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ABSTRACT

Using holographic methods we investigate the behaviour of fermionic spectral functions of
strongly coupled 2+1 dimensional field theories as both temperature and chemical potential
are quenched.ar
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1 Introduction

Arguably two of the most fundamental problems in quantum field theory, or equivalently
quantum many body physics, are non-equilibrium unitary time evolution and finite density,
respectively. With the exception of integrable systems in 1+1D (see, for instance, [1]) there
exists no direct field theoretical method that can deal with far from equilibrium dynamics
in strongly interacting systems with infinite degrees of freedom. Even at equilibrium, for
strongly interacting fermionic systems at finite density, the fermion sign problem obscures
the view of non-perturbative physics.

These problems, associated with understanding non-Fermi liquid physics, have been
pushed to center stage in condensed matter physics since the discovery of the strange metals
in high Tc superconductors and related systems [2–4]. The study of non-equilibrium physics
of quantum many body systems is at present rapidly evolving in the laboratory because
of the new techniques becoming available in the field of cold atoms, high energy physics
(heavy ion collisions) and the “ultrafast” experiments on condensed matter systems.

The AdS/CFT correspondence is unique in its capacity to deal both with finite density
and non-equilibrium in a mathematically controlled way, albeit within the limitations of the
“large N” limit and the restrictions on the non-equilibrium physics that can be addressed
easily. To illustrate this power, we present here an extreme example of a time-dependent
“experiment” involving strongly interacting fermion matter.

Consider a strongly interacting relativistic quantum critical state formed from fermions
and other degrees of freedom in 2+1D at zero density and zero temperature. This can
be pictured as graphene right at the quantum phase transition to the Mott insulator [5].
At large negative times its fermion spectral functions, which can be measured by (inverse)
photoemission, will be of the “branch cut” form dictated by Lorentz and scale invariance:

A(ω, k) ∼ Im
[
(
√
k2 − ω2)2∆−d

]
. (1)

Here, d is the spacetime dimension and throughout this work we will consider d = 3. We
are typically interested in the regime 2∆ − d < 0, noticing that the scaling dimension is
bounded from below by the unitarity limit for the fermionic CFT operators, ∆ = (d−1)/2.

Subsequently, this system is prepared in a highly excited state by a sudden “quench”
at a given instant, but now at some finite charge density which is uniform in space. The
main purpose of this paper is to compute time-dependent spectral properties of this system
using holography. Specifically, we compute its time-dependent spectral function and show
that it suggests the gradual build-up of a Fermi surface. We also highlight some caveats,
commenting in particular on the relation with quantities potentially measurable using time-
resolved ARPES experiments.

2 Time-dependent fermion spectral functions

In equilibrium, the spectral function of an operator is defined as (−2 times) the imaginary
part of its corresponding retarded Green’s function in frequency space. However, out of
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equilibrium such a definition is ambiguous; the retarded Green’s function GR(~x1, t1; ~x2, t2)
may no longer depend on just the relative time interval t = t2 − t1 but on t1 and t2
separately and a conventional Fourier transform to frequency space can not be taken. In
[6], a generalised notion of a spectral function was proposed and computed in a far-from-
equilibrium AdS/CFT context (see [7,8] and [9–11] for studies of this and related quantities
far from equilibrium and closer to equilibrium, respectively). Introducing both the relative
time t and the average time, T = (t1 + t2)/2, we consider the Fourier transform of the
Green’s function with respect to t whilst keeping T fixed,

G(T, ω, k) =

∫
dt eiωtG(T, t, k) . (2)

We assume that homogeneity is preserved such that we can Fourier transform to spatial
momenta with no change. Then a notion of a time-dependent spectral function is defined
by

A(T, ω, k) = −2 ImGR(T, ω, k) . (3)

In passing we note that this recipe for taking a Fourier transform has a rather well estab-
lished analogue as the Wigner distribution [12] used in phase space approaches to Quantum
Mechanics.

