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Abstract 

Wavelength selective light detection is crucial for many applications such as imaging and 

machine vision. Narrowband spectral responses are required for colour discrimination and 

current systems use broadband photodiodes combined with optical filters. This approach 

increases architectural complexity, and limits of the quality of colour sensing. Here we 

report filterless, narrowband red, green, and blue photodiodes with tuneable spectral 

responses. The devices have simple planar junction architectures with the photoactive layer 

being a solution processed mixture of either an organohalide perovskite or lead halide 

semiconductor, and a neutral or cationic organic molecule. The organic molecules modify 

the optical and electrical properties of the photodiode and facilitate narrowing charge 

collection narrowing of the device's external quantum efficiency. These red, green, and blue 

photodiodes all possess full-width-at-half-maxima of <100 nm and performance metrics 

suitable for many 

imaging applications.  

 

  



Photodetectors are the mainstay of imaging systems, environmental surveillance, 

communication and biological sensing.1, 2, 3, 4 In general, photodetectors can be classified as 

spectrally broadband5, 6, 7 or narrowband8, 9, 10 depending on the width of their spectral 

response window. Spectral discrimination in state-of-the-art commercial photodetectors is 

currently realised using broadband inorganic semiconductor photodiodes in combination 

with a dichroic prism or set of optical filters.11, 12, 13 However, this approach increases 

photodetector architectural complexity and cost, and is a major limitation in achieving higher 

pixel densities in imaging systems.12, 14 Furthermore, the use of input filtering creates 

additional optical interfaces, decreases the image sharpness, negatively impacts colour 

constancy, and also imposes UV-stability challenges.12, 15, 16 These problems are the main 

motivations for finding new ways to achieve narrowband light detection without the need for 

input optical filtering.  

A number of alternative strategies are emerging for colour discrimination and these include: 

i) the use of truly narrowband absorbers such as organic semiconductors and nano-crystals17, 

18, 19 in the photodiode active layer; ii) splitting the light into its component colours9; and iii) 

optical manipulation of the light absorption within the active layer12. These approaches are 

yet to demonstrate the appropriate set of performance metrics for any meaningful 

applications, i.e., spectrally tuneable narrowband responses having full-width-at-half-

maxima (FWHM) <100 nm, in combination with low noise, high speed and large linear 

dynamic range.10 Recently, Armin et al. established a method for achieving narrowband 

spectral responses in red and near infrared (NIR) photodiodes exploiting broadband 

absorbing organic semiconductors.10 This method was based upon manipulating the internal 

quantum efficiency (IQE) of the photodiode via charge collection narrowing (CCN). 

Paradoxically, the CCN concept utilises the relatively poor charge transport properties of 

organic semiconductors in thick bulk heterojunction photodiodes. These devices are 

engineered such that only volume generated photocarriers are collected and hence produce 

current. Volume photogeneration occurs for incident light energies around the optical gap of 

the junction material combination (a blend of an organic semiconductor acceptor and donor) 

and delivers a narrow IQE in the tail of the optical absorption. Although in principle 

manipulating the electro-optics in this way is a generic, architecturally-driven approach, the 

implementation of CCN still relies upon having materials with the appropriate optical gap, 

absorption and electrical transport properties. These considerations have so far limited this 

promising concept to red and NIR narrowband organic semiconductor photodiodes.    

In this paper we report narrowband red, green and blue photodiodes all with FWHM <100 

nm. This is achieved using the CCN concept in organohalide perovskites and mixed lead halide 

semiconductors where we engineer two absorption onsets controlled by varying the blend 

ratio of halides in the semiconductors20, 21, 22; and/or by the addition of high concentrations 

of an organic (macro)molecule in the composite film that forms the junction. In so doing we 

have been able to simultaneously control the optical and electrical transport properties of the 

photodiode, and produce a unique set of fully tuneable narrowband responses across the 

entire visible spectrum and into the NIR.      

 



Charge Collection Narrowed Photodiodes 

The working principles of the charge collection narrowing concept (CCN) have been 

discussed in detail by Armin et al.10. We re-iterate the basic principles here for clarity, and 

particularly point out the current limitations of CCN photodiodes. Consider first the simplest 

of photodiode architectures shown in the inset of Figure 1: a photoactive layer (the junction) 

sandwiched between a transparent anode [Indium tin oxide (ITO)/ Poly(3,4-

ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)] and cathode stack 

(C60/LiF/Ag). These materials are typical of those used to engineer efficient hole and 

electron extraction and supress dark current in organic7, 10 and the first organohalide 

perovskite broadband photodiodes23. In such a simple architecture CCN is realised because 

the junction is optically and electrically “thick”, i.e., has a high optical density and long transit 

time for photogenerated carrier extraction. The principle is demonstrated for a hypothetical 

junction with absorption () as shown in Figure 1 that has two distinctly different optical 

density regimes: high  where the incident light intensity falls off exponentially within the 

junction (the Beer-Lambert regime); and low  where the incident light propagates within 

the junction and is subject to interference (the cavity regime). In the Beer-Lambert regime, 

photogenerated carriers are produced in the vicinity of the transparent conducting electrode, 

and we term this surface generation. In the cavity regime photogenerated carriers are 

produced throughout the junction including in the vicinity of the metallic electrode, and we 

term this volume generation.            

