
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in :

Journal of High Energy Physics

                                         

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa33659

_____________________________________________________________

 
Paper:

Aarts, G., Seiler, E., Sexty, D. & Stamatescu, I. (2017).  Complex Langevin dynamics and zeroes of the fermion

determinant. Journal of High Energy Physics, 2017(5), 044

http://dx.doi.org/10.1007/JHEP05(2017)044

 

 

 

 

 

 

 

 

_____________________________________________________________
  
This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository. 

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 

http://cronfa.swan.ac.uk/Record/cronfa33659
http://dx.doi.org/10.1007/JHEP05(2017)044
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 


 
J
H
E
P
0
5
(
2
0
1
7
)
0
4
4

Published for SISSA by Springer

Received: January 16, 2017

Accepted: April 15, 2017

Published: May 9, 2017

Complex Langevin dynamics and zeroes of the

fermion determinant
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Langevin drift, is absent in QCD since zeroes of the determinant result in a meromorphic

drift. We first derive how poles in the drift affect the formal justification of the approach

and then explore the various possibilities in simple models. The lessons from these are

subsequently applied to both heavy dense QCD and full QCD, and we find that the results

obtained show a consistent picture. We conclude that with careful monitoring, the method

can be justified a posteriori, even in the presence of meromorphicity.
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1 Introduction

The determination of the QCD phase diagram in the plane of temperature and baryon

chemical potential is one of the outstanding open questions in the theory of the strong

interaction, as it is relevant for the early Universe, ongoing heavy-ion collision experiments

at the Large Hadron Collider and the Relativistic Heavy Ion Collider, nuclear matter and

compact objects such as neutron stars.

Ample progress has been made along (or close to) the temperature axis, where lattice

QCD can be used to solve the theory numerically, and in recent years it has been possible to

simulate QCD with 2 + 1 flavours of light quarks using physical quark masses while taking

the continuum limit [1, 2]. This is directly relevant for ultrahigh-energy heavy-ion collisions.

The remainder of the phase diagram has not yet been established from first principles. As

is well-known [3, 4], at nonzero baryon chemical potential, the quark determinant in the

standard representation of the QCD partition function is complex, rather than real and

positive, ruling out the immediate use of standard numerical methods based on importance

sampling. This is generally referred to as the sign problem.

There are various proposals available to circumvent the sign problem, see e.g. the

reviews [4–8] and lecture notes [9]. One approach which has generated substantial attention

in the past years is the complex Langevin (CL) method, since it has so far proved to be

quite successful in simulating systems with a complex action S, or complex weight ρ,

from simple toy models to QCD [10–21]. While the method was suggested already in the

1980s [22, 23], recent progress has come in several ways: the theoretical justification has

been provided [24, 25] (see also refs. [26, 27] for related theoretical developments); numerical

instabilities can be eliminated using adaptive stepsizes [28]; explicit demonstrations that

the sign problem can be solved in spin models and field theories have been given, even when

it is severe [11, 13, 29]; and finally, for nonabelian theories, controlling the dynamics via

gauge cooling [15], possibly adaptive [30] (see also ref. [31]), has been shown to be necessary

and effective, resulting in the first results for full QCD [16, 18, 20, 21, 32]. Promising steps

beyond gauge cooling have also been taken [33].

There is, however, a serious conceptual problem that has to be faced. It is by now

quite well established that when the weight ρ ∼ exp(−S) is free from zeroes in the whole

complexified configuration space, the only worry is the possibility of slow decay in imagi-

nary directions [24, 25], which will result in incorrect convergence. However, for theories

which include fermions, such as QCD, integrating out the latter will yield a determinant

which will always have zeroes for some complexified configurations. These zeroes lead to

a meromorphic drift; the formal justification for the CL method [24, 25] requires holomor-

phicity, however (this will be reviewed below), and poles may cause convergence to wrong
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results. The relevance of this has first been pointed out by Mollgaard and Splittorff [34, 35]

in the context of a random matrix model and has been further investigated in refs. [36–39].

Possible consequences for the behaviour of the spectrum of the Dirac operator [40] have

been studied in random matrix theory [41], as has the interplay with gauge cooling [42].

