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Jérôme Gaillarda,1, Niall T. Macpherson b,2, Carlos Núñezb,c,3 and Daniel C. Thompsond,4
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Abstract

In this paper we construct and examine new supersymmetric solutions of massive IIA su-

pergravity that are obtained using non-Abelian T-duality applied to the Baryonic Branch of

the Klebanov-Strassler background. The geometries display SU(2) structure which we show

flows from static in the UV to dynamical in the IR. Confinement and symmetry breaking

are given a geometrical interpretation by this change of structure. Various field theory ob-
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1 Introduction And General Idea Of This Paper

The notion of duality is of course quite old, going back to well-known examples like the

Maxwell equations in vacuum. The true power of the idea became clear around 1940 with

the Kramers-Wannier [1] duality of the Ising model. In more recent times dualities have

continued to be a driver of theoretrical progress with examples including Bosonisation [2],

Montonen-Olive duality [3], S and T-dualities, Seiberg-Witten duality [4], Seiberg duality

[5] and more general String dualities (U dualities). The duality conjectured by Maldacena

[6], also called AdS/CFT or Gauge-Strings duality, is arguably the most powerful, widely

applicable and conceptually deep duality of all known at present. All these dualities present

common features: the degrees of freedom on both sides of the dual descriptions are in prin-

ciple quite different; a strongly coupled (highly fluctuating) description of the system is

characteristically mapped into a weakly coupled (semiclassical) one, in the same vein a phe-

nomena that is ‘local’ in one set of variables becomes ‘non-local’ in the other (as exemplified

by order-disorder operators and their typical ‘uncertainty’ relations), global symmetries are

common to both dual descriptions, etc.

In this paper, we will mostly work with two dualities, the one conjectured by Maldacena

and its extensions (see the papers [7] for a sample of representative work and reviews)

together with what is called ‘non-Abelian T-duality’ [8]. We will use non-Abelian T-duality

as a technique to generate new solutions to the equations of motion of Type II supergravity.

Following the implementation of non-Abelian T-duality as a solution generating technique

of RR backgrounds in [9], there have been a number of recent developments in the use of

non-Abelian duality, see [10]-[19]. We will make use of many technical tools developed in

these various papers.

We will consider backgrounds of Type II Supergravity that have a well understood (strongly

coupled) field theory dual; we will then study the effect of this generating technique on the

background. This will lead us to the construction of new solutions of ten-dimensional Su-

pergravity and, as advocated in [14], we will use these new backgrounds to define new field

theories at strong coupling. All of our backgrounds will be smooth and minimal supersym-

metry in four dimensions (four supercharges) will be preserved. These new solutions will

admit a description in terms of G-structures and we will explain how certain field theoretical

phenonomena, like confinement and symmetry breaking are encoded in generic changes of

the G-structure.

The system on which we will focus our study is the Baryonic Branch of the Klebanov-

Strassler field theory [20], [21], [22]. This is perhaps, among the minimally SUSY examples

known at the moment, the one that better passed test of the correspondence between ge-

ometry and (strongly coupled) field theoretical aspects. Besides, the Baryonic Branch field

theory and geometry unifies the original Klebanov-Strassler system and the system of five

branes wrapping a two cycle inside the resolved conifold [23]. Field theoretically, this unifi-
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cation can be thought as a Higgs-like mechanism and a particular limit where an accidental

symmetry appears. See the papers in [24] for different geometric and physical aspects of this

connection.

In this work, we will perform an SU(2) non-Abelian T-duality on the Baryonic Branch

geometry. This is a geometry described by an SU(3)-structure. All features of the geometry

are characterised by a couple of forms J2,Ω3 that also encode many aspects of the strongly

coupled dual field theory. Using non-abelian T-duality, we will obtain a new background

in Massive Type IIA Supergravity. The G-structure will change to what is called SU(2)-

structure, characterised by forms j2, w1, v1, ω2. The SU(2)-structure will transition from

being static in the large radius region of the geometry (corresponding to high energies in

the dual field theory) to being dynamical once the small radius region of the geometry

is considered. Hence, the phenomena of confinement and symmetry breaking are given a

geometric description by the change in SU(2)-structure from static to dynamical.

The action of non-Abelian T-duality on the G-structures has been studied in many back-

grounds which we take the opportunity to summarise in the table below.1

Seed Solution Seed Structure Dual Structure

Klebanov-Witten SU(3) Orthogonal SU(2)
Klebanov-Tseytlin SU(3) Orthogonal SU(2)
Y p,q SU(3) Orthogonal SU(2)
Klebanov-Strassler SU(3) Dynamical SU(2)
KS Baryonic Branch SU(3) Dynamical SU(2)
Wrapped D5’s on S2 SU(3) Dynamical SU(2)
Wrapped D6’s on S3 SU(3) Dynamical SU(2)
Wrapped D5’s on S3 G2 Dynamical SU(3)

The contents of this paper are organised as follows. In Section 2 we will briefly sum-

marise the original background and field theory corresponding to the Baryonic Branch of

the Klebanov-Strassler field theory (the seed background/field theory pair on which we will

apply our generating technique). In Section 3 we will present explictly the new solution.

In Section 4, we will organise all the previous information using the language of G-

structures. This will lead to a compact way of writing things, that can be very useful

for other studies. We will study how the dynamical or static character of the G-structure

depends on the field theoretic low energy dynamics captured by the original solution. In

Section 5, we will discuss different aspects of the field theory dual to our new backgrounds.

We close the paper with a list of possible future problems and conclusions. A number of

technical and useful appendixes complement our presentation.

1The details of the case of Y p,q are to appear in [50] and a detailed study of the D6 branes on S3 will
appear in [51].
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2 Generalities on the Baryonic Branch

The Klebanov-Strassler field theory is a two-group quiver with bifundamental matter, charged

under a global symmetry of the form SU(2) × SU(2) × U(1)R × U(1)B. The ranks of the

gauge groups are (N,N+M) and the bifundamental matter A1, A2, B1, B2 self-interact via a

superpotential of the form W ∼ ABAB. For a very clear explanation of many of the details

of this quantum field theory, see [27], [28]. One detail that will be crucial to our present

work is the fact that the so called ‘duality cascade’, a succesion of Seiberg dualities, ends

in a situation where the quantum field theory may choose to develop VEV’s for the Baryon

and anti-Baryon operators.

In the last step of the duality cascade the gauge group is SU(M)×SU(2M). This theory

has mesons M = (Aa)
α
i (Bb)

i
β and also baryonic operators [21]

B = ǫα1....α2M
(A1)

α1
1 (A1)

α2
2 ....(A1)

αM−1

M−1 (A1)
αM
M × (A2)

αM+1

1 (A2)
αM+2

2 × ....(A2)
α2M−1

M−1 (A2)
α2M
M

(2.1)

and similar for B̃ made out of (Bi)
a
l fields. One can see that both baryons and anti-baryons

are neutral under SU(2)× SU(2) transformations.

The moduli space consists of two branches - the mesonic and the baryonic [28]. On the

mesonic branch the baryons are zero (B = B̃ = 0) and the mesons satisfy detM = Λ4M .

The non-perturbative contribution to the superpotential means that the associated moduli

space can be identified with a symmetric product of the deformed conifold. On the baryonic

branch the mesons are zero (M = 0) but the baryons acquire expectation values,

B = iξΛ2M , B̃ =
i

ξ
Λ2M , (2.2)

where Λ is the strong coupling scale of the group SU(2M). Notice that both VEV’s are

equal only if ξ = 1. This corresponds to a Z2-symmetric point, represented by the exact

solution in [20].

On this baryonic branch the U(1)B symmetry is spontaneously broken and the associated

massless (pseudo-scalar) Goldstone mode corresponds to the phase of ξ. By supersymmetry

this Goldstone lives in a chiral multiplet and comes along with scalar partner, the saxion,

which corresponds to changing the modulus of ξ. As discussed in [28], the VEV of the

operator,

U = Tr[AiA
†
i −BjB

†
j ] , (2.3)

which contains the U(1)B current Jµ as its θσµθ̄ component, encodes the motion along the

baryonic branch (the different values of ξ) according to

〈U〉 ∼MΛ2 ln |ξ| . (2.4)

Let us focus on the situation where the field theory chooses to move to the purely baryonic

branch. In this case, there is a smooth solution of the equations of motion of Type IIB su-
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pergravity, that describes the strong dynamics of this field theory, including the spontaneous

breaking of the U(1)B symmetry [21], [22]. In the notation that we will adopt in this work,

such background can be written compactly by introducing the (string frame) vielbein basis,

ex
i

= e
Φ
2 ĥ−

1
4dxi , eρ = e

Φ
2
+kĥ

1
4dρ , eθ = e

Φ
2
+hĥ

1
4dθ , eϕ = e

Φ
2
+hĥ

1
4 sin θ dϕ ,

e1 =
1

2
e

Φ
2
+gĥ

1
4 (ω̃1 + a dθ) , e2 =

1

2
e

Φ
2
+gĥ

1
4 (ω̃2 − a sin θ dϕ) ,

e3 =
1

2
e

Φ
2
+kĥ

1
4 (ω̃3 + cos θ dϕ) . (2.5)

Where ω̃i are the left invariant forms of SU(2). The metric, RR and NSNS fields are

ds2 =
10∑

i=1

(ei)2 ,

F3 =
e−

3
2
Φ

ĥ3/4

[
f1e

123 + f2e
θϕ3 + f3(e

θ23 + eϕ13) + f4(e
ρ1θ + eρϕ2)

]
,

B2 = κ
eΦ

ĥ1/2

[
eρ3 − cosα(eθϕ + e12)− sinα(eθ2 + eϕ1)

]
,

H3 = −κ e
1
2
Φ

ĥ3/4

[
− f1e

θϕρ − f2e
ρ12 − f3(e

θ2ρ + eϕ1ρ) + f4(e
1θ3 + eϕ23)

]
,

C4 = −κ e
2Φ

ĥ
dx0 ∧ dx1 ∧ dx2 ∧ dx3 ,

F5 = κ e−
5
2
Φ−kĥ

3
4∂ρ

(
e2Φ

ĥ

)[
eθϕ123 − ex

0x1x2x3ρ
]
. (2.6)

We have defined

cosα =
cosh(2ρ)− a

sinh(2ρ)
, sinα = − 2eh−g

sinh(2ρ)
, ĥ = 1− κ2e2Φ , (2.7)

where κ is a constant that we will choose to be κ = e−Φ(∞). The functions are,

f1 = −2Nce
−k−2g , f2 =

Nc

2
e−k−2h(a2 − 2ab+ 1) ,

f3 = Nce
−k−h−g(a− b) , f4 =

Nc

2
e−k−h−gb′ .

(2.8)

The system has a radial coordinate ρ, on which (a, b,Φ, g, h, k) depend, and we have set

α′gs = 1. The background is then determined by solving the equations of motion for the

functions (a, b,Φ, g, h, k). A system of BPS equations is derived. These non-linear and

coupled first-order equations can be arranged in a convenient form, by rewriting the functions

of the background in terms of a combination of them, that decouples the equations (as

explained in [30]-[31]). We will not go over these in the present paper. Enough will be for us
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to state that the whole dynamics of the string background is controlled by a single function

P (ρ), subject to a second order non-linear and ordinary differential equation. This function

P (ρ) can be determined numerically and has IR and UV behaviors

UV : P = e4ρ/3 [c+ + . . . ] , ρ→ ∞ ,

IR : P = h1ρ+O(ρ3) , ρ→ 0 .
(2.9)

There is only one independent parameter, c+ > 0 (the constant h1 is determined by c+) and

it is this parameter that can be identified with the Baryonic expectation value

U ∼ 1

c+
. (2.10)

It is convenient to define a dimensionless quantity λ = 22/3c+ǫ
−4/3 where ǫ may be identified

with the conifold deformation. See the paper [26] for a good account of the logic and technical

details.

2.1 SU(3) structure of the Baryonic Branch

The Supergravity background above is characterised by what is called an SU(3) structure.

That is, there exists a couple of forms Ĵ2 and Ω̂3, in terms of which the BPS equations, the

fluxes and various other quantities characterising the space can be written.

The observation of [25], it that the forms Ĵ , Ω̂, describing the full Baryonic Branch can

be obtained from the simpler ones describing a set of D5 branes wrapping the two cycle of

the resolved conifold. We will not repeat the details of the derivation here, but we quote the

results to the extent that we will find useful.

In general, an SU(3) structure solution can be described by the following pure spinors in

type-IIB [39],

Ψ+ = −eiζ(r) e
A

8
e−iĴ , Ψ− = −ie

A

8
Ω̂hol. (2.11)

Where e2A is the warp factor of the metric. Let us define

eiζ(r) = C + iS (2.12)

where C2 + S2 = 1. It is possible to show that for zero axion field, that is F1 = 0, SUSY

requires the following equalities to hold (these are the BPS equations previously mentioned)

d
(
e−ΦS

)
= 0, d

(
e2A−ΦC

)
= 0,

d
(
e3A−ΦΩ̂hol

)
= 0, d

(
e4A−2ΦĴ ∧ Ĵ

)
= 0.

(2.13)

The fluxes are determined as

B2 =
S
C Ĵ ,

1

C2
d
(
e2AĴ

)
= e4A ⋆6 F3 , d

(
e4A−ΦS

)
= −e4A ⋆6 F5 . (2.14)
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The system of Nc D5 branes wrapped on the resolved conifold is supported by just F3

flux and is a solution to these equations when S = 0. The (string-frame) frame fields that

describe this geometry can be obtained from those of eq.(2.5) by setting ĥ = 1. In terms

of these, the J2,Ω3 ( denoted without hats to distinguish them from those of the Baryonic

Branch) are given by

J = er3 + (cosαeϕ + sinαe2) ∧ eθ + (cosαe2 − sinαeϕ) ∧ e1 ,

Ωhol =
(
er + i e3

)
∧
(
(cosα eϕ + sinα e2) + i eθ

)
∧
(
(− sinα eϕ + cosα e2) + i e1

)
,

(2.15)

which obey the relations J ∧ Ωhol = 0, J ∧ J ∧ J = 3i
4
Ωhol ∧ Ω̄hol. The BPS equations for

the functions h, g, k, a, b,Φ and the RR three-form flux, are

d(J ∧ J) = 0, d(eΦ/2Ωhol) = 0

d(eΦJ) + e2Φ ⋆6 F3 = 0.
(2.16)

Then the results of [25] show that the Ĵ , Ω̂ of the full Baryonic Branch solution are obtained

by introducing a non-zero phase or rotation parameter2 ζ(r) in to (2.11) and defining:

Ĵ = CJ, Ω̂hol = C3/2Ωhol, e2A =
eΦ√
C
, S = eΦ−Φ∞ , (2.17)

where e2A is the warp factor of the Baryonic Branch solution. For further details on the

geometry and physics implied by this ‘scaling of forms’, we refer the reader to the original

papers [25] and [24].

