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1 Introduction

A central theme in recent years has been to understand the ways in which dualities of

string and M-theory may be promoted to manifest symmetries and indeed the extent to

which they may be used to determine the structure of the underlying theory.

The idea of a T-duality invariant worldsheet description, the doubled worldsheet

(DWS ), of strings goes back to pioneering work of Duff [1] and Tseytlin [2, 3]. The study

of this approach was reignited following the proposal of Hull [4, 5] to use such a formalism

to define strings in a class of non-geometric backgrounds known as T-folds. Parallel to this

has been the development of a spacetime T-duality invariant theory, often now dubbed

double field theory (DFT ), whose origins date to the seminal works of Tseytlin [2, 3] and

Siegel [6, 7]. This approach was derived from the perspective of closed string field theory

on a torus by Hull and Zwiebach [8]. These ideas have also been explored in the context

of M-theory [9, 10] where exceptional field theory (EFT ) seeks to promote the U-duality
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group to a manifest symmetry of a spacetime action and in the E11 program of West [11]

and collaborators.1

A common theme of the doubled worldsheet, double field theory and exceptional field

theory is that in order to make the duality act as a linearly realised symmetry, the dimen-

sionality of spacetime is augmented by the introduction of additional coordinates. For in-

stance, in the case of T-duality of strings on a d-dimensional torus, we have a 2d-dimensional

extended spacetime consisting of d-regular coordinates xi and d-dual coordinates x̃i. Just

as position is conjugate to momenta one can think of these extra coordinates as conjugate

to winding of the string. For strings in a curved background, the components of the back-

ground metric gij and NS two-form fields bij in the internal toroidal directions are united

into a generalised metric,

HIJ =

(
g − b g−1 b −b g−1

g−1 b g−1

)
, (1.1)

on the doubled space parametrised by coordinates XI = {xi, x̃i}. The T-duality group,

which is O(d, d;Z) in this case, acts on this generalised metric as,

H → H′ = OTHO , (1.2)

where the group element preserves the inner product, OT ηO = η, given in this basis by,

ηIJ =

(
0 1

1 0

)
. (1.3)

From the generalised metric we see that the doubled space is equipped with an almost

product structure S = ηH such that S2 = 1 which one can think of as giving rise to a

“chiral structure” specified by the projection operators,

P± =
1

2

(
1± S

)
. (1.4)

This doubled space is also equipped with a natural symplectic product Ω given in this

basis as,

ΩIJ =

(
0 1

−1 0

)
. (1.5)

The existence of the objects S, η and Ω are central to the recent proposal of Born geome-

tries [15, 16].

In all of these duality symmetric approaches, there is a price to pay; action principles

based on the doubled or extended spacetimes require supplementary constraints. In DFT

and EFT gauge invariance of the theory requires a constraint, also known as the section

condition, that essentially declares the field content of the theory to depend on only a

1Our focus in this note will be on the worldsheet rather than spacetime so for further introduction to

the DFT and EFT we refer the reader to the review articles [12–14].
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physical spacetime’s worth of coordinates.2 In the case of DWS, the worldsheet bosons

are required to obey a chirality constraint meaning that of the 2d bosons XI exactly half

are left-movers and half are right-movers and thereby give the correct contribution to the

physical central charge. In this note we will be focussed on the variety of ways in which

the chirality constraint of DWS has been handled.

To explain this let us momentarily restrict ourselves to a simple case; a doubled torus

T 2d with coordinates XI and a generalised metric H possibly depending on some other

“spectator” coordinates y parametrising a base manifold over which the doubled torus is

trivially fibered with vanishing connection. In this situation the constraints are given in

terms of the chiral projections by,

(P+)IJ∂=XJ = 0 , (P−)IJ∂=|XJ = 0 . (1.6)

Chiral scalars are notoriously tricky objects to describe, the main reason is that these

constraints are first order differential equations and in the terminology of Dirac second

class constraints and can not be imposed easily with Lagrange multipliers. One approach

is to simply consider a non-linear σ-model in the doubled spacetime,

SHull =
1

2

∫
d2 σ ∂=|XI HIJ ∂=XJ + . . . , (1.7)

in which, and in the following, the ellipsis indicate terms depending on the spectators

and also a topological term involving ΩIJ both of which we shall detail later. One can

then implement the constraints supplementary to the action for instance by using Dirac

brackets and then performing canonical quantisation [27] or by holomorphic factorisation

of the resulting partition function [28, 29]. Whilst this is certainly a viable route, one

should very much like to have an action principle from which eq. (1.6) follows. Without

introducing extra field content this is possible only at the expense of sacrificing manifest

Lorentz invariance leading to the action pioneered by Tseytlin [2, 3],

STseytlin =
1

4

∫
d2σ − ∂σXI HIJ ∂σXJ + ∂σXI ηIJ ∂τXJ + . . . , (1.8)

which essentially employs a Floreanini-Jackiw [30] construction for chiral bosons. The

equations of motion that follow from eq. (1.8) may be integrated and using a gauge in-

variance of the form δXI = f I(τ) give rise to the desired chirality constraints of eq. (1.6).

Despite its apparent non-covariance one can still employ some conventional field theory

techniques, for instance one-loop beta functions of this action have been calculated [31, 32]

and shown to give rise to background field equations for H which are indeed compatible

with the equations that follow from DFT in the present context (other attempts to make

more precise the linkage between DFT and the worldsheet theory by allowing H to depend

on the internal coordinates are found in [33, 34] and [35]). However multi-loop calculations

are at best very difficult without Lorentz covariance.

2Upon solving this section condition for type II DFT [17] globally, one recovers the generalised geome-

try [18, 19] reformulation of supergravity of [20, 21]. Ways in which the section condition can be consistently

relaxed are of great interest and connect to gauged supergravities see [22–26].
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A further approach is to include extra fields so as to furnish the action with a gauge

redundancy which promotes the second class constraint to a first class one. This is the spirit

of the Pasti-Sorokin-Tonin (PST) approach to chiral fields3 [36]. In the present context

this leads to a doubled action,

SPST =
1

2

∫
d2σ ∂=|XI HIJ ∂=XJ −

∂=| f

∂=f
(P+∂=X)IηIJ(P+∂=X)J

+
∂=f

∂=| f
(P−∂=|X)IηIJ(P−∂=|X)J + . . . .

(1.9)

The symmetries of this action are,

1) δXI = ΛI(f) , δf = 0 , (1.10)

2) δXI =
ε

∂=| f
(P−∂=|X)I +

ε

∂=f
(P+∂=X)I , δf = ε . (1.11)

Upon using the second symmetry to fix f = f(τ) one recovers the Tseytlin action eq. (1.8).

Whilst this overall picture is correct, the literature has been rather sketchy in places

about many of the details concerning the derivations of the covariant forms of the doubled

worldsheet and in particular has omitted a careful treatment of spectator fields (i.e. exactly

the terms in ellipsis in the above discussion). In the following we will resolve many of these

outstanding issues and by giving the complete derivation of the covariant bosonic doubled

formalism achieved by adopting an unusual gauge fixing in a Buscher procedure. A version

of this idea was suggested in [37] wherein an axial gauge fixing gives rise to the non-covariant

action eq. (1.8) and more recently explored in [38, 39] wherein covariant gauge fixing choices

were adopted (though those are not directly relevant to the present discussion). We further

this approach by making direct the linkage to the PST form of the action and will then

be able to clarify some surprising features concerning the origin of the PST symmetries.

