure 14: Weights of neural network W
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