Comparing these two cases, the surface generated carriers will be subject to significant 

recombination losses due to the higher local carrier concentration and imbalanced transit 

times for the electrons and holes. Thus, the charge collection efficiency (coll) is supressed 

resulting in low (if not zero) external quantum efficiency (EQE, dashed line in Figure 1) in 

the Beer-Lambert region. Recombination losses will be lower for volume generated carriers 

and the EQE is maintained in the cavity regime. For the wavelengths longer (photons lower 

in energy) than the optical gap of the junction, the absorption coefficient decreases to zero 

sharply where the photo-response vanishes. Finally, if two absorption onsets can be 

engineered as shown in Figure 1, then the narrowband response can be optimized and 

completely controlled via the CCN electro-optical mechanism. The width of the response 

window is typically reported as the full-width-at-half- maximum (FWHM) ≈ onset1-onset2.  

It is worth noting that this theoretical optimisation using two relatively sharp absorption 

onsets has not been considered before. The closest example being the aforementioned 

narrowband red and NIR bulk heterojunction (BHJ) organic photodiodes reported recently 

by Armin et al.10 In this case, the position of the peak response (max) and window (FWHM) 

are defined by the relatively diffuse optical gap of the bulk heterojunction organic 

semiconductor blend. This is currently limited by the gap of the fullerene (electron acceptor) 

component at ~700 nm. Thus, blue, green or yellow narrowband CCN organic semiconductor 

photodiodes, which are required for full colour imaging, have remained a substantial 

challenge. Furthermore, the broadness of the absorption edge due to energetic disorder in 

organic semiconductors24 makes it difficult to deliver the sharp response onsets and narrow 



FWHM required for filter-free discriminative colour sensing. Hence, new photoactive 

materials with tuneable optical and electrical properties and efficient charge generation 

quantum yield are required to overcome these limitations, and thus demonstrate the generic 

power of the CCN concept over the entire red-green-blue (RGB) spectral range.  

Organohalide Lead Perovskites as Tuneable Photoactive Layers 

Organohalide lead perovskites have recently emerged as high efficiency photovoltaic 

materials with power conversion efficiencies (PCEs) as high as 20%. 25, 26, 27, 28 These hybrid 

semiconductors exhibit optoelectronic properties similar to those of typical inorganic direct 

band gap materials, notably: high charge carrier mobility; long electron/hole pair diffusion 

length; high dielectric constants; low binding energy and very high absorption coefficient.29, 

30, 31 In addition, they can be solution processed32, 33 and possess optical gap tuneability20, 21, 

22, similar to organic semiconductors. The field of organohalide perovskite photovoltaics has 

rapidly expanded to other optoelectronic platforms, in particular light sensing23 and even 

light emission22. With respect to light sensing, properties such as high carrier generation 

quantum yield (delivering high specific detectivities), low recombination losses (resulting in 

large linear dynamic range23) and high charge carrier mobilities (resulting in high response 

frequency23, 34) are very attractive features. Broadband organohalide perovskite 

photodetectors based on photoresistors35, 36 and transistors37 have been realized with high 

sensitivity. More recently, high detectivity and high speed organohalide perovskite 

broadband photodiodes have been reported by few groups23, 34, 38, 39, 40. In all cases, these 

devices rely upon the broad absorption of organohalide lead perovskites.    

The optical gap of organohalide lead perovskites can be tuned over a broad range by changing 

the blend ratio of the constituent halides, for example iodide/bromide/chloride20, 21. Figure 

2a shows absorption spectra of iodide/bromide mixed halide materials (CH3NH3PbI3-xBrx) 

with varying halide ratio to demonstrate the principle. This tunability can be used to deliver 

the necessary control over onset1, but is not sufficient for realizing separate red, green, and 

blue CCN photodiodes, which requires the lower wavelength onset to be likewise 

manipulated (onset2). However, if both absorption onsets could be controlled then the task of 

utilising CCN to achieve a narrowband spectral response is reduced to achieving the 

appropriate electrical properties in the junction, i.e., differentiation between volume and 

surface photocarrier generation as in organic semiconductor photodiodes.  We will return to 

this particular challenge later. To control the lower wavelength absorption onset we found 

that the introduction of compatible organic (macro)molecules to form composite films could 

be used to engineer onset2. An example of how this approach and combination of materials 

can be used to produce a narrowband red response is shown in Figure 2b for the case of 

CH3NH3PbI2Br doped with Rhodamine B (approximate concentration ~7wt% calculated from 

its molar concentration of 0.09 M in the precursor as described in the Methods section). We 

will discuss this combination as an exemplar of the principle. In this composite film the 

CH3NH3PbI2Br provides an onset1 at 700 nm. A clear onset2 then emerges at ~610 nm, and 

below that wavelength the absorption coefficient of the film is a combination of the 

Rhodamine B and perovskite. Critically, the X-ray diffraction (XRD) spectra of the composite 

film shown in Figure 2c demonstrates that the tetragonal crystal structure of the 



CH3NH3PbI2Br is preserved when mixed with the Rhodamine B. However, the inclusion of 

Rhodamine B was found to decrease the crystal size and improve the film quality as indicated 

by the width of XRD peaks shown in Figure 2c, and depicted in the Scanning Electron 

Microscopy (SEM) images in Figure S1. Furthermore, high crystallinity and the tetragonal 

structure, which is characteristic of the organohalide perovskites, was found to be preserved 

for all the halide ratios studied as shown in Figure S2.  