Suppose that a system starts in equilibrium, and then undergoes an instantaneous
quench at time t0 = 0, eventually relaxing to find a new equilibrium. At T = −∞ the
spectral function (3) will match the conventional equilibrium spectral function of the initial
configuration and at T = +∞ it will match that of the system at its new equilibrium. For
intermediate values of average time, (3) can generically display rather wild oscillations and
indeed need not remain positive for positive frequencies (see, for instance, [6]). This feature
is similar to the “negative probabilities” displayed by the Wigner distribution and may be
countered by coarse-graining with a Gaussian filter.

One consequence of the inherent non-locality of the definition (3) is that for T < 0 the
spectral function is already influenced by the effects of the quench; this does not represent
non-causality, it is simply because for a large enough relative time, the interval centered
around T will necessarily extend through the time of the quench. One could choose an
alternate definition removing this feature, for instance by considering the retarded Green’s
function as a function of final time t2 and relative time t = t2− t1, and Fourier transforming
with respect to the relative time t at fixed final time. (Note that the retarded Green’s
function vanishes for t < 0.)

3 Holographic setup

How can a charged quench be described in AdS/CFT? In AdS/CFT the field theoretical
problem in d dimensions is dualized in an equivalent gravitational problem living in a d+ 1
dimensional bulk, described by classical gravity in the large N limit of the gauge theory.
When the bulk is characterised by an Anti-de-Sitter (AdS) geometry it describes the vacuum
of a conformal field theory on the boundary at zero temperature and density. To study the
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non-equilibrium physics associated with an instantaneous quench in the zero density theory,
a standard simple approach (see, for instance, [13–23]) is to inject at the AdS boundary
a shell of light-like “dust” (or other matter that effectively behaves like dust) in AdSd+1.
This corresponds in the field theory with the sudden creation of an excited state whose
time evolution is subsequently determined by the equivalent gravitational evolution in the
bulk. A time-dependent metric describing such a process is available in closed form; it is
the AdS version of a metric derived by Vaidya in the 1930’s. After some time this in-falling
shell of dust will form a black brane, which in turn encodes a thermal equilibrium state in
the field theory: this is the holographic description of the anticipated thermalization of the
field theory in the long time limit.

This in-falling shell paradigm of holographic thermalisation was recently extended to
Einstein-Maxwell gravity, where one can consider the injection of a shell of dust which is
electrically charged [24, 25]. Fig. 1 illustrates the Penrose diagram for the corresponding
Reissner-Nordström-AdS-Vaidya spacetime. Although the (scale-dependent) equilibration

Figure 1: Penrose diagram for Vaidya AdS Reissner-Nordström (RN) spacetime.

time becomes dependent on whether the chemical potential is large or small compared to
temperature, the gross evolution in the bulk is similar as in the zero density case: after some
time a charged Reissner-Nordström (RN) black brane will form, describing a holographic
strange metal at finite temperature.

It has been known for a while that, for sufficiently relevant scaling dimensions of the
fermion operators of the zero density CFT, Fermi liquid like quasiparticles form at finite
density [26–28], characterised by a propagator

G(ω, k) =
1

ω − vF (k − kF ) + Σ(ω, k)
(4)
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with self energy Σ ∼ ω2νk=kF where νk is associated with the scaling dimension in the
AdS2 × IR2 near horizon geometry. We deliberately choose parameters such that 2νkF > 1,
so that sharp quasiparticles are formed in the finite density system.

It is however by now well understood that, when backreaction from bulk fermions is
taken into account, the RN black hole is quantum mechanically unstable to the formation
of an electron star [29–33] (see [34] for a review). This also corresponds to a thermodynamic
instability, in the sense that for fixed temperature and chemical potential, the electron star
solution has lower free energy than the RN black brane. While it would be interesting to
study this effect in the present fixed-energy (as opposed to fixed-temperature) context, in
the present paper we choose to work in the limit in which we treat the bulk classically
(which can be thought of as ignoring perturbative and non-perturbative 1/N corrections).