This problem has both theoretical and practical aspects. Concerning the former, it

requires a re-analysis of the derivation and justification of the method, given for the holo-

morphic case in refs. [24, 25]. To do so is the first aim of this paper and is the topic of

section 2. In practice, it has been observed in a number of papers that a meromorphic

drift will not necessarily cause convergence to wrong results — sometimes without this

issue being explicitly flagged up (one example being when the meromorphicity is due to

the Haar measure). However, this aspect is not yet properly understood; while there is a

collection of results for a variety of models, an overall understanding is lacking. In section 3

we address this issue using simple models, in which a detailed understanding can be ob-

tained. Lessons from this analysis are summarised in section 4. In section 5 we then move

to a more intricate SU(3) model and see how the lessons apply in that context. Finally, in

section 6 we turn to lattice QCD — heavy dense QCD and full QCD — and compare our

findings with the understanding developed previously. A discussion of the results obtained

in the various models is contained in section 7. We conclude that an overall consistent

picture can be extracted, applicable across all models considered, and give guidance on

how to tackle this problem in future simulations. The appendices contain some additional

material, including proposals on how to handle poles in the drift in special cases. We note

that partial results have already been presented in refs. [43–45].

2 Formal justification in the presence of poles

We briefly recall the basic principles of the CL method, adapting the results for its justifi-

cation [24, 25] to include a meromorphic drift, i.e. a drift with a pole.

Given a holomorphic action S we denote by ρ the (normalised) complex density

ρ(x) =
e−S(x)

Z
, Z =

∫
dx e−S(x), (2.1)

on the original real field space. For simplicity we assume here a flat configuration space,

i.e. Rn. A complex drift K(x+ iy) is defined by analytic continuation as

K(x+ iy) =
∇ρ(x+ iy)

ρ(x+ iy)
= −∇S(x+ iy). (2.2)

The CL equation, a stochastic differential equation in the complexified field space, with

the drift given by the real and imaginary parts of K,

ẋ = Kx + ηR, Kx ≡ ReK, 〈ηR(t)ηR(t′)〉 = 2NRδ(t− t′), (2.3)

ẏ = Ky + ηI , Ky ≡ ImK, 〈ηI(t)ηI(t′)〉 = 2NIδ(t− t′), (2.4)

leads to the Fokker-Planck equation describing the evolution of the (positive) probability

density P (x, y; t),

Ṗ (x, y; t) = LTP (x, y; t), (2.5)

– 3 –
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with

LT = ∇x [NR∇x −Kx] +∇y [NI∇y −Ky] , (2.6)

L = (NR∇x +Kx)∇x + (NI∇y +Ky)∇y, (2.7)

where NR −NI = 1 and NI ≥ 0. We used here ‘complex noise’ (NI > 0) for presentation

purposes; below we specialise to real noise (NI = 0), as advocated earlier [24, 25].

Averaging over the noise, the evolution of holomorphic observables O(x+iy) is governed

by the equation

Ȯ(x+ iy; t) = LO(x+ iy; t) = L̃O(x+ iy; t), (2.8)

with

L̃ = [∇z − (∇zS(z))]∇z, (2.9)

where in the last step we used the Cauchy-Riemann equations, i.e. holomorphy of O(x +

iy; t), and z = x+ iy.

The consistency of the complex Langevin method with the original problem hinges on

the quantity

F (t, τ) ≡
∫
P (x, y; t− τ)O(x+ iy; τ) dxdy, (2.10)

which is supposed to interpolate between

F (t, 0) =

∫
P (x, y; t)O(x+ iy; 0) dxdy ≡ 〈O〉P (t) (2.11)

and

F (t, t) =

∫
O(x; 0)ρ(x; t) dx ≡ 〈O〉ρ(t), (2.12)

where ρ(x; t) is the complex density evolved according to

ρ̇(x; t) = ∇x (∇x −K(x)) ρ(x; t). (2.13)

Here it is necessary to choose the initial density ρ(x; 0) positive, typically a δ-function.

Correctness of the CL method requires that the two quantities F (t, 0) and F (t, t) are

equal, i.e. 〈O〉P (t) = 〈O〉ρ(t), at least as t → ∞. To show this equality, in ref. [25] it was

argued that

∂

∂τ
F (t, τ) = −

∫ (
LTP (x, y; t− τ)

)
O(x+ iy; τ) dxdy

+

∫
P (x, y; t− τ)LO(x+ iy; τ) dxdy = 0; (2.14)

this required that formal integration by parts, without possible boundary terms, is correct.