We turn now to the effect of the Rhodamine B on the electrical properties of the composite 

film. Organohalide perovskites with polycrystalline morphologies of the type utilised in high 

efficiency solar cells have recently been shown to possess largely non-excitonic photocarrier 

generation31. Lin et al.31 asserted that this behaviour in CH3NH3PbI3 was a result of a high 

static dielectric constant producing a low exciton binding energy. As such, at room 

temperature, electron-hole pairs are spontaneously created upon photoexcitation. Evidence 

is however emerging that the local morphology (crystallite size for example) may play a role 

in controlling the relative branching ratio of excitonic and non-excitonic photoexcitations 

[reference].   

In a system with predominantly non-excitonic dynamics, efficient charge carrier 

photogeneration can be delivered with no need for a bulk or linear heterostructure. The 

simplest possible metal-insulator-metal or (p-insulator-n) linear homojunction architectures 

can therefore be used to create solar cells. This is also an advantageous feature for CCN 

photodiodes as it negates the need for an acceptor:donor (np) heterojunction as in the case 

of organic semiconductor-based devices. Figure 2b clearly shows that the fundamental 

optical gap of the organohalide perovskite is unaffected by the Rhodamine B in the film, which 

is consistent with the crystal structure. Figure S3 presents measurements of the static 

dielectric constant obtained using Charge Extraction with Linearly Increasing Voltage 

(CELIV).41 We find the Rhodamine B-CH3NH3PbI2Br composite film to have a static dielectric 

constant of 45, suggested that the material should be largely non-excitonic and therefore (as 

we show below) deliver efficient homojunction photodiodes.  

Realization of Narrowband Red Organohalide Perovskite Photodiodes  

Based upon the rationale outlined above we selected a Rhodamine B and CH3NH3PbI3-xBrx 

combination to deliver a narrowband red photodiode with response between ~600 nm and 

700 nm (defined by onset2 and onset1, respectively). The 700 nm absorption edge was obtained 

with a precursor molar ratio of methylammonium iodide (MAI):PbI2:PbBr2 1:0.5:0.5 resulting 

in CH3NH3PbI2Br. By performing transfer matrix simulations (the optical constants [n, k] of 

the composite material are shown in Figure S4 and were obtained using spectroscopic 

ellipsometry according to a method we previously reported31), the optical field distribution 

in the photodiode junction was predicted42. 

Figure 3a shows results from these transfer matrix simulations for a relatively “thick” 

junction photodiode (~500 nm) for four wavelengths: 350 nm, 450 nm and 550 nm in the 

Beer Lambert regime; and 650 nm in the cavity regime. Based upon these results a device 

with ~500 nm junction should, at least from an optical perspective, deliver a narrowband 

CCN-derived response in the red. We next fabricated linear homojunction photodiodes 



(structure as per Figure 1 inset) with differing junction thicknesses (150 nm - thin to 490 nm 

- thick) in order to confirm the optical findings and also test whether the electrical properties 

of the Rhodamine B-organohalide perovskite composite film could deliver charge collection 

narrowing. In this regard, Figure 3b shows EQEs at -0.5 V (a typical, low operating reverse 

bias voltage for photodiodes). As predicted, for the thinnest junction (150 nm) all incident 

wavelengths create volume photocarrier generation, which are collected with reasonable 

efficiency because of the relatively short extraction distance for both electrons and holes. 

Therefore, this device shows no colour discrimination and is effectively broadband. 

Increasing the junction thickness produces more surface generation for wavelengths shorter 

than onset2. In the limit, the 490 nm junction delivers a sub-100 nm narrowband response 

with onsets almost precisely at the design onsets. Of particular note is the sharpness of onset2 

and onset1, the latter derived from the organohalide perovskite absorption edge, and the 

relatively flat EQE between 600 nm and 700 nm indicative of the shape of the absorption in 

that region (Figure 2b). The tunability of the optical gap of the mixed organohalide 

perovskites is demonstrated by the EQEs in Figure 4a. By changing the halide ratio the 

narrowband response can be pushed out into the NIR and the FWHM also further tuned (from 

~40 nm to 200 nm).    