These ideas will then be generalised to the case of non-Abelian T-dualities [40] and we

will recover a covariant version of the Poisson-Lie duality symmetric action of Klimč́ık and

Ševera [41, 42].

This work arose out of an ongoing attempt to better understand the supersymmetric

doubled formalism. It is quite clear in this case how to generalise the chirality constraints

to N = 1 supersymmetry; one promotes partial derivatives to super covariant derivatives

acting on superfields,

(P+)IJD−XJ = 0 , (P−)IJD+XJ = 0 . (1.12)

Previous work in the literature has followed the route of imposing the constraints by hand

either via Dirac brackets as in [27] or via holomorphic factorisation of a partition func-

tion [43]. However the implementation of these constraints at the level of the action has

rarely been considered; there is no known covariant formalism in the style of eq. (1.9)

3A different approach based upon gauging the the symmetries generated by the constraints was followed

in [5] however at the cost of loosing manifest O(d, d;Z) invariance. This approach can be extended to

superspace (at least to N = (1, 1)) and higher genus worldsheets.
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and even a non-covariant Tseytlin style action has only been considered for the case of a

constant generalised metric i.e. assuming no dependance on spectator coordinates. Naive

attempts to generalise this appear to fail badly and addressing this short coming seems

essential for the doubled worldsheet to have a life in superstring theory.

Here we take a step in this direction by carefully analysing the simplest supersymmetric

model, i.e. the one which exhibits an N = (0, 1) supersymmetry on the worldsheet. It turns

out that even a first order formulation comes accompanied by external constraints. These

extra constraints are similar in nature to nilpotency constraints on superfields, so at the

level of the components of the superfields they are algebraic and, as a consequence, they can

simply be imposed using Lagrange multipliers. We do give both the PST and the Tseytlin

like description of the N = (0, 1) system. Note that a Hamiltonian perspective was given

in [44] in which only bosonic degrees of freedom are doubled making supersymmetry less

evident; here we will instead work in superspace.

2 Bosonic abelian doubled string

2.1 Deriving the covariant doubled string

Our starting point is some compact D-dimensional manifold M endowed with a metric

g and a closed 3-form H. Locally we introduce the Kalb-Ramond 2-form b: H = db.

Choosing local coordinates XA, A ∈ {1, · · · , D}, the non-linear σ-model Lagrange density

is given by,

L = ∂=|X
A
(
gAB + bAB

)
∂=X

B . (2.1)

We now assume the existence of d isometries (d ≤ D) and introduce adapted coordinates

xi, i ∈ {1, · · · , d}, such that the background fields g and b do not depend on x. The

spectator coordinates are called yα, α ∈ {1, · · · , D−d}. In an obvious matrix notation the

Lagrange density becomes,

L = ∂=| x
T E ∂=x+ ∂=| x

T M ∂=y + ∂=| y
T N ∂=x+ ∂=| y

T K ∂=y . (2.2)

A special role is accorded to Eij = gij + bij . We denote the inverse of gij (g) by gij (g−1):

gik g
kj = δji (g g−1 = g−1 g = 1). We introduce “connections” B and B̃,

Bi = gijgjβ ∂y
β ,

B̃i = biβ ∂y
β − bij gjkgkβ∂ yβ , (2.3)

which are adapted coordinate representations of (pull backs of) one-forms detailed in [5]

that are horizontal and invariant with respect to the Killing vectors generating the isometry.

With these we may rewrite eq. (2.2) as,

L = ∇=| x
T E∇= x+ ∂=| x

T B̃= − ∂= x
T B̃=| − BT=| E B= + ∂=| y

T K ∂=y , (2.4)

where,

∇x = ∂x+ B . (2.5)
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In order to obtain the T-dual model we gauge the isometries,

x→ x′ = x+ ζ , y → y′ = y . (2.6)

For this we introduce 2d gauge fields A=| and A= transforming as,

A=| → A′=| = A=| − ∂=| ζ , A= → A′= = A= − ∂= ζ , (2.7)

together with d Lagrange multipliers x̃ which are inert under the gauge transformations.

The gauge invariant Lagrange density is then,4

Lgauged =
(
∇=| x+A=|

)T
E
(
∇= x+A=

)
+
(
∂=| x+A=|

)T B̃= −
(
∂= x+A=

)T B̃=|

−BT=| EB= + ∂=| y
T K ∂=y + x̃T

(
∂=|A= − ∂=A=|

)
. (2.8)

Integrating over the Lagrange multipliers sets the field strengths to zero, so we can gauge

away the gauge fields and we recover the original model. However making the gauge choice

x = 0, integrating by parts on the Lagrange multiplier term and integrating out the gauge

fields yields the dual model,

L̃dual = ∇=| x̃
T Ẽ∇= x̃+ ∂=| x̃

T B= − ∂= x̃
T B=| − B̃T=| Ẽ B̃= + ∂=| y

T K̃ ∂=y , (2.9)

with,

∇x̃ = ∂x̃+ B̃ . (2.10)

The dual background fields are given by the Buscher rules [46, 47],

Ẽ = E−1 , M̃ = E−1M , Ñ = −NE−1 , K̃ = K −NE−1M , (2.11)

together with a shift in the dilaton that is seen when the dualisation procedure is carried

out in a path integral.

Let us now turn to the manifest T-dual invariant or doubled formulation of the model.

In fact our starting point, the gauged Lagrange density eq. (2.8) is already “doubled” as

both the original coordinates x and the dual coordinates x̃ appear. This was suggested

in [37] (see also [48] for a detailed development) where it was shown that by making the

non-Lorentz covariant gauge choice A=| = A= ≡ A and subsequently integrating out A one

recovers Tseytlin’s non-Lorentz covariant doubled formulation [2, 3]. This is very reminis-

cent of the Floreanini-Jackiw formulation of a chiral boson [30]. Just as the Floreanini-

Jackiw formalism can be covariantized [36, 49] we expect the same for Tseytlin’s action. In

the next we show how by making a judicious gauge choice in eq. (2.8) one indeed obtains

a Lorentz invariant doubled worldsheet formulation.

Starting from the gauge invariant Lagrange density in eq. (2.8) we impose the gauge

fixing condition,

∂=| fA= = ∂=fA=| , (2.12)

4Note that in order to avoid nontrivial holonomies around non-contractible loops, x̃ should satisfy

appropriate periodicity conditions. In addition, a surface term ∂=(x̃TA=|) − ∂=|(x̃
TA=) should be added

to eq. (2.8) [45] which is important to keep in mind as we treat boundary contributions in what follows.
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where f is some scalar field. In writing the gauge fixing choice as in eq. (2.12) we are

emphasising that the function f should be suitably chosen so as to have nowhere vanishing

derivatives — we will discuss this requirement further in the discussion section. Making a

coordinate transformation,

σ=| → σ̂=| = σ=| , σ= → σ̂= = f , (2.13)

the above gauge choice simplifies to Â=| = 0. From this we immediately identify the residual

gauge symmetry. It is given by eqs. (2.6) and (2.7) where the gauge parameter ξ is of the

form ξ = ξ(f(σ=|, σ=)). A full and detailed discussion of the residual symmetries will be

given in section 2.2. In addition to this, one verifies that the Lagrange density eq. (2.8) is

invariant under,

x̃→ x̃′ = x̃+ ξ̃(f) , (2.14)

as well.