2.2 A useful gauge transformation

Let us comment on a small subtlety that will be important in what follows. The above

rotation argument makes it quite clear that by sending ζ → 0, the geometry becomes that

of the wrapped D5 branes. On the other hand taking ζ → π
2
accompanied with λ → 0, the

geometry becomes that given by Klebanov and Strassler i.e. the Z2 point of the Baryonic

Branch. Taking this limit is slightly delicate. One finds that sin ζ → 1 and cos ζ → 1
λ
hKS

where hKS is the Klebanov-Strassler warp factor. Expanding the functions (a, b,Φ, g, h, k)

in the large λ limit and rescaling Minkowski coordinates xi → xiλ
−1 one finds that leading

term of the metric is independent of λ and reproduces the KS geometry. The limit applied

on the NS two form is less trivial, in fact its expansion in inverse powers of λ is

B2 = λ
ǫ2 sinh(2ρ)

2
√
3κP1

√
P ′
1

d(P1(ω̃3 + cos θdϕ)− BKS +O(λ−1) . (2.18)

2This parameter can also be understood in terms of the boost parameter that enters in the duality chain
that relates the wrapped brane geometries to the Baryonic branch [24] .
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However the form of P1 (the leading contribution of P (ρ) in this expansion) ensures that

the pre-factor on the first term in this expression reduces to a constant and one recovers the

Klebanov-Strassler NS two form modulo a pure gauge term.

In fact it is going to suit our purposes to perform a similar gauge transformation across

the whole baryonic branch (2.6). We do this by defining

B2 → B2 + d(Z(ρ)(ω̃3 + cos θdϕ)), Z = −1

2

∫ ρ

0

e2k(ρ
′)+Φ(ρ′)S(ρ′)dρ′ (2.19)

In the KS limit this reduces to exactly the gauge transformation required in (2.18) and

it has the effect of removing certain mixing between the angular directions and the radial

direction in the NS two-form.3 This will greatly simplify matters upon performing a duality

transformation.

3 Non-Abelian duality on the Baryonic Branch

In this section, we will present the result for the non-Abelian T-duality when applied to

one of the SU(2) isometries of the baryonic branch background in eq.(2.5)-(2.6). We extend

the results of [14] in which the NS sector was established but full details of the RR sector

were not provided.4 We will perform the transformation described in [14] to the coordinates

(θ̃, ϕ̃, ψ), present in the left-invariant forms of SU(2), ω̃i, i = 1, 2, 3 of eq.(2.5). We will

choose a gauge where the new coordinates after the duality will be (v2, v3, ψ). We presents

the results here and refer the reader to the Appendix C for details.

We will start by specifying the vielbeins. The components

ex
i

= e
Φ
2 ĥ−

1
4dxi , eρ = e

Φ
2
+kĥ

1
4dρ (3.2)

do not change. The vielbeins in the (θ, ϕ) directions are also unchanged by the duality

however we find it useful to introduce a rotation in (eθ, eϕ) such that the dual solution has

no explicit ψ dependence.

eθ̂ =
√
Ceh+Φ/2ω1, eϕ̂ =

√
Ceh+Φ/2ω2, (3.3)

3This transformation leaves unchanged the gauge coupling defined through the integral of B2 however it
is non-vanishing at infinity and so one should exercise appropriate caution.

4The results of [14] lead at first sight to a geometry that has a mixing between angular and radial
directions. This is however a gauge artifact as will be made clear in Appendix C. By making the gauge
transformation (2.19) to the seed geometry, as we do here, one removes this mixing. Alternatively one can
perform the following coordinate transformation to the solution presented in [14] to obtain the solution
presented here:

vthere
3

→ vhere
3

+
√
2Z, (3.1)
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where we have introduced left invariant SU(2) forms for the angles {θ, φ, ψ}. The vielbeins

in the directions 1̂, 2̂, 3̂ and NS 2-form potential can be compactly written in terms of the

quantities defined as,

H =
2
√
2v3 + 4Z + e2g+ΦS cosα

2
√
2

,

Z = −1

2

∫ ρ

0

SeΦ+2kdρ′ ,

µ1 = aeg cosα + 2eh sinα .

(3.4)

The function Z was introduced as a gauge transformation to the seed solution already in

(2.19). With these, we have

e1̂ =
eg+Φ/2

8W
√
C
[
4e2k+ΦCH(aHω1 − v2ω3)−

√
2e2(g+k+Φ)C2(dv2 + aHω2)

− 8
√
2v2(v2dv2 +Hdv3) +

1

2
µ1Seg+Φ(8v22ω2 + e2k+ΦC(e2g+ΦCω2 − 2

√
2Hω1))

]
,

e2̂ =
eg+3Φ/2+g

8W C3/2

[
4e2gv2(dv3 − av2ω2)− 4He2k(dv2 + aHω2)

−
√
2Ce2k+2g+Φ(aHω1 − v2ω3) +

1

2
µ1Seg+2k+Φ(e2g+ΦCω1 + 2

√
2Hω2)

]
,

e3̂ =
ek+Φ/2

8W
√
C
[
4Cv2e4g+Φ(v2ω3 − aHω1)−

√
2C2(dv3 − v2aω2)

− 8
√
2H(v2dv2 +Hdv3) + eg+Φµ1v2S(

√
2Ce2g+Φω1 + 4Hω2)

]
.

(3.5)

We will then have a metric that in terms of these vielbeins reads, ds2st =
∑10

i=1(e
i)2.

In terms of these vielbeins, the NS two-form B2 reads,

B̂2 = − 1

4v2

(
2e−ha(egv2e

θ̂1̂ + ekHeθ̂3̂)− 4ek−gHe1̂3̂ +
√
2Ceg+k+Φe2̂3̂

)
+

S
C

[Hek
2v2

(
2e−ge1̂3̂ − ae−heθ̂3̂

)
+
eg+k+Φ−h

4
√
2v2

C
(
µ1e

θ̂3̂ − 2ehe2̂3̂
)
−

e−h

2

(
2e−h−ΦZ

S + 2eh cosα− aeg sinα
)
eθ̂ϕ̂ − e−h

2
(aegeθ̂1̂ + µ1e

θ̂2̂)

]
.

(3.6)

The dual dilaton is given by

Φ̂ = Φ− 1

2
lnW , W =

C
8

(
e4g+2k+3ΦC2 + 8e2g+Φv22 + 8e2k+ΦH2

)
. (3.7)
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And the RR sector is given by,

F0 =
Nc√
2
,

F2 = −e
−Φ

4C Nc

[
2e−2h

(
1 + a2 − 2ab

)
Heθ̂ϕ̂ + e−g−h−kC

(
a− b

)(√
2e2g+k+Φ

(
eθ̂1̂ − eϕ̂2̂

)
+

4ekH
(
eθ̂2̂ − eϕ̂1̂

)
− 4v2e

geϕ̂3̂
)
− 8e−2gHe1̂2̂ − 8e−g−kv2e

2̂3̂ − 2e−h−kv2e
rθ̂

]
−

Seg−h√
2C sinα

(
Ncb+ a(e2g cos2 α−Nc) + eg+h sin 2α

)
eθ̂ϕ̂ ,

F4 =
e−g−h−k−Φ

8C Nc

[
C
(
1 + a2 − 2ab

)
eθ̂ϕ̂ ∧

(√
we2g+k+Φ−he1̂2̂ + 4e2g−he1̂3̂

)

Cb′erθ̂ ∧
(
4ekHe1̂3̂ −

√
2e2g+k+Φe2̂3̂

)
− 8egv2

(
a− b

)
eθ̂1̂2̂3̂

erϕ̂ ∧
(
4egv2e

1̂2̂ − b′ek(
√
2e2g+Φe1̂3̂ + 4He2̂3̂)

)]
−

2Se−g−h−k−Φ

C2 sinα

(
a
(
e2g cos2 α−Nc

)
+
(
Ncb+ eg+h sin 2α

))(
Hekeθ̂ϕ̂1̂2̂ + v2e

geθ̂ϕ̂2̂3̂
)
.

(3.8)

Warning on potentially confusing nomenclature: The Nc appearing in the above

originated as the number ofD5 branes wrapping the resolved conifold which was then rotated

to give the Baryonic Branch and then T-dualised to this solution. Prior to T-duality, Nc

corresponds to the D5 charge which is also commonly denoted by M (which we will also use

in section 5 when we specialised to the Klebanov-Tseytlin geometry). We hope the reader

will not get overly confused by this point.

3.1 UV asymptotic behaviour

Using the semi analytic UV expansions that can be found, for example, in [26] it is possible

to calculate the UV behaviour of the dual metric. The dual vielbeins at leading order in the

UV are given by

e1̂ = −c+e
−2ρ/3(24ρ− 3)1/4

23/4
√
Nc(1− 2ρ)

ω1, e2̂ =
c+e

−2ρ/3(24ρ− 3)1/4

23/4
√
Nc(1− 2ρ)

ω2, e3̂ = − 23/431/4√
Nc(8ρ− 1)1/4

dv3.

(3.9)

Thus the dual 3-manifold shrinks as one flows towards the UV, in line with our expectations

from abelian T-duality, where big circles are mapped to small circles.

One may worry that this vanishing manifold is a signal of a singularity in the UV, however,

an explicit check shows that the curvature invariants: Ricci scalar, RµνR
µν and RµνλκR

µνλκ
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are finite. In other words, both the gs and the α′ expansions are under control and the

background is trustable in the far UV. Notice that there is a one-cycle, labelled by the

coordinate ψ in ω3, that shrinks to zero size in the large-ρ regime. This implies that strings

wrapping this cycle will become light and will enter the spectrum of the dual QFT at high

energies.

The dual dilaton is defined as e2Φ̂ = e2Φ

W where

W = 3c+Nc

√
12ρ− 3

2
e8ρ/3 (3.10)

asymptotically, and so the dilaton is UV vanishing.

3.2 IR asymptotic behaviour

Let us now study the small radius regime of the metric, corresponding with the low energy

regime of the dual QFT. Things are a bit less-simple. At leading order, terms in the metric

depend explicitly of the original IR-parameters of the Baryonic Branch solution, but they

also depend on the values of the v2, v3 coordinates. The dual vielbeins in the IR tend to

e1̂ = − 32eΦ0/2
√
Fh3/21

e2Φ0F2+128h21(v
2
2+v

2
3)

(
v3(dv2 + v2ω3) + v2(v2ω2 − 1

2
√
2
dv3)− v23(ω1 − ω2)

)

e2̂ = − 2eΦ0/2
√
F
√
h1

e2Φ0F2+128h21(v
2
2+v

2
3)

(√
2v3Fe3Φ0ω1 −

√
2v2FeΦ0ω3+

16h1
(
v3dv2 − v2dv3 + (v22 + v23)ω2

))

e3̂ = − 2e−Φ0/2
√

h1
F

e2Φ0F2+128h21(v
2
2+v

2
3)

(√
2F2e2Φ0( 1

2
√
2
dv3 − v2ω2)− 16h1v2F(v2ω3 − v3ω1)+

√
2128h21v3(v2dv2 + v3dv3)

)

(3.11)

where we have defined

F2 = 4(2)3/2(h
5/2
1 − 2

√
2eΦ0h1) (3.12)

for convenience. The function W tends to

FeΦ0

512h1

(
F2e2Φ0 + 128(v22 + v23)

)
(3.13)

Here again, it happens that the dilaton is bounded and the Ricci scalar and Ricci and

Riemann tensors squared are finite. This was expected, as we are performing a duality

transformation on a space that in the small-ρ regime was of finite size (the S3 in the deformed

conifold). Dualities typically invert ‘sizes’ (or couplings). This example is not an exception.

One may start with a background solution where Supergravity is a good approximation

11



and obtain that in the far IR the new generated solution is still a trustable Supergravity

background.

A point that we want to emphasize again is that in the far IR, the parameter that was

labeling the different ‘positions’ on the Baryonic Branch (that is the different baryonic VEVs)

still appears in the small-radius expansion above. There is a still a one-parameter family of

solutions. Indeed, notice the dependence on the integration constants eΦ(0) and h1 as defined

in [25], both related to the number parametrising the Baryonic Branch.

4 SU(2) Structure of the background

We will now study the associated G-structure with this solution. Again, we will postpone

details to the Appendix C. The geometry supports two pure spinors given by

Φ+ =
eA

8
eiθ+e−iv∧w

(
k‖e

−ij − ik⊥ω
)
,

Φ− =
ieA

8
eiθ−(v + iw) ∧

(
k⊥e

−ij + ik‖ω
)
.

(4.1)

In the case at hand we find

e2A =
eΦ

C
θ+ = 0, θ− = ζ(r)

k‖ =
sinα√
1 + ζ.ζ

k⊥ =

√
cos2 α + ζ.ζ

1 + ζ.ζ

z = w − i v =
1√

cos2 α + ζ.ζ

(√
∆ẽ3 + ζ2 sinαẽ

θ + i(
√
∆ẽρ + ζ2 sinαẽ

ϕ)
)

j = ẽρ3 + ẽϕθ + ẽ21 − v ∧ w

ω =
i√

cos2 α + ζ.ζ

(√
∆(ẽϕ + iẽθ)− ζ2 sinα(ẽ

ρ + iẽ3)
)
∧ (ẽ2 + iẽ1).

(4.2)

Here the frames ẽ are obtained by a rotation, given by (B.19), of those in (3.5) and the

parameters ∆, ζi which enter into this rotation are specified by (C.15).

There are various immediate things to observe. If we move to the large radius region of

the geometry, the functions sinα(ρ) ∼ a(ρ) ∼ b(ρ) → 0. The formulas simplify and we

obtain, among other things that k‖ → 0. This implies that, as happens in the paper [16],

the two pure spinors are ‘perpendicular’ in the large radius regime of the solution and the

SU(2)-structure is static. Similar behaviour was found in [18], where a dynamical SU(3)-

structure in 7-d becomes orthogonal in the UV. This changes as we evolve to the small radius

regime of the background, the SU(2)-structure is said to become dynamical. In Section 5,

12



we will discuss the physical effects that are associated with a change in the SU(2)-structure,

from static in the far UV to dynamic in the IR.