In our d = 3 case, the metric and the bulk spacetime gauge fields are given in Eddington-
Finkelstein coordinates by

ds2 =
1

z2

(
−f(v, z)dv2 − 2dvdz + d~x2

)
,

A = g(v, z)dv ,
(5)

where
f(v, z) = 1 + Θ(v)

(
−(1 +Q2)z3 +Q2z4

)
,

g(v, z) = Θ(v)µ(1− z) .
(6)

At the spacetime boundary z = 0, the bulk lightcone time v coincides with the field theory
time. As in [26] we work with dimensionless quantities obtained by rescaling such that
the horizon is fixed at z = 1. The temperature of the final black hole produced is T =
1

4π
(3−Q2) and the parameter µ = gFQ can be identified with the chemical potential of

the theory where gF is the U(1) coupling which we shall set to unity.
To determine fermionic spectral functions, we use the same strategy that was employed

in [6] for scalar spectral functions. The retarded propagator of an operator is determined
by computing its expectation value following a perturbation by a delta-function source [35].
The expectation value and the source are identified with certain coefficients in a near-
boundary expansion of the dual bulk field. The bulk field is obtained by solving its equation
of motion subject to boundary conditions determined by the delta-function source and initial
conditions that set the field to zero outside the future lightcone of the source.

To implement this procedure for a fermionic operator of conformal dimension ∆ and
U(1) charge q, we consider the Dirac equation for a bulk fermionic field of mass m,

( /D −m)Ψ ≡ γµ∂µΨ +
1

4
γµωµABΓABΨ− iqγµAµΨ−mΨ = 0 , (7)

in which γµ are the curved space gamma matrices of the AdS spacetime, ωµAB the spin
connection, ΓA the constant bulk gamma matrices in the local tangent frame and ΓAB =
1
2
[ΓA,ΓB] the antisymmetric generators of Lorentz transformations.

The conformal dimension is related to the mass of the bulk field by (∆ − 3/2)2 = m2

or ∆± = 3/2 ±m. One should keep in mind that the unitarity bound on fermionic CFT
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operators is ∆ > (d − 1)/2 = 1. This implies that in the mass range m < −1/2 only the
choice ∆ = ∆− is allowed and in the range 1/2 < m only ∆ = ∆+. In the mass range
−1/2 < m < 1/2, both ∆ = ∆− and ∆ = ∆+ are allowed. These two possibilities are related
by switching the roles of the source and the expectation value in the identification with
coefficients of the bulk field. Throughout this paper, we are assuming that the conformal
dimension of the operator is

∆ = ∆+ =
3

2
+m. (8)

We will consider operators of conformal dimension ∆ ≤ 3/2 (with the main focus of the
analysis on the case m = 0). Spectral functions of fermionic operators in this conformal
dimension range have been studied at equilibrium in the RN geometry in [26–28].

To proceed, we will choose the spatial momentum to be aligned in the x1 direction and
define

Ψ = zm+ 1
2 eikx

1


y+(v, z)
z+(v, z)
y−(v, z)
z−(v, z)

 . (9)

With a judicious choice of gamma matrices,

Γv =

(
0 iσ2

iσ2 0

)
, Γz =

(
I2 0
0 −I2

)
, Γ1 =

(
0 σ1

σ1 0

)
, Γ2 =

(
0 σ3

σ3 0

)
,

(10)
and frame fields,

ev =
1

z

(
dz +

1

2
(f(v, z) + 1)dv

)
, ez =

1

z

(
dz +

1

2
(f(v, z)− 1)dv

)
, ex

i

=
1

z
dxi ,

(11)
one finds the equations of motion for y+ and z− decouple from those of y− and z+ [26]. It
suits our purpose to define the combinations α = y+ + z− and β = y+ − z−, in terms of
which the equations of motion become

0 = (−1 +m)α− (m+ ikz)β + z∂zα ,

0 = −2(m− ikz)α + (z∂zf + 2f(m− 1) + 4iqzg) β + 2zf∂zβ − 4z∂vβ .
(12)

Similar equations for y− and z+ can be obtained by substituting k ↔ −k in these.
Since we are working in a mixed representation, in which only spatial momenta are

Fourier transformed at first, the prescription for finding the bulk-to-boundary retarded
Green’s function is to simply consider the causal response to a delta-function source on the
boundary. Then, using the standard holographic dictionary identifying the source and vev
of the boundary CFT operator with the asymptotic behaviour of the bulk field [36,37], one
can extract the boundary retarded Green’s function GR. Whilst GR is a 2 × 2 matrix, in
this basis of gamma matrices it is diagonalised.

