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Abstract 34 

The genetic structure of bacterial populations can be related to geographical locations of 35 

isolation. In some species, there is a strong correlation between geographical distances and 36 

genetic distances, which can be caused by different evolutionary mechanisms. Patterns of 37 

ancient admixture in Helicobacter pylori can be reconstructed in concordance with past 38 

human migration, whereas inMycobacterium tuberculosis it is the lack of recombination that 39 

causes allopatric clusters. In Campylobacter, source attribution based on genomic data has 40 

been successful in distinguishing the infected host species, but not geographical origin. We 41 

investigate biogeographical signals in highly recombining genes to determine the extent of 42 

clustering between genomes from geographically distinct Campylobacter populations. Whole 43 

genome sequences from 294 Campylobacter isolates from North America and the UK were 44 

analysed. Isolates from within the same country shared more recently recombined DNA than 45 

isolates from different countries. Using 15 UK/American pairs of isolates that shared 46 

ancestors , we identify regions that have frequently and recently recombined to test their 47 

correlation with geographical origin. The seven genes that demonstrated the greatest 48 

clustering by geography were used in an attribution model to infer geographical origins. A 49 

further 383 UK clinical isolates were used to detect signals of foreign travel. Patient records 50 

indicated that 46 cases had travelled abroad less than two weeks prior to sampling, and 34 51 

(74%) of those Campylobacter genomes, were deemed to be from a non-UK origin. 52 

Detection of signals of biogeographical differences in Campylobacter genomes will 53 

contribute to improved source attribution of clinical Campylobacter infection and inform 54 

intervention strategies to reduce campylobacteriosis. 55 

56 
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Introduction 57 

 58 

Geographical structuring is well documented in bacteria and analysing genetic variation 59 

among isolates can provide information about the global spread of important pathogens. For 60 

example, after spreading with Neolithic human hosts (Comas et al., 2013), lineages of 61 

Mycobacterium tuberculosis populations can be classified into geographical groups based 62 

upon local genetic diversification of DNA sequences  (Achtman, 2008, Gagneux and Small, 63 

2007). Phylogeographic structuring has also been observed in the human stomach bacterium 64 

Helicobacter pylori, where a rapidly evolving genome, with high levels of horizontal gene 65 

transfer (HGT), allows the reconstruction of recent human migrations to the extent that 66 

genetic admixture among the bacteria reflects interactions among human populations (Falush 67 

et al., 2003, Moodley et al., 2009). 68 

 69 

Tuberculosis and H. pylori are primarily human pathogens, but for Campylobacter, animals 70 

are the principal reservoir for human infection.  International trade, particularly in agricultural 71 

animals such as chicken and poultry products, provides a vehicle forglobal spread. In this 72 

case, local phylogeographic signals can be weakened not only by the rapid movement of 73 

lineages around the world, but also by genomic changes that occur within the reservoir host. 74 

This may make it difficult to attribute the country of origin based on the Campylobacter 75 

isolate genome alone. Sequence based analyses have shown that populations of the main 76 

human disease-causing Campylobacter species, C. jejuni and C. coli, are highly structured 77 

into clusters of related lineages, known as clonal complexes, that share four or more alleles at 78 

7 multi-locus sequence typing (MLST) level (Dingle et al., 2005, Sheppard et al., 2010b). In 79 

C. jejuni, host-associated clonal complexes can be identified based upon the frequency with 80 
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which particular genotypes are isolated from different hosts (Sheppard et al., 2011, Sheppard 81 

et al., 2014). Many of these lineages are globally distributed (Sheppard et al., 2010a) but 82 

despite this strong host signal, there is evidence for phylogeographic structuring and the 83 

proliferation of distinct lineages in different countries (McTavish et al., 2008, Asakura et al., 84 

2012). 85 

 86 

Horizontal gene transfer in recombining bacteria, such as Campylobacter (Sheppard et al., 87 

2008,Wilson et al., 2008, Sheppard et al., 2013a), can provide information about ecological 88 

differences between lineages. For example, when a lineage transfers to a new animal host it 89 

may acquire DNA from the resident population by HGT. This has been shown in host 90 

generalist Campylobacter jejuni lineages isolated from chicken that sometimes contain alleles 91 

that originated in chicken-specialist genotypes (McCarthy et al., 2007, Wilson et al., 2008). 92 