At this point, it is important to recall that the CCN mechanism originates from the 

recombination of surface generated charges either geminately or non-geminately.10 In 

efficient organohalide perovskite solar cells the carrier mobilities are thought to be very 

high23, 34 and bimolecular recombination very low.31 This means, that even in thick junctions 

(for example 500 nm), the carrier collection efficiency (coll) is almost 100%. This would 

preclude the CCN mechanism since all photogenerated carriers, even those surface generated, 

would be collected. Hence, in our thick junction narrowband Rhodamine B-CH3NH3PbI2Br 

photodiodes, some element of the collection efficiency (mobility and/or recombination rate) 

has been modified. To examine these factors we first measured current density-voltage (J-V) 

curves for the red narrowband device under red, green and blue illumination (provided by a 

light emitting diodes) all at an irradiance of (~50 mW/cm2). These results are shown in 

Figure 3c, and we observe similar fill factors (FF) of between 40-50% in all cases regardless 

of the excitation wavelength. This implies that the transport efficiency of the long-lived 

carriers is maintained, but the dramatic drop in short circuit current density for blue and 

green wavelengths relative to red suggests higher carrier recombination or poorer charge 

generation. 

To further probe the recombination dynamics (and particularly the recombination order) we 

performed intensity dependent photocurrent (IPC) 43, 44 measurements – again with blue 

(405 nm), green (532 nm) or red (650 nm) illumination.  The deviation from linearity of the 

IPC response has been reported to occur at the intensity (and hence carrier density) at which 

bimolecular recombination becomes dominant43, 44. Figure 3d shows the results of these IPC 

measurements on the narrowband red device. Blue and green wavelengths induce deviation 

an order of magnitude earlier than the red illumination. This confirms that higher order non-

geminate (nonlinear) recombination is present in the Beer-Lambert regime ( <600 nm). 

Moreover, significantly lower responsivity, R, in the linear regime (as seen from the offset in 



the logarithmic plot of Figure 3d) for blue and green wavelengths versus red indicates the 

presence of higher geminate (first order) recombination losses. These recombination results, 

when viewed alongside the results of Figures 2 and 3 highlight one very important feature 

of the composite film approach – we are able to simultaneously control the electrical and 

optical properties of the junction material to deliver the desired spectral responses. 

Paradoxically, the narrowband selectivity is achieved by making the junction transport 

properties worse – not a common strategy in optoelectronics. 

Having established the basic principles of achieving a narrowband red photodiode, we now 

move on to fully characterize its light detection properties. The dark current density (Jd) is 

one of the most important indicators of the noise figure of merit for photodetectors. Figure 

4b shows the measured Jd of the optimized Rhodamine B-CH3NH3PbI2Br composite device at 

-0.5 V, which was <5  10-8 A/cm2. By measuring the noise spectral density from the Fourier 

transform of the current versus time (see Supplementary Information Figure S5), the noise 

current (inoise) was found to be ~100 fA/Hz from 0 V to -1 V. The noise equivalent power 

(NEP) can be obtained from equation (1)7 and was found to be ~2 pW/Hz.  

NEP =
𝑖noise∙√𝐵

𝑅
=

ℎ𝑐∙𝑖noise∙√𝐵

EQE∙𝑒.
   (W).                      (1) 

The specific detectivity can be calculated based on equation (1)7 from the measured noise 

so that: 

𝐷∗ =
√𝐴 𝐵

NEP
=

𝑒.∙√𝐴∙EQE

ℎ𝑐∙𝑖noise
     (√Hz

cm

W
),                      (2) 

where  is the detection wavelength, e the electron charge, A the device area (here 0.2 cm2), 

h Planck’s constant and c the speed of light in vacuum. The calculated D* at the detection 

frequency of the EQE (120 Hz) is shown in Figure 4c with values reaching ~2  1011 Jones 

(√Hz
cm

W
 ) in the photodiode response window. Overall these performance metrics compare 

very favorably with state-of-the-art narrowband filter-based visible light photodetectors but 

with far superior tunability, FWHM, and photo-response suppression outside the design 

window. It is also worth noting that these red narrowband photodiodes were actually quite 

stable contrary to current expectations of organohalide perovskite devices. Using basic 

encapsulation techniques (see Methods) the photodiodes maintained their performance 

after four months stored in air surviving more than twenty measurement sets during that 

time. Example EQEs are shown in Figure S6. Given the supposed instabilities of organohalide 

perovskites, this is promising from a real application perspective. 

Blue and Green Narrowband Photodiodes 

The principles outlined for red narrowband photodiodes can be extended to the blue and 

green regions of the visible spectrum. The same challenges exist in this regard: materials to 

deliver appropriate and tuneable absorption onsets, and control of junction recombination 

dynamics. Clearly Rhodamine B, given the position of its absorption onset (~630 nm), is not 

appropriate and for blue and green devices we used PEIE (polyethylenimine, 80% 



ethoxylated) to deliver composite films with the appropriate properties. There is a subtle 

difference between the roles of Rhodamine B in the red photodiodes and PEIE in the green 

and blue photodiodes. In the case of the latter, absorption onsets can be solely adjusted by 

changing the halide ratio in the semiconductor. PEIE only absorbs in the UV and hence does 

not play an optical role – it is used to manipulate the crystallite size and overall degree of 

disorder and hence control the junction electrical properties to realise CCN.  