Now the strategy is clear. We adopt this gauge choice and parameterize the gauge

fields as,

A=| = A∂=| f A= = A∂=f , (2.15)

where A is a d×1 column matrix of scalar fields. Implementing this gauge fixing in eq. (2.8)

and eliminating A through its equations of motion,

A = − 1

2∂=f
g−1 J= −

1

2∂=| f
g−1 J=| , (2.16)

where,

J= = E∇= x+∇= x̃ , J=| = ET ∇=| x−∇=| x̃ , (2.17)

yields, after a little manipulation, the desired covariant doubled Lagrange density,5

Ldoubled =
1

2
∇=|XTH∇= X− 1

2
∂=|XTΩ∂= X− 1

2

∂=f

∂=| f
∇=|XTHP−∇=|X

−1

2

∂=| f

∂=f
∇= XTHP+∇= X +

1

2
∂=|XT η B= −

1

2
∂= XT η B=| + ∂=| y

T K̂∂= y ,

(2.18)

where,

B =

(
B
B̃

)
, ∇X = ∂X + B . (2.19)

This action is now (almost) manifestly invariant under global O(d, d;R) transformations

acting as,

H → H′ = OTHO , X→ O−1X , B→ O−1B . (2.20)

5Note that a Lagrange density somewhat similar to this one has been obtained in the context of heterotic

strings compactified on a Narain torus [53].
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This invariance is further reduced to O(d, d;Z) by demanding that the periodicities of the

coordinates X are preserved [4, 8].

Note that other than the initial integration by parts on the Lagrange multiplier term

(and, see footnote 4, in a careful gauging any boundary terms from this are canceled by a

boundary contribution), we have not discarded any total derivatives in this manipulation

and the topological term, ∂=|XTΩ∂= X, appears automatically. One might be tempted to

ignore such a piece however this term is vital for instance in getting a correct factorisation

of the partition function and in [5] this topological term ensures invariance under certain

large gauge transformations that are used to define the quantum theory (as originally

emphasized in [54]). We will see later that when generalised to non-Abelian T-duality it

will no longer remain topological and rather play the role of a potential for a WZ term.

Strictly speaking this topological term spoils the invariance of the action under O(d, d;Z)

unless OTΩO = Ω. Evidently the GL(d,Z) subgroup of the duality group preserves Ω, but

for the remaining components of O(d, d;Z), namely B-field shifts and Buscher dualities,

one needs to exercise more care. Properly normalised this topological term [5] evaluates

to the sum of products of winding numbers around canonically dual cycles and in a fixed

winding sector evaluates to πZ contributing a sign in the path integral. B-field shifts have

the effect of adding 2πZ to this contribution and thus leave the path integral invariant.

For T-dualities that simply swap n coordinates the coefficient of the topological term is

multiplied by (−1)n and again the path integral is invariant.

The Lagrange density governing the spectator coordinates is altered as well — a fact

often ignored in the literature. Indeed the O(d, d;Z) non-invariant background field K is

replaced by K̂ which is invariant and explicitly given by,

K̂ = K − 1

2
N g−1M − 1

4
MT g−1M − 1

4
N g−1NT . (2.21)

The action of parity is slightly non-standard. Since parity acts as P : {σ=|, σ=} →
{σ=, σ=|} leaving the one-form gauge connection Aµdx

µ invariant, we require that P :

{x, x̃} → {x,−x̃} for the gauged Lagrangian to have definite parity. In terms of the

doubled space we have P : XI → PIJXJ with PIJ = −(Ωη)IJ . In addition, for the term

Eij∂=| x
i∂=x

j to have definite parity we should also insist that P : bij → −bij which implies

that the generalised metric must transform as P : H → P ·H·P . Making use of the identity

P · η · P = −η we see P : (P+∂=X)I → (P ·P−∂=|X)I and thus both the Tseytlin and PST

actions have definite parity.

2.2 Gauge symmetries and the origin of PST symmetry

In this section we investigate the symmetries of the manifest O(d, d;Z) invariant Lagrange

density. Upon gauge fixing the original gauge symmetry eqs. (2.6) and (2.7) and passing

to the second order formalism, the residual gauge symmetry extended by the symmetry

eq. (2.14) is given by,

X→ X′ = X + Λ(f) , f → f ′ = f , (2.22)

– 8 –
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where Λ(f) is a 2d× 1 column matrix of arbitrary functions of f . This explains the origin

of the first of the symmetries of eq. (1.10). However the appearance of the PST symmetry

which acts as,

δf = ε ,

δX =
ε

∂=| f
P−∇=|X +

ε

∂= f
P+∇= X , (2.23)

in the second order formulation eq. (2.18) is quite mysterious. It looks as if it is unrelated

to the original gauge symmetry eqs. (2.6) and (2.7). In the remainder we explain how the

PST symmetry originates from the gauged σ-model in eq. (2.8).

Given an infinitesimal vector, ξµ, µ ∈ {=| ,=}, we introduce the variations,

δAµ = Lξ Aµ = ∂µ
(
ξνAν

)
+ ξνFνµ ,

δx = −ξµAµ ,
δx̃ = −ξ=| (J=| + ETA=|

)
+ ξ= (J= + EA=) , (2.24)

where Fµν = ∂µAν − ∂νAµ, Lξ is the Lie derivative along ξ and J was given in eq. (2.17).

One easily verifies that the gauged σ-model in eq. (2.8) is invariant under these transfor-

mations. This is not so surprising as these transformations can be rewritten as,

δx = −ξµAµ ,

δA=| = ∂=| (ξ
µAµ)− ξ= δS

δx̃
,

δA= = ∂=(ξµAµ) + ξ=| δS
δx̃

,

δx̃ = −ξ=| δS
δA=

+ ξ= δS
δA=|

, (2.25)

where we introduced the action S =
∫
d2σLgauged. So one sees that this is not a new

symmetry: it is a combination of a (field dependent) gauge transformation eqs. (2.6), (2.7)

with parameter ζ = −ξµAµ and a (trivial) equations of motion symmetry.

However the situation changes when making the gauge choice A=| = ∂=| f A, A= =

∂=f A. The residual gauge symmetry is now,

x→ x′ = x+ ε(f) , f → f ′ = f , A→ A′ = A− dε(f)

df
, (2.26)

and the symmetries in eq. (2.25) survive provided we assign the following transformation

rules to A and f ,

δf = ξµ∂µf ,

δA = ξµ∂µA . (2.27)

Introducing the parameters ε and κ,

ε ≡ ξ=| ∂=| f + ξ=∂= f , κ ≡ ξ=| ∂=| f − ξ=∂= f , (2.28)
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one rewrites the transformation rules as,

δf = ε ,

δx = −εA ,

δx̃ =
ε

2

(
−
J=|

∂=| f
+
J=

∂= f
+ 2bA

)
− κ

2∂=| f∂=f

δS
δA

,

δA =
ε

2

(
∂=|A

∂=| f
+
∂=A

∂=f

)
+

κ
2∂=| f∂=f

δS
δx̃

. (2.29)

So one sees that the symmetry parameterized by ε corresponds to a genuine gauge symme-

try while the one parameterized by κ is a trivial equations of motion symmetry. Eliminating

A through its equations of motion, eq. (2.16) the κ dependent term in δx̃ drops out and the

transformations rules for x, x̃ and f exactly reduce to the PST tranformations in eq. (2.23).