Specifically, z− and y+ have the asymptotic expansion

z− ≈ z1−2m(A+O(z)) + z2(B +O(z)) ,

y+ ≈ z2−2m(C +O(z)) + z (D +O(z)) ,
(13)
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where A is identified as the source and D is identified as the expectation value. C and B
are local functions of A and D (and of their derivatives), respectively, as determined by the
asymptotic Dirac equation.1

To invoke a delta-function source at a time t1 on the boundary one thus enforces

lim
z→0

z2m−1z−(v, z) = lim
z→0

z2m−1α(v, z)− β(v, z)

2
= δ(v − t1) , (14)

and to ensure that the propagator is causal (i.e., the retarded propagator) we impose that

β(v < t1, z) = 0 . (15)

By virtue of the Dirac equation, this is sufficient to ensure that also α(v < t1, z) = 0. With
these conditions one can then determine the appropriate solution to (12).

For t2 > t1 the source has no support and the expectation value of the boundary operator
can be easily extracted. The upper component of GR can be calculated as

G11(t2, t1) = −i lim
z→0

z−1y+(v2, z) = −i lim
z→0

z−1α(v2, z) + β(v2, z)

2
, (16)

with a similar definition for the lower component G22 coming from the analogous equations
for y− and z+.

4 Numerical solution strategy

To solve the equations of motions (12) we can distinguish three cases: a) when the relative
time interval t = t2 − t1 occurs entirely before the quench; b) when it extends across the
quench and c) when it occurs entirely after the quench.

In case a) one needs only to consider the pure AdS region of the Vaidya spacetime
for which exact analytic expressions are known for the bulk-to-boundary retarded Green’s
function.

In case b) the same analytic expressions may be used for the AdS portion of the space-
time and in particular on the shell of null dust at v = 0. We then employ numerical methods
to propagate these analytic expressions forwards from the shell at v = 0 to fill out the re-
mainder of the spacetime outside the horizon. In particular, knowing β on a fixed v slice,
the first equation in (12) with suitable boundary conditions can be integrated to obtain the
bulk profile for α. Given the bulk profiles for α and β on a fixed v slice the second equation
in (12) is used to evolve β to a subsequent time. To perform the integration in the radial,
z, direction we employ a Chebyshev pseudospectral method, combined with an explicit 4th

order Runge-Kutta method in the v direction. For numerical purposes, it is also necessary
to impose a cut-off at late vcut in our numerical integration. To generate the plots in the
next section we took N = 27 Chebyshev points, a Runge-Kutta time step δv = 0.05 and a
cut-off in the Runge-Kutta integration vcut = 60. Details of the convergence and accuracy

1See for instance [26]. Notice however the different rescaling and chirality conventions.
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of these methods are provided in appendix A where we show that for the chosen values of
parameters the results for the spectral function are convergent to within the resolution of
plots shown.

In case c), although the relevant geometry is the AdS-RN black hole, one does not
have access to analytic expressions for the retarded propagator in the mixed representation
GR(t, k). We found a sensible approach in this case to first calculate GR(ω, k) in Fourier
space as in [26] and to then perform an inverse Fourier transform to find the desired Green’s
function in the mixed representation.

The next step to obtain our time-dependent spectral function is to perform the Wigner
transformation to Fourier space as described in (2). Depending on the conformal dimension
of the operator, GR(T, t, k) can exhibit power law divergences as t → 0, which need to
be appropriately regulated. To address this problem one can take the ratio of GR(T, t, k)
with another analytically known and appropriately regulated function A(t) such that the
ratio is finite as t → 0. If the Fourier transform of A(t) is also known analytically, then a
simple application of the convolution theorem can be used to establish GR(T, ω, k). In this
work, Fourier transformations are implemented numerically using discrete Fourier routines.
To avoid artefacts associated to the late time cut-off vcut of our numerical evolution, e.g.
Wilbraham-Gibbs or ringing phenomena, we include a Lanczos σ factor in our Fourier
transformation [38].

