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Abstract—In this paper, we propose a two-step textural feature
extraction method, which utilizes the feature learning ability
of Convolutional Neural Networks (CNN) to extract a set of
low level primitive filter kernels, and then generalizes the
discriminative power by forming a histogram based descriptor.
The proposed method is applied to a practical medical diagnosis
problem of classifying different stages of Age-Related Macular
Degeneration (AMD) using a dataset comprising long-wavelength
Optical Coherence Tomography (OCT) images of the choroid.
The experimental results show that the proposed method extracts
more discriminative features than the features learnt through
CNN only. It also suggests the feasibility of classifying different
AMD stages using the textural information of the choroid region.

I. INTRODUCTION

Texture analysis is a fundamental problem in computer
vision and image processing, and it has been widely applied
to surface defection discovery [1] and image-based medical
diagnosis [2], which generally involve classifying input based
on the textural appearance of an object. There are a wide
range of different methods which can be used in feature
extraction, such as wavelets, co-occurrence matrices, local
binary patterns, Markov random fields. Most works focus on
designing or applying hand-crafted features to present the
appearance structures for specific problems [3]. Gabor filters
that extract impulse responses from multi-scales and different
orientations often outperform other methods, particularly in
texture discrimination. This is due to the similarity between
its feature descriptors and the stimulation mechanism of hu-
man visual system. However, designing hand-crafted filters
is time consuming, and it is extremely difficult to find the
right features for some challenging problems. For example,
in this paper, we are going to investigate the feasibility of
classifying different stages of AMD based on the texture
information of choroidal OCT images. Age-Related Macular
Degeneration (AMD) is a progressive eye disease which is
the leading cause of vision loss in the developed world [4].
AMD is a progressive disease; an early stage, where vision
loss is minimal, can develop to one of two end stages; dry
(geographic atrophy) or wet (neovascular AMD) [5]. The
choroidal vascular structure changes with this progression; loss
of vessels and connectivity alters the shape and texture com-
pared to healthy eyes. Fig. 1 shows examples of the choroid
OCT image in different AMD categories. There are two major

difficulties of applying traditional hand-crafted methods to this
problem. First, for the choroid section, the variations of local
textural appearance are very subtle and nearly random in high
frequency bands, while such variations transmute across slides
in low frequency bands, which makes feature designing a non-
trivial task. Second, the choroid sections are irregular in shape
across different subjects, which results in arbitrary length of
feature descriptors.

Fig. 1. Examples of choroidal OCT scans for healthy, early AMD and wet
AMD.

Priya et al. [6] proposed a machine learning approach for
classifying AMD using color retinal photographs, where the
hand-crafted features were extracted, such as retinal vessel
density, and average retinal vessel thickness. Similarly Ko-
prowski et al. [7] proposed a random forests based method
to classify choroidal OCT images into pre-defined clinical
conditions by extracting high level features, such as number of
detected objects, and average position of the centre of gravity,



from low level texture information. However, those high-
level features heavily rely on high quality detection results of
blood vessel and other anatomical structures, which normally
requires extra human resource. Current advances in Deep
Neural Networks shows a superior performance boost in visual
recognition tasks. Especially, CNNs based methods that enable
joint end-to-end learning for both feature representation, and
decision making. In this paper, we present a fully automatic
method using CNNs to learn the textural features via cate-
gorizing the OCT choroid images into broadly defined AMD
disease stages of increasing severity.

Our major contributions are two folds as follows: (1) In
traditional texture recognition methods hand-crafted feature
extractors, such as Gabor filters or wavelets, are used to
produce the feature vector before being passed onto machine
learning classifiers. When choosing hand-crafted filters, as-
sumptions have to be made about the features expected to
occur. By using CNNs to learn a bank of filters for feature
extraction we overcome this issue. It allows the develop-
ment of the optimal set of filters for the data rather than
having to make assumptions about what features exist and
choosing filters accordingly. (2) We propose an AMD dataset
that includes 75 scans using long-wavelength OCT imaging
technique, where both the annotation of choroid region, and
pathology category are provided. The experimental results
show the feasibility of diagnosing the stage of AMD via
investigating the textural appearance of choroid images. The
rest of the paper is organized as follows: Section II presents
our proposed method for filter training, feature extraction and
classification, Section III presents and discusses the dataset
and experimental results.