Concluding: we intially had 2d gauge fields and d abelian gauge symmetries. Imposing

the gauge choice ∂=| fA= = ∂=fA=| eliminates half of the gauge fields but introduces one

new degree of freedom f leaving one unfixed gauge symmetry which appears as the PST

gauge symmetry in the way outlined above. The PST symmetry acts as a shift on f

allowing it to be used to put f = τ which leads to the Tseytlin doubled formulation.

2.3 Equations of motion in the PST doubled formalism

We can now see how the desired chirality constraints, eq. (1.6), follow as equations of

motion in this approach. For a single chiral boson a clear explanation of this was provided

in [55] and we adapt this to the doubled string taking into account the twisted nature of

the constraints.

The equations of motion that follows from a variation in X of the doubled action (2.18)

can be expressed as,

0 = ∂=|

(
HP+∇=X−

∂=f

∂=| f
P−∇=|X

)
+ ∂=

(
HP−∇=|X−

∂=| f

∂=f
P+∇=X

)
. (2.30)

Introducing a one-form with components,

v=| =
∂=| f√
∂=| f∂=f

, v= =
∂=f√
∂=| f∂=f

, (2.31)

allows the equations of motion to be recast as,

0 = d(vΛ) , Λ = v=|HP+∇=X− v=HP−∇=|X . (2.32)

The homogenous solution Λ = 0 corresponds exactly, after making use of the chiral pro-

jectors P±, to the chirality constraint,

P+∇=X = 0 , P−∇=|X = 0 , (2.33)

i.e. the covariant version of eq. (1.6) that incorporates the connection. There is also an

inhomogeneous solution of the form ΛI = ΓI(f)
√
∂=| f∂=f since then vΛ = dfΓ(f) is
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trivially closed. However this is a pure gauge piece; under the residual gauge symmetry

δX = T(f) we have,

δΛ =
1√

∂=| f∂=f

(
∂=| fHP+∂=T− ∂=fHP−∂=| T

)
=
√
∂=| f∂=f (HP+ −HP−)T′ =

√
∂=| f∂=fηT′ ,

(2.34)

which is of the correct form to be gauged away with ΓI(f) = ηT′.
Performing the variation with respect to f yields an equation of motion,

0 = ∂=|

[
1

∂=f
(P+∇=X)TH(P+∇=X)− ∂=f

(∂=| f)2
(P−∇=|X)TH(P−∇=|X)

]
− ∂=

[
∂=| f

(∂=f)2
(P+∇=X)TH(P+∇=X)− 1

∂=| f
(P−∇=|X)TH(P−∇=|X)

]
.

(2.35)

Here the projectors P± come in handy to show that this equation can be recast as

0 = d

(
v

ΛT ηΛ√
∂=| f∂=f

)
, (2.36)

and hence follows as a consequence of the field equation for X. That this does not give rise

to extra dynamical equations is a manifestation of the PST gauge symmetry.

2.4 Gauge fixing and the dilaton

In our above derivations we introduced a gauge fixing condition,

0 = ∂=| fA= − ∂=f A=| . (2.37)

Let us consider how this should be done in a path integral. We begin with the ill-defined,

Z =

∫
[dX][dA=| ][dA=]e−i

∫
L[A=| ,A=,X] , (2.38)

and insert the gauge fixing condition and Jacobian,

Z =

∫
[dX][dA=| ][dA=]δ(∂=| f A= − ∂=f A=| ) det

(
∂=| f∂= − ∂=f∂=|

)
e−i

∫
L[A=| ,A=,X] . (2.39)

At this stage the function f should not be considered dynamical but rather it is a fixed

background object that defines a gauge fixing. The delta function restricts the path in-

tegral and since this is just an algebraic equation one can solve it by replacing A= with

A=|
∂=f
∂=|f

. Hence,

Z[f ] =

∫
[dX][dA=| ][dA=]

1

∂=|f
δ

(
A= −

∂=f

∂=|f
A=|

)
det
(
∂=| f∂= − ∂=f∂=|

)
e−i

∫
L[A=| ,A=,X]

=

∫
[dX][dA=| ]

1

∂=|f
det
(
∂=| f∂= − ∂=f∂=|

)
e
−i

∫
L[A=| ,A=|

∂=f
∂=|f

,X]

=

∫
[dX][dA ][db][dc]e−i

∫
L[A,X;f ]+Lgh[b,c;f ] , (2.40)
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in which we made the final change of variables A=| = A∂=| f and the ghost Lagrangian is

given by

Lgh = ∂=| f b ∂=c− ∂=f b ∂=| c . (2.41)

The PST symmetry, which extends to the ghost sector as,

δf = ε ,

δX =
ε

∂=| f
P−∇=|X +

ε

∂= f
P+∇= X ,

δb =
1

2
ε

(
∂=| b

∂=| f
− ∂=b

∂=f

)
,

δc =
1

2
ε

(
∂=| c

∂=| f
− ∂=c

∂=f

)
,

(2.42)

can now be re-interpreted as saying nothing more than Z[f ] does not depend on the gauge

fixing choice. We can then simply choose to integrate over choices of the gauge fixing

function f in much the same way as one averages over gauge choices to obtain Rξ gauge

in QED. That is we can consider,

Z =
1

volPST

∫
[df ]Z[f ] , (2.43)

in which we divide by the volume of the PST group. Since the PST symmetry acts a simple

shift on f , it can be fixed without the need for further ghost terms.

To progress to the doubled formalism we now need to integrate out the gauge fields

A in this path integral. As is well known, under T-duality, the dilaton receives a shift

which in the Buscher procedure can be attributed to the determinant that comes from the

Gaussian integral over the gauge fields. A useful mnemonic to obtain the correct shift is

that the string frame supergravity measure
√
|g|e−2φ should be invariant. For g → g−1

this means that T-dual dilaton is given by

φ′ = φ− 1

2
ln det g . (2.44)

On the other hand a T-duality invariant “doubled dilaton” is given by

Φ = φ− 1

4
ln det g . (2.45)

We can see that in the above derivation it is this doubled dilaton that emerges auto-

matically in the covariant doubled formalism for elementary reasons; whereas in a tradition

Buscher procedure on integrates out two components of a gauge field in the Gaussian term

A=| gA= giving essentially a factor of det(g)−1, in the covariant fixing we have a Gaussian

term AgA∂=| f∂=f and we integrate over a single mode, A, giving rise to a determinant

factor det(g)−
1
2 × (∂=| f∂=f)−

d
2 . The determinant of the metric enters with half the power

and thus will give rise to a Fradkin Tseytlin coupling of to the doubled dilaton eq. (2.45).

Note that even if we begin with a non-flat geometry in which the normal dilaton is constant

the doubled dilaton will not be.
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2.5 A comment on chiral gauging

In the derivation above we started with the usual string σ-model and performed an unusual

gauge fixing in a Buscher procedure to obtain the manifestly Lorentz covariant doubled

sigma model whose equations of motion imply chirality conditions. One might wish to

adopt a different tactic namely to begin with a doubled sigma-model from the outset and

invoke the constraints via a gauging procedure. In a previous paper, [49], two of the

present authors emphasized that PST style actions for (supersymmetric) chiral bosons

can be obtained by gauging a chiral (super)-conformal symmetry and by then specifying a

Beltrami parametrisation for the corresponding gauge field. This approach also works in the

current case although in a rather surprising way which we will now illustrate (suppressing

spectators for simplicity).