5 Results

Fig. 2 shows the spectral sum (the trace of the spectral function matrix),

A(T, ω, k) = −2 [Im(G11(T, ω, k)) + Im(G22(T, ω, k))] , (17)

in the {ω, k} plane for a fermionic operator of conformal dimension ∆ = 3/2 (dual to a
bulk field of mass m = 0) when we quench the system to a near extremal final state: the
chemical potential is quenched from µ = 0 to µ = 1.7 and the temperature is kept close to
zero (recall at zero temperature Q =

√
3 ≈ 1.732). A small non-zero temperature has the

advantage of stabilising the numerics, while being closer to what one would obtain in a real
experimental situation.

The top central panel of Fig. 2 shows the result at an early average time T = −5 and
we see that whilst the density is roughly symmetric around the light cone centered at ω = 0
(indicated in the figure by the dashed red lines), a number of oscillations have already begun
to influence the profile. In the top right panel, at T = −2.5, the period of the oscillations
has roughly doubled, as can be seen more clearly in Fig. 3.

In the bottom left panel, at T = 0, the oscillations have essentially disappeared, and the
spectral function has developed a clear asymmetry between positive and negative frequency
branches. In the bottom central panel, at T = 1.5, it is now clear that the asymptotic
behaviour of the peak of the spectral function has shifted down still further, characteristic
of a system at finite density.

Taking Fig. 2 at face value, after a transient regime at short times, characterised by
oscillations of the “critical Dirac cones”, it appears that at longer times a Fermi energy and
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Figure 2: False colour density plots for spectral sum A = −2 [Im(G11) + Im(G22)] for
bulk field of mass m = 0 when quenched to Q = 1.7, at (from top to bottom) T =
{−∞,−5,−2.5, 0, 1.5,+∞}. For reference we plot, in red dashed lines, lightcones centered
around ω = 0.

Fermi surface develop. Observing that the asymptotic“Dirac cones”gradually move down, it
is tempting to define a notion of time-dependent effective Fermi energy, or equivalently time-
dependent effective chemical potential, µeff (T ), which measures how much the asymptotic
cones have moved down. (This is indicated by the green dashed lightcone in the bottom
central panel of Fig. 2.)2

Fig. 4 shows the accumulation of a peak at zero frequency for a number of average
times. We see for very early times (the curves with lowest peaks in Fig. 4) that the spectral
function attains its maximum very close to zero momenta, as would be expected at zero
density, and exhibits clear oscillations including negative spectral weight. As the average
time evolves one finds that these oscillations die out, the location of the maximum at zero
frequency migrates to larger values of k and the value at the maximum increases. The edge

2At a practical level we numerically calculate the location of the maximum value ω? of the spectral sum
at a fixed large k and use this to define µeff (T ) = k−ω?. However, since the peaks of the spectral functions
have a finite width and a profile that depends on both Q and ∆, in what follows to make true comparisons
we always take the ratio of this quantity with the same quantity calculated in the final equilibrium state.
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Figure 3: Detail of section of spectral sum along ω = k − 2 at average times T = −5 (left)
and T = −2.5 (right) highlighting an approximate halving of the frequency of oscillations.
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Figure 4: Plots of spectral sum at ω = −10−3 for field of mass m = 0 when quenched to
Q = 1.7 for T = {−5,−2.5,−0.5, 0, 0.25, 0.5, 1.5, 2.5, 5, 10, 15}. The higher T , the higher
the maximal value. Also shown is a line at kF ≈ 0.92, the value of the Fermi momenta
established in [26].

at larger k sharpens and a clear peak develops with the location of the peak moving to
where ultimately a sharp spike at k = kF ≈ 0.92 [26] will occur.