Here we applied comparable approaches to investigate if HGT can lead to signatures of 93 

recombination that discriminate isolates from North America and the UK using genomic data. 94 

Using matched pairs of Canadian and UK isolates, we identify genes that are prone to 95 

recombination, and will therefore pick up a local DNA more rapidly, and hypothesise that 96 

these genes may acquire a biogeographical signal.  97 

98 
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Materials and Methods 99 

 100 

Bacterial Isolates and Genome Sequencing 101 

A total of 294 sequenced isolates were analysed, of which 131 genomes were generated in 102 

this study, augmented by 163 previously published genomes (Sheppard et al., 2014, Sheppard 103 

et al., 2013a, Sheppard et al., 2013b). Sequencing reads for all genomes studied are available 104 

from the NCBI short read archive associated with BioProject: PRJNA312235 (Individual 105 

SRA accession numbers can be found in Table S1). 106 

 107 

Canadian isolates: Isolates were collected from chicken and bovine faecal samples between 108 

July 2004 and July 2006from farms at diverse locations in Alberta. Samples were placed on 109 

ice and processed within 6 h as described by (Jokinen et al., 2010). Approximately 5 g of 110 

faecal matter was mixed with 5 mL of phosphate buffered saline (PBS) to form uniform 111 

slurry. One-millilitre aliquots of the PBS-faecal samples were added to 20 mL of Bolton 112 

broth containing 5% (v/v) lysed horse blood  and selective supplement (Diergaardt et al., 113 

2004) and incubated at 42oC for 24 h under microaerophilic conditions prior to plating 20 µl 114 

onto supplemented charcoal cefoperazone deoxycholate agar (CCDA). The plates were 115 

incubated for a further 48h at 42oC. Human samples were acquired from clinical laboratories 116 

in three Canadian provinces. These were re-plated from frozen glycerol stocks and the DNA 117 

extracted as described below.  118 

 119 

Presumptive Campylobacter colonies were cultured onto blood agar plates and tested using 120 

biochemical oxidase and catalase tests. A multiplex PCR assay was used to detect 16S rRNA 121 

gene sequences and C. jejuni and C. coli specific primers mapA and ceuE, respectively 122 

Commented [BP1]: Emma, Ed & Cathy to check details. 

Commented [ELS2]: Yes, all chicken and cattle samples were 
collected in Alberta and dates entered. 
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(Denis et al., 1999). Positive Campylobacter isolates were sub-cultured on Mueller-Hinton 123 

agar and genomic DNA was extracted using the Wizard Genomic DNA Purification Kit as 124 

per manufacturer’s instructions (Promega). DNA integrity was checked on an agarose gel and 125 

purity and concentration determined by optical density. Purified genomic DNA was sent to 126 

Canada's Michael Smith Genome Sciences Centre (Vancouver, Canada) and sequenced using 127 

the Illumina HiSeq 2000 platform.  128 

 129 

American isolates:Isolates were collected from cattle faecal samples between December 130 

2008 and June 2010 from diverse locations within the Salinas Valley watershed, California. 131 

Samples were placed on ice and processed within 12 h. Cattle faeces were inoculated into a 132 

six-well microtiter plate containing 6 ml 1× Anaerobe Basal Broth (Oxoid) amended with 133 

Preston supplement (when reconstituted consists of: amphotericin B (0.01 mg/ml), rifampicin 134 

(0.01mg/ml), trimethoprim lactate (0.01mg/ml), and polymixin B (5UI/ml) (Oxoid), using a 135 

sterile cotton swab. Microtiter plates were placed inside plastic ZipLoc bags filled with a 136 

microaerobic gas mixture (1.5% O2, 10% H2, 10% CO2, and 78.5% N2) and incubated for 137 

24 h at 37°C, while shaking at 40 rpm. Subsequently, 10-μl of these enrichment cultureswere 138 

plated onto anaerobe basal agar (ABA) plates, amended with 5% laked horse blood and CAT 139 

supplement (cefoperazone (0.008mg/ml), amphotericin B (0.01 mg/ml), and teicoplanin 140 

(0.004 mg/ml) (Oxoid)). All plates were then incubated under microaerobic conditions at 141 

37°C for 24 h. Bacterial cultures were passed through 0.2 μm mixed cellulose ester filters 142 

onto ABA plates and incubated at 37°C under microaerobic conditions. After 24 h, single 143 

colonies were streaked onto fresh ABA plates and incubated 24–48 h at 37°C for purification.  144 