5 Correspondence with Field Theory

In this section, we will connect our previous geometrical studies with aspects of the quan-

tum field theory that our background is dual to. As it was anticipated in the paper [14], we

believe that the field theory dual to our massive IIA background should be a non-conformal

version of the Sicilian gauge theories presented in [32, 33] or the linear quiver field theories

studied in [34]. There are certain things that can be inferred immediately, like for example

the confining character of the QFT. This follows from the fact that the calculation of the

Wilson loop will proceed exactly as in the case of the Baryonic Branch field theory. In-

deed, the R1,3 × ρ part of the geometry is unchanged, hence, the Wilson loop will give the

same result as before the non-Abelian T-duality. Nevertheless, many calculations done with

the Klebanov-Strassler/Baryonic Branch background involved the ‘internal’ five dimensional

space. The purpose of this section will be to learn how some of those calculations for field

theory observables change (or not) for the new geometries in massive IIA.

The idea that will guide us is that for a given correlation function or related QFT observ-

able, that in the original background was calculated in a way that is ‘independent’ of the

SU(2) isometry used to perform the non-Abelian duality, will give the same result in the

transformed background. We can think about those operators or correlators as ‘uncharged’

under the SU(2) symmetry in question. Ideas of this sort already worked in other solution

generating techniques, like T-s-T dualities. Similar ideas also appeared in large Nc (planar)

equivalences between parent-daughter theories. The Physics of the common or ‘uncharged’

sector goes through to the new field theory. The rest of the paper deals with observables

that are, in principle ‘charged’ under the SU(2) symmetry.

In the paper [14] it was shown that the cascade of Seiberg dualities–defined geometrically

as a large gauge transformation of the NS two form and its effect on Page charges, persisted

in the massive IIA background. In the paper [16], we started to geometrise some of the

field theory effects corresponding to the Klebanov-Witten non-Abelian T-dual. In the rest

of this section, we will focus our attention on the relation between the dynamical character

of the SU(2)-structure and the field theoretical phenomena of confinement and discrete

R-symmetry breaking. We will show how the presence of Domain Walls with an induced

Chern-Simons dynamics on their world-volume follows as a consequence of the confinement

and the dynamical character of the SU(2)-structure. Then, we will make clear that the

symmetry associated with changes in the ψ-direction is related with an anomalous U(1)R
R-symmetry in the field theory. We will define an instantonic object using an euclidean D0

brane; this will lead us to a possible definition for a Θ-angle and gauge coupling. We will

find that this coupling has a non-conventional running in the far UV. We will then move into
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studying different aspects of the ‘baryonic branch’, also present in our new backgrounds. We

will find that a given fluctuation of the RR background fields can be put in correspondence

with a global continuous symmetry that the IR dynamics breaks spontaneously. We will

find the associated Goldstone boson and an expression for the conformal dimension of such

a baryonic operator.

5.1 Dynamic SU(2): A pathway to confinement

In this section, we will make more concrete the relation between the QFT phenomena of

confinement and the dynamical character of the SU(2)-structure. The first observation

is that the ‘parallel projection’ between both spinors, represented by k‖ in eq.(C.18), is

proportional to the quantity sinα. This quantity is related to the background functions as

can be read from Appendix B of the paper [29],

sinα(ρ) =
4aeh−g√

a2 + 2a2(4e2h−2g) + (4e2h−2g + 1)2
. (5.1)

This is compatible with the expression in eq.(2.7) after following the algebra in Appendix B

of the paper [29].

The presence of the functions a(ρ), b(ρ) in the Baryonic branch solution–see eqs.(2.5)-

(2.8)—are responsible for the de-singularisation of the space (the appearance of a finite size

S3) and the IR minimization of the dilaton and warp factor. These have as a consequence

the linear law, EQQ = σLQQ for large distance separations between the quark-antiquark

pair. In other words, the functions a(ρ), b(ρ) and their effects on the warp factor and dilaton

’produce’ confinement. In the same vein, at the level of the metric, the presence of a(ρ)

implies the breaking of the symmetry ψ → ψ + ǫ into ψ → ψ + 2π. This is the remaining

Z2 symmetry after the spontaneous discrete R-symmetry breaking. So, we see clearly that

confinement and spontaneous R-symmetry breaking go hand-in-hand with the function a(ρ).

Hence, these phenomena in the dual QFT are closely related to the presence of k‖, which as

we made clear is related to the dynamical character of the SU(2)-structure. In the papers

[42, 43], the point was made that the functions a(ρ), b(ρ) were directly related with the

gaugino condensate. This suggests that in our massive IIA picture, there exists a relation of

the form < λλ >∼ k‖. Similar ideas will be discussed in the paper [51].

5.2 A comment on domain walls

It was proposed in [14], that domain wall objects were realised in the Non-Abelian T-dual

of the geometries we are considering, as D2 branes that extend on R1,2. Indeed, the induced
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metric, action and tension of a (2 + 1)-dimensional object are,

ds2ind = eΦĥ−1/2(−dt2 + dx21 + dx22),

SBI = −TD2

∫
d3xeΦ/2ĥ−3/4, TDW = TD2e

Φ/2ĥ−3/4|ρ=0.

If we also turn on a gauge field in the world-volume of this D2 brane, a Chern-Simons-Maxwell

action will be induced, at leading order in α′ on this D-brane,

SBIWZ = −TD2

∫
d2+1xeΦ/2ĥ−3/4

√
1− α′FµνF µν + TD2

∫
d2+1xF0A1 ∧ F2. (5.2)

We have used that a new WZ-like term appears in Massive IIA as explained in [44]. The

Chern-Simons term is quantised, being proportional to TD2Nc.
5

In the type IIB Baryonic Branch solution(s), domain walls were realised by D5-branes

extended on R1,2 and the three-sphere S̃3 = [θ̃, ϕ̃, ψ]. Once a gauge field is turned on, a

Chern-simons terms was induced, proportional to TD5

∫
S̃3 F3. Naively, we can think that

both objects are ’connected’ by the non-abelian T-duality, under which the directions on S̃3

disappear and we are left with a D2 brane as described above.

Supersymmetry gives support to this. Indeed, around eq.(6.19) of the paper [39], we are

presented with the calibration form for a domain-wall like object, which is given by the real

part of the pure spinor Ψ+. Using that |a|2 = eA = eΦ/2ĥ−1/4, we obtain that the BI action

equals the calibration form. Notice also that this selects the k‖ component of the pure spinor.

As it was shown in the paper [14], once the R-symmetry is broken in the Type IIB set-

up, the non-abelian T-duality maps these backgrounds to their partners in Massive IIA.

In a minimally SUSY quantum field theory, the presence of domain-walls is tied up with

confinement and the spontaneous breaking of the Z2Nc-symmetry. As we emphasized, these

phenomena are related to the ‘dynamical’ character of the SU(2)-structure, hence to the

presence of the k‖ part of the pure spinor.

5.3 The fate of the U(1)R anomaly

In the backgrounds presented in [14] and those of this paper it is somewhat natural to expect

that the coordinate ψ is singled out as being related to an R-symmetry of any putative field

theory dual. That this is true is by no means obvious, after all in the technical process of

dualisation the fact that we retained the coordinate ψ was purely a result of a judicious

gauge choice. Here we provide evidence that this is indeed the correct identification and

furthermore that this U(1) is afflicted with an anomaly, breaking it down to a discrete

subgroup.

5Note that it is the presence of an F0 that allows D2 branes to be interpreted in this way, by way of
comparison in [45] the relevant branes with Chern-Simons dynamics are D4 branes with a bulk F2 turned
on.

15



A robust understanding of how ∂ψ plays the role of the R-symmetry in the holographic

dual was given in [40] with several important details of the supergravity solution clarified in

[41]. The essential point of [40] is to introduce a bulk 5d gauge field that gauges this U(1)ψ
by making the replacement dψ → χ = dψ − 2A in the metric. This must be supplemented

with an appropriate ansatz for the fluxes. In the case of the Klebanov-Witten background

one finds that the resultant gauge field is massless and is the dual fluctuation to the global

U(1)R of the gauge theory. However, in the non-conformal cases, the correct ansatz for the

fluxes actually yields a massive gauge field (the mass here comes from a Stückelberg rather

than Brout-Englert-Higgs mechanism).

Let us begin our discussion with the non-abelian T-dual of the Klebanov-Witten back-

gound. The NS sector of the geometry is given by

ds2 = ds2AdS5
+

1

6
ds2S2 +

6v22
∆
σ2
3̂
+

6

∆

[
(1 + 27v22)dv

2
2 + 54v2v3dv2dv3 +

3

4

(
∆− 54v22

)
dv23

]
,

B2 =
18
√
2

∆
v2v3σ3̂ ∧ dv2 +

(∆− 54v22)√
2∆

σ3̂ ∧ dv3 ,

e2Φ = 81∆−1 = 81
(
2 + 54v22 + 36v23

)−1
,

where σ3̂ = dψ + cos θdφ. This metric is supported by RR two and four form fluxes. The

U(1) acting as ∂ψ can be gauged by making the replacement σ3̂ → χ̃ = σ3̂ − 2A in the NS

sector above. The potentials corresponding to the correct modification of the RR forms that

support this fluctuation are given by

C1 = −2
√
2

27
(cos θdφ+ A) ,

C3 = − 2

27
v3χ̃ ∧ (ω̃2 − dA) +

2

9
v3 ⋆5 dA ,

(5.3)

where we introduce the volume form on the S2, ω̃2 = sin θdθdφ and ⋆5 is the Hodge dual

in the AdS5 directions. This solves the linearised equations of motions, linearised Einstein

equations and Bianchi identities provided that the gauge field obeys the equation d ⋆5 dA.

This, together with the fact that the Killing spinors of the geometry are charged under U(1)ψ
identifies this as the dual to the R-symmetry. Upon substitution of this ansatz in to the

action one finds all the gauge field dependance gives a field strength squared contribution,

δS = f(v2, v3)FµνF
µν (5.4)

for some function f(v2, v3) of the internal coordinates that will be integrated over in a

reduction to a five-dimensional theory.

Now we turn to the non-conformal geometry obtained by transformation of the Klebanov-

Tseytlin geometry (since we are only interested in the UV behavior we will not need the full
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Klebanov-Strassler or baryonic branch). The NS sector, with the U(1)ψ gauged, is given by

ds2 = h
1
2dr2 + h−

1
2ds2R1,3 +

r2h
1
2

6
ds2S2 +

6r4hv22
∆

χ̃2

+
6

∆

[
(r4h+ 27v22)dv

2
2 + 54v2V3dv2dv3 +

3

4

(
∆

r2h
1
2

− 54v22

)
dv23

]

B2 =
18
√
2

∆
v2V3χ̃ ∧ dv2 +

(
∆− 54r2h

1
2 v22

)

√
2∆

χ̃ ∧ dv3 +
r5h′(r)

54M
ω̃2

e2Φ = 81∆−1 = 81
(
2r4h+ 54v22 + 36V2

3

)−1
.

(5.5)

Here h(r) is the usual Klebanov-Tseytlin warp factor and V3 = v3 +
r5h′(r)

27
√
2M

. Without the

gauging this is a solution of massive IIA with Romans’ mass proportional to M . By exam-

ining how the non-abelian T-duality transformation acts on the ansatz given by Krasnitz in

[41], we can determine a suitable ansatz for the fluxes:

C1 = −M
2
v3 cos θdφ+

M

2
ψdv3 − 2

√
2K1 −

√
2C0 (V3dv3 + v2dv2)

C3 = 2V3K3 −
M

√
2

4
ψω̃2 ∧ (v2dv2 + v3dv3)

+
2
√
2

M
f(r)C0ω̃2 ∧ (v2dv2 + V3dv3)− 2v3χ̃ ∧ dK1 − 4v3ω̃2 ∧K1 +Θ3

(5.6)

The remaining term in the three-form potential is given implicitly by6

dΘ3 =
1√
2
Mh

1
4 ⋆5

(
C0dr +

2

3
rW

)
+

3M√
2
dr ∧K3 . (5.7)

HereW is a gauge invariant 1-form that combines the gauge field A with a Stückelberg scalar

scalar W = A− dλ though for practical purposes we follow [41] and chose a gauge in which

W = A. This is a solution to the linearised flux equations and Bianchi identities provided

the fields introduced obey the constraints on the ansatz required in [41]:

K3 = − 3

rh
1
4

⋆5 dK1 ,

dK3 =
24

r3h
3
4

⋆5 (K1 + f(r)W ) ,

0 =
1

3
∂r
(
rh−1Wr

)
+
r

3
∂iWi +

1

2
∂r(h

−1C0)−
36

r4h2
((K1)r + f(r)Wr) ,

0 =
1

54
∂r
(
r5∂rC0

)
+
r5h

54
∂i∂iC0 −

M2

2h
Wr −

3M2

4hr
C0 .

(5.8)

6The exterior derivative of right hand side of this expression vanishes on the equations (5.8).
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Here ⋆5 is the Hodge dual with respect to the metric ds25 = h
1
2dr2+h−

1
2ds2R1,3 . In [41] it was

shown how these equations (5.8) can be diagonalised by defining

W 1 =W − 54

hr4
K1 , W 2 =W +

27

hr4
K1 . (5.9)

The modeW 1 corresponds to a massive gauge field whose mass as a result of the spontaneous

(anomalous) breaking of R-symmetry. The mass of this mode is given by [41]:

m2 =
4

α′(3π)
3
2

(gsM)2

(λN)
3
2

(5.10)

The interpretation is identical here and we conclude therefor that the U(1)R symmetry is

anomalously broken.

5.3.1 Dependance on ψ in the potentials and D0 brane instantons

To understand this breaking as an anomaly it is informative to look at the forms of the RR

potentials. For the non-Abelian T-dual of the Klebanov-Witten we have following potentials

C1 =
Nπ√
2
cos θdφ ,

C3 = −Nπv3
2

sin θdθ ∧ dφ ∧ dψ .

(5.11)

For the dual of the Klebanov-Tseytlin (which has Romans mass proportional toM) we have

C1 =
M

2
v3 cos θdφ− M

2
ψdv3 ,

C3 = −
√
2M

8

(
v22 + v23

)
sin θdθ ∧ dφ ∧ dψ .

(5.12)

Note how the dependence on ψ in C1 is quite different in the potentials in the conformal and

non-conformal cases.

Let us now consider D0 branes. These D0 branes will move in the v3 direction, leaving

all other coordinates fixed, in particular we will choose v2 = 0. We can then calculate using

(5.5) the induced metric for this D0 brane, relevant gauge potential and its BIWZ action,

that will read

ds2ind = gv3v3dv
2
3 =

9

2r2h1/2
dv23, C1 = −M

2
ψdv3,

SBIWZ = −TD0

∫
dv3e

−Φ√gv3v3 + TD0

∫
C1 = TD0

∫
dv3

√
r2h1/2

9
+

2V2
3

r2h1/2
− TD0

Mψ

2

∫
dv3.