From Figure 2a it can be seen that an appropriate mixed organohalide perovskite 

(CH3H3PbIxBr3-x) could deliver the correct onset1 for a green photodiode, but not shorter 

wavelengths. To realize a blue device we used a non-organohalide mixed lead halide system 

(PbIxBr2-x) and tuned the optical gap by controlling the ratio of PbI2 and PbBr2 in the same 

way as for the organohalide perovskites. Addition of PEIE did not change the basic structure 

of the PbIxBr2-x in the composite film although (as in the case of Rhodamine B) the crystal size 

decreased and there was an increase in overall disorder of the film, which is required for CCN 

to operate (XRD spectra of Figure S7).  

Films containing PEIE and CH3H3PbIxBr3-x or PbIxBr2-x at the optimised ratios also had high 

static dielectric constants, ~35 and 19, respectively as measured by CELIV (Figure S3). We 

could therefore realistically expect that these material combinations will also display largely 

non-excitonic charge generation physics and therefore be suited to a homojunction 

architecture. Thus, the blue and green photodiodes were optimized in the same way as 

described for the red device with an identical structure. The approximate Rhodamine B and 

PEIE concentrations, the halide ratios, and junction thicknesses for the final RBG “suite” of 

photodetectors is provided in Table 1. The precursor solution compositions to achieve these 

junction structures are provided in the Methods section. In Figure 5a we present the 

absorption coefficients of the red, green, and blue device material combinations, and the 

junctions were optimised to deliver FWHM of ~100 nm in the response windows 600 nm – 

700 nm; 500 nm – 600 nm; and 400 nm – 500 nm. Figure 5a also shows the normalised EQE 

for the RBG suite of photodetectors confirming the desired photo-responses were achieved, 

and noting the blindness of each outside its design spectral window. We also note that the 

exact max and FWHM of the blue and green photodiodes can be further tuned by adjusting 

the optical gap of the semiconductor, and hence onset1.    

Figure S8 presents the reverse bias voltage dependence of the EQE for each of the optimised 

photodiodes. Whilst, as previously noted, the red photodiodes show virtually no bias 

dependence, the blue and green devices do. This is indicative of poorer charge collection 

efficiencies in the latter. However, all three RBG photodetectors deliver >10% EQE at modest 

reverse bias operating voltage (-1 V), again advantageous from a practical point of view for 

applications such as cameras. The dark current densities and specific detectivities at max are 

summarised in Table S1. Once again we observe the superiority of the red photodiode, but 

note the respectable performance of the blue and green devices, which we believe are the 

first truly narrowband photodetectors for these spectral regions. Additional performance 

metrics are presented in Figures 5b. The measured linear dynamic ranges (LDRs) at low 

reverse bias operating voltage (-0.5 V) for the red photodiode (as indicated in Figure 3d) was 

over 6 orders of magnitude (conventionally expressed as LDR = 120 dB)2, 3, 7 and green and 



blue devices exhibited ~5 orders of magnitude of linear response. These are state-of-the-art 

for any narrowband detectors. 

Finally, another important metric for photodetectors is their temporal or frequency response, 

which defines the speed of image capture, or data acquisition rate in applications such as 

surveillance. The frequency response is dictated by the charge carrier transit time and the 

capacitance-resistance (RC) characteristic time of the system7. Although the charge carrier 

transit time is expected to be extremely short in organohalide perovskites (and indeed lead 

halides) due to high charge carrier mobilities23, 45, their large dielectric constants increases 

the cell capacitance and therefore limits the response speed23. Figure 5c shows the frequency 

responses of the optimized photodiodes at -0.5 V. The green device shows a f-3dB of ~144 kHz, 

and the red and blue photodiodes have a slightly higher f-3dB = 297 kHz and 345 kHz, 

respectively. Such frequencies responses are far above those values required for imaging 

applications. However, we should emphasize that these frequency responses are close to the 

RC limited bandwidth (𝑓RC), which can be calculated by equation (3)7.  

𝑓RC =  
1

2𝑅𝐶
     (Hz)                         (3) 

To assess this limit, the RC-time was quantified from the current density decay of the devices 

(an example is shown for the blue photodiode in Figure S9). The red, blue, and green 

photodiodes showed RC = 0.4-0.7 s, corresponding to 𝑓RC = 400-200 kHz. The measured rise 

times (tr) and fall times (tf) can be seen in Figure S8d, e and f with tr = 3.0 s, 6.9 s and 1.8 

s, and tf = 1.9 s, 3.0 s and 1.5 s for the red, green and blue devices, respectively. Such 

high-speed responses are similar to commercial broadband visible inorganic semiconductor 

photodiodes. However, in our current case these values were obtained based on a device area 

of 0.2 cm2, i.e., orders of magnitude larger than the pixel size required for imaging sensors. 