 145 

Commented [BP3]: Craig et al to check details. 
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DNA was extracted from a pure culture colony using Wizard Genomic DNA Purification Kit 146 

(Promega, Madison, WI). Campylobacter species was designated by 16S rDNA sequencing, 147 

using the primer pairs as described by Lane (1991).Genome sequencing was performed on an 148 

Illumina MiSeq sequencer using the KAPA Low-Throughput Library Preparation Kit with 149 

Standard PCR Amplification Module (Kapa Biosystems, Wilmington, MA), following 150 

manufacturer’s instructions except for the following changes; 750 ng DNA was sheared at 30 151 

psi for 40 s and size selected to 700–770 bp following Illumina protocols. Standard desalted 152 

TruSeq LT and PCR Primers were ordered from Integrated DNA Technologies (Coralville, 153 

IA) and used at 0.375 and 0.5 µM final concentrations, respectively. PCR was reduced to 3–5 154 

cycles. Libraries were quantified using the KAPA Library Quantification Kit (Kapa), except 155 

with 10 µl volume and 90-s annealing/extension PCR, then pooled and normalized to 4 nM. 156 

Pooled libraries were re-quantified by ddPCR on a QX200 system (Bio-Rad), using the 157 

Illumina TruSeq ddPCR Library Quantification Kit and following manufacturer’s protocols, 158 

except with an extended 2-min annealing/extension time. Libraries were sequenced using 2 × 159 

250 bp paired end v2 reagent kit on a MiSeq instrument (Illumina) at 13.5 pM, following 160 

manufacturer’s protocols. Reads were obtained from SeqWright (Houston, TX). 161 

 162 

UK isolates: Sequenced isolates from Canada and the USA were augmented by 163 163 

previously published Campylobacter genomes collected between 1980 and 2012 from a range 164 

of sources, including cattle (54), chicken (80), pig (9), environmental (49), wild bird species 165 

(12) and human clinical cases (73) (Sheppard et al., 2014, Sheppard et al., 2013a, Sheppard et 166 

al., 2013b). 167 

 168 



9 

 

UK clinical test isolates: In addition, 383 clinical samples collected from the John Radcliffe 169 

Hospital in Oxford between June and October 2011 were used as a test dataset to attribute 170 

source according to geography (Cody et al., 2013).These genomes were downloaded from 171 

http://pubmlst.org/campylobacter/.  172 

 173 

Population structure and selection of isolate pairs 174 

Isolate genomes were archived in the web-accessible BIGSdb database that supports 175 

functionality for identifying gene presence and allelic variation, by comparison to a reference 176 

locus list (Jolley and Maiden, 2010, Sheppard et al., 2012, Meric et al., 2014). This list 177 

comprised 1,623 locus designations from the annotated genome of C. jejuni strain 178 

NCTC11168 (Genbank accession number: NC_002163.1) (Gundogdu et al., 2007, Parkhill et 179 

al., 2000). Reference loci were identified in each of the 294 isolate genomes using BLAST. 180 

Loci were recorded as present if the sequence had ≥70% nucleotide identity over ≥50% of the 181 

gene length. Each gene was aligned individually using MAFFT (Katoh et al., 2002), and 182 

concatenated into a single multi-FASTA alignment file for each isolate for a total alignment 183 

of 1,585,605 bp. Phylogenetic trees were constructed from a whole-genome alignment of 184 

C. jejuni (n=229) and C. coli (n=55) isolates based on 103,878 and 806,657 variable sites, 185 

respectively, using an approximation of the maximum likelihood algorithm (Tamura et al., 186 

2013, Kumar et al., 2016).UK isolates from matching hosts were paired with their closest 187 

match from Canada. In total, 15 pairs of isolates were matched by source host and clonal 188 

complex (Figure 1).All paired isolates shared 1,378 genes giving rise to a core-genome 189 

alignment of 1,287,560 bp.  190 

 191 

Analysis of co-ancestry and inference of recombination hot regions 192 

Commented [NM4]: Maybe put the criteria in here (< 1200 
bp differences across the 1378 genes) rather than results. 
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The predicted co-ancestry of the paired isolates was determined based on whole genome 193 

sequences using fineSTRUCTURE (Yahara et al., 2013) and visualized as a heat map (Figure 194 