We start with a Hull style σ-model on the doubled space,

SHull =
1

2

∫
d2σHIJ(y)∂=|XI∂= XJ + . . . , (2.46)

in which the ellipses indicate spectator terms that will play no role in what follows. We

want to furnish the action with a gauge invariance,

δX = ε=| P− ∂=|X + ε= P+ ∂= X , (2.47)

such that only the field configurations obeying the constraint eq. (1.6) are physical. A priori

the gauge parameters ε= and ε=| correspond to independent symmetries however as we shall

soon see gauge invariance will force them to be related. It is curious that in the ungauged

action that this putative symmetry does not correspond to a rigid invariance (unless ∂yH =

0); this is one of the features that makes the following gauging procedure rather atypical.

We proceed by introducing gauge fields h=|=| and h== (not to be confused with the usual

worldsheet metric components) with the usual conformal transformation rules,

δh=|=| = ∂=| ε
= + ε=∂=h=|=| − ∂=ε

=h=|=| ,

δh== = ∂=ε
=| + ε=| ∂=| h== − ∂=| ε

=| h== ,
(2.48)

and “covariant” derivatives,

∇h=|X
I = ∂=|XI − h=|=| (P+∂=X)I , ∇h=XI = ∂=XI − h==(P−∂=|X)I . (2.49)

In fact, though their structure is informed by the usual conformal covariant derivative,

these derivates are not at all covariant as e.g. δ∇h=X|∇h
=X=0 6= 0. That these derivatives

are not actually covariant makes the fact that the following construction works even more

surprising. We continue regardless of this and consider the “gauged” action,

Sgauged =
1

2

∫
d2σHIJ ∇h=|X

I∇h=XJ + . . . . (2.50)

Performing a gauge variation, integrating by parts all terms containing ∂=|=|X and ∂==X
and making use of the identities obeyed by the projectors eq. (A.13) results in a variation
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of the Lagrange density,

1

2
δLgauged =− ε=| ∂=|HIJ(P−∂=|X)I∂=XJ + 2ε=h==ηIJ(P−∂=|P+∂=X)I∂=|XJ

− ε=∂=HIJ∂=|XI(P+∂=X)J − 2ε=| h=|=| ηIJ∂=XI(P+∂=P−∂=| )XJ
(2.51)

To cancel this we see that the gauge variation parameters are not independent and one

must enforce,

h=|=| h== = 1 , ε=| h=|=| = ε= , ε=h== = ε=| . (2.52)

It is easy to see that these are consistent with the gauge transformations rules. With these

identifications and the definitions of the projectors we find that indeed action eq. (2.50) is

gauge invariant. Solving the first of these relations with a Beltrami parametrisation

h=|=| =
∂=| f

∂=f
, h== =

∂=f

∂=| f
. (2.53)

and noting that the quadratic term in gauge fields vanishes by virtue of (P+)THP− = 0, one

immediately recovers from eq. (2.50) the Lorentz covariant action PST action of eq. (1.9).

3 Application to non-abelian T-duality

Let us now consider the generalisation of these ideas to a non-Abelian group6 of isome-

tries, and for clarity we ignore spectator fields first and then give the result with their

inclusion after. Let us consider a σ-model on a d-dimensional group space G specified by

the Lagrange density,

L = La=|EabL
b
= , (3.1)

in which Eab is a constant (or possibly spectator dependant) matrix and the La are the

pull back to the worldsheet of the left invariant Maurer-Cartan forms for a group element

g ∈ G with conventions,

La = −iδab TrTbg
−1dg , dLa =

1

2
fabcL

b ∧ Lc , [Ta, Tb] = ifab
cTc , TrTaTb = δab .

(3.2)

This σ-model has a global GL invariance that we can gauge by introducing a connection

one-form A = iAaTa in the algebra of G which minimally couples through the introduction

of covariant derivatives,

∂g → Dg = ∂g −Ag . (3.3)

The connection has a field strength,

F=| = = ∂=|A= − ∂=A=| − [A=| , A=] . (3.4)

6In this work we restrict our attention to the cases in which the structure constants of the group dualised

are traceless; this is to avoid the occurrence of a mixed gravitational-gauge anomaly when coupled to a

curved background which upon dualisation can give rise to a Weyl anomaly i.e. a dual background that

does not obey the (super)gravity equations. For discussion of this and related issues see [50–52].
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We see then that the gauging replaces the Maurer-Cartan forms with,

La → La −AaDab , Dab = Tr(TagTbg
−1) , (3.5)

in which we have defined the adjoint action Dab which obeys D.DT = 1. Then the action

is invariant under the GL local transformations,

g → h−1g , A→ h−1Ah− h−1∂h . (3.6)

In addition we introduce a Lagrange multiplier term Tr vF=| = to enforce a flat connection

which is gauge invariant provided the Lagrange multipliers transforms in the adjoint,

v → h−1vh . (3.7)

After integration by parts of the Lagrange multiplier term one finds a gauged

Lagrange density,

Lgauged = LT=| EL= −AT=| DEL= − LT=|ED
TA= +A=|DED

TA=

+AT=| ∂=v −AT=∂=| v +A=| FA= , (3.8)

in which Fab = −ifabcvc. Obtaining the non-Abelian T-dual is then achieved by gauge

fixing g to the identity and integrating out the gauge fields to yield,

Ldual = ∂=| v
T (E + F )−1∂=v . (3.9)

Now we invoke the covariant gauge fixing choice,

Aa=| = Aa∂=| f , Aa= = Aa∂=f , (3.10)

and integrate out the field A. Since the non-Abelian term in the field strength [A=| , A=]

vanishes in this gauge the manipulations are actually quite similar to the Abelian case

described earlier.

If we define,

LA =

(
La

L̃a

)
, L̃a = Dba(g)∂vb , (3.11)

then one finds a doubled action,

L =
1

2
LT=| HL= −

1

2
LT=| ΩL= −

1

2

∂=f

∂=| f
LT=| (HP−)L=| −

1

2

∂=| f

∂=f
LT=(HP+)L= . (3.12)

Notice that the pull back of ΩABLA ∧ LB = 2La ∧ L̃a which entered the action as a

purely topological term in the Abelian case is no-longer topological, instead it serves as a

Kalb-Ramond potential. Since,

dL̃a = d(Dbadv
b) = fab

cLb ∧ L̃c , (3.13)

this implies a three-form flux

H = d(La ∧ L̃a) = −1

2
fbc

aLb ∧ Lc ∧ L̃a . (3.14)
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It is quite straightforward to extend these considerations to include a fibration and

spectator coordinates. Starting with the Lagrangian,

L = LT=| E L= + LT=| M ∂=y + ∂=| y
T N L= + ∂=| y

T K ∂=y , (3.15)

in which E,M,N,K may have arbitrary dependence on the coordinates y, and repeating

the above procedure yields the doubled action,

L =
1

2
L∇T=| HL

∇
= −

1

2
LT=| ΩL= −

1

2

∂=f

∂=| f
L∇T=| (HP−)L∇=| −

1

2

∂=| f

∂=f
L∇T= (HP+)L∇=

+
1

2
LT=| ηB= −

1

2
BT=| ηL= + K̂µν∂=| y

µ∂=y
ν ,

(3.16)

in which we defined,

L∇ = L + B , P+B =

(
g−1M

ET g−1M

)
, P−B =

(
g−1NT

−Eg−1NT

)
, (3.17)

and the modified Lagrangian on the base involves K̂ defined as in the Abelian case in

eq. (2.21).