II. PROPOSED METHOD

In this paper we propose a fully automated machine learning
approach for the classification of the stages of AMD using the
textural appearance of OCT choroidal images. In traditional
texture recognition techniques, hand-picked feature extractors
such as Gabor filters or wavelets are used for feature extraction
with the resultant feature descriptor being passed onto machine
learning classifiers. This study presents a method to fully
automate the process of texture recognition using learnable
feature extractors rather than hand-picked ones. A CNN is
used to automatically train the filters to be used for feature
extraction rather than using predefined filters. This allows
the development of a set of filters which are best suited
to the data rather than having to make assumptions about
what features exist and choosing filters accordingly. The set
of learnt filters are convolved across the input images with
histograms computed from the resultant output to produce the
feature descriptors. These are passed onto the machine learning
techniques for supervised classification.

A. Filter Training

CNNs combine both feature representation learning and
supervised discrimination into a uniform end-to-end train-
ing framework, which have become very popular in recent

years and produce the top results for many machine vision
problems [8], [9], [10]. In this paper, a CNN is introduced
to hierarchically learn the textural features in a supervised
manner. In convolutional layers, a bank of locally receptive
filters convolve across the input image to form visual evidences
for prediction layers at the forward pass stage. At the backward
pass stage, these filters are automatically optimized via back-
propagating the prediction error of the forward pass. Fully
connected layers are also included in the network; in these
all nodes from one layer are connected to all nodes in the
next with weightings updated in the same way. This allows
pertinent localized features to be more easily identified. Fig. 2
and Table I show the architecture details of the proposed
CNN. Due to the irregular shape of the choroidal region (see
Fig. 1), it is difficult to extract large local patches without
including other structures. As such, the local patches with size
of 48×48 are cropped randomly from the annotations with
overlap. In order to interpret the low level textural features
learnt through the discrimination task, only one convolutional
layer is used. The networks that are used for natural image
recognition tasks generally have small kernel sizes, such as
3×3, as natural images have much sharper corners and higher
contrast compared to medical imaging. In our case, 40 filter
kernels with size of 9×9 are used in order to identify the
discriminative patterns in low frequency bands.

TABLE I
THE PARAMETERS OF THE PROPOSED CNN ARCHITECTURE.

No Type Parameter

0 Input 48×48×3 images scaled to [0,1]

1 Conv. 40 9×9 filters with stride 1

2 ReLU Rectified linear unit

3 F.C. Fully connected with 128 outputs

4 ReLU Rectified linear unit

5 F.C. Fully connected with 128 outputs

6 ReLU Rectified linear unit

7 F.C. Fully connected with 3 outputs

8 Softmax Softmax probability for multi-classes

Fig. 2. The network architecture of the proposed CNN.

B. Feature Generalization

CNNs are usually powerful discriminators but we intro-
duce histograms for feature generalization. The CNNs are
only trained on patches extracted from the choroid; using a



Fig. 3. Examples of self-learnt filter kernels using CNN.

relatively small area presents a challenge for developinig an
accurate model. By introducing histograms, we can adapt the
method to use the whole choroidal region rather than patches.
Convolving the filters across the entire slice and then taking a
histogram of the choroidal region allows a description of the
whole of the annotated region rather than a subsection of it.