2). This algorithm infers the number of clusters (K) and partitions the strains into K 195 

subgroups with indistinguishable genetic ancestry, based on the likelihood of co-ancestry 196 

using a Bayesian MCMC (Markov chain Monte Carlo) approach (Lawson et al., 2012). 197 

Previous estimates of recombination rate and generation time (Webb and Blaser, 2002, 198 

Wilson et al., 2009, Morelli et al., 2010) were used to prepare a recombination map file 199 

specifying the same recombination rate per-site per-generation of SNPs. The predicted 200 

ancestry of co-inherited SNPs or chunks was calculated and SNPs with uncertain estimates of 201 

their donor of more than 20 kb results were removed. The results were visualised in the 202 

UCSC (The University of California Santa Cruz) browser (Kent et al., 2002) (Figure 2). 203 

Following burn-in, Markov chain Monte Carlo (MCMC)  iterations were run 100,000 times 204 

in fineSTRUCTURE (version 0.02) (Lawson et al., 2012) with a thinning interval of 100. 205 

Population assignments runs were performed twice. 206 

 207 

The time to the most recent common ancestor (TMRCA) in each pair was estimated using the 208 

model described in Didelot et al., (2013) and summarised here briefly. Pairs of genomes 209 

share a common ancestor t years ago and have been subject to mutation at a rate µ and 210 

recombination at rate ρ. The mutation rate of 2.9x10-5 per site per year was used as reported 211 

in Sheppard et al., (2010b), which is similar to the rates estimated in Wilson et al., (2008, 212 

2009) ) . The effect of recombination is to introduce a high density of polymorphism similar 213 

to the ClonalFrame model (cite) but with the advantage that this density can vary between 214 

recombination events to reflect differences in evolutionary distance between donors and 215 

Commented [XD5]: I think this whole paragraph was copied 
by mistake and needs to be removed since here we do not use 
simulations 
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recipients(cite). In each pairwise comparison, the TMRCA and recombination rate parameters 216 

are estimated based on a core genome alignment, with 95% credibility intervals (Table 2). 217 

 218 

Epidemiological markers of geographical clustering 219 

Neighbour-joining phylogenetic trees were constructed for all genes that demonstrated 220 

pairwise diversity above 2% nucleotide diversity (Table S2). Individual gene phylogenies 221 

were constructed in MEGA for all 57 genes. Isolates were assigned to a putative source 222 

population based on the seven highly recombining genes that showed the greatest level of 223 

clustering by geography. Probabilistic assignment of geographical source is based on the 224 

allele frequencies in the reference population data sets for each of the seven loci. This 225 

analysis was performed using Structure, a Bayesian model-based clustering method designed 226 

to infer population structure and assign individuals to populations using multilocus genotype 227 

data (Sheppard et al., 2010a, Pritchard et al., 2000). Canadian and USA isolates were 228 

combined as a North American population for comparison with UK isolates (Table S1). 229 

 230 

Attribution of clinical isolates to country based on 7 geographically segregating genes 231 

The source attribution model was tested with isolates of a known source. Self-assignment of a 232 

random subset of the comparison dataset was conducted by removing a third of the isolates 233 

from each candidate population (n = 73). The remainder were used as the reference set (78 234 

North American isolates to compare with 68 UK isolates). Structure was run for 100,000 235 

iterations following a burn-in period of 10,000 iterations using the no admixture model to 236 

assign individuals to putative populations. The assignment probability for each source was 237 

calculated for each isolate individually and were attributed to origin populations when the 238 

attribution probability was greater than 0.50. 239 

240 

Commented [XD7]: Morelli G, Didelot X, Kusecek B, et al 
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Results 241 

Core genomes of isolates from North America and the UK were compared, and there was no 242 

observable clustering by country or continent on a neighbour-joining tree (Figure 1). STs 243 

sampled in both Campylobacter populations belonged to clonal complexes that can be 244 

classified as specialist and host generalist based upon the frequency at which they have been 245 

isolated from different hosts. These included chicken specialist sequence types ST-257, ST-246 

283, ST-353, ST-354, ST-443, ST-573, ST-574 and ST-661 clonal complexes, cattle 247 

specialist ST-61 and ST-42 clonal complexes, and host generalist ST-21, ST-45, ST–206 and 248 

ST-48 complexes (Figure 1 and Table S1). 249 

 250 

Matched isolates share more common ancestry with isolates from the same country 251 