Therefore, the frequency response of these composite photodiodes could ultimately be 

transit-time-limited instead of RC-limited as calculated previously by Lin et al.23 and 

experimentally shown by Dou et al.34 and Fang et al.46 

Conclusion 

In conclusion, we have demonstrated the first truly narrowband, filterless set of red, green, 

and blue photodetectors with tuneable photo-responses and FWHM <100 nm. The devices 

utilise organohalide perovskites and mixed lead halides as solution processable 

semiconductors. The optical and electrical properties of the photoactive films are controlled 

by the addition of an organic component. Two absorption onsets are engineered, with the 

positions by optical gap tuning of the semiconductor, and choice of the organic 

(macro)molecular component of the composite film. These onsets are sharp and establish the 

optical conditions for realising charge collection narrowing (CCN) – the creation of two 

spectral regimes: Beer-Lambert and cavity dominated. The basic crystal structure of the 

organohalide perovskites and mixed lead halides within the composite films are the same as 

in the neat semiconducting materials, although the crystal size is decreased and hence there 

is an increase in the overall film disorder. All the composite films have high static dielectric 

constants suggesting they possess non-excitonic charge generation physics, i.e., are suited for 



the simplest possible homojunction photodiode architectures. The added organic 

components in the composite films act to increase free carrier recombination, allowing only 

volume-generated carriers to be collected and thus achieving the electrical requirements for 

CCN. The strategy therefore relies upon making the film transport properties worse rather 

than better, an unusual approach in optoelectronics. The transport efficiencies of neat 

organohalide perovskites of the type used in solar cells are simply too high to achieve CCN. 

The red, green, and blue photodiodes were fully characterised and delivered state-of-the-art 

narrowband performance metrics: low dark current, high specific detectivities, large LDRs 

and fast frequency responses that will likely be transit-time rather than RC-limited in 

practical applications. Critically, all the photodiodes were highly selective for their design 

windows with sharp photo-response rises and falls. This is very promising for purer 

illuminant independent colour recognition and contrast. Our results further emphasise the 

potential of organohalide perovskite and related materials for low cost, next generation 

optoelectronics. The strategy we introduce has generic utility to control the physical, optical, 

chemical and processing properties of solution processed and indeed evaporated 

semiconductors for multiple applications. 
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Figure captions: 

Figure 1 | Working principles of charge collection narrowed (CCN) photodiodes. The 

absorption coefficient of an arbitrary active layer with separate high and low absorption () 

regions (solid blue line). In the high  region, the Beer-Lambert law dominates the light 

absorption and carriers are mainly generated near the transparent electrode (we term this 

surface generation). This increases the recombination and reduces the charge collection 

efficiency (coll) due to strongly imbalanced electron/hole transport. In the low  region, 

cavity effects influence the light absorption significantly for optically thick junctions, and 

carriers are generated in the volume of the active layer (volume generation). The EQE can be 

shaped by manipulating the coll, i.e., the IQE10. The full-width-at-half-maximum (FWHM) can 

be controlled by tuning the two onsets of  and reported as the FWHM onset1-onset2. The 

inset shows the simple homojunction photodiode structure: a photoactive layer between a 

cathode and anode. 

Figure 2 | Optical gap tunability and addition of an organic (macro)molecular 

component to organohalide perovskite semiconductors. (a) The optical gap of the 

organohalide perovskite can be tuned by changing the ratio of PbI2 and PbBr2 during film 

preparation. This approach can be used for adjusting the absorption onset 1 (onset1) of the 

narrowband CCN photodiodes of Figure 1. (b) Addition of Rhodamine B allows the 

absorption onset 2 (onset2) to be adjusted. (c) Comparison of X-ray Diffraction (XRD) spectra 

for organohalide perovskite (CH3NH3PbI2Br) with or without Rhodamine B. The films 

containing Rhodamine B possess attenuated diffraction intensity (~20 times lower) and 

broader peaks. This indicates that, by adding Rhodamine B, the growth of larger crystals is 

hindered and the crystal size is much smaller compared with neat organohalide perovskite 

films. 

Figure 3 | Working mechanism and performance of the red narrowband CCN 

photodiodes. (a) Optical field distributions in the red narrowband photodiodes (film 

thicknesses: 500 nm CH3NH3PbI2Br and 60 nm C60) for four wavelengths: i)  <600 nm (in 

the Beer-Lambert region), photons cannot penetrate the whole of the film and carriers are 

surface generated; ii) 700 nm >  >600 nm (in the cavity region), volume generated 

photocarriers. (b) External Quantum Efficiencies (EQE) of narrowband red CCN photodiodes 

with various junction thicknesses at a reverse bias operating voltage of -0.5 V. The thinnest 

junction delivers an almost broadband response because surface and volume generated 

carriers are collected. By increasing the junction thickness, surface generation and volume 

generation are distinguished and the EQE at shorter wavelengths (in the Beer-Lambert 

region) is suppressed. (c) Current density-voltage (J-V) measurements of the red narrowband 

CCN photodiodes under different illumination colours with similar irradiances (~50 

mW/cm2). All J-Vs show Fill Factors of ~50%, indicating similar charge transport efficiency 

for the longer lived carriers. (d) Intensity dependent photocurrent (IPC) measurements of 

red narrowband photodiodes (zero bias) under various irradiance intensities and three 

different laser wavelengths. Deviation of the photocurrent from linearity as a function of 

input irradiance indicates the onset of significant bimolecular recombination and occurs 



greater than an order of magnitude earlier for blue and green wavelengths (surface generated 

carriers).  