We use now that TD0 =
1

gs
√
α′
. Also, we call

√
α′Lv3 =

∫
dv3, the dimensionless length of the

v3 direction.
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We will equate the BIWZ action of this euclidean D0 brane with the gauge coupling and

the Θ angle imposing that SBIWZ = 8π2

g2
+ iΘ. In other words, we consider this D0 brane to

be an instanton in the dual gauge theory.

Analysing the WZ term, we have that (like above, we choose gs = 1),

SWZ =
M

2
ψLv3 = Θ. (5.13)

Using that the theta angle should be periodic, we can impose that the allowed changes in

the angle ψ get selected to be

M

2
(ψ +∆ψ)Lv3 = Θ+ 2kπ (5.14)

which implies that

∆ψ =
4kπ

MLv3
. (5.15)

So, we see that there is a breaking of the global continuous symmetry into a discrete one.

The residual discrete symmetry is determined by the domain of the coordinate v3. In the

case in which we would like to impose this discrete symmetry to be the same as before the

non-Abelian duality we should impose that Lv3 = 2. Indeed, one of the major challenges with

understanding non-abelian T-duality is to identify the periodicities of the coordinates of the

T-dual geometry. Here we see a direct link between a field theory property (the anomaly)

and the global properties of the geometry.

Let us look at the BI term. We have that the gauge coupling, associated is

8π2

g2
= TD0

∫
dv3

[
r2h1/2 +

2

r2h1/2
(v3 +

r5h′

27
√
2M

)2
]1/2

. (5.16)

We can perform the integral explicitly, but it is perhaps more illuminating to look at the

large radius limit of the expression above. After all, we are doing this calculation in the

non-Abelian dual of the Klebanov-Tseytlin solution, we should only trust the result in the

far UV. We have then, considering the leading term in the large-r expansion,

1

g2
∼ (log r)3/2 (5.17)

this reproduces a result obtained by other means in [14].

5.4 The fate of U(1)B

The Klebanov-Witten SU(N)×SU(N) conformal field theory coming from D3 branes at the

tip of the conifold has a U(1) baryonic number symmetry acting as Ai → eiαAi, Bj → e−iαBj .

In the gravity dual this number current gives rise to a massless AdS5 gauge field

δC4 = ω3 ∧ A , (5.18)
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where ω3 is the usual closed three form on T 1,1. The non-abelian T-dual of the AdS5 × T 1,1

geometry was obtained in [13]. In the T-dual geometry, this U(1)B mode translates into a

perturbation, which solves the linearised supergravity equations of motion, given by

δC1 =
1

9
A ,

δC3 =W2 ∧ A+
1

9
udu ∧ F +

√
2

6
udv3 ∧ ⋆4F .

(5.19)

The final two terms in δC3 come from the a contribution from δC6 under the T-duality

transformation7. Although the two-form W2 has a simple form

W2 =
v3
9
dσ3 +

√
2v2e

2φ̂

81
σ3 ∧ (2v3dv2 − 3v2dv3) (5.20)

it can not easily be written in terms of the invariant tensors that define the SU(2) structure

of the geometry.

The existence of this mode is suggestive that the field theory duals corresponding to the

conformal geometries constructed in [13] have a global U(1) symmetry in addition to the

preserved U(1)R. In fact, the geometry T-dual to the Klebanov Witten is closely related

to those proposed in [33] as the gravity duals to N = 1 SCFT’s formed by wrapping M5

branes on Riemann surfaces (which in this case is genus zero giving rise to many subtleties).

These SCFT’s do indeed have U(1)R × U(1)F Abelian global symmetries which are seen

geometrically as isometries of the corresponding eleven-dimensional supergravity solution.

Upon reduction to ten-dimension one of these U(1)’s gets degeometrized corresponding to

the above gauge field δC1 = A.

In this paper our main focus has been the cascading field theory where at the last step

of the cascade when the gauge group is SU(M)× SU(2M) the baryons acquire expectation

values,

B = iξΛ2M , B̃ =
i

ξ
Λ2M . (5.21)

On this Baryonic branch the U(1)B symmetry is spontaneously broken. To see this from the

gravity perspective it is sufficient to work with the Klebanov-Strassler geometry correspond-

ing to the field theory at the Z2 symmetric point of the Baryonic branch. As shown in [21],

there is a massless glue ball corresponding to a Goldstone mode associated with changing

7For the AdS5 × T 1,1 we use ds2AdS = du2 + e2u(ηijdx
idxj).
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the phase of ξ which is given by8

δH = 0 ,

δF3 = f1 ⋆4 da− d(f2(τ)da ∧ g5) ,

δF5 = f1

(
⋆4da−

ǫ
4
3

6K2(τ)
h(τ)da ∧ dτ ∧ g5

)
∧B2 .

(5.22)

The linearised supergravity equations are solved when the pseudo-scalar is a harmonic func-

tion in R
3,1 and the function f2(τ) obeys a second order differential equation admitting a

normalisable solution.

The non-abelian T-dual geometries considered also admits a similar mode, which can be

obtained simply by performing a T-dualisation of the ansatz for the scalar modes in the

seed IIB solutions. The T-dual of the Klebanov-Strassler geometry was obtained explicitly

in [14]. Performing a dualisation of the ansatz (5.22) gives rise to a perturbation δF2 and

δF4. This perturbation solves the supergravity equations of motion when f2 obeys the

same differential equation as for the ansatz (5.22). The expressions for F2 and F4 are not

particularly enlightening though for completeness let us provide a few details. Here we

display the results in the UV regime where the geometry is given by (5.5). The corresponding

deformations to the potentials are given by

δC1 = (2v3f2(r) + f3(r))da

δC3 =

[
f4(r)−

f1√
2

(
v22 + (v3 −

Nπ√
2M

)2
)]

⋆4 da

− f2√
2
da ∧ σ3 ∧ d(v22 + v23)−

f3√
2
da ∧ σ3 ∧ dv3 + da ∧ sin θdθ ∧ dφ

(
f5 −

v3√
2
f3

)

(5.23)

The extra functions introduced above are completely determined by f1 and f2 according to

f ′
1 = 0 , 2r4f ′′

2 = −6r3f ′
2 + 16r2f2 + 27M2f1 log r/r0 ,

f ′
3 =

1

6

(
−3

√
2rf1h(r) log r/r0 − 2T (r)f ′

2

)
, f ′

4 =
2
√
2

3
rf2 ,

f ′
5 =

1

108

(
−2

√
2r5f1h(r) = 18Mrf1h(r)T (r) log r/r0 − 3

√
2T (r)2f ′

2

)
,

(5.24)

where T (r) = 9√
2
M log r/r0 and h(r) = 27

32r4
(3M2 + 8Nπ + 12M2 log r/r0).

The existence of this mode suggests a spontaneously broken global U(1) in the field theories

dual to the geometries obtained in section 3. In the conformal case, the unbroken U(1)

becomes geometrized upon lifting to M-theory whereas these non-conformal backgrounds are

8Here and elsewhere use the standard notation for the deformed conifold and Klebanov Strassler geometry
which can be found e.g. in appendix of [21]. For the KS we stick with the notation τ as the radial coordinate
but will use r elsewhere.
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solutions of massive IIA and so can not be lifted. This further underlines the expectation

that a U(1) is broken.

In the same multiplet as the pseudo-scalar goldstone is a scalar perturbation correspond-

ing to changing the magnitude of ξ. In the same vein as above, one could deduce the fate

of this scalar perturbation under the T-duality transformation; it will give a similar, al-

beit complicated, perturbation in the dual IIA background. Since the full baryonic branch

geometry found in [22] can be thought of as exponentiating such transformations to give

arbitrary values of the Baryonic vev, implicitly in the geometries presented in section 3 we

have already done just that.

5.5 The fate of the baryon condensate

In Klebanov-Witten theory the closest analogy to a baryon vertex - the object to which N

external quarks can attach [36] - would be a D5 brane wrapping the T 1,1 space with world

volume coordinates {x0, θ1, φ1, θ2, φ2, ψ} [37]. The primary reason for this identification

follows the argument made in [36]; since we have

∫

T 1,1

F5 ∝ N , (5.25)

the WZ term induces a charge to the world volume U(1) gauge field A via the coupling

∫

R×T (1,1)

A ∧ F5 . (5.26)

This introduces N units of charge which must be canceled by some other source to give

zero net charge in a closed universe. This cancelation is achieved by N elementary strings

stretching from the boundary to the brane whose end points are external quarks. A perhaps

naive approach would be to suggest in the IIA geometry dual to the Klebanov-Witten theory

a similar role could be played by a D2 brane wrapping the S2 with world volume coordinates

{x0, θ, φ}. Indeed, since in the case of T-dual to Klebanov-Witten we have C1 ∝ cos θdφ

the WZ coupling F ∧ C1 produces a charge contribution for the gauge field that could be

cancelled with external quarks just as in the Klebanov-Witten scenario. It would be of some

interest to study the baryon vertex in the massive IIA backgrounds.9

This baryon vertex should however be distinguished from the configuration representing

the actual baryon condensate - which should be supersymmetric, gauge invariant and not

require BIon spikes. The configuration that describes the baryon condensate is a Euclidean

D5 brane wrapping the T 1,1 and the radial directions [37]. This D5 has D3 branes dissolved

9Before duality in the cascading theories this is a D3 brane and it seems quite possible that D0 branes
might play this role of the baryon vertex in the cascading massive IIA geometries. We thank O. Aharony
and J. Sonnenschein for this suggestion.
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within [38] which are traded for a world volume gauge field. Following the logic applied to

the baryon vertex one might anticipate that in the IIA geometries presented here, the role

of the condensate is played by a wrapped Euclidean D2 brane on the S2 × R with a world

volume gauge field.

To determine the existence of such a configuration, rather than calculate the kappa sym-

metry projectors, we will harness the power of the G-structure and the calibration techniques

of [39]. The condition for a supersymmetric Euclidean p brane on a cycle Σ is essentially the

same as that of a Lorentzian p+4 brane that is spacetime filling in the Minkowski directions.

This condition is given by

e−φ
√

− det(g|Σ + F) dpσ = 8e3A−φImΦ ∧ e−F |Σ (5.27)

where the world volume field strength is F = B|Σ + 2πα′dA and the pure spinor entering

the calibration form is given Φ = Ψ+ for IIB and Φ = Ψ− for IIA.

Before looking at this question in the context of the full baryonic branch let us address

it in the conformal case - we would still anticipate a supersymmetric configuration to exist

even. In the Klebanov-Witten theory the E5 configuration of a brane extended along Σ =

{r, θ1, φ1, θ2, φ2, ψ} with a world volume gauge field

A =
1

3
ζ(r) (dψ + cos θ1dφ1 + cos θ2dφ2) , (5.28)

obeys the calibration condition (5.27) provided that

ζζ ′ =
1

4
− ζ2 , (5.29)

which of course can be readily integrated.

In the IIA non-Abelian T-dual of the Klebanov-Witten geometry we find an E2 configu-

ration extended along Σ = {r, θ, φ} at the point v2 = 0 but with a non-trivial embedding

v3 = f(r). We search for a supersymmetric configuration solving the calibration condition

(5.27) when supported by a gauge field

A =
1√
2
α(r) cos θdφ . (5.30)

From the calibration condition one finds firstly that the embedding f(r) and the gauge field

should differ only by a constant c0. The gauge field should then obey an equation

α′(r) =
1− 18c0α− 18α2

9(c0 + 2α)
(5.31)

which can also be readily solved and one notices that when c0 = 0 has the same form as the

equation (5.29) governing the configuration in IIB.
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Lets move up to the KT geometry working in the exact logarithmic solution10. First we

recapitulate the calculation for the baryon condensate in the IIB background. Using the

calibration technique one readily finds the E5 configuration is the same but with the gauge

field equation of motion eq. (5.29) modified to be

ζ ′(r) =
2r4h(r) + T (r)2 − 8ζ(r)2

8rζ(r)
, (5.32)

where T (r) = 9√
2
M log r/r0 and h(r) = 27

32r4
(3M2 + 8Nπ + 12M2 log r/r0). This equation

may be integrated to yield

ζ(r) =
9M

8r
√
2

(
c+ 3r2 − 4r2 log(r) + 8r2 log(r)2

) 1
2 , (5.33)

where c is a constant of integration which we now set to zero since its contributions are in

any case sub-leading. Inserting this into to the DBI action one finds, changing variables to

t = log r,

SE5 = τ5vol(T
1,1)

∫ tUV

dt
27M3

64
√
2
(1 + 2t2 + 8t3)(3− 4t + 8t2)

1
2 . (5.34)

In [37], e−SE5 was identified with the bulk field dual to the baryonic condensate. Using the

standard asymptotic expansion the field theory scaling dimension can be extracted (at least

in the large t regime) as

∆(r) =
dSE5

d log r
=

27

16π2
M3(log r)2 +O(log r) , (5.35)

reproducing exactly the result of [37] notable for the scaling dimension dependence on the

energy scale of the baryons as anticipated from the field theory.

In the non-abelian T-dual the situation is already rather involved. We search for an E2

configuration extended along Σ = {r, θ, φ} at the point v2 = 0 and now with v3 = χ(r) and

an ansatz for the gauge field

A =
1√
2
α(r) cos θdφ . (5.36)

We take the square of the calibration equation eq. (5.27) and first consider terms proportional

to cos2 θ. From these one finds a first equation relating the gauge field and the embedding

in v3:

α′(r) = χ′(r) . (5.37)

10This is considerably simpler than the deformed conifold of the KS and reproduces all the main features
of the calculation in [37] with the conformal dimension of the condensate agreeing to leading order. Using
the calibration technique we checked that the resultant gauge field equation of motion agrees exactly with
that of [37].
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We let c0 be the additive constant between α and χ. Then from the remaining terms in

eq. (5.27) one finds a differential equation for the gauge field

rα′(r) =
1

18(c0 + 2α)

(
2r4h(r)− 6c0T + T 2 − 36c0α− 36α2

)
. (5.38)

Changing variable to t = log r one can solve this equation on the exact logarithmic solution:

α(r) = −c0
2
±r

−3/2

8

[
64rc+ r3

(
16c20 + 3M(8

√
2c0 + 9M − 4(4

√
2c0 + 3M) log r + 24M log r2)

)] 1
2

(5.39)

here c is an integration constant giving sub-leading contributions that we hence ignore.