3.1 Relation to Poisson Lie doubled formalism

There is an existing formulation for a non-Abelian T-duality double formalism, which in

fact also accommodates a further generalisation known as Poisson Lie T-duality [41, 42].

The result we obtained in eq. (3.12) can be understood in this context. To do so we remind

the reader of a little technology — the Drinfeld double [62].

The Drinfeld double D is a Lie algebra that can be decomposed as the sum of two

sub algebras D = G ⊕ G̃ that are maximally isotropic with respect to an inner product

〈·|·〉. If Ta are the generators of G and T̃ a those of G̃, then the generators of the double

TA = {Ta, T̃ a} obey ηAB = 〈TA|TB〉 i.e.,

〈Ta|Tb〉 = 〈T̃ a|T̃ b〉 = 0 , 〈Ta|T̃ b〉 = δa
b . (3.18)

The structure constants of the double [TA,TB] = iFAB
CTC decompose as,

[Ta, Tb] = if cabTc , [T̃ a, T̃ b] = if̃abc , [Ta, T̃
b] = if̃ bcaTc − ifacbT̃ c , (3.19)

and the Jacobi identity places further constraints on the admissible choices of G and G̃.

We also need to define some matrices for g ∈ G the group of G,

g−1Tag = aa
bTb , g−1T̃ ag = babTb + (a−1)b

aT̃ b , Πab = bcaac
b , (3.20)

and tilde analogues, ã, b̃, Π̃, for g̃ ∈ G̃. The statement of Poisson-Lie T-duality then is the

equivalence between the two σ-models,

S =

∫
d2σ(E−1 + Π)−1

ab L=|
aLb= , S̃ =

∫
d2σ[(E + Π̃)−1]abĽ=| aĽ= b , (3.21)
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where L and Ľ refer to the left-invariant one-forms of G and G̃ respectively (a háček is

used to distinguish Ľ from L̃ introduced above).

If G = G̃ = U(1)d we have an Abelian double and the dual pairs of σ-models correspond

to Abelian T-duals. If G is the algebra of some d-dimensional non-Abelian Lie group and

G̃ = u(1)d, the double is said to be semi-Abelian and the two dual models in eq. (3.21)

reduce exactly to non-Abelian T-dual related actions of eq. (3.1) and eq. (3.9). The case

where neither G̃ nor G are Abelian corresponds to a dualisation of non-isometric σ-models

and has recently found new applications in the context of the relation between certain

classes of integrable models in two dimensions known as η and λ deformations.7

That the actions in eq. (3.21) are dual was established in [41, 42] by constructing an

action on the Drinfeld double given by,

SPLT =
1

2

∫
Σ
〈l−1∂σl|l−1∂τ l〉+

1

12

∫
M3

〈l−1dl|[l−1dl, l−1dl]〉− 1

2

∫
Σ
〈l−1∂σl|H|l−1∂σl〉 , (3.22)

in which l is group element of the Drinfeld double, HAB = 〈TA|H|TB〉 is just the O(d, d)

coset generalised metric and M3 is a suitable three-manifold whose boundary is the world-

sheet Σ. This action can be thought of as deforming the chiral WZW model of Sonnen-

schein [56] and is essentially a doubled action in a Tseytlin style non-covariant gauge.

Parametrising l = g̃g with g̃ ∈ G̃ and g ∈ G and integrating out g̃ will give the action S of

eq. (3.21) and doing the converse with l = gg̃ gives the dual action S̃.

There also exists a PST version of the doubled action eq. (3.22) given by [57],8

SPLT−PST =
1

2

∫
Σ
〈l−1∂=| l|H|l−1∂=l〉+

1

12

∫
M3

〈l−1dl|[l−1dl, l−1dl]〉

− 1

2

∫
Σ

∂=| f

∂=f
〈l−1∂=l|HP+|l−1∂=l〉+

1

2

∫
Σ

∂= f

∂=| f
〈l−1∂=| l|HP−|l−1∂=| l〉 .

(3.23)

Let us now restrict our attention to the semi-Abelian double appropriate for non-

Abelian T-duality. The first thing to note is that if we express the group element on the

double as l = g̃g then,

l−1dl = g−1g̃−1dg̃g + g−1dg = idvag
−1T̃ ag + g−1dg = ia−1(g)abdvaT̃

b + iLaTa , (3.24)

in which we parametrised g̃ = exp(ivaT̃
a). However since a−1(g) is no more than the

adjoint action, DT (g), we see that,

l−1dl = iL̃aT̃
a + iLaTa = iLATA (3.25)

coinciding with the definition in eq. (3.11). One can now see that all the terms involving

H in (3.12) directly match those in eq. (3.23). All that remains is to understand the WZ

term for which we observe,

〈l−1dl|[l−1dl, l−1dl]〉 = FAB
CηCDLA ∧ LB ∧ LC = 3fab

cLa ∧ Lb ∧ L̃c (3.26)

7For a brief summary of this direction the reader may consult [63] and references within.
8To the best of our knowledge this has not appeared in the literature and we are grateful to K. Sfetsos

for sharing his notes in which it was derived.
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which is in agreement with eq. (3.14), thus confirming what started off as a topological

term in the Abelian doubled theory is precisely what is needed as a potential for the WZ

in the non-Abelian doubled theory.

To close this section let us finally note that actions of this style have been used in [64–67]

to describe strings whose doubled target space is a twisted torus and have been conjectured

to give a world sheet description of N = 4 electrically gauged supergravities. The works [64,

65] have the chirality constraint as supplementary to the action and those of [66, 67] use the

Tseytlin style formulation. It will be of interest to make more precise the linkage between

the spacetime violation of section condition leading to gauged supergravities as in [23–26]

and the generalised notions of Poisson-Lie duality whose worldsheet generalised metric has

dependence on both coordinates and their duals.

4 Towards the supersymmetric doubled string

A supersymmetric first order manifest T-dual invariant worldsheet formulation is still lack-

ing. Even a non-covariant Tseytlin type description has not been given yet. We provide

here a first step by constructing the simplest model which has an N = (0, 1) worldsheet

supersymmetry. While extremely simple it already exhibits all subtleties which also occur

in models with more supersymmetry. We will keep supersymmetry manifest by working in

N = (0, 1) superspace (conventions can be found at the beginning of appendix A).

4.1 The covariant formulation

For simplicity we restrict ourselves to a trivial bundle structure. All results can rather

straightforwardly be generalized to a non-trivial bundle structure. The starting point is

the Lagrange density,

L = 2i ∂=| xE D−x+ LS(y) , (4.1)

where x is a set of adapted coordinates such that the background field E = E(y) de-

pends only on the spectator coordinates y whose dynamics is governed by LS . In order to

gauge the isometries x→ x+ ε we introduce gauge fields A=| and A− and using Lagrange

multipliers x̃ we impose flatness. The gauged σ-model is given by,9

L = 2i ∂=| xE D−x+ 2i A=|E A− + 2i A=| J− + 2iJ=|A− + LS(y) , (4.2)

where,

J=| = ET∂=| x− ∂=| x̃ , J− = ED−x+D−x̃ . (4.3)

Integrating over x̃ gives the original model back. Motivated by the non-supersymmetric

case we impose the gauge choice,

A=| = ∂=| f A , A− = D−f A , (4.4)

9Note that we could as well have introduced the full N = (0, 1) gauge multiplet which consists of A=| ,