In Fig. 5 and Fig. 6 we show how this effective chemical potential µeff (T ) evolves as a
function of time for various choices of the net charge density and fermion scaling dimension.
At late times, the system seems to settle in an equilibrium (quasi) Fermi liquid with a Fermi
surface that obeys the Luttinger Volume theorem (which states that the volume enclosed
by the Fermi surface is proportional to the fermion charge density) at a finite temperature,
chosen to be small compared to the chemical potential in the examples we show. In Fig. 5 we
examine this effective chemical potential as a function of time for quenches with different
values of Q and find several distinct features. As might be anticipated, at T = 0 the
effective chemical potential appears to attain half its final value. For T > 0 there is a
universality in the approach to the final value of chemical potential, while for T < 0 the
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Figure 5: Plots of the relative effective chemical potential ∆µ(T ) = µeff (T )/µeff (+∞) as
a function of average time, T , for m = 0 quenches with Q = 0.5 (red circles), 1 (orange
squares), 1.25 (cyan diamonds), 1.7 (blue triangles).

onset of chemical potential gain occurs later for larger Q. For charges Q of order 1, i.e.,
comparable to the extremal value

√
3, the unit of time in Fig. 5 is of order the inverse

final chemical potential. Fig. 5 shows that the effective chemical potential is built up on
a time scale of the same order. In Fig. 6 we examine this effective chemical potential for
different values of the fermionic operator conformal dimension (bulk mass) and find a final
clear feature: the smaller ∆, the quicker chemical potential is acquired.

The effective chemical potential can be viewed as a new non-local probe of thermaliza-
tion. Probes considered in previous work include equal-time two-point functions, Wilson
loops and entanglement entropy [17,24,25], in which case the thermalization time depends
on the spatial extent of the probe. If one chose probes of size set by the final chemical
potential, one would find thermalization times of the same order as in Fig. 5.

6 Caveats and further discussion

In interpreting our results, several caveats need to be taken into account. A first caveat,
which we have already mentioned, is that our “quasi” Fermi liquid realised at long times is
in fact a false vacuum artefact associated with the large N limit. As we already discussed, it
is understood that the true equilibrium state is a Fermi liquid which is dual to the electron
star in the bulk. The dynamical “uncollapse” of the black brane in the electron star requires
a quantised description of the geometry: in classical gravity this cannot happen. However,
as long as N is not too small we expect a separation of time scales such that the further
relaxation from the RN “quasi” Fermi liquid to the electron star Fermi liquid will take place
at a much later time. We leave this problem of the dynamical formation of the electron
star due to quantised geometry as a challenge for holography in general.

Next, while our notions of time-dependent spectral function and of time-dependent
effective Fermi energy are well-defined and reduce to the appropriate equilibrium concepts
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Figure 6: Plots of the relative effective chemical potential as a function of average time for
quenches with Q = 1 for different conformal dimensions ∆ = 1.5 (red circles), ∆ = 1.35
(orange squares), ∆ = 1.25 (cyan diamonds), ∆ = 1.15 (blue triangles) and ∆ = 1.01 (green
inverted triangles).

in static situations, we should ask to what extent these quantities are measurable in a lab,
and exactly which physical information they carry.

In equilibrium, spectral functions can be experimentally determined using Angle-Resolved
Photoemission Spectroscopy (ARPES). Actually, electrons can only be emitted from occu-
pied states, so what ARPES measures is really the product of the spectral function and the
Fermi factor. Technically, this product equals the “lesser Green function” in Fourier space,
often denoted G<(ω, k) or D<(ω, k); see, for instance, [39]. Because of the fluctuation-
dissipation theorem, knowledge of the spectral function suffices to determine the lesser
Green function, and vice versa (at least for nonzero temperature).