Using the equation (5.38) we find that the DBI action is given by

SDBI = κ

∫
dr

r

1

648
(c0 + 2α)−1

(
2r4h+ (T + 6α)2

) (
2r4h + (T − 6(c0 + α))2

)
. (5.40)

If we expand out asymptotically we find that

SDBI ∼ κ

∫ tUV

dt
27M3t2

8
√
2

+
9M2t

32

(
3
√
2M − 4c0 + 8

√
2
N

M
π

)
+O(t0) , (5.41)

which suggests an operator with a scaling dimension

∆ =
27κM3

8
√
2

(log r)2 (5.42)

where κ = TD2vol(S
2) = 1

π
. It would be interesting to pursue this line of reasoning further

by extracting the value of the condensate across the baryonic branch. This is technically

rather involved and we do not intend to do so in this report.

6 Conclusions and Future Directions

In this paper we have examined a new family of solutions of massive IIA supergravity. These

new backgrounds were obtained by performing a non-abelian T-duality on the geometry that

describes the non-perturbative Physics of the baryonic-branch of the Klebanov-Strassler field

theory. We have explored the transition from SU(3) structure, characterising the ‘seed’ back-

grounds to the dynamical SU(2)-structure that describes the resulting massive IIA solutions.

We made clear–at least for the type of backgrounds studied here– that the dynamical charac-

ter of the SU(2) structure is directly related to the phenomena of confinement and symmetry

breaking. We believe that all these new features have not been discussed in previous litera-

ture, in a context as clear and unifying as the one presented here.

The new backgrounds discussed in this paper display a host of interesting non-perturbative

phenomena that ‘define’ the dual field theory. Some of these are,
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• The non-conformality of the geometry is enabled by a non-zero Romans’ mass.

• Whilst the UV geometries proposed in [14] are characterized by static SU(2) structure

[16] the full IR complete geometry of this paper has dynamic SU(2) structure.

• The transition to dynamic SU(2) structure gives a geometric realization of confinement

and permits supersymmetric D2 branes that act as domain walls in the IR. This realises

geometrically the relation between confinement, the spontaneous breaking of a discrete

R-symmetry and the presence of domain walls.

• The U(1)R symmetry is realized by the vector ∂ψ and the corresponding fluctuation,

which is a massless gauge field in the conformal case, acquires a mass indicating an

anomalous breaking.

• Euclidean ‘instantonic’ branes reproduce this anomaly of the R-symmetry and at the

same time suggest a non-conventional running for a suitably defined gauge coupling.

• A further U(1) (baryonic) symmetry is broken. In the conformal case of [14] this

symmetry is unbroken and is realized geometrically by the M-theory circle. In our

backgrounds, once conformality is broken by the addition of fractional branes, the

symmetry is no longer geometrical as we are now in a massive IIA context. The U(1)B
symmetry is spontaneously broken and we identified a corresponding massless glueball

(the associated Goldstone boson).

• We give evidence that this U(1)B may be thought of as baryonic and that a baryonic

condensate is given by a Euclidean D2 brane wrapping a two-cycle in the geometry.

Although we do not yet have a complete understanding of the field theory dual to this new

geometry, the results of this paper together with those in [14] suggest that it may be a non-

conformal and cascading version of the Sicilian theories of [32, 33] or the linear quivers of

[34].

We would like to close this paper on a forward looking note. We suggest that the features

mentioned above may be prototypical of a wider class of holographic duals. The theories

in [32, 33] and also the IIA linear quivers of [34], present a wide new class of interesting

examples of N = 1 SCFTs. We anticipate that by a modification of these theories (this

paper suggests that the modification will involve adding D8 branes in IIA) one can obtain a

variety of non-conformal gauge theories. Some of the non-perturbative features of these new

field theories should be the ones we are describing in this paper.

Aside from this and on a more geometrical note, we believe the backgrounds presented

in this paper may serve as a prototype for new dynamical SU(2) solutions of massive IIA

supergravity that will be the corresponding string duals to the new field theories described
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above. This is, of course, in the same vein as the route from the conformal geometry of

Klebanov-Witten to the non-conformal geometry of Klebanov-Strassler.

In our view, these represent the most interesting avenues of further investigation.
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A Conventions: Supergravity and G-structures

A.1 Supergravity

We work in string and the 10-d hodge dual is defined such that

Fn = (−1)int[n/2] ⋆ F10−n. (A.1)

where Fn are the RR fluxes of either type-IIA or type-IIB supergravity. The fluxes may be

used to define a polyform F such that

F =

{
F0 + F2 + F4 + F6 + F8 + F10 for Type-IIA
F1 + F3 + F5 + F7 + F9 for Type-IIB

. (A.2)

In terms of the polyform the Bianchi identities may be expressed as

(d−H∧)F = 0, dH = 0. (A.3)

It is easy to show this is satisfied with the definition

F = (d−H∧)C + F0e
B2 (A.4)
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where C is a polyform constructed from the RR potentials in the same fashion as above and

F0 should be taken to be zero in type-IIB. The flux equations of motion are expressed as

(d+H∧) ⋆ F = 0, d(e−2Φ ⋆ H) =
1

2

∑

n

Fn ∧ ⋆Fn. (A.5)

where the sum needs to me taken over the appropriate RR fluxes of type-IIA/IIB.

The dilaton must obey the equation of motion

d ⋆ dΦ+ ⋆
R

4
− dΦ ∧ ⋆dΦ− 1

8
H ∧ ⋆H = 0, (A.6)

while Einstein’s equations are in type-IIA by

Rµν = −2DµDνΦ̂ +
1

4
H2
µν + e2Φ

[
1

2
(F 2

2 )µν +
1

12
(F 2

4 )µν −
1

4
gµν(F

2
0 +

1

2
F 2
2 +

1

4!
F 2
4 )

]
, (A.7)

with an equivalent equation holding in type-IIB.

A.2 Pure Spinors

Here we follow the conventions of [49] except for a difference in the self duality condition of

the RR section which leads to a few sign differences. We work in string frame and consider

solution with metrics that can be expressed as

ds2 = e2Adx23,1 + ds26 (A.8)

and preserve N = 1 SUSY in 4-d with non trivial RR sector. This means that the internal

space, with metric ds26, must support an SU(3) × SU(3)-structure [39]. We decompose the

10-d MW spinors into a 4 + 6 split as

ǫ1 = ξ+ ⊗ η1+ + ξ− ⊗ η1−, ǫ2 = ξ+ ⊗ η2∓ + ξ− ⊗ η2±. (A.9)

where in ǫ2 the upper/lower signs should be taken in type-IIA/B, the ± indicates chirality

of both 4-d and internal 6-d spinors and we choose a basis for the internal spinors such that

(η+)
∗ = η−. It is possible to define two Cliff(6, 6) pure spinors on the internal space as

Ψ± = η1+ ⊗ (η2±)
† (A.10)

which may be identified with polyforms under the Clifford map. The internal spinors are

decomposed as

η1+ = eAei
θ++θ−

2 η+, η2+ = eAe−i
θ+−θ−

2 (k||η+ + k⊥χ+) (A.11)
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where k2|| + k2⊥ = 1, η†+η+ = χ†
+χ+ = 1 and χ†

+η+ = 0. The N = 1 SUSY conditions for such

a SU(3)× SU(3)-structure solution are given by the differential conditions

(d−H∧)(e2A−φΨ±) = 0

(d−H∧)(e2A−φΨ∓) = e2A−φdA ∧ Ψ̄2 ∓ 1
8
e3A ⋆6 iλ(F̃ )

(A.12)

where λ(An) = (−1)
n(n−1)

2 An and F̃ is the internal part of RR polyform in type IIA/B where

the RR forms are each decomposed such that

Fn = F̃n ∓ e4Avol4 ∧ λ(⋆6F̃10−n). (A.13)

As before upper/lower signs correspond to type IIA/B

Clearly in general η2+ is composed of a parts that is parallel and a part that is orthogonal

to η1+. The SU(3)× SU(3)-structure can categorised into 3 distinct cases depending on the

values of the coefficients k⊥ and k||:

SU(3)-structure

When k⊥ = 0 the internal spinors are parallel and the pure spinors define an SU(3)-structure

in 6-d such that

Ψ+ = −eiθ+ e
A

8
e−iJ ,

Ψ− = −ieiθ− e
A

8
Ωhol

(A.14)

where J and Ωhol are the two and holomorphic three forms associated with SU(3), they are

defined as in terms of the 6-d gamma matrices as

Ω
(hol)
abc = −iη†−γabcη+, Jab = −iη†+γabη+, (A.15)

and satisfy

J ∧ Ωhol = 0, J ∧ J ∧ J =
3i

4
Ωhol ∧ Ω̄hol. (A.16)

Orthogonal SU(2)-structure

When k|| = 0 the internal spinors are orthogonal and the pure spinors define an orthogonal

SU(2)-structure in 6-d such that

Ψ+ = −ieiθ+ e
A

8
e−v∧w ∧ ω,

Ψ− = ieiθ−
eA

8
(v + iw) ∧ e−ij

(A.17)
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where the SU(2)-structure one forms v, w and two forms j, ω are defined as

wa − iva = η†−γaχ+, jab = −iη†+γabη+ + iχ†
+γabχ+, ωab = η†−γabχ−. (A.18)

and obey the relations

j ∧ ω = ω ∧ ω = ι(w−iv)(ω) = ι(w−iv)(j) = 0

j ∧ j = 1

2
ω ∧ ω̄.

(A.19)

Intermediate and Dynamical SU(2)-structure

For intermediate SU(2)-structure k|| and k⊥ are non zero constants, this and the previous

example are also referred to as static SU(2)-structure. For dynamical SU(2)-structure k||
and k⊥ are point dependent. For both these cases the pure spinors are given by

Φ+ =
eA

8
eiθ+e−iv∧w

(
k‖e

−ij − ik⊥ω
)

Φ− =
ieA

8
eiθ−(v + iw) ∧

(
k⊥e

−ij + ik‖ω
), (A.20)

where eq A.19 and eq A.18 still hold.

In these conventions the SUSY conditions (here we consider type IIA, details of type IIB

are given in appendix E) may be split up as follows:

d
[
e3A−Φ̂k‖

]
= 0

d
[
e3A−Φ̂

(
k‖(j + v ∧ w) + k⊥ω)

)]
− ie3A−Φ̂k‖H = 0

d
[
e3A−Φ̂

(
1
2
k‖(j + v ∧ w)2 + k⊥v ∧ w ∧ ω

)]
− ie3A−Φ̂H ∧

(
k‖(j + v ∧ w) + k⊥ω

)
= 0

(A.21)

where the second of these gives a definition for H which can be combined with the first to

give a definition of the NS potential, namely

B2 = −k⊥
k‖
Imω (A.22)

this is not the same as the NS potential generated by non-abelian T-duality but must match

it up to an exact.
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The rest of the SUSY conditions are

⋆6F6 = 0

d
[
e4A−Φ̂k⊥

(
sin θ−w − cos θ−v

)]
= −e4A ⋆6 F4

d
[
e2A−Φ̂k⊥

(
sin θ−v + cos θ−w

)]
= 0

d
[
e4A−Φ̂

(
k‖(sin θ−Imω − cos θ−Reω) ∧ w − k‖(sin θ−Reω + cos θ−Imω) ∧ v+

k⊥(sin θ−v + cos θ−w) ∧ j
)]

+ e4A−Φ̂k⊥H ∧ (sin θ−w − cos θ−v) = −e4A ⋆6 F2

d
[
e2A−Φ̂

(
k‖(sin θ−Reω + cos θ−Imω) ∧ w − k‖(cos θ−Reω − sin θ−Imω) ∧ v−

k⊥(sin θ−w − cos θ−v) ∧ j
)]

+ k⊥e
2A−Φ̂H ∧ (cos θ−w + sin θ−v) = 0

d
[
1
2
e4A−Φ̂k⊥j ∧ j ∧ (cos θ−v − sin θ−w)

]
+ e4A−Φ̂H ∧

(
k‖(sin θ−Imω − cos θ−Reω) ∧ w−

k‖(sin θ−Reω + cos θ−Imω) ∧ v + k⊥(sin θ−v + cos θ−w) ∧ j
)
= −e4A ⋆6 F0

d
[
1
2
e2A−Φ̂k⊥j ∧ j ∧ (cos θ−w + sin θ−v)

]
+ e2A−Φ̂H ∧

(
− k‖(sin θ−Reω + cos θ−Imω) ∧ w+

k‖(cos θ−Reω − sin θ−Imω) ∧ v + k⊥(sin θ−w − cos θ−v) ∧ j
)
= 0

(A.23)

from which it is possible to define the higher forms of the RR sector as:

F6 = dC5

F8 = dC7 −H ∧ C5

F10 = dC9 −H ∧ C7

(A.24)

where the RR potentials are given by:

C5 = e4A−Φ̂vol4 ∧ k⊥
(
sin θ−w − cos θ−v

)

C7 = −e4A−Φ̂vol4 ∧
[
k‖(sin θ−Imω − cos θ−Reω) ∧ w−

k‖(sin θ−Reω + cos θ−Imω) ∧ v + k⊥(sin θ−v + cos θ−w) ∧ j
]

C9 = 1
2
e4A−Φ̂vol4 ∧ k⊥j ∧ j ∧ (cos θ−v − sin θ−w)

(A.25)

The calibration is given by

Ψcal = −8e3A−Φ̂ImΦ−e
±B2 (A.26)
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where ± depends on our conventions in the WZ action. That SDBI + SWZ = 0 is trivial

because in these convensions we have:

C5 + C7 + C9 = −8vol4 ∧ e3A−Φ̂ImΦ− (A.27)

This all works perfectly for the case θ− = 0 which is the dual of the wrapped D5 solution.

B Details of the non-Abelian T-duality on the D5 branes

solution.

The purpose of this section is to give some details of the SU(2) isometry T-dual of Wrapped

D5 branes on S2. This was first derived in [14], but in slightly different conventions and the

G-structure was not found. This is the C = 1, S = 0 limit of the full baryonic branch dual

solution, and as the procedure for find the the G-structure is the same in both case we hope

that this more simple example will be instructive.