Figure 4 | Device performance and bandwidth tunability of red narrowband 

photodiodes. (a) EQEs of the red narrowband photodiodes fabricated with different ratios 

of PbI2 and PbBr2 at -0.5 V. The high wavelength edge of the photoresponse window can be 

controlled by the semiconductor optical gap (onset1). (b) Light and dark J-V curves of the 

devices from (a). The dark current at -0.5 V is <5  10-8 A/cm2. (c) Measured specific 

detectivity (D*) of an optimized red narrowband photodiode at -0.5 V (1.9  1011 Jones with 

FWHM <80 nm). 

Figure 5 | Device performance summary of red, green, blue narrowband CCN 

photodiodes. (a) EQE spectra at -0.5 V of optimized narrowband photodiodes and related 

junction absorption coefficients clearly showing how the CCN concept can be realized across 

the visible spectrum. (b) Linear dynamic range (LDR) of the optimized narrowband 

photodiodes measured at -0.5 V. The red photodetector shows a linear response of >6 orders 

of magnitude versus irradiance intensity, whereas the green and blue photodetectors exhibit 

~5 orders of magnitude of linear response. (c) Frequency response (speed) of optimized 

narrowband RGB photodiodes at -0.5 V. The green photodetector shows f-3dB ~144 kHz, and 

the red and blue photodetectors f-3dBs of ~297 kHz and 345 kHz, respectively – all more than 

sufficient for most imaging applications. 

 

Table 1 | Typical organic component concentrations, compositions and junction 

thicknesses for the final RBG “suite” of photodetectors. 

 
Organic 

component 

Organic 

component 

concentration 

(wt.%) 

Composition 

Junction 

thickness 

(nm) 

Red 

photodiodes 
Rhodamine B ~7 CH3NH3PbI2Br 500~600 nm 

Green 

photodiodes 
PEIE ~0.75 CH3NH3PbIBr2 500~600 nm 

Blue 

photodiodes 
PEIE ~0.75 PbI1.4B0.6 400~500 nm 

  



Methods  

Materials: Lead iodide (PbI2, 99.999% trace metals basis), lead bromide (PbBr2, 99.999% 

trace metals basis) and lead chloride (PbCl2, 99.999% trace metals basis) were purchased 

from Sigma Aldrich. Methylammonium iodide (MAI, MS101000-10) and methylammonium 

bromide (MABr, MS301000-05) were purchased from Dyesol Pty Ltd. PEDOT:PSS was 

obtained from Heraeus (Clevios P Al4083). [6,6]-Phenyl-C61-butyric acid methyl ester 

(PC60BM) and C60 were purchased from ADS. Polyethylenimine, 80% ethoxylated solution 

(PEIE, 37 wt.% in water) and Rhodamine B (83689, for fluorescence) were purchased from 

Sigma Aldrich.  All commercial products were used as received, unless otherwise stated.  

Device Fabrication: The photodetectors were fabricated on commercial indium tin oxide 

(ITO) patterned glass electrodes (15 /sq: Kintec) in a class 1000 clean room. The ITO 

electrodes were cleaned in a detergent solution (Alconox) bath at 70 °C for 10 min, followed 

by sonication in sequence with Alconox, Milli-Q water, acetone, and 2-propanol (IPA) for 10 

min each. The cleaned substrates were dried with nitrogen before being coated with 30±5 

nm PEDOT:PSS by spin-coating at 5000 rpm for 30 s. The PEDOT:PSS coated substrates were 

heated on a hot plate at 170 °C for 20 min. After cooling, the substrates were transferred to a 

nitrogen-filled glove box for device fabrication (O2 <1 ppm, H2O <1 ppm).  

Active layers were spin-coated onto the PEDOT:PSS layer using the following methods:   

(i) Red photodetectors contained Rhodamine B and different ratios of PbI2 and PbBr2 to 

tune the band gap of the mixed halide perovskite CH3NH3PbIxBr3-x. Typically, the molar 

concentration of MAI was kept at 1 M (160 mg/mL).  The sum of the molar concentrations of 

PbI2 and PbBr2 was also kept at 1 M for consistency. Thus, the ratio of PbI2 and PbBr2 (varying 

from 1:0, 0.75:0.25, 0.5:0.5 to 0.25:0.75) determined the optical gap of the CH3NH3PbIxBr3-x. 

The molar concentration of Rhodamine B was maintained at 0.09 M (~7 wt%). Independent 

of the PbI2:PbBr2 ratio, casting solutions were prepared in γ-butyrolactone and spin-coated 

at 1000 rpm for 120 s followed by 4000 rpm for 40 s to create the active layers.   