To minimise the effect of host adaptation and maximize the opportunity of identifying 252 

genetic signatures of geographic separation, a subset of 15 isolate pairs were chosen based 253 

upon their phylogenetic clustering, < 1,200 bp difference in 1,378 core genome loci. In each 254 

case, isolate pairs contained one Canadian and one UK isolate of the same clonal complex 255 

sampled from the same host species (Table 1). The predicted co-ancestry of the paired 256 

isolates was calculated based on core genome alignments using fineSTRUCTURE (Yahara et 257 

al., 2013) (Figure 2). DNA sequence haplotype regions were coloured by predicted 258 

inheritance from donor isolates and the average frequency of co-ancestry of DNA ‘chunks’ 259 

from isolates within the same country (0.58) was significantly greater than that for isolates 260 

from different countries (0.32). The degree of inheritance for each gene was calculated and 261 

genes that have been predicted to inherit the most DNA from donor isolates of different 262 

countries was surmised (Table S2). 263 

 264 

Commented [B8]: Koji - Pvalue and test used 
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Matched isolates share recent common ancestors but have since experienced significant 265 

recombination 266 

The estimated time since the most recent common ancestor (TMRCA) was calculated for 267 

each UK/American pair of genomes as previously described (Didelot et al., 2013), using the 268 

mutation rate of 2.9x10-5 per site per year reported in Sheppard et al. (2010b), which is 269 

consistent with estimates in Wilson et al. (2008, 2009). In each pairwise comparison, the 270 

level of divergence along the genome (Figure 3) was used to estimate the TMRCA and 271 

recombination rate, with 95% credibility intervals around these parameters (Table 2). All 272 

pairs were estimated to have shared ancestors between one and five years ago, with two 273 

exceptions, namely the two C. coli pairs, for which the TMRCA was around 25 years ago. 274 

The ratio r/m of rates at which recombination and mutation introduce polymorphism(cite) 275 

was estimated to be around 20-30 except in the two C. coli pairs with larger TMRCA, for 276 

which a much smaller value was estimated around r/m=4.  277 

 278 

Highly recombining genes as markers of geographical attribution 279 

A pairwise comparison of the matched pairs was used to quantify the level of divergence in 280 

each gene within the core genome (1,147 genes) of the paired isolates. Most genes showed 281 

low diversity, indicative of closely related pairs. Polymorphism in genes with less than 2% 282 

divergence between pairs (white and red in Figure 3) are likely to be the result of mutation or 283 

recombination with a tract of DNA with high nucleotide identity, so that only one or two 284 

substitutions are visible. Genes with greater than 2% divergence between pairs are likely to 285 

have recombined as numerous substitutions have been introduced (blue in Figure 3). Fifty-286 

seven genes (e.g. Cj0034c and Cj0635) had a high level (>2%) of nucleotide divergence and 287 

high probability of recombination in all 15 pairs. This result did not arise just by chance: 288 

Commented [NM9]: The approx. tenfold longer TMRCA of C. 
coli vs C. jejuni pairs is so striking – and within pairs based on the 
1200bp difference cut off that may operate differently across 
species, and a much less densely sampled C. coli population to 
generate sampling of close isolates. So many reasons may be 
contributing to this apparent difference even if true. To me this 
questions treating these coli and jejuni pairs as dealing with the 
same thing. 

Commented [XD10]: Vos M, Didelot X (2009) A 

comparison of homologous recombination rates in bacteria and 

archaea. ISME J 3:199–208. doi: 10.1038/ismej.2008.93 



14 

 

overall recombination was inferred in around 25% of the genes in each pair and so if 289 

recombination was random, the probability that all 15 pairs had recombined for a given gene 290 

would be extremely small (0.2515=9.3x10-10). 291 

 292 

Individual gene trees were generated for these 57 genes from which the most recombination 293 

could be identified. The seven genes that gave the clearest geographic clustering were used 294 

for further analysis of geographical attribution using Structure as previously described 295 

(Sheppard et al., 2010a, Pritchard et al., 2000). A self-test was performed on our collection of 296 

xxx isolates and in 76.7% of cases the source continent was correctly attributed. The 297 

percentages of correctly attributed isolates by population were not significantly different, at 298 

76.9% for North America and 76.5% for the UK. Where an isolate was incorrectly attributed 299 

to a population there was a higher average reported attribution probability (0.85) in the case 300 

of UK isolates compared with North American isolates (0.67). The proportion of UK isolates 301 

correctly attributed to the UK reference population was 70%, while the proportion of North 302 