Solution of wrapped D5 branes on S2 [29] has string frame metric given by

ds2 =eΦ
(
dx21,3 + e2kdρ+ e2h

(
dθ2 + sin2 θdϕ2

)
+

e2g

4

(
(ω̃1 + adθ)2 + (ω̃2 − a sin θdϕ)2

)
+
e2k

4
(ω̃3 + cos dϕ)2

) (B.1)

where the functions a, b, g, h, k and the dilaton Φ only depend on the holographic coordinate

r. The ω̃i are SU(2) left invariant 1-forms which can be parametrised as

ω̃1 = cosψdθ̃ + sinψ sin θ̃dϕ̃ ,

ω̃2 = − sinψdθ̃ + cosψ sin θ̃dϕ̃ ,

ω̃3 = dψ + cos θ̃dϕ̃ .

. (B.2)

A convenient set of vielbeins is given by

ex
i

= e
Φ
2 dxi , eρ = e

Φ
2
+kdρ , eθ = e

Φ
2
+hdθ , eϕ = e

Φ
2
+h sin θ dϕ ,

e1 =
1

2
e

Φ
2
+g(ω̃1 + a dθ) , e2 =

1

2
e

Φ
2
+g(ω̃2 − a sin θ dϕ) ,

e3 =
1

2
e

Φ
2
+k(ω̃3 + cos θ dϕ) . (B.3)

with respect to which the non trivial RR flux F3 may be expressed as

F3 = e−
3
2
Φ
[
f1e

123 + f2e
θϕ3 + f3(e

θ23 + eϕ13) + f4(e
ρ1θ + eρϕ2)

]
(B.4)
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where the fi are given by eq 2.8. In these conventions the projections the 10-d Killing spinor

ǫ obeys are

Γ12ǫ = Γθϕǫ, Γr123ǫ = (cosα + sinαΓϕ2)ǫ, iǫ∗ = ǫ , (B.5)

with respect to the 4 + 6 split we can define components of ǫ to be equal with positive

chirality as

ǫ1 = ǫ2 = eA(ξ+ ⊗ η+ + ξ− ⊗ η−) (B.6)

where 2A = Φ. Once the usual decomposition of gamma matrices,

Γµ = γ̂µ ⊗ I, Γa = I⊗ γa (B.7)

is performed it is a simple matter to derive the SU(3)-structure forms of eq 2.15 using eq

A.15, where we have chosen iγrθϕ123η+ = η+. To do this it is helpful to perform a rotation

in eϕ, e2 which will also be useful later

êϕ = cosαeϕ + sinαe2

ê2 = − sinαeϕ + cosαe2

êa = ea for a 6= ϕ, 2.

(B.8)

The rotated 6-d projections are then simply

γ̂ϕθη+ = γ̂r3η+ = γ̂21η+ = i η+ (B.9)

and the SU(3)-structure becomes canonical.

We want to T-dualise this wrapped D5-brane solution along the SU(2) isometry parametrised

by ω̃i. Section 2 and Appendix B of [14] give all the details of the algorithm one must follow

to do this and so we direct the interested reader there for details of the NS sector. For the

RR sector we only give details that will be relevant for later calculations.

The duality will drastically change the vielbeins that contain the SU(2) left invariant

1-forms e1, e2, e3 and leave the others untouched. For the dual of the wrapped D5 brane

solution gauge fixed such that the remaining dual coordinates are v2, v3 and ψ, the cannonical
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vielbeins given by the procedure of [14] are

e1̂
′

= eg+
Φ
2

8W

[
e2k+Φ

(
−

√
2e2g+Φ(cosψ(aω2v3 + dv2) + sinψ(aω1v3 − ω3v2))−

4v3 sinψ(aω2v3 + dv2) + 4v3 cosψ(aω1v3 − ω3v2)

)
−

4v2e
2g+Φ sinψ(aω2v2 − dv3)− 8

√
2v2 cosψ(v2dv2 + v3dv3)

]

e2̂
′

= eg+
Φ
2

8W

[
e2k+Φ

(√
2e2g+Φ(cosψ(ω3v2 − aω1v3) + aω2v3 sinψ + dv2 sinψ)−

4v3(cosψ(aω2v3 + dv2) + sinψ(aω1v3 − ω3v2))

)
−

4v2e
2g+Φ cosψ(aω2v2 − dv3) + 8

√
2v2 sinψ(v2dv2 + v3dv3)

]

e3̂
′

= ek+
Φ
2

8W

[√
2e4g+2Φ(aω2v2 − dv3) + 4v2e

2g+Φ(ω3v2 − aω1v3)−

8
√
2v3(v2dv2 + v3dv3)

]

(B.10)

with the remaining veilbeins still given by eq B.3, that is ea
′

= ea for a 6= 1, 2, 3. The ωi are

defined as in eq B.2 but with θ̃ → θ, ϕ̃→ ϕ. It is possible to remove all the explicit angular

dependence from the dual solution by performing a rotation in the θ, ϕ directions such that

eθ̂ = eh+Φ/2ω1 = cosψeθ + sinψeϕ

eϕ̂ = eh+Φ/2ω2 = − sinψeθ + cosψeϕ ,
(B.11)

and an additional rotation in 1’,2’,3’ directions such that

e1̂ = cosψe1
′ − sinψe2

′

e2̂ = sinψe1
′

+ cosψe2
′

e3̂ = e3
′

.

(B.12)

Theses rotation make the expressions for the vielbeins and fluxes a lot more simple than they

otherwise would be, they are given for the dual of the wrapped D5 solution as in section 3

but with S = 0, C = 1. However, it is the ea
′

vielbeins rather than the eâ ones that are more

suited to calculating the G-structure of the dual solution.

It was shown explicitly in [16] that the 10-d MW Killing spinors transform under an SU(2)

isometry T-duality as

ǫ̂1 = ǫ1, ǫ̂2 = Ωǫ2. (B.13)

where Ω is given by

Ω = Γ(10)−Γ123 +
∑3

a=1 ζaΓ
a

√
1 + ζ2

(B.14)
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and for the wrapped D5 background we have

ζ1 = 2
√
2e−g−k−φv2 cosψ, ζ2 = −2

√
2e−g−k−φv2 sinψ, ζ3 = 2

√
2e−2g−φv3. (B.15)

Starting from eq B.10 we first rotate the veilbeins as in eq B.8 so that the projections are

canonical. The Ω matrix then becomes

Ω =
1√

1 + ζ.ζ

(
cosαΓ̂123 + sinαΓ̂1ϕ3 + ζ1Γ̂

1 + ζ2 cosαΓ̂
2 + ζ2 sinαΓ̂

ϕ + ζ3Γ̂
3
)

(B.16)

where we have used γ1ϕ3η+ = iη−. The new spinor ǫ̂2 is:

ǫ̂2 = eΦ/4
(
ζ+ ⊗ η̂2− + ζ− ⊗ η̂2+

)
(B.17)

where

η̂2− =
cosαγ̂r + ζ1γ̂

1 + ζ2 cosαγ̂
2 + ζ3γ̂

3 + ζ2 sinαγ̂
ϕ

√
1 + ζ.ζ

η+ + i
sinα√
1 + ζ.ζ

η−. (B.18)

It is clear here that, as long as sinα 6= 0, we are in the dynamical SU(2)-structure case,

because α = α(r). In order to simplify the expressions we perform another transformation

of the vielbein basis:

R =
1√
∆




cosα 0 0 ζ1 ζ2 cosα ζ3
0

√
∆ 0 0 0 0

0 0
√
∆ 0 0 0

−ζ1 0 0 cosα ζ3 −ζ2 cosα
−ζ2 cosα 0 0 −ζ3 cosα ζ1

−ζ3 0 0 ζ2 cosα −ζ1 cosα




(B.19)

where

∆ = cos2 α + ζ21 + ζ22 cos
2 α + ζ23 (B.20)

We define a new basis:

ẽ = R.ê (B.21)

where the order is rθϕ123. In terms of this new basis, the spinor is:

η̃2− =

(√
∆γ̃r + ζ2 sinαγ̃

ϕ

√
1 + ζ.ζ

)
η+ + i

sinα√
1 + ζ.ζ

η− (B.22)

And the projections in this basis are still:

γ̃ϕθη+ = γ̃r3η+ = γ̃21η+ = i η+ (B.23)
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Let us now express the forms of the geometric structure, following the conventions of ap-

pendix A.

e2A = eΦ

θ+ = 0 θ− = 0

k‖ =
sinα√
1 + ζ.ζ

k⊥ =

√
cos2 α+ ζ.ζ

1 + ζ.ζ

z = w − i v =
1√

cos2 α + ζ.ζ

(√
∆ẽ3 + ζ2 sinαẽ

θ + i(
√
∆ẽr + ζ2 sinαẽ

ϕ)
)

j = ẽr3 + ẽϕθ + ẽ21 − v ∧ w

ω =
i√

cos2 α + ζ.ζ

(√
∆(ẽϕ + iẽθ)− ζ2 sinα(ẽ

r + iẽ3)
)
∧ (ẽ2 + iẽ1)

(B.24)

which is a dynamical SU(2)-structure.

C Details of the non-Abelian T-duality on the Bary-

onic Branch solution

In this section we give some details of the SU(2) isometry T-dual of the Baryonic branch of

Klebanov-Strassler. This was originally derived in [14] with gauge fixing such that v1 = ϕ =

θ = 0. The previous derivation indicated a departure in the T-dual from the log corrected

AdS5 asymptotics of the baryonic branch. Let as begin by giving some details of original

calculation in our current convensions

C.1 Dual of the baryonic branch without the shift in B2

Once more we will start by specifying the dual vielbeins. The components

ex
i

= e
Φ
2 ĥ−

1
4dxi , eρ = e

Φ
2
+kĥ

1
4dρ (C.1)

do not change. The vielbeins in the θ, ϕ are also unchanged by the duality however we

find it useful to introduce a rotation in eθ, eϕ such that the dual solution has no explicit ψ

dependence.

eθ̂ =
√
Ceh+Φ/2ω1, eϕ̂ =

√
Ceh+Φ/2ω2, (C.2)
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The vielbeins in the directions 1̂, 2̂, 3̂ can be compactly written in terms of the quantities

defined as,

V3 = v3 +
e2g+Φ

2
√
2
S cosα ,

Λ = dV3 +
eΦ−2h

2
√
2
SNc

(
e2g + 2e2h − aeg(beg − 2eh cotα)

)
dρ ,

µ1 = aeg cosα + 2eh sinα ,

(C.3)

With these, we have

e1̂ =
eg+Φ/2

16W
√
C
[
e2k+Φ

(
8V3(aV3ω1 − v2ω3)− 2

√
2e2g+ΦC(dv2 + aV3ω2)− 2

√
2eg+ΦSV3µ1ω1

+ e3g+2ΦCSµ1ω2

)
+ 8v2

(
eg+Φv2Sµ1ω2 − 2

√
2(V3Λ + v2dv2)

)]
,

e2̂ =
eg+Φ/2

16W C3/2

[
e2k
(
− 2

√
2e2g+ΦC(aV3ω1 − v2ω3)− 8V3(dv2 + aV3ω2) + e3g+2ΦCSµ1ω1

+ 2
√
2eg+ΦSV3µ1ω2

)
− 8e2gv2(−Λ + av2ω2)

]
,

e3̂ =
ek+Φ/2

16W
√
C
[
eg+Φv2

(√
2e2g+ΦC(aegCω2 + Sµ1ω1)− 4egC(aV3ω1 − v2ω3) + 4SV3µ1ω2)

−
√
2Λ(e4g+2ΦC2 + 8V2

3 )− 8
√
2v2V3dv2

]
.

(C.4)

where the rotation of eq B.12 has been performed 11. We will then have a metric that in

terms of these vielbeins reads, ds2st =
∑10

i=1(e
i)2. Notice that the quantity Λ in eq.(3.4) will,

when squared to construct the metric with the vielbeins above, imply the existence of crossed

terms gρv3 and also the change of the asymptotic behaviour of gρρ away from log corrected

AdS5.

11 Actually this differs from [14] in orientation which can be compensated for via 1̂ ↔ 2̂.
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In terms of these vielbeins, the NS two-form B2 reads,

B̂2 = − 1

4v2

(
2e−ha(egv2e

θ̂1̂ + ekV3e
θ̂3̂)− 4ek−gV3e

1̂3̂ +
√
2Ceg+k+Φe2̂3̂

)
+

S
C

[V3e
k

2v2

(
ae−herθ̂ − 2e−ger1̂

)
+
eg+k+Φ−h

4
√
2V2

C
(
2e2her2̂ + µ1e

θ̂1̂
)
−

e−h

2

(
2eh cosα− aeg sinα

)
eθ̂ϕ̂ + eρ3̂ − e−h

2
µ1e

θ̂2̂

]
.

(C.5)

The dual dilaton is given by

Φ̂ = Φ− 1

2
lnW , W = C

(
1

8
e4g+2k+3ΦC2 + e2g+Φv22 + e2k+ΦV2

3

)
. (C.6)

And the RR sector is given by,

F0 =
Nc√
2
,

F2 = −e
−Φ

4
NcC

[
2e−2h

(
1 + a2 − 2ab

)
V3e

θ̂ϕ̂ + e−g−h−kC
(
a− b

)(√
2e2g+k+Φ

(
eθ̂1̂ − eϕ̂2̂

)
+

4ekV3

(
eθ̂2̂ − eϕ̂1̂

)
− 4v2e

geϕ̂3̂
)
− 8e−2gV3e

1̂2̂ − 8e−g−kv2e
2̂3̂ − 2e−h−kv2e

rθ̂

]
−

Seg−h√
2C sinα

(
Ncb+ a(e2g cos2 α−Nc) + eg+h sin 2α

)
eθ̂ϕ̂ ,

F4 =
e−g−h−k−Φ

8C Nc

[
C
(
1 + a2 − 2ab

)
eθ̂ϕ̂ ∧

(√
we2g+k+Φ−he1̂2̂ + 4e2g−he1̂3̂

)

Cb′erθ̂ ∧
(
4ekV3e

1̂3̂ −
√
2e2g+k+Φe2̂3̂

)
− 8egv2

(
a− b

)
eθ̂1̂2̂3̂

erϕ̂ ∧
(
4egv2e

1̂2̂ − b′ek(
√
2e2g+Φe1̂3̂ + 4V3e

2̂3̂)
)]
−

2Se−g−h−k−Φ

C2 sinα

(
a
(
e2g cos2 α−Nc

)
+
(
Ncb+ eg+h sin 2α

))(
V3e

keθ̂ϕ̂1̂2̂ + v2e
geθ̂ϕ̂2̂3̂

)
.

(C.7)

We will now proceed to show that the bad asymptotic behaviour and off diagonal ρ terms

of the metric are actually a gauge artefact.