Fig. 3 shows the examples of learnt filter kernels from
the convolutional layer. The bank of learnt filters are, in
turn, convolved across the images of the extracted choroids.
Convolving the filters across the images is a form of linear
filtering which provides the responses of the kernel patterns.
The annotated choroidal regions have variations in size and
shape, therefore, outputs of the convolutional responses vector
will be of inconsistent length. It is necessary to have the
same sized feature descriptors for all slices in order to train
the classifiers. To achieve this, the histogram of filter kernel
responses of the annotated region is computed to be used as the
feature descriptors rather than using local features directly. In
addition, to allow images of different sizes and shapes to have
the same length of feature output, histogram based descriptors
produce a representation of the distribution of kernel responses
which greatly improves the generalization ability. Especially,
in our case, the kernel filters are self-learnt through performing
discrimination tasks, which generally is difficult to link to the
pathological changes, and interpret their physical meanings
(see Fig. 3). The histogram descriptor provides the quantified
statistical measurements of the response distribution of given
kernel patterns, which helps to identify the discriminative
features. The histogram descriptor is calculated for each of
the different filters with the results concatenated to produce
one feature vector for each image. Fig. 4 shows examples
of histogram descriptors of different AMD classes produced
by the top 3 filter kernels. This images demonstrates the
differences between each class with the healthy and wet AMD
classes being most distinct, whereas the early AMD and wet
AMD are most similar.

Fig. 4. Examples of histogram descriptors of different AMD classes from
top 3 filter kernels.

C. Supervised Classification

To evaluate the discriminative power of proposed feature
descriptors, both parametric and non-parametric classifiers are
employed to distinguish different AMD stages, such as: neural
networks, random forests, and k-nearest neighbor. In order to
compare the discriminative power of histogram descriptors
with the features of filter kernel responses, the traditional
neural network (NN) is used, which has the same architecture
of the fully connected layers of the kernel learning CNN in
Fig. 2. Random forest (RF) is an ensemble method which
combines a number of weak classifiers to create an accurate
predictive model [11], [12]. It averages the results of multiple
decision trees, each of which consists of a set of recursive
binary splits with leaf nodes assigning a probability of the
training sample belonging to each class. The variable im-
portances are evaluated during the training process through
permutation, which ranks the discriminative power of learnt
filter kernels. k-nearest neighbor (k-NN) is a non-parametric
method which predicts the testing samples based on the votes
of k nearest training samples in feature space, which is used
as a benchmark against other classifiers [13].

III. EXPERIMENTAL RESULT

The dataset consists of 25 healthy eye scans from the
control group, and 50 scans from AMD patients classified
into one of two categories: early AMD and wet AMD.
Therefore, for each category the dataset contains 25 eye scans.
In order to obtain high quality images, the long-wavelength
(1040nm) OCT imaging technique is used to provide sufficient
light penetration into the choroid structure. For each eye,
a volume of 512×1024×512 pixels is produced. Each eye
has its axial eye length (AEL) measured, and the images
were scaled accordingly; this was done to control for errors
in image scaling [14]. All samples were collected by the
same operator and classified by three experienced optometrists



into the pathological categories. Classifications were made by
examining the shape and appearance of the retina based on
an adapted version of an accepted and widely used clinical
classification system [15]. We take these classifications to be
the ground truth. In preprocessing, for each eye, the outline
of the choroidal region was manually labelled on every tenth
slice, hence meaning the dataset consisted of over 3,800
labelled slices. Fig. 5 shows examples of labelled OCT scans
of the three categories. From each image the closed curve
created by the labels was extracted leaving just the choroidal
layer for each slice.

Fig. 5. Examples of labelled OCT scans for each of the three classes with
visible signs of pathology within the retina.

The CNN was trained with weight decay of 5×10−4, a
batch size of 128 and was trained for 20 epochs with learning
rates logarithmically spaced vectors between 10−2 and 10−5.
Patches of consistent dimension are extracted from the slices
to train the network. Ten patches of 48×48 pixels are extracted
from each annotated slice, providing over 500 patches per
eye. Each patch is given the same classification as the slice
to which it belongs. The convolution of each of the learnt
filters was calculated for each image and grouped into 11
bins to produce the histogram. The histograms across the
different filters are concatenated to produce a single feature
vector for each image. As each filter bank consisted of 40
different filters this produces a feature vector for each image
consisting of 440 values. Then each of the classifiers were
applied independently. The random forest consisted of 50
random decision trees, the k-NN used a k size of 5 and
the neural networks contained two hidden layers with 100
and 25 nodes respectively. For each method of validation the
training and testing process was iterated 10 times with the
demonstrated results the combination of these.