American isolatescorrectly attributed was slightly higher at 76%. 303 

 304 

Attribution of clinical isolates to country based on sevenselected genes 305 

The same geographical attribution model was applied to 383 clinical C. jejuni isolates from 306 

the Oxfordshire Campylobacter Surveillance Study in the UK, accessed via 307 

pubMLST.org/campylobacter , and for which details of recent foreign travel were provided 308 

(Cody et al., 2013). The model correctly assigned 34 of the 46 (73.9%) isolates where recent 309 

foreign  travel had previously been declared, to a non-UK source of origin (Figure 4).In total, 310 

approximately half (47%) of the collected clinical isolates could be attributed to the UK.  311 

 312 

313 
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Discussion 314 

In gut dwelling bacteria, isolation in different host species, and barriers to recombination 315 

between populations, overtime, can lead to population differentiation reflected in the genome. 316 

In C. jejuni, this can be seen at different levels; the proliferation of certain lineages to a 317 

particular host species, that are abundant in one host  and rare or absent in others (Sheppard et 318 

al., 2011, Griekspoor et al., 2013, Sheppard et al., 2010a), secondly, as the increased 319 

frequency of host associated nucleotide substitutions in multiple lineages (that reflect 320 

adaptation to the host)  drift in physically isolated populations (Sheppard et al., 2013b). This 321 

host-associated genetic structuring can be informative for understanding the evolution of C. 322 

jejuni (Dearlove et al., 2016), but can also be used in a more practical way to identify the 323 

source of isolates causing human infection by identifying genomic signatures (resulting from 324 

adaptation or drift) in the infecting isolate that are associated with populations in particular 325 

reservoir hosts (Sheppard et al., 2009, Wilson et al., 2008). Quantitative source attribution 326 

models, based upon the probability that a particular clinical isolate originated in different 327 

reservoirs, has been widely used to estimate the risk of human infection from different food 328 

production animals and other sources (Colles et al., 2008, French et al., 2005, Mullner et al., 329 

2009, Sheppard et al., 2009, Roux et al., 2013, Griekspoor et al., 2013, Viswanathan et al., 330 

2016) and have informed intervention strategies and public health policy (Cody et al., 2013, 331 

Cody et al., 2012).  332 

 333 

The accuracy of probabilistic source attribution models is influenced by the degree of which 334 

indicative markers in the isolate genome, such as MLST locus alleles, can be placed within a 335 

source population. This would be relatively straightforward for markers that segregate 336 

absolutely by source, but in C. jejuni and C. coli it is common that alleles are present in more 337 
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than one population, but at different frequencies. In simple attribution models using MLST 338 

data, C. jejuni and C. coli isolates from chickens in the Netherlands, Senegal and the USA 339 

have been more closely related to UK chicken isolate populations rather than to populations 340 

from other host species in the same country (Sheppard et al., 2010a).While genomic 341 

signatures of host association can transcend geographic structuring within C. jejuni and C. 342 

coli populations, there can be differences in the genotypes that are isolated from different 343 

countries (Mohan et al., 2013, Asakura et al., 2012, Kivisto et al., 2014, Islam et al., 2014, 344 

Prachantasena et al., 2016). This presents challenges, not only for attributing the source of 345 

infections among travellers returning from foreign locations (Mughini-Gras et al., 2014), but 346 

also for understanding disease epidemiology in the context of a global food industry. 347 

 348 

Following the occupation of a new niche C. jejuni and C. coli can acquire DNA signatures 349 

through recombination (Wilson et al., 2009, Sheppard et al., 2013a, Sheppard et al., 2008) 350 

and local DNA signatures via HGT, from resident strains.To quantify the extent to which 351 

isolates from the same country share DNA sequence, we compared 15 isolate pairs from 352 

different countries, that to minimise the effect of clonal inheritance and host-associated 353 

variation werematched by both clonal complex and  source -. The predicted ancestry of co-354 

inherited SNPs was nearly twice as high among isolates from same country compared to 355 

those from different countries. While this represents a relatively weak signal of geographic 356 

association, compared to host association, there was a quantifiable local (national) signal that 357 

can be used to investigate geographical clustering.  358 

 359 

Since, recombination introduces more nucleotide substitutions than during mutation in C. 360 

jejuni and C. coli (Webb and Blaser, 2002, Wilson et al., 2009, Morelli et al., 2010), genes 361 
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with evidence of elevated recombination rates, that share a gene pool, will more rapidly 362 

acquire local signals of sequence variation than genes with lower recombination rates. These 363 

genes represent potential targets for use as biogeographic epidemiological markers. Pairwise 364 

isolate comparison revealed that nucleotide  divergencewas <2% across the majority of the 365 

genome (Figure 2, Table S2).However, some genes consistently had more sequence variation 366 

in multiple isolate pairs, potentially indicating enhanced recombination at these loci.  367 