C.2 The dual of the baryonic branch with the shift in B2

The NS 2-from of the original solution contains the term

B̃2 = −1

2
e2k+ΦS(ω̃3 + cos θdϕ) ∧ dρ. (C.8)
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It is this term, when dualised, that gives rise to the undesirable behaviour as this will

contribute to the dual metric in both gρρ and gρv3 via the dual vielbeins eî which will have

legs in ρ. This happens because of the dρ∧ ω̃i term in B̃2 which is not a spectator under the

duality transformation12. However, one is always free to add an exact to the NS potential as

this will not change the fluxes or metric of the original solution. Consider adding a closed

form to the initial B2

B2 → B2 + d
(
Z(r)(ω̃3 + cos θdϕ)

)
(C.9)

This precisely cancels the effect of B̃2 in the dual solution when Z ′ = −1
2
Se2k+Φ because

B̃2+ d(Z(r)ω̃3) = −Z(ω̃1∧ ω̃2+sin θdθ∧dϕ)+ 1

2
(Se2k+Φ+2Z ′)dρ∧ (ω̃3+cos θdϕ). (C.10)

As there is no longer a dρ ∧ ω̃i term in the NS 2 form before dualisation, the dual vielbeins

will have no legs in ρ and so there will no longer be a modification to gρρ and gρv3 . The trade

off is that the function Z will now enter into the dual solution.

We now once more follow the procedure of [14] with gauge fixing, as before, such that

v1 = ϕ = θ = 0. We are lead to the dual vielbeins

e1̂
′

= eg+
Φ
2

8W
√
C
[
e2k+Φ

(
−
√
2Ce2g+Φ(cosψ(aω2H + dv2) + sinψ(aω1H− ω3v2))−

4H sinψ(aω2H + dv2) + 4H cosψ(aω1H− ω3v2)

)
−

4v2Ce2g+Φ sinψ(aω2v2 − dv3)− 8
√
2v2 cosψ(v2dv2 +Hdv3)+

1
2
µ1Seg+Φ

(
8v22 cosψω2 + Ce2k+Φ

(
cosψ(Ce2g+Φω2 − 2

√
2Hω1)+

sinψ(Ce2g+Φω1 + 2
√
2Hω2)

))]

e2̂
′

= eg+
Φ
2

8W
√
C
[
e2k+ΦC

(√
2Ce2g+Φ(cosψ(ω3v2 − aω1H) + aω2H sinψ + dv2 sinψ)−

4H(cosψ(aω2H + dv2) + sinψ(aω1H− ω3v2))

)
−

4v2Ce2g+Φ cosψ(aω2v2 − dv3) + 8
√
2v2 sinψ(v2dv2 +Hdv3)+

1
2
µ1Seg+Φ

(
− 8v2 sinψω2 + Ce2k+Φ

(
(Ce2g+Φω1 + 2

√
2Hω2) cosψ−

(Ce2g+Φω2 − 2
√
2Hω1) sinψ

))]

e3̂
′

= ek+
Φ
2

8W
√
C
[√

2C2e4g+2Φ(aω2v2 − dv3) + 4v2Ce2g+Φ(ω3v2 − aω1H)−

8
√
2H(v2dv2 +Hdv3) + µ1v2Seg+Φ(4Hω2 +

√
2Ce2g+Φω2)

]

(C.11)

12See section 2 of [14] for details of how the initial B2 enters into the definition of the dual vielbeins.
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which upon rotating according to eq B.12 give the vielbeins of eq 3.5.

A valid question at this point is whether there is a local diffeomorphism which maps us

from the baryonic branch dual solution as defined in section C.1 to the solution defined as in

section 3. The answer is yes, and it may be most easily found by comparing the dilaton as

defined in eq 3.7 and eq C.6 . Examining these makes it clear that one needs to transform

V3 such that it is mapped to H. This may be achieved with a transformation in v3 only

v3 → v3 +
√
2Z (C.12)

under this which

V3 → H, Λ → dv3 (C.13)

and so vielbeins of eq C.4 are mapped to those of eq 3.5. The map on the RR sector also

follows trivially whilst the NS 2-form of eq 3.6 is mapped to that of eq C.5 up to an exact.

So it is clear that one may “cure” the bad asymptotics and gρv3 mixing of section C.1 either

by a gauge transformation in the NS 2-from before dualisation, or by a local diffeomorpism

on the dual coordinate v3 after the duality procedure is performed.

C.3 Details of the Dual Baryonic Branch Structure

All that remains to compete the elucidation of the baryonic dual is to give supplementary

details to section 4 on the dynamical SU(2) structure. Actually, the derivation of the struc-

ture is essentially the same as that of the dual of the wrapped D5 solution in section B, so

we will only focus on the differences here.

The 10-d MW Killing spinors of baryonic branch obey the same projection as the wrapped

D5 spinors (see eq B.5). However, whilst the internal spinors are still parallel, they now differ

by a point dependent phase eiζ(r) = C + iS

ǫ1 = eA(ξ+ ⊗ (eiζ(r)/2η+) + ξ− ⊗ (e−iζ(r)/2η−)), ǫ2 = eA(ξ+ ⊗ (e−iζ(r)/2η+) + ξ− ⊗ (eiζ(r)/2η−))

(C.14)

where the Minkowski warp factor is now e2A = eΦ

C . We now follow the steps illustrated

between eqs B.7 and B.9 such that the SU(3)-structure of the baryonic branch takes canonical

form.

The dual 10-d Killing spinors are given as in eqs B.13,B.14, however the ζa entering into

their definition are now given by

ζ1 =
2
√
2e−g−k−φv2 cosψ√

C
, ζ2 = −2

√
2e−g−k−φv2 sinψ√

C
, ζ3 =

2
√
2e−2g−φH√

C
. (C.15)

The new spinor ǫ̂2 is:

ǫ̂2 =
eΦ/2√
C
(
ζ+ ⊗ (e−iζ(r)/2η̂2−) + ζ− ⊗ (eiζ(r)/2η̂2+)

)
(C.16)
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where η̂2− is still given by eq D.26.

The dynamic SU(2)-structure supported by the dual baryonic branch solution may be

expressed as

Φ+ =
eA

8
e−iv∧w

(
k‖e

−ij − ik⊥ω
)
,

Φ− =
ieA

8
eiζ(r)(v + iw) ∧

(
k⊥e

−ij + ik‖ω
)
.

(C.17)

The forms and functions entering into these expressions are given by

e2A =
eΦ

C
eiζ(r) = C + iS

k‖ =
sinα√
1 + ζ.ζ

k⊥ =

√
cos2 α + ζ.ζ

1 + ζ.ζ

z = w − i v =
1√

cos2 α + ζ.ζ

(√
∆ẽ3 + ζ2 sinαẽ

θ + i(
√
∆ẽρ + ζ2 sinαẽ

ϕ)
)

j = ẽρ3 + ẽϕθ + ẽ21 − v ∧ w

ω =
i√

cos2 α+ ζ.ζ

(√
∆(ẽϕ + iẽθ)− ζ2 sinα(ẽ

ρ + iẽ3)
)
∧ (ẽ2 + iẽ1),

(C.18)

with ζa defined by C.15. Specifically the vielbeins ẽ that the structure is expressed in terms

of a rotation of those in eq C.11. First one preforms a rotation by α

êϕ = cosαeϕ + sinαe2
′

ê2 = − sinαeϕ + cosαe2
′

êa = ea for a 6= ϕ, 2′,

(C.19)

and then rotates these vielbeins to get ẽ = Rê, where the matrix R is given by eq B.19 with

ζa by eq C.15.

D Details of the non-Abelian T-duality on D6 branes

on S3

In this appendix, we study another background, similar to the one described in the main part

of this paper. We want to start with a solution of D6-branes wrapping a three-sphere in type

IIA supergravity, that preserves N = 1 supersymmetry. We first describe such a solution,

then we apply a non-Abelian T-duality to find a new type IIB supergravity solution. We

study this transformation at the level of the geometric structure. We then take advantage

of this example to make general statements on N = 1 type IIB supergravity solutions.
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D.1 The type IIA solution

We are interested in finding a solution of D6-branes in type IIA supergravity. For that

purpose, we start by considering eleven-dimensional supergravity. Because we only want D6-

branes, the M-theory solution is a background with no fluxes. Such a solution is described

in [46] or [47] (we follow the notation of the latter). The metric of the solution is:

ds211 = dx21,3 + ds27 , (D.1)

where the seven-dimensional internal space has the metric

ds27 = dr2 + a2[(§1 + gσ1)
2 + (§2 + gσ2)

2] + b2(σ2
1 + σ2

2) + c2(§3 + g3σ3)
2 + f 2σ2

3 , (D.2)

with a, b, c, f, g, g3 all functions of the radial coordinate r. Here the §, σ are left-invariant

SU(2) forms:

σ1 = cosψ1 + sinψ1 sin θdϕ , §1 = cosψ2 + sinψ2 sin θ̃dϕ̃ ,

σ2 = − sinψ1 + cosψ1 sin θdϕ , §1 = − sinψ2 + cosψ2 sin θ̃dϕ̃ ,

σ3 = dψ1 + cos θdϕ , §3 = dψ2 + cos θ̃dϕ̃ .

(D.3)

The BPS equations of this solution give [48]

g = − af

2bc
, g3 = 2g2 − 1 ,

a′ = − c

2a
+
a5f 2

8b4c3
, b′ = − c

2b
− a2(a2 − 3c2)f 2

8b3c3
,

c′ = −1 +
c2

2a2
+

c2

2b2
− 3a2f 2

8b4
, f ′ = − a4f 3

4b4c3
.

(D.4)

To get a ten-dimensional solution, we reduce the solution above along a U(1) isometry. To

accomplish our goal of getting D6-branes wrapping a three-sphere, we choose the isometry

generated by the Killing vector ∂ψ1 + ∂ψ2 . After some algebra, we get the following type IIA
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solution in string frame:

ds210 = α′gsNe
2A
[ µ

α′gsN
dx21,3 + dr2 + b2(dθ2 + sin2 θdϕ2) + a2(ω1 + gdθ)2

+ a2(ω2 + g sin θdϕ)2 + h2(ω3 − cos θdϕ)2
]
,

h2 =
c2f 2

f 2 + c2(1 + g3)2
,

e4Φ/3 =
c2f 2

4(gsN)2/3h2
,

e4A =
c2f 2

4h2
,

F2√
α′gsN

= −(1 +K) sin θdθ ∧ dϕ+ (K − 1)ω1 ∧ ω2 −K ′dr ∧ (ω3 − cos θdϕ) ,

K =
f 2 − c2(1− g23)

f 2 + c2(1 + g3)2
,

(D.5)

where the ω are defined as §, replacing ψ2 with ψ = ψ2 − ψ1.

D.2 Non-Abelian T-dual

Let us now take the solution from the previous section, and apply a non-Abelian T-duality

on the SU(2) isometry parametrised by the ω. We follow Section 2 of [14] and fix the gauge

as θ̃ = ϕ̃ = v1 = 0. We obtain a type IIB supergravity solution. The metric, in string frame,

is given by:

ds2IIB,st= e2A

[
dx21,3 +Ndr2 +Nb2(dθ2 + sin2 θdϕ2)

]
+

1

detM

[
2(v3dv2+v3dv3)

2+

4a2e4AN2

(
g2
(
a2v22(ω̂2)

2+h2v23
(
(ω̂1)

2+(ω̂2)
2
))
− a2dv3(dv3 − 2gv2ω̂2)+

2gh2v3ω̂2dv2 + h2dv22 − 2gh2v2v3ω̂1ω̂3 + h2v22(ω̂3)
2

)]
,

(D.6)

where

detM = 4e2A
(
2a4h2e4A + a2v22 + h2v23

)
, (D.7)

and

ω̂1 = cosψ dθ−sinψ sin θ dϕ, ω̂2 = − sinψ dθ−cosψ sin θ dϕ, ω̂3 = dψ−cos θdϕ . (D.8)

The dual dilaton Φ̂ is defined through

e−2Φ̂ = detMe−2Φ , (D.9)
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and the two-form potential as

B2 = − cos θdϕ ∧ dv3+
4
√
2a4gh2e6AN3

detM

(
ω̂1 ∧ dv2+(gv3ω̂1−v2ω̂3) ∧ ω̂2

)

2
√
2v2e

2AN

detM

(
ω̂3 ∧ (h2v3dv2 − a2v2dv3) + a2gω̂1 ∧ (v2dv2 + v3dv3)

)
.

(D.10)

The RR sector has all possible fluxes turned on. F1 and F5 can be expressed as follows:

F1 = 2N (v3drK
′ + (K − 1)dv3) ,

F5 = −2a2hUe6AN2

b2 detM

(√
2 detMvol4 ∧ dr − 4N2a2b2hv2ω̂1 ∧ ω̂2 ∧ ω̂3 ∧ dv2 ∧ dv3

)
,

U = g2(K − 1)− (K + 1) .

(D.11)

F3 is considerably more complicated:

F3 =

√
2N

detM

[
8N3a4h2e6A

(
v3
(
g2(K − 1) +K + 1

)
ω̂1 ∧ ω̂2 ∧ dv3+

K ′
(
gv3(ω̂1 ∧ dv2 ∧ dr+gv3ω̂1 ∧ ω̂2 ∧ dr+v2ω̂2 ∧ ω̂3 ∧ dr)−

v2ω̂3 ∧ dv2 ∧ dr
)
+ g(K − 1)(ω̂1 ∧ dv2 ∧ dv3 + v2ω̂2 ∧ ω̂3 ∧ dv3)

)
+

4e2AN

(
(K − 1)v2

(
a2gv2ω̂1 ∧ dv2 ∧ dv3 + h2v3ω̂3 ∧ dv2 ∧ dv3

)
+

a2v2K
′
(
gv2v3ω̂1 ∧ dv2 ∧ dr+gv23ω̂1 ∧ dv3 ∧ dr−

v2(v2ω̂3 ∧ dv2 ∧ dr+v3ω̂3 ∧ dv3 ∧ dr)
)
+

(K + 1)v3
(
a2v22+h

2v23
)
ω̂1 ∧ ω̂2 ∧ dv3

)
+detM(K+1)v2ω̂1 ∧ ω̂2 ∧ dv2

]

(D.12)

D.3 Spinors and structure

In this section, we follow the conventions of Andriot’s thesis [49] for the SU(3)×SU(3)-

structure. We start from the solution before T-duality, which has an SU(3)-structure. This

is type IIA supergravity so the spinors are of different chirality. The spinors of the original

solution are:
ǫ1 = eΦ/6

(
ζ+ ⊗ η+ + ζ− ⊗ η−

)
,

ǫ2 = eΦ/6
(
ζ+ ⊗ η− + ζ− ⊗ η+

)
.