For holomorphic actions, this requires care in the imaginary directions, |y| → ∞. Slow

decay, for instance power-law decay in polynomial models, does not allow partial integration

to be carried out for all holomorphic observables zn without picking up contributions at

the boundary. On the other hand, if the distribution is strictly localised in a strip in the

– 4 –
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complex configuration space, no boundary terms will appear and the results from the CL

simulation can be justified, see for instance ref. [46] for an explicit example.

In the case of a meromorphic drift, the topic of this paper, we have to introduce

two boundaries: one at large |y| and near the location(s) of the pole(s), which we denote

generically as zp. Let us first reconsider eq. (2.12): by definition we have

F (t, t) =

∫
P (x, y; 0)O(x+ iy; t) dxdy. (2.15)

We may consider a single trajectory starting at (x, y) = (x0, 0), which means choosing

P (x, y; 0) = δ(x− x0)δ(y). (2.16)

We then find

F (t, t) = O(x0; t). (2.17)

This is well defined. Furthermore, provided x0 6= zp, the time-evolved observable O(z; t)

is holomorphic for z 6= zp. However, according to eq. (2.8), we have to expect that O(z; t)

has an essential singularity at z = zp, since formally

O(z; t) = exp(L̃t)O(z) =

∞∑
k=0

tk

k!
L̃kO(z), (2.18)

and each term of the series in general will produce a pole of higher order. This is the first

finding.

Now let us look at eq. (2.14): for simplicity we assume that there is only a single pole

at z = zp and consider a one-dimensional configuration space. Integration by parts can be

used at first only for the domain

Gε,Y ≡ {z = x+ iy | |y| < Y ; |z − zp| > ε} , (2.19)

in which the dynamics is nonsingular; later we have to take the limits Y →∞ and ε→ 0.

The first integral in eq. (2.14) is of the form∫
Gε,Y

(∇ · J)O dxdy, (2.20)

where J is the ‘probability current’

J = N∇P −KP, (2.21)

with

N =

(
NR 0

0 NI

)
. (2.22)

Using the divergence theorem (Gauss’s theorem) one finds that the first integral is equal to

−
∫
Gε,Y

J · ∇O dxdy +

∫
∂Gε,Y

n · JO ds, (2.23)
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where ds stands for the line element of the boundary ∂G and n denotes the outer normal.

The boundary has 3 disconnected pieces: two straight lines at y = ±Y and a circle at

|z− zp| = ε. We assume now as usual that P has sufficient decay so that the contributions

from y = ±Y disappear for Y → ∞. Then the question remains if the circle around zp
gives a nonvanishing or even divergent contribution.

Numerically it has been found that always

P (xp, yp) = 0, (2.24)

and furthermore that P vanishes at least linearly with the distance from zp, with some

angular dependence. But the expected essential singularity of the evolved observable O(x+

iy; t) at zp could lead to a finite or even divergent contribution as ε → 0. Numerically,

however, we never found divergent behaviour, so presumably the boundary terms are finite.

But they may be nonzero, spoiling the proof of correctness. This is the second finding, the

appearance of boundary terms, similar to the ones that may appear at |y| = Y .

Let us apply integration by parts a second time to the bulk integral

−
∫
Gε,Y

JD · ∇O dxdy, (2.25)

where JD denotes the ‘diffusive current’

JD ≡ N∇P. (2.26)

The integral above is then

−
∫
Gε,Y

N∇P · ∇O dxdy. (2.27)

Green’s first identity (also a consequence of the divergence theorem) says that this is

equal to ∫
Gε,Y

P∇ ·N∇O dxdy −
∫
∂Gε,Y

Pn ·N∇O ds. (2.28)

The discussion of the new boundary terms is almost identical to the one above; again what

happens depends on the detailed behavior of O(x+ iy; t) near zp.

In practice we found (numerically) no indication of any divergence caused by the

existence of an essential singularity of O(x + iy; t).1 The reason for this seems to be that

both P (x, y; t) and O(x + iy; t) have nontrivial angular dependence. In section 3.2 we

discuss a probably typical situation in which P (x, y; t) vanishes identically in two opposite

quadrants near the pole. So if O(x + iy; t) shows strong growth only in those quadrants,

the product may well be integrable, i.e. the boundary terms near the pole remain bounded.