 368 

Several of these genes have been annotated with functions associated with DNA processing, 369 

transcription, repair and maintenance. This may reflect the mechanisms of recombination and 370 

horizontal gene transfer. Other genes with evidence of elevated recombination included those 371 

associated with surface exposed proteins with roles in glycosylation, motility and secretion 372 

which would form part of an initial interaction with the host/environment (Table S2).The C. 373 

jejuni N-acetyltransferase PseH (Cj1313) plays a key role in O-linked glycosylation, which 374 

contributes to flagellar formation, motility and pseudoaminic acid biosyntheseis (Song et al., 375 

2015, McNally et al., 2006) and is important in host colonisation (Guerry et al., 2006). The 376 

variable outer membrane protein gene PorA, which has been used as part of extended MLST 377 

schemes (Dingle et al., 2008, Cody et al., 2009) was also among those genes with evidence of 378 

elevated recombination. This may explain why weak allopatric signals have been associated 379 

with sequence variation in the PorA gene in addition to source attribution signals (Sheppard 380 

et al., 2010a, Smid et al., 2013, Mughini-Gras et al., 2014).   381 

 382 

Three efflux pump genes Cj0034c, Cj0619 and Cj1174genes, that have been implicated in 383 

fluoroquinoline resistance, showed elevated recombination and phylogeographic variation 384 

(Table S2)(Luangtongkum et al., 2009, Ge et al., 2005). Clinical and agricultural prescription 385 
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informative etc. but could appear to be if e.g. more samples from 
a particular place were from a particular species, and that your 
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of broad-spectrum antibiotics such as quinolones varies worldwide. Since the late 1990’s the 386 

agricultural use of fluoroquinolones has declined following governmental intervention in 387 

Europe and North America (Chang et al., 2015, Nelson et al., 2007). However, resistant 388 

isolates remain common and the level of resistance can vary from country to country (Pham 389 

et al., 2015). Higher levels of fluoroquinolone resistance has been observed among isolates 390 

from patients returning from foreign travel (Gaudreau et al., 2014). The identification of 391 

genes associated with efflux pumps, among those with high levels of inferred recombination, 392 

suggests a role in the emergence of fluoroquinolones-resistance and provides a useful 393 

indicator for geographic segregation of isolates.  394 

 395 

Using signatures of local recombination in Campylobacter genomes,  has the potential to 396 

identify the country of origin and attribute  the source of infection, among returning 397 

travellers. In this study 74% of isolates from individuals, that had declared recent foreign 398 

travel, were attributed to non-UK sources. However, in the absence of genetic elements that 399 

segregate absolutely by geography, the model relies upon the availability of large reference 400 

datasets from reservoir populations in different countries for frequency-dependent attribution. 401 

Although this limits the applicability of the approach using currently available datathe 402 

statistical genetics methodologies employed here provide a quantitative means for identifying 403 

genomic signatures of allopatry. This potentially enables the evaluation of transmission 404 

dynamics through global livestock trade networks. Campylobacter populations are highly 405 

structured with some lineages having greater significance in human disease than others, either 406 

because of enhanced capacity to survive through slaughter and food production [Ref] or 407 

increased antimicrobial resistance (Wimalarathna et al., 2013, Cody et al., 2010). Monitoring 408 
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the spread of these strains may be useful for evidence-based interventions targeting strains 409 

that are a significant global health burden. 410 

  411 
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Tables and Figures 653 

Figure 1: Population structure of Campylobacter isolates used in this study. Phylogenetic 654 

trees were constructed from a whole-genome alignment of (A) C. jejuni (n=229) and (B) C. 655 

coli (n=55) isolates based on 103,878 and 806,657 variable sites, respectively, using an 656 

approximation of the maximum likelihood algorithm (Tamura et al., 2013, Kumar et al., 657 