(D.13)
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They define the following SU(3)-structure:

J = er3 + (αe2 + βeϕ) ∧ eθ + (αeϕ − βe2) ∧ e1 ,
Ω = (er + i e3) ∧ (αe2 + βeϕ + i eθ) ∧ (αeϕ − βe2 + i e1) ,

(D.14)

where

α(r) =
ag√

b2 + a2g2
, β(r) =

b√
b2 + a2g2

, α2 + β2 = 1 , (D.15)

in terms of the vielbein basis:

er = eΦ/3dr , eθ = eΦ/3b dθ , eϕ = eΦ/3b sin θdϕ ,

e1 = eΦ/3a(ω1 + g dθ) , e2 = eΦ/3a(ω1 + g sin θdϕ) , e3 = eΦ/3h(ω3 − cos θdϕ) .
(D.16)

Let us rotate this veilbein basis to put the structure in its canonical form.

êϕ = βeϕ + αe2 ,

ê2 = αeϕ − βe2 ,

êa = ea for a 6= ϕ, 2 .

(D.17)

It is a rotation since α2 + β2 = 1, but it reverses the orientation. With respect to this new

basis, the structure is expressed as:

Ĵ = êr3 + êϕθ + ê21 ,

Ω̂ = (êr + i ê3) ∧ (êϕ + i êθ) ∧ (ê2 + i ê1) .
(D.18)

That means that the spinors obey the following projections:

γ̂ϕθη+ = γ̂r3η+ = γ̂21η+ = i η+ , (D.19)

where the γ̂ matrices are defined in terms of the rotated vielbein basis.

Let us now look at the non-Abelian T-duality. We know that the spinors transform in the

following way:

ǫ̃1 = ǫ1 , ǫ̃2 = Ω ǫ2 . (D.20)

Ω here is defined as:

Ω =
Γ(10)

√
1 + ζ.ζ

(
− Γ123 + ζ1Γ

1 + ζ2Γ
2 + ζ3Γ

3
)
, (D.21)

where the ζa are given by

ζ1 = −e
−2Φ/3v2 cosψ√

2Nah
, ζ2 =

e−2Φ/3v2 sinψ√
2Nah

, ζ3 = −e
−2Φ/3v3√
2Na2

. (D.22)
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We are now going to consider the space after T-duality. The value for Ω above is written in

the vielbein basis obtained directly from T-duality of the original basis (D.16) without any

rotation. To make things simpler, we are going to perform the same rotation with α, β on

this basis as before the T-duality (see (D.17)), but we do not perform any rotation in ψ. We

call this new basis ě. It is defined in terms of the coordinate of the T-dual background as

follows:

ěr = eΦ/3dr , ěθ = eΦ/3b dθ , βěϕ + αě2 = eΦ/3b sin θdϕ ,

ě1 =
2
√
Neφ/3a

detM

[
v2(−

√
2v3 cosψ + 2e2Φ/3Na2 sinψ)dv3

− (
√
2v22 cosψ + 2e2Φ/3Nv3h

2 sinψ + 2
√
2e4Φ/3N2a2h2 cosψ)dv2

+ 2e2Φ/3Ng(−v22a2 sinψω̂2 + v3h
2(
√
2e2Φ/3Na2 sin θdϕ+ v3dθ))

+ 2e2Φ/3Nv2h
2(v3 cosψ −

√
2e2Φ/3Na2 sinψ)ω̂3

]
,

αěϕ − βě2 =
2
√
Neφ/3a

detM

[
v2(

√
2v3 sinψ + 2e2Φ/3Na2 cosψ)dv3

+ (
√
2v22 sinψ − 2e2Φ/3Nv3h

2 cosψ + 2
√
2e4Φ/3N2a2h2 sinψ)dv2

+ 2e2Φ/3Ng(−v22a2 cosψω̂2 + v3h
2(−

√
2e2Φ/3Na2dθ + v3 sin θdϕ))

+ 2e2Φ/3Nv2h
2(v3 sinψ +

√
2e2Φ/3Na2 cosψ)ω̂3

]
,

ě3 =
2
√
NeΦ/3h

detM

[
−

√
2v2v3dv2 −

√
2(v23 + 2e4Φ/3N2a4)dv3

+ 2e2Φ/3Nv2a
2(−v3gω̂1 +

√
2e2Φ/3Na2gω̂2 + v2ω̂3)

]
.

(D.23)

The projections obeyed by η+ are still as in (D.19). In this new basis, the T-dual Ω becomes:

Ω =
1√

1 + ζ.ζ

(
− αΓ̌1ϕ3 + βΓ̌123 + ζ1Γ̌

1 − ζ2βΓ̌
2 + ζ2αΓ̌

ϕ + ζ3Γ̌
3
)
Γ̌(10) . (D.24)

So the new spinor ǫ̃2 is:

ǫ̃2 = eΦ/6
(
ζ+ ⊗ η̌2+ + ζ− ⊗ η̌2−

)
, (D.25)

where

η̌2+ =
−βγ̌r − ζ1γ̌

1 + ζ2βγ̌
2 − ζ3γ̌

3 − ζ2αγ̌
ϕ

√
1 + ζ.ζ

η− + i
α√

1 + ζ.ζ
η+ . (D.26)

It is clear here that, as long as α 6= 0, we are in the general SU(3)×SU(3)-structure case. In

order to simplify the expressions, we are performing a transformation of the vielbein basis:

R =
1√
∆




β 0 0 ζ1 −ζ2β ζ3
0

√
∆ 0 0 0 0

0 0
√
∆ 0 0 0

−ζ1 0 0 β ζ3 ζ2β
ζ2β 0 0 −ζ3 β ζ1
−ζ3 0 0 −ζ2β −ζ1 β




(D.27)
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where

∆ = β2 + ζ21 + ζ22β
2 + ζ23 (D.28)

We define a new basis:

ẽ = R.ě (D.29)

In terms of this new basis, the spinor is:

η̃2+ = −
(√

∆γ̃r + ζ2αγ̃
ϕ

√
1 + ζ.ζ

)
η− + i

α√
1 + ζ.ζ

η+ (D.30)

And the projections in this basis are still:

γ̃ϕθη+ = γ̃r3η+ = γ̃21η+ = i η+ (D.31)

Let us now express the forms of the geometric structure, following the conventions of

Andriot’s thesis.

|a|2 = eΦ/3

θ+ =
π

2
θ− = −π

2

k‖ =
α√

1 + ζ.ζ
k⊥ =

√
β2 + ζ.ζ

1 + ζ.ζ

z = w − i v =
1√

β2 + ζ.ζ

(√
∆ẽr + ζ2αẽ

ϕ − i(
√
∆ẽ3 + ζ2αẽ

θ)
)

j = ẽr3 + ẽϕθ + ẽ21 − v ∧ w

ω =
−i√

β2 + ζ.ζ

(√
∆(ẽϕ + iẽθ)− ζ2α(ẽ

r + iẽ3)
)
∧ (ẽ2 + iẽ1)

(D.32)

In terms of those forms, the pure spinors are defined as:

Φ+ =
|a|2
8
eiθ+e−iv∧w

(
k‖e

−ij − ik⊥ω
)

Φ− =
i|a|2
8
eiθ−(v + iw) ∧

(
k⊥e

−ij + ik‖ω
) (D.33)

Let us now look at the BPS equations of type IIB supergravity in the general case of

SU(3)×SU(3)-structure, generalising the system of pure SU(3)-structure that exhibit a ro-

tation.
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E BPS equations for a solution of type IIB supergrav-

ity with a general SU(3) × SU(3)-structure

We again follow the conventions of Andriot’s thesis in this section. We start with the

following pure spinors:

Φ+ =
eA

8
ei θ+e−i v∧w(k‖e

−i j − i k⊥ω) ,

Φ− =
eA

8
ei θ−(v + i w) ∧ (i k⊥e

−i j − k‖ω) .

(E.1)

For type IIB supergravity, the BPS equations are:

(d−H∧)(e2A−φΦ−) = 0 ,

(d−H∧)(eA−φℜ(Φ+)) = 0 ,

(d−H∧)(e3A−φℑ(Φ+)) =
e4A

8
∗6 (F1 − F3 + F5) .

(E.2)

Let us start with Φ+. We have:

8e−Aℜ(Φ+) = k‖ cos θ+

[
1 + (tan θ+χ+ λ)− 1

2

(
χ+

1− sin θ+
cos θ+

λ

)
∧
(
χ− 1 + sin θ+

cos θ+
λ

)]
,

8e−Aℑ(Φ+) = k‖ sin θ+

[
1− (cot θ+χ− λ)− 1

2

(
χ+

cos θ+ + 1

sin θ+
λ

)
∧
(
χ− sin θ+

cos θ+ + 1
λ

)]
,

(E.3)

where

χ = j + v ∧ w +
k⊥
k‖

ℜ(ω) ,

λ =
k⊥
k‖

ℑ(ω) .
(E.4)

Notice that, because of the various relations between the structure forms (j∧ω = ω∧ω = 0),

we can use the following equations:

j ∧ ℜ(ω) = j ∧ ℑ(ω) = 0 ,

ℜ(ω) ∧ ℑ(ω) = 0 ,

ℜ(ω) ∧ ℜ(ω) = ℑ(ω) ∧ ℑ(ω) .
(E.5)

Using those, we can get the following relation:

λ ∧ λ = k2⊥ χ ∧ χ . (E.6)
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From there, we derive our first set of BPS equations. (d−H∧)(eA−φℜ(Φ+)) = 0 gives us

d[e2A−φk‖ cos θ+] = 0 ,

d[e2A−φk‖ cos θ+(tan θ+χ + λ)]− e2A−φk‖ cos θ+H = 0 ,

d

[
e2A−φk‖ cos θ+

(
χ +

1− sin θ+
cos θ+

λ

)
∧
(
χ− 1 + sin θ+

cos θ+
λ

)]

+ 2e2A−φk‖ cos θ+H ∧ (tan θ+χ + λ) = 0 .

(E.7)

From those, it is easy to see that H = dB where:

B = tan θ+χ+ λ , (E.8)

and the third equation simplifies into:

d[e4A−2φχ ∧ χ] = 0 . (E.9)

Let us now turn to (d−H∧)(e3A−φℑ(Φ+)) =
e4A

8
∗6 (F1 − F3 + F5). We get

d[e4A−φk‖ sin θ+] = e4A ∗6 F5 ,

d[e4A−φk‖ sin θ+(cot θ+χ− λ)] + e4A−φk‖ sin θ+H = e4A ∗6 F3 ,

d

[
e4A−φk‖ sin θ+

(
χ+

cos θ+ + 1

sin θ+
λ

)
∧
(
χ− sin θ+

cos θ+ + 1
λ

)]

− 2e4A−φk‖ sin θ+H ∧ (cot θ+χ− λ) = −2e4A ∗6 F1 .

(E.10)

Using all the equations we have so far, we can rewrite the three-form ones as:

H = dλ+
eφ sin θ+

k‖
[∗6F3 + (∗6F5) ∧ λ] +

eφ cos θ+
k‖

d(e−φk‖ sin θ+) ∧ χ ,

e−2Ad(e2Aχ) =
eφ cos θ+

k‖
[∗6F3 + (∗6F5) ∧ λ]−

eφ sin θ+
k‖

d(e−φk‖ sin θ+) ∧ χ .
(E.11)

Those equations have been written in such a way as to make the limits for θ+ → 0, π/2

obvious, and to give the equations of the rotation present in [25] when taking k⊥ → 0, k‖ → 1

(limit of SU(3)-structure). The last equation, involving ∗6F1 can be rewritten in the following

way:
1

2
d(e−φk‖ sin θ+) ∧ χ ∧ χ = ∗6F1 + (∗6F3) ∧ λ+ (∗6F5) ∧ λ ∧ λ . (E.12)
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In summary, the BPS equations we get from Φ+ are:

d[e2A−φk‖ cos θ+] = 0 ,

d[e4A−φk‖ sin θ+] = e4A ∗6 F5 ,

H = dλ+
eφ sin θ+

k‖
[∗6F3 + (∗6F5) ∧ λ] +

eφ cos θ+
k‖

d(e−φk‖ sin θ+) ∧ χ ,

e−2Ad(e2Aχ) =
eφ cos θ+

k‖
[∗6F3 + (∗6F5) ∧ λ]−

eφ sin θ+
k‖

d(e−φk‖ sin θ+) ∧ χ ,

d[e4A−2φχ ∧ χ] = 0 ,

1

2
d(e−φk‖ sin θ+) ∧ χ ∧ χ = ∗6F1 + (∗6F3) ∧ λ+ (∗6F5) ∧ λ ∧ λ .

(E.13)

Let us now look at the equations we get for Φ−. We first define:

ξ = ei θ−(v + i w) ,

β = j − k‖
k⊥
ω .

(E.14)

We get for the BPS equations, after some simplifications:

d[e3A−φk⊥ξ] = 0 ,

k⊥(dβ + iH) ∧ ξ = 0 .
(E.15)

The equation we would get for the six-form is just the one for the four-form wedged with β,

so it is not an additional independent equation.

It is quite easy to check that, taking the pure SU(3) limit, that is k‖ → 0, k⊥ → 1, we

recover the system we already knew from [25].

Finally, we want to explicitly specialise to the cases of θ+ = 0 and θ+ = π/2. First θ+ = 0:

d[e2A−φk‖] = 0 ,

F5 = 0 ,

H = dλ ,

e−2Ad[e2Aχ] =
eφ

k‖
∗6 F3 ,

d[e4A−2φχ ∧ χ] = 0 ,

∗6 F1 + (∗6F3) ∧ λ = 0 ,

d[e3A−φk⊥ξ] = 0 ,

k⊥(dβ + iH) ∧ ξ = 0 .

(E.16)
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And, in the case θ+ = π/2:

d[e4A−φk‖] = e4A ∗6 F5 ,

H =
eφ

k‖
∗6 F3 +

1

e4A−φk‖
d[e4A−φk‖λ] ,

d[e2A−φk‖χ] = 0 ,

d[e4A−2φχ ∧ χ] = 0 ,

1

2
d(e−φk‖) ∧ χ ∧ χ = ∗6F1 + (∗6F3) ∧ λ+ (∗6F5) ∧ λ ∧ λ ,

d[e3A−φk⊥ξ] = 0 ,

k⊥(dβ + iH) ∧ ξ = 0 .

(E.17)

Those systems do not look much more complicated than the ones in the pure SU(3) case, but

there does not seem to be an easy transformation starting from either θ+ = 0 or θ+ = π/2

and recovering the full system.
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