To perform AMD classification, 10-fold and 2-fold cross
validations were used. For 10-fold cross validation the whole

dataset was split into ten randomly sampled, evenly sized
groups with an equal numbers of slices from each eye. One
subset was held for testing whilst the other nine were used
for training. This training set was used for learning the filters
in the CNN and to train the classifiers. Table III shows the
results of 10-fold classification for three classifiers. Neural
networks, random forests and k-NN achieved correct classi-
fication accuracies of 83.3%, 66.2% and 52.9% respectively.
k-NN is outperformed by the other classifiers which indicates
the non-linear decision boundary is necessary to distinguish
different AMD stages. Neural networks were decidedly the
most accurate. They are useful for learning the hierarchical
structure of features. Table II shows the result of using the
feature learnt through CNN only, where on average 33.6%
is achieved which is significantly lower than the histogram
descriptor (83.3% on average in Table III). It strongly sug-
gests that the histogram descriptor improves the discriminative
power by a large margin. The primitive filter kernels shown in
Fig. 3 is rather noisy and tends to appear random, however, in
Fig. 4, the distributions of their responses are discriminative.

The results of 2-fold cross validation of our propoosed
method are summarized in Table V, with Table IV showing
the results through classifying using the CNN only. The CNN
only method is unable to distinguish between stages of AMD
whereas the respective prediction accuracies for the NNs, RFs
and k-NNs were 76.9%, 54.3% and 50.8%. The accuracy was
expected to decline across all classifiers due to the relative
decrease in the size of the training set. However, a similar
pattern occurs in which using the neural network as a classifier
produces greater accuracy than the random forest and k-NN.
The random forests and, in particular, the neural networks
produced a significantly better accuracy than achieved from
the k-NN classifier. The results suggest the feasibility of our
approach for detecting textural changes in the choroid from
which stages of AMD can be classified.

TABLE II
CONFUSION MATRIX OF 10-FOLD CNN USING THE LEARNT PRIMITIVE

KERNEL FEATURES (%)

Healthy Early AMD Wet AMD
Healthy 80.7 80.0 80.4

Early AMD 19.2 20.0 19.4

Wet AMD 0.06 0 0.20

IV. CONCLUSIONS

In this paper, we proposed an automatic texture feature
extraction method, where the low-level primitive filters were
self-learnt by CNN through discrimination tasks, and then high
level feature descriptors were constructed by computing the
regional histogram of kernel responses. It shows the feasi-
bility on AMD classification problem, where it outperforms
solely using the feature learnt by the CNN, and promising
quantitative results were reported.



TABLE III
CONFUSION MATRICES OF CLASSIFIERS USING HISTOGRAM FEATURE

DESCRIPTORS FOR 10-FOLD CROSS VALIDATION (%)

Healthy Early AMD Wet AMD Avg.

NN
Healthy 81.2 10.6 5.2

83.3Early AMD 11.1 80.9 7.0

Wet AMD 7.7 8.6 87.8

RFC
Healthy 59.8 22.0 11.9

66.2Early AMD 24.3 63.0 12.4

Wet AMD 15.8 15.0 75.7

k-NN
Healthy 57.7 37.2 27.8

52.9Early AMD 28.2 48.2 19.3

Wet AMD 14.2 14.6 52.9

TABLE IV
CONFUSION MATRIX OF 2-FOLD CNN USING THE LEARNT PRIMITIVE

KERNEL FEATURES (%)

Healthy Early AMD Wet AMD
Healthy 100 100 100

Early AMD 0 0 0

Wet AMD 0 0 0

TABLE V
CONFUSION MATRICES OF CLASSIFIERS USING HISTOGRAM FEATURE

DESCRIPTORS FOR 2-FOLD CROSS VALIDATION (%)

Healthy Early AMD Wet AMD Avg.

NN
Healthy 73.9 15.1 9.0

76.9Early AMD 12.7 72.2 6.3

Wet AMD 13.3 12.7 84.6

RFC
Healthy 49.6 28.1 20.1

54.5Early AMD 30.3 52.6 18.6

Wet AMD 20.1 19.4 61.4

k-NN
Healthy 55.2 40.0 24.9

50.8Early AMD 30.0 45.5 23.3

Wet AMD 14.8 14.5 51.8
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