2016). Leaves on the tree are coloured by source country, UK (green circles), Canada (red) 658 

and USA (blue). Common clonal complexes (CC) are annotated based on four or more shared 659 

alleles in seven MLST house-keeping genes (Dingle et al., 2005).  660 

 661 

Figure 2: Co-ancestry matrix with population structure and genetic flux. (A) The colour 662 

of each cell of the matrix indicates the number of chunks imported from a donor genome 663 

(column) to a recipient genome (row). Colour ranges from little import from the donor strain 664 

(yellow) to a large amount of imported DNA from the donor strain (blue). White indicates 665 

missing data. The trees above and to the left show clustering of the paired isolates with leaves 666 

coloured by source country (UK in green, Canada in red). (B) Box plot summarising the co-667 

ancestry matrix data. The average frequency of inferred recombination between donor to 668 

recipient grouped by import from isolates from the same country compared to isolates from 669 

different countries. There is significantly more import from donor strains of the same country 670 

compared to strains from different countries (p-value, test). 671 

 672 

Figure 3: Pairwise comparison of nucleotide diversity in the core genome. Above: 673 

Estimated values of the per-nucleotide statistic reflecting relative intensity of recombination 674 

at each site plotted along the NCTC11168 reference genome. Left: Core genome phylogeny 675 

of selected paired isolates (matched by CC and source host), with clonal complex indicated. 676 
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Centre: Matrix of gene-by-gene pairwise comparison along the NCTC11168 reference 677 

genome of our selected pairs. Each row represents a pairwise comparison of selected paired 678 

of isolates. Each column is a gene from the NCTC11168 reference genome. Panels of the 679 

matrix are coloured based on nucleotide divergence for that gene in each pair: from no 680 

nucleotide diversity (0%, white), through some nucleotide diversity (~1%, red) to high levels 681 

of nucleotide diversity (up to 2%, blue). The per-nucleotide scan of relative intensity of 682 

recombination is aligned with our gene-by-gene pairwise comparison of nucleotide diversity 683 

and the location of seven putative epidemiological markers for geographical segregation are 684 

indicated. 685 

 686 

Figure 4: Assignment of human clinical cases of campylobacteriosis to origin country, 687 

including patients with history of recent foreign travel. (A) Assignment of human clinical 688 

cases of campylobacteriosis to origin country using epidemiological markers of biogeography 689 

and the Bayesian clustering algorithmStructure. Each isolate is represented by a vertical bar, 690 

showing the estimated probability that it comes from each of the putative source countries, 691 

including the UK (green), USA (blue) and Canada (red). Isolates are orderedby attributed 692 

source. (B) Boxplots of predicted attribution probabilities for the three locations. (C) Isolates 693 

from Oxford clinical dataset with declared history of recent foreign travel. The model 694 

correctly assigned 34 of 46 (73.9%) isolates to a non-UK origin. (D) Attribution of Oxford 695 

clinical isolates between UK, USA and Canada source populations. Isolates with declared 696 

recent foreign travel are shown in blue.  697 

 698 

Table 1: Isolate pairs matched by clonal complex and host. 699 

 700 
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Table 2: Shared ancestry analysis and estimation of pairwise recombination rates. The 701 

time to the most recent common ancestor (TMRCA) for each selected pair was estimated 702 

with 95% confidence intervals (TMRCA-CI). Theratio of rates at which recombination and 703 

mutation introduce polymorphism (r/m) was also calculated with 95% confidence intervals 704 

(r/m-CI). In addition, the number of definitely recombined genes (probability > 95%) is also 705 

shown. The two C. coli pairs are coloured in red.  706 

 707 

Supplementary material 708 

Figure S1: Phylogeny of 7 highly recombining epidemiological markers used to attribute 709 

biogeography using structure. 710 

Table S1: List of isolates used, including details of genome accession numbers. 711 

Table S2: List of biogeographical epidemiological markers, including lists of (A) highly 712 

recombining genes as determined by per-nucleotide estimation of recombination intensity 713 

(recombination hot spots); (B) highly recombining genes as determined by pairwise analysis 714 

of nucleotide diversity (more than 2% diversity); and genes used to model biogeographical 715 

segregation in structure (orange). Genes with a role in fluoroquinolone resistance are 716 

highlighted in yellow.   717 

 718 