(ii) Green photodetectors contained PEIE and different ratios of PbI2 and PbBr2 to tune the 

optical gap of the mixed halide perovskite CH3NH3PbIxBr3-x. Typically, 469 mg PbI2 and 66 mg 

PbBr2 were dissolved in N,N-Dimethylformamide (DMF) (1 mL) to create a 1.2 M PbI1.7Br0.3 

solution. A 37 wt.% PEIE solution in deionized water was diluted by DMF to 5 wt%, and 30 

L of this 5 wt% PEIE solution was added into 170 L of the PbI1.7Br0.3 solution and stirred 

for 30 min. The PEIE:PbI1.7Br0.3 solution was then spin-coated at 700 rpm for 180 s onto the 

PEDOT:PSS pre-prepared substrates. The films were then dipped into a 15 mg/mL MABr IPA 

solution for 15 min during which the colour of the film gradually changed from yellow to red. 

The films were rinsed with IPA to remove excess MABr. The perovskite composition within 

the composite film was estimated from the optical gap (~600nm) to be CH3NH3PbIBr2. 

(iii) Blue photodetectors contained PEIE and different ratios of PbI2 and PbBr2 to tune the 

optical gap of PbIxBr3-x.  Typically, 354 mg PbI2 and 121 mg PbBr2 were dissolved in DMF (1 

mL) to create a 1.1 M PbI1.4Br0.6 solution. 30 L of the 5 wt% PEIE solution was added into 



170 L of the PbI1.4Br0.6 solution and stirred for 30 min. The PEIE:PbI1.4Br0.6 solution was spin-

coated at 1000 rpm for 180 s to create the active layer. 

After deposition, the active layers were heated at 100 °C for 10 min on a hot plate in a 

nitrogen-filled glove box. Then 60 nm of C60 was evaporated to form the hole-blocking layer 

to reduce the photodiode dark current. Finally, 1 nm of LiF and 100 nm of Ag were deposited 

by thermal evaporation under a 10-6 mbar vacuum with an appropriate mask (0.2 cm2 for 

each device) to form the cathode and complete the device. All photodiodes were encapsulated 

for device performance measurements. A standard encapsulation protocol was used, namely: 

epoxy resin (XNR 5516Z-B1, Nagase ChemteX Corporation) was screened onto the edges of a 

capping glass plate, which was then placed onto the photodiodes firmly before being 

illuminated under UV light for 10 min. 

Characterization: Optical absorption spectra were collected using a Cary 5000 UV-Vis 

spectrophotometer and near normal incidence reflectance measurements were obtained 

using a FilmTek 2000M TSV thin film measurement system. The crystallinity of the films was 

characterized using X-ray Diffraction (XRD). All XRD Spectra were obtained on a Bruker 

Advance D8 X-Ray Diffractometer equipped with a LynxEye detector, Cu tube (CuK = 

1.5418 A) and operated at 40 kV with a 2 scan range of 10-70°. The surface morphology of 

the perovskite films and cross-sectional structure of the photodiodes were imaged using a 

Hitachi SU3500 scanning electron microscopy (SEM) with an accelerating voltage of 10 keV 

and a Jeol JSM-7100F field-emission scanning electron microscopy (FESEM) (Jeol JSM-7100F) 

with an accelerating voltage of 2 keV. Film thicknesses were determined using a surface 

profilometer (Veeco Dektak 150). The capacitance of the devices was measured using the 

Charge Extraction by Linearly Increasing Voltage (CELIV) technique41.  

Device Performance Measurements: The current density–voltage (J-V) characteristics 

were recorded using an Agilent B1500A Semiconductor Analyzer with a scan speed of 0.01 

V/s. Light J-V curves were recorded with a NSPR510CS Nichia red LED (625 nm), 3 W high 

power star emitter – green (520-530 nm) and blue (460-470 nm) illumination. External 

Quantum Efficiency (EQE) spectra and the near normal incidence reflectance of the devices 

were recorded with a PV Measurements Inc. QEX7 system, which was calibrated with a NREL 

certified photodiode without light bias. Frequency response measurements were obtained 

using a NSPR510CS Nichia red LED (625 nm), 3 W high power star emitter – green (520-530 

nm) and blue LED (460-470 nm) modulated with an Agilent 33250A arbitrary wave function 

generator. The photocurrent responses of the photodiodes were recorded using a digital 

storage oscilloscope (LeCroy Waverunner A6200). Linear dynamic ranges (LDRs) were 

determined using laser diodes at 650 nm and 405 nm and a second harmonic Nd:YAG laser 

(Laserver) operating continuously at 532 nm as the illumination source with a series of 

neutral density filters purchased from Thorlabs and Holmarc used to vary the light intensity. 

The light intensity was calibrated using a standard photodiode simultaneously to compensate 

for intensity fluctuations and the current response was recorded using an Agilent B1500A 

Semiconductor Analyzer. 