To summarise, we find that the time-evolved observable will generically have an essen-

tial singularity at the pole, which, however, is counteracted by the vanishing distribution.

Concerning the justification, partial integration at the boundaries now also includes inte-

gration around the pole, which requires the distribution to vanish rapidly enough for partial

integration to be possible without picking up boundary terms. In the following section, we

will study this first in simple models, focussing on the essential elements.

1There are exceptions to the claim that a meromorphic drift will cause an essential singularity in O(x+

iy; t), but unfortunately they are nongeneric. One example is discussed in appendix A.
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3 Poles: inside or outside the distribution

From the formal derivation in the previous section, it is clear that the essential question

concerns the interplay between the pole (and observables evaluated close to the pole) and

the equilibrium distribution. Logically there are three possibilities:

1. poles are outside the distribution;

2. poles are on the edge of the distribution;

3. poles are inside the distribution.

It can be expected that in the first case poles are not dangerous, as they are avoided in the

Langevin process (possibly after thermalisation). What happens in the second and third

possibility is not a priori clear. In this section we will discuss each of these cases using

simple zero-dimensional models, with the aim of extracting insight that can be carried over

to more complicated theories, including QCD. Some additional remarks on simple models

with poles are given in appendix A and B.

3.1 One-pole model

The simplest model of a system with a pole is given by the density on R,

ρ(x) = (x− zp)np exp(−βx2), (3.1)

where we take β real. When zp is real, the weight is real as well, but the model has a sign

problem for odd np, while for even np the zero in the distribution may potentially lead to

problems with ergodicity. When zp is complex, the weight is complex of course.

The complex drift appearing in the Langevin process is given by

K(z) =
ρ′(z)

ρ(z)
=

np
z − zp

− 2βz. (3.2)

While the original weight vanishes at zp, the drift diverges and is hence meromorphic. We

will refer to this model as the “one-pole model”. Special cases (with np = 1) have been

considered long ago [47, 48], while recently this model has been studied again, in particular

for a large range of values of np [37]. Our focus is somewhat different; we are mostly

interested in the interplay between the location of the pole and the distribution and, for

real zp, the difference between np = 1 and np = 2.

This model captures the presence of a meromorphic drift in QCD in a very rudimentary

way, as follows. Consider the QCD partition function for nf degenerate flavours,

Z =

∫
DU det[M(U)]nf e−SYM(U) =

∫
DU e−Seff(U), (3.3)

with

Seff(U) = SYM(U)− nf ln detM(U) = SYM(U)− nf
∑
i

lnλi(U), (3.4)

– 7 –
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where in the last expression we have written the fermion determinant in terms of the

eigenvalues of the Dirac operator, λi(U), which depend on the gauge field configuration, as

indicated with the U dependence. The drift contributing to the update of link U will now

have a contribution from the fermion determinant as

KF ∼ nf
∑
i

Dλi(U)

λi(U)
, (3.5)

where D denotes the derivative. When λi goes to zero (and the determinant vanishes), the

drift has a pole. In the one-pole model, the complicated dependence of λi on U is replaced

by a simple pole located at zp, i.e.

nf
∑
i

Dλi(U)

λi(U)
→ np

z − zp
. (3.6)

In QCD, the links U are of course fluctuating and the dependence is considerably more

complicated. The relation between the number of flavours (nf ) and the order of the zero

(np) depends on details of the fermion determinant.

3.1.1 Strips in the complex plane

To continue, we allow the location zp of the pole in the drift to be complex in general and

take β real and positive. The drift has fixed points (K(z) = 0) at

z1,2 =
zp
2
± zp

2

√
1 +

2np
βz2

p

. (3.7)

A fixed point zi is attractive (repulsive) if ReK ′(zi) < 0 (ReK ′(zi) > 0). We find

K ′(z1,2) = −2β

(
2β

np
z2

1,2 + 1

)
, (3.8)

and hence, for real or imaginary zp, this yields

(a) zp = xp real ⇒ both fixed points z1,2 are real and attractive;

(b) zp = iyp imaginary, y2
p < 2np/β ⇒ z1,2 complex: both fixed points are attractive;

(c) zp = iyp imaginary, y2
p > 2np/β ⇒ z1,2 imaginary: the fixed point closer to the real

axis is attractive, the other one repulsive.