Away from equilibrium, time-resolved ARPES is the tool of choice. As shown in [40],
the lesser Green function (which now depends on two moments of time) still carries the
relevant information. In quite close analogy to (2), it should be Fourier transformed with
respect to the relative time coordinate, with the additional complication that the exper-
imental setup introduces time windows for both moments of time. For slowly varying
systems, at least some version of the fluctuation-dissipation theorem remains valid [10,41].
Far from equilibrium, however, the retarded and lesser Green functions are not straightfor-
wardly related (see, for instance, [6–8]), making it much less clear how ARPES is related to
time-dependent spectral functions. While in current versions of time-resolved ARPES the
fluctuation-dissipation relation is a good approximation, this would not be the case for an
idealized ARPES experiment preformed on our system, which is quenched instantaneously.

One may wonder about the meaning of the oscillations and of the negative regions in
our time-dependent spectral functions. Our present understanding is that these are due to
simple interference between the pre-quench and post-quench periods, as was the case for
the quenched harmonic oscillator discussed in [6]. One piece of evidence supporting this
statement is that the wavelength of the oscillations in ω seems to be set by the time T to
the quench (see Fig. 3). This presumably makes it hard to relate this quantity to practical
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experiments. Given a system prepared in an out-of-equilibrium state, what one would really
like to probe is how it behaves after it has been prepared in that state. But in our setup, the
retarded Green function with both moments of time after the quench behaves exactly as if
the system were in equilibrium (as discussed in [14] for a thermal quench). So if one defined
a time-dependent spectral function using only those “post-quench” data (by introducing
appropriate time windows), the oscillations and negative regions would disappear. The
reason for the equilibrium behaviour is that the post-quench retarded propagator is only
sensitive to the bulk geometry outside the shell, which agrees with that of a charged black
brane.

Nevertheless, our system right after the quench is far from equilibrium: as also men-
tioned in [14] (and worked out in detail in [13–23]), spatially nonlocal observables do not
immediately take their equilibrium values. Therefore, time-resolved ARPES, which does
not probe the retarded propagator but the lesser Green function, should not give equilib-
rium results either (at least in principle: in practice it may not be easy to have good enough
time resolution to see deviations from equilibrium). From this point of view (linear response
after the quench being trivial, but time-resolved ARPES not), it would be interesting to
compute the lesser Green function for our system. While it is in principle known how to do
this (see, for instance, [42,43]), we leave this computation to future work.
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A Numerical convergence

We provide some details illustrating the convergence of the numerical methods used. There
are three key variables that influence the numerical accuracy: i) N , the number of nodes
used in the pseudospectral method to integrate in the radial direction; ii) δv, the time-
stepping used in the Runge-Kutta integration in the v direction; iii) vcut, the final relative
time used for the numerical integration. The convergence for each of these is illustrated in
Figs. 7–9 showing the imaginary part of the Fourier transformed Green’s function GR(ω, k)
for the case of Q = 1.7, T = −2.5 at a fixed k = 0.9. These values are chosen since they
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highlight the most challenging parts to obtain numerically. Setting Q = 1.7, as was used
in the bulk of this paper, means that we are at low temperature and hence GR(t, k) is not
thermally suppressed. The choice k = 0.9 corresponds to focusing on the region of momenta
space of most interest, where we might anticipate long lived excitations. With T = −2.5 we
capture the difficult rapidly fluctuating parts of the spectral function arising from transient
behaviour in the quench regime.
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N = 35
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Figure 7: Convergence as number of Chebyshev nodes is varied (we fix the Runge-Kutta
step δv = 0.05 and vcut = 60). Very good convergence, at the resolution of this plot,
is achieved after N = 25 points. The most sensitive point is the absolute height of the
transient negative peak, but even this is well converged at N = 30. In the paper we used
N = 27 to balance resource use and accuracy.
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Figure 8: Convergence as Runge-Kutta time step δv = 1
5
2−n is varied (we fix N = 30

Chebyshev nodes and vcut = 60). Very good convergence, at the resolution of this plot the
different curves are virtually indistinguishable, is achieved with time stepping δv = 0.05 as
was adopted in the paper.
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Figure 9: Convergence as the final integration time vcut is varied (we fix N = 30 Chebyshev
nodes and the Runge-Kutta step δv = 0.05). Here the results are more sensitive but are
well converged for vcut = 45 (the green, blue and cyan lines are essentially coincident). We
used vcut = 60 in the paper.
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