A= and A−. Introducing Lagrange multipliers which constrain all fieldstrengths F=|=, F=| −, F=− and F−−
to zero, one finds that upon making a field redefinition on x̃ this reduces to the current case.
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where f is an arbitrary function and A is a set of d N = (0, 1) scalar superfields. The

Lagrange density becomes so,

L = 2i ∂=| xE D−x+ 2i ∂=| fD−fA g A+ 2i A
(
∂=| f J− +D−f J=|

)
+ LS(y) . (4.5)

The residual gauge invariance is given by,

x→ x+ ε(f) , A→ A− ∂fε(f) , f → f . (4.6)

In addition the action is invariant under,

x̃→ x̃+ ε̃(f) , (4.7)

as well. The equations of motion for A are given by,

D−f A = −1

2
g−1J− −

1

2

D−f

∂=| f
g−1J=| , (4.8)

which, because of the fermionic nature of D−f , cannot directly be solved for A. However

one notes that by multiplying the equations of motion by D−f one obtains the constraint,

D−f J− = 0 . (4.9)

Acting with D− on this one gets,

J− = 2i
D−f

∂=f
D−J− . (4.10)

Despite appearances, eq. (4.9) is an algebraic constraint on the components of the su-

perfields. Indeed writing the superspace components of x and x̃, x = x + iθ−ψ− and

x̃ = x̃+iθ−ψ̃−, one readily verifies using eq. (4.10) that the constraint can be solved for half

of the component fields ψ and ψ̃. As such this constraint can simply be imposed using La-

grange multipliers. This is very reminiscent of the nilpotent superfield constraints ([58, 59];

a systematic treatment and review of nilpotent superfields can be found in [60]). Using

this in the equations of motion eq. (4.8) one solves for A,

A = −1

2

1

∂=| f
g−1J=| −

i

∂=f
g−1D−J− +D−f

(
· · ·
)
, (4.11)

where the terms following D−f remain undetermined but they will not play any role in

what follows. Using this to eliminate A in the first order Lagrange density eq. (4.5) one gets,

L = 2i ∂=| xE D−x− iJ=| g
−1 J− −

i

2

D−f

∂=| f
J=| g

−1 J=|

+
∂=| f

∂=f
J− g−1D−J− + LS(y) , (4.12)

together with the constraint given in eq. (4.9). Repeatedly using eqs. (4.9) and (4.10), one

rewrites this as,

L = 2
∂=| f

∂=f

(
D− −

D−f

∂=| f
∂=|

)
X η P+D−

(
P+D−X

)
− i
(
D− −

D−f

∂=| f
∂=|

)
X η P−∂=|X

+2i
D−f

∂=f
Ψ+ η P+D−X + LS(y) , (4.13)
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where the topological term has been dropped. The Lagrange multiplier Ψ+, which trans-

forms under O(d, d;Z) in the same way as X, enforces the constraint,

µ= ≡ D−f P+D−X = 0 , (4.14)

which is equivalent to the constraint in eq. (4.9). Note that because of the presence of

the projection operator P+ only d components of the Lagrange multiplier Ψ+ effectively

appear in the lagrangian.

The covariant action has two classes of symmetries,

The residual gauge symmetry Even after we gauge fixed the gauged non-linear σ-

model there is a residual gauge invariance left:

f → f

X → X + Λ(f)

Ψ+ → Ψ+ −
i

2
D−S ∂=| Λ , (4.15)

where Λ(f) is a 2d× 1 column matrix of arbitrary functions of f .

The PST symmetry As the gauge fixing function f was randomly chosen, we expect

that it can be shifted in an arbitrary way which is the origin of the PST symmetry.

To see this first consider the action defined by eq. (4.13) in the absence of the Lagrange

multiplier term. After some significant effort one determines that under the variation,

δf = ε (4.16)

δX =
ε

∂=| f
P−∂=|X +

2iε

∂=f
P+D− (P+D−X)− 2iε

∂=f
D−fP+D−

(
1

∂=| f
P−∂=|X

)
,

one produces only terms that are proportional to the constraint µ defined in eq. (4.14)

or derivatives thereof. Moreover, this property is shared by the variation of the

constraint itself. As a result, one is then guaranteed a transformation of the La-

grange multiplier that renders the whole Lagrangian (4.13) invariant. For pedagog-

ical purpose we illustrate this in the simplest case of constant background fields in

the appendix.

4.2 The Tseytlin formulation

We now pass to a Lorentz non-covariant gauge for the PST symmetry in order to recover

a Tseytlin like formulation. Choosing f = f(τ) [49] we get that the Lagrange density

eq. (4.13) becomes,

L = − i
2
D̂X η ∂τX +

i

2
D̂XH ∂σX + D̂X η P+D−SD−X

+θ−Ψ+ η P+D−X + LS(y) , (4.17)

where,

D̂ ≡ D− +
i

2
θ−∂=| = ∂− +

i

2
θ−∂σ , D̂2 =

i

2
∂σ , θ−D− = θ− D̂ . (4.18)
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The equations of motion for Ψ+ and X read,

θ−P+D−X = θ−P+D̂X = 0 ,

D̂
(
∂τX− S ∂σX + i D̂S D̂X + iP+D−S D−X

−iD−S P+D̂X + θ−P+Ψ+

)
= 0 . (4.19)

The second of these equations immediately implies,

∂τX− S ∂σX + i D̂S D̂X + iP+D−S D−X− iD−S P+D̂X + θ−P+Ψ+ = F (τ) , (4.20)

with F (τ) an arbitrary function of τ . Using the residual gauge invariance, eq. (4.15), which

assumes now the form,

X → X + Λ(τ)

Ψ+ → Ψ+ −
i

4
D−S ∂τ Λ(τ) , (4.21)

this function can be put to zero leaving us with,

∂τX− S ∂σX + i D̂S D̂X + iP+D−S D−X− iD−S P+D̂X + θ−P+Ψ+ = 0 . (4.22)

The first equation in eq. (4.19) implies,

P+D̂X = θ−P+D̂
(
P+D̂X

)
. (4.23)

Acting with P− on eq. (4.22) and using eq. (4.23) one obtains,

P− ∂=|X = 0 . (4.24)

Acting with P+ on eq. (4.22) allows one to solve for for θ−P+Ψ+. However multiplying

this equation with θ− gives,

θ−P+D−
(
P+D−X

)
= 0 . (4.25)

From the first equation in eq. (4.19) one also gets,

P+D−X = θ−P+D−
(
P+D−X

)
(4.26)

which combined with eq. (4.25) gives,

P+D−X = 0 . (4.27)

So the equations of motion of the model in the Tseytlin gauge indeed reproduce the con-

straints eqs. (4.24) and (4.27) as expected.
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4.3 Component form

For convenience we now give the results expanded into components as defined by the

superfield expansion X = X + i θ−Ξ−. We use that D−D̂|θ−=0 = i
2∂σ to find that the

lagrangian can be expressed as,

D−L|θ=0 =
1

4
∂σXη∂τX−

1

4
∂σXH∂σX

− iΞ− η
(
∂=| Ξ− + iD−S ∂σX

)
+

1

2
Ξ− ηD−SD−SΞ− + iΨ+ηP+Ξ− .

(4.28)

Here, and in the following component expressions, we adopt the implicit notation that

D−S ≡ D−S|θ=0 and X ≡ X|θ=0. Note the presence of a four-fermi interaction term that

would have been hard to guess from the bosonic case; this term will prove essential in what

follows. As above, the variation with respect to the Lagrange multiplier enforces,

P+Ξ− = 0 . (4.29)

The variation with respect to X gives an equation of motion that is a total ∂σ derivative

which, using the residual gauge redundancy, can be integrated to yield,

P+ (∂=X−D−S Ξ− ) = 0 , P−∂=|X = 0 . (4.30)

The variation with respect to the fermion is more intricate and yields,

2∂=| Ξ− + iD−S∂σX + iD−SD−S Ξ− + P+Ψ+ = 0 . (4.31)

The P+ projection of this equation fixes the Lagrange multiplier however the P− projection

provides a fermion equation of motion,

0 = P−

(
∂=| Ξ− +

i

2
D−S∂σX +

i

2
D−SP+D−S Ξ−

)
= P−

(
∂=| Ξ− +

i

2
D−S∂σX +

i

2
D−S∂=X

)
= P−

(
∂=| Ξ− +

i

2
D−S∂=|X

)
,

(4.32)

in which we used that P−D−S = D−SP+ and the equation of motion eq. (4.30) to pass to

the final line. Together the equations (4.29), (4.30), and (4.32) are exactly the component

content of the superspace equations,

P+D−X = P−∂=|X = 0 . (4.33)

5 Discussion and open problems

In this paper we have clarified many missing details in the construct of the manifestly

T-duality symmetric worldsheet theory and shown how such a formulation can be obtained

through a novel gauge fixing choice. This procedure allowed us to make the generalisation to
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the supersymmetric case in the most minimal, but still non-trivial, extension to N = (0, 1)

supersymmetry. The essential reason for the complexity comes from having in the theory

chiral bosons whose chirality is mis-aligned with that of the supersymmetry.

The natural next direction here is to extend this work to both N = (1, 1) andN = (2, 2)

supersymmetry. The N = (1, 1) case is already under study and will directly follow from

the techniques outlined within. The N = (2, 2) remains less obvious but should be an

exciting arena to make a direct link to Hitchin’s generalised geometry. Initial results in

this direction have recently been reported by one of us [61]. It will also be of interest to

consider spacetime supersymmetry generalising the result of [68] to curved backgrounds.

Our discussion has been local in nature and there are sensitive issues, even in the

bosonic theory, that will have to be addressed if the derivation used is to be implemented

in full Polyakov sum over genus at the quantum level. At first sight our gauge fixing

choice ∂=| fA= = ∂=fA=| looks to require the introduction of a globally defined exact

form u = df . In fact this is too strong, as is known from previous studies of the PST

formalism [69] it is sufficient to work with a closed form du = 0. Put another way [70],

the residual gauge invariance is sufficient to eliminate cohomological contributions that

come from integrating the equation of motion to produce the constraint. However one

still requires in the manipulations that f has nowhere vanishing first derivatives so as to

allow such terms to appear in the denominator of fractions in a PST approach. Since this

necessitates a the existence of a nowhere vanishing vector field, it is not obvious how to

extend from R2 to a compact Riemann surfaces of non-vanishing Euler character. The

appearance of the function f was via a gauge fixing, the interpretation here is that the

gauge fixing choice adopted can not be globally extended and is only locally well defined. A

possible resolution is to find a suitable global fixing or to work patchwise. Understanding

this will be an interesting topic for further investigation

This formulation may have great utility; by calculating the β-functions in a perhaps

naive manner one could hope to find background field equations for the generalised metric

which relate to the target space formulation of DFT. Whilst the non-covariant Tseytlin

style action allows for such progress to be made at 1-loop order [31–33], it is very hard to

extend this to higher loops — the non-Lorentz invariant structure makes the regularisation

of Feynman diagrams taxing at best. Using the covariant formulation may alleviate some

of this trouble. Optimistically we hope that the techniques in this paper could prove to be

a valuable starting point for the calculation of duality covariant corrections to DFT.
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A Conventions

Throughout the paper we use worldsheet lightcone coordinates,

σ=| = τ + σ, σ= = τ − σ . (A.1)

In N = (0, 1) superspace this is extended by adding one one-component real fermionic

coordinate θ−. The fermionic derivative D− satisfies,

D2
− = − i

2
∂= . (A.2)

The T-duality group O(d, d;Z) plays a central role. In the present context O ∈
O(d, d;Z) is a 2d× 2d matrix with integer entries satisfying,

OT ηO = η , (A.3)

where,

η =

(
0 1

1 0

)
. (A.4)

In the current paper we use adapted coordinates xi and their T-duals x̃i, i ∈ {1, · · · , d}
together with spectator coordinates yµ, µ ∈ {1, · · ·D − d}. We write the adapted coordi-

nates together with the dual ones into a single O(d, d;Z) multiplet,

X =

(
x

x̃

)
, (A.5)

which transforms under the action of O ∈ O(d, d;Z) as,

X→ X′ = O−1 X. (A.6)

Writing O ∈ O(d, d;Z) as,

O =

(
A B

C D

)
, (A.7)

the background fields Eij(y) = gij(y) + bij(y) transform non-linearly,

E → E′ = (EB +D)−1(EA+ C) , (A.8)

however, the generalised metric H,

H =

(
1 −b
0 1

)(
g 0

0 g−1

)(
1 0

b 1

)
=

(
g − b g−1 b −b g−1

g−1 b g−1

)
, (A.9)
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transforms linearly,

H → H′ = OTHO . (A.10)

From H we construct an almost product structure S,

S = ηH , (A.11)

such that S2 = +1. Using this we introduce the orthogonal projection operators P+

and P−,

P± =
1

2

(
1± S

)
. (A.12)

Some often used identities include,

HP± = P T±H = ±ηH , P±∂yS = ∂ySP∓ . (A.13)

B PST symmetry in the N = (0, 1) case

We assume constant background fields and for notation convenience define,

σ =
1

∂=f
P+∂=X , ρ =

1

∂=| f
P−∂=|X . (B.1)

In terms of these quantities we can recast the Lagrangian as,

L = −i∂=| fD−Xη (σ + ρ) + iD−f∂=|Xη (σ + ρ) + iΨ=|+ηµ= , (B.2)

where we have defined Ψ=|+∂=f = 2Ψ+ and in which the constraint, and its derivative are

given by,

µ= = D−fP+D−X , ν− =
2i

∂=f
D−µ= = P+D−X − σD−f . (B.3)

The PST transformations in the case of constant backgrounds reduce to,

δf = ε , δX = ε(σ + ρ) , (B.4)

which exactly replicate those already seen in the bosonic N = (0, 0) case. Under these

transformation one finds,

δµ= = D− (εν−) , (B.5)

and the variation of the Lagrangian reads,

δL = iδΨ=|+ηµ= + Λ=| ην− − Λ=|=| η∂=ν− , (B.6)

in which we defined

Λ=| = iε

(
D−Ψ=|+ −

∂=| f

∂=f
∂=σ + ∂=| σ

)
,

Λ=|=| = −iε
(
∂=| f

∂=f
σ −

∂=|X
∂=f

)
.

(B.7)
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Then invariance of the action is recovered with,

δΨ=|+ = D−

(
2Λ=|

∂=f

)
+D−

(
2

∂=f
∂=Λ=|=|

)
. (B.8)

One could choose other rewritings of the action by adding on terms proportional to the

constraint, but due to eq. (B.5) the transformation rule of the Lagrange multiplier can be

modified to ensure the resulting action still possesses the PST symmetry.
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