In order to find where the pole is with respect to the equilibrium distribution P (x, y),

and be able to discuss the three cases above (pole is outside, on the edge or inside the

distribution), we note the following. The drift in the imaginary direction is given by

Ky(x, y) = ImK(x+ iy) = −np
y − yp

(x− xp)2 + (y − yp)2
− 2βy. (3.9)

Without loss of generality we take yp ≥ 0. Hence it immediately follows that the drift is

pointing downwards when y > yp and upwards when y < 0. In the case of real noise (which

– 8 –
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p
y=y

+

y=y_
x

y

y=0

a)

y=y

b)

Figure 1. One-pole model: strips where the equilibrium distribution P (x, y) is nonzero. The

pole is located at zp = xp + iyp, with yp > 0 (red square). Left: y2
p < 2np/β: P (x, y) > 0 when

0 < y < yp and the pole is on the edge. Right: y2
p > 2np/β: P (x, y) > 0 when 0 < y < y− and the

pole is outside the distribution. The strip y+ < y < yp can be visited during the Langevin process,

provided that the process is initialised at y > y+, but will eventually be abandoned (transient).

we use from now on), this implies that the equilibrium distribution will be nonzero only in

the strip 0 < y < yp [24, 46]. Hence generically in this model the pole will be on the edge of

the distribution. Moreover, since the distribution is strictly zero outside the strip, partial

integration at y → ±∞ is not a problem and therefore this aspect of the justification is

under complete control.

Following the analysis of refs. [24, 46], we can in fact derive a stronger result. It follows

from the FPE that the equilibrium distribution has to satisfy the condition∫ ∞
−∞

dxKy(x, y)P (x, y) = 0. (3.10)

Since P (x, y) ≥ 0, it follows that if Ky(x, y) has a definite sign as a function of x for given

y, P (x, y) has to vanish for this y value. Following exactly the same steps as in section 4.2

of ref. [46], we find the following. As a function of x, Ky(x, y) has an extremum at x = xp
and the value at the extremum is given by

F (y) = − np
y − yp

− 2βy. (3.11)

The zeroes of F (y), at

y± =
yp
2
± yp

2

√
1− 2np

βy2
p

, (3.12)

determine the presence of additional boundaries at y±, provided they are real [46]. We

find that

a) y2
p < 2np/β: no additional boundaries;

b) y2
p > 2np/β: additional boundaries at y±, P (x, y) = 0 when y− < y < y+.

This situation is sketched in figure 1.

In the latter case, no conclusion from this argument can be drawn regarding the strips

0 < y < y− and y+ < y < yp. However, an additional analysis of the classical flow pattern

shows that the strip 0 < y < y− is an attractor, while the strip y+ < y < yp can only be

– 9 –
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Figure 2. Classical flow patterns for β = 1 and zp = 1, with np = 1 (left) and np = 2 (right). The

blue (red) circles indicate the fixed points (pole). The real axis is an attractor.

visited when the process starts at y > y+. The drift inside this strip is pointing mostly

towards y = y− and hence this region will eventually be abandoned. It will therefore at

most be present as a transient.

We conclude that in this model the pole is either on the edge of (case a) or outside

(case b) the distribution. In the following we address each of these possibilities.

3.1.2 Ergodicity and bottlenecks for real poles

We first discuss the real case, with zp = xp, since this allows us to introduce the concept of

a ‘bottleneck’, which will turn out also be relevant for the complex case. In this case, the

distribution ρ(x) is real, but with a sign problem for odd np. As follows from the analysis

above, both fixed points are attractive and the equilibrium distribution lies on the real

axis. This is illustrated in figure 2 for β = zp = 1 and np = 1, 2. We note that close to

the pole, the drift is repulsive along the real direction and attractive along the imaginary

direction; it is easy to see that this is true in general.

In the limit of continuous Langevin time, trajectories of a real Langevin process will

not cross the poles [49]. This leads to a ‘separation phenomenon’, a point made some time

ago [50]. In an actual simulation, because of the finite step size, crossing of the poles may

happen (depending on the step size) [48]. It is instructive to look at the corresponding

stationary Fokker-Planck equation (on the real axis)

∂x(∂x −K(x))P (x) = 0, K(x) =
ρ′(x)

ρ(x)
. (3.13)

Clearly P (x) ∼ ρ(x) is a solution, but wherever there is a sign problem, it cannot be the

stationary probability distribution, since P (x) should be nonnegative. Instead we find two

linearly independent, nonnegative solutions:

P+(x) = ρ(x)θ(ρ(x)), P−(x) = −ρ(x)θ(−ρ(x)); (3.14)
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Figure 3. Classical flow diagrams for zp = i, np = 2 and β = 1.6 (left) and β = 4.8 (right). The

blue (red) circles are fixed points (pole) and the equilibrium distribution is contained between the

dashed horizontal lines.

any linear combination of P+ and P− with nonnegative coefficients is likewise a possible

long time average. Hence the Fokker-Planck Hamiltonian has two ground states.

If the simulation manages to slip through the barrier sufficiently easily, we expect to get

Pq(x) = P+(x) + P−(x) = |ρ(x)|, (3.15)

i.e. the phase-quenched model, as already found in ref. [48]. We have verified this numer-

ically for np = 1. One way to cross the bottleneck and facilitate tunneling through the

pole is by adding a small amount of imaginary noise. However, the drift (3.2) is insensitive

to sign changes in ρ and the phase-quenched result is recovered. We conclude that the

Langevin process cannot give correct results for odd np.

For even np > 0, there is no sign problem, but the lack of ergodicity exists as well. In

this case, because of the stronger repulsion away from the pole, our simulations typically

do not cross the pole, and hence produce incorrect results when started on one side of the

pole. In this case, adding a small imaginary noise term does facilitate the crossing and

leads to correct results.2

In conclusion, we find that zeroes in the distribution lead to a bottleneck and hence

ergodicity problems. Whether this zero is crossed depends on the order of the zero: the

higher the order, the more difficult the crossing is. We will see that the same is true in

the complex case, even though it is easier to go around the pole in the complex plane in

that case.

3.1.3 Poles outside the distribution

We now consider the complex case and take np = 2, zp = i (yp = 1) and three β values:

β = 1.6, 3.2, 4.8. The relevant parameter determining the distribution is 2np/βy
2
p, which

2For the special case zp = 0 the symmetry x→ −x allows one to start the process with equal probability

on either side of the pole and obtain correct results as well.
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Figure 4. Thimbles corresponding to figure 3. See text for details.

takes the values 5/2, 5/4 and 5/6 respectively. Hence for β = 4.8 the distribution is

confined to the strip 0 < y < y− ≈ 0.296 and the pole is outside the strip, while for the

other β values the distribution touches the pole and 0 < y < yp = 1.

The classical flow diagrams are shown in figure 3, for β = 1.6 and 4.8. It is easy

to see from the flow patterns that the general conclusions apply. For completeness, the

corresponding thimbles3 are shown in figure 4. Here the full (blue) lines are the stable,

contributing thimbles and the dashed lines are the unstable, noncontributing thimbles. We

note that at β = 4.8 the unstable thimble for the lower fixed point is the stable thimble

for the upper fixed point. At the lower β value the thimbles meet at the pole, while at the

higher value the stable thimble avoids the pole, consistent with the Langevin analysis.

We first consider the case β = 4.8. The histogram for P (x, y) is shown in figure 5 and

is confined between 0 < y < y− ' 0.296, as it should be. The results for the observables

〈zn〉 (n = 1, 2, 3, 4) from a complex Langevin simulation are shown in table 1; we observe

excellent agreement with the exact result. It is clear that this is in line with the formal

derivation. We hence state the following

Proposition 1 If the drift is such that the equilibrium distribution is confined to a sim-

ply connected region not containing any poles of the drift, the complex Langevin process

converges to the exact results.

3.1.4 Poles on the edge of the distribution

We now turn to β = 1.6 and 3.2, with the pole at the edge of the distribution. The

corresponding histograms for P (x, y) are shown in figure 6 and the results for 〈zn〉 are

listed in table 1. Here we note that the Langevin results for β = 1.6 are wrong, while the

results for β = 3.2 appear to be correct (within the error). To understand this better we

employ two methods.

3In short, (stable) thimbles correspond to deformations of the original integral: they emerge from the

classical fixed points and along the thimbles the imaginary part of the weight is constant [51]. Thimbles

may end at singularities of the drift [52].
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Figure 5. Histogram P (x, y) for zp = i, np = 2 and β = 4.8.

β n complex Langevin exact

1.6 1 −0.0029(80) + i0.5223(12) i0.909091

2 0.4193(25)− i0.0043(68) 0.0284091

3 0.0053(71) + i0.7605(30) i0.852273

4 0.2226(96)− i0.001(12) −0.239702

3.2 1 0.0013(31) + i0.36985(58) i0.37037

2 0.0994(14)− i0.0001(20) 0.0983796

3 0.0029(11) + i0.17439(76) i0.173611

4 0.0192(10)− i0.0018(15) 0.0189887

4.8 1 0.00052(54) + i0.23256(5) i0.232558

2 0.07993(19) + i0.00027(22) 0.0799419

3 −0.00019(16) + i0.07266(9) i0.0726744

4 0.01743(12) + i0.00007(14) 0.0174116

Table 1. Results for 〈zn〉 using complex Langevin simulations for the weight (3.1), with np = 2,

zp = i and various β values, compared to the exact result.

Figure 6. Histogram P (x, y) for zp = i, np = 2, β = 1.6 (left) and β = 3.2 (right).
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Figure 7. Partially integrated distributions Py(y) on a linear scale (left) and logarithmic scale

(right) for β = 1.6, 3.2, other parameters as above.

First we note that the histograms look quite different. At β = 1.6 the distribution

is nonzero very close to the pole, which one expects yields boundary terms in the formal

justification, which invalidate the outcome. On the other hand, at β = 3.2 the distribution

is peaked predominantly away from y = 1 and the pole appears to be avoided. We make

this more precise by computing the partially integrated distribution

Py(y) =

∫ ∞
−∞

dxP (x, y). (3.16)

The results are shown in figure 7 on a linear scale (left) and on a logarithmic scale (right).

On a linear scale it is easy to see that at β = 1.6, Py(y) is nonzero up to y = 1 and

goes to zero linearly (at the pole the distribution is zero of course). Based on the formal

justification, we conclude that this slow decay invalidates the applicability of the approach.

On the other hand, at β = 3.2 the distribution appears to drop exponentially in an ex-

tended interval 0.5 < y . 1, possibly with two exponentials. Hence expectation values of

polynomials 〈zn〉 can be computed safely, as illustrated in table 1.

For β = 1.6, it can be seen that there is a nonvanishing boundary term around the

pole. Instead of a small circle surrounding the pole at z = i we may consider a horizontal

line y = 1 − ε approaching the pole for ε → 0. Then the boundary term in eq. (2.23)

becomes (for NI = 0)

lim
ε→0

∫
Ky(x, 1− ε)P (x, 1− ε)O(x+ i− iε) dx =

lim
ε→0

∫ (
np

ε

x2 + ε2
− 2β(1− ε)

)
P (x, 1− ε)O(x+ i− iε) dx. (3.17)

The smooth terms can be replaced by their values for ε = 0 and a boundary term arises

because

lim
ε→0

∫
Ky(x, 1− ε)P (x, 1− ε) dx 6= 0. (3.18)

Next we try to elucidate in more detail what is causing success or failure. For this

purpose let us remember that in ref. [25] we established a criterion for correctness that
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Figure 8. Qk(x), see eq. (3.20), for zp = i, np = 2 and β = 1.6 (left), 3.2 (middle) and 4.8 (right),

for k = 0,−1, . . . ,−12. In each figure the top (bottom) curve corresponds to k = 0 (−12).

went as follows: if the consistency conditions 〈L̃O〉 = 0 hold for ‘all’ observables and a

bound of the form

|〈O〉| < const max
x∈R
|O(x)| (3.19)

holds, then the process produces correct results. Since for the original complex integral such

a bound obviously holds, it is a necessary condition for correctness. Now the consistency

condition simply expresses the fact that we have reached convergence, so it should be

satisfied; the bound eq. (3.19), however, may fail. We can see from the CL simulation that

eq. (3.19) apparently fails for β = 1.6, but not for the other two values. In order to see

this, define

Qk(x) ≡
∫ ∞
∞

dy P (x, y)e−ky = 〈e−ky〉y. (3.20)

These functions are related to the expectation values of exp(ikz) by

〈exp(ik(x+ iy))〉 =

∫
dxQk(x)eikx. (3.21)

In figure 8 we show the functions logQk(x) for integer values k = 0,−1, . . . ,−12. In all

three cases the shape of the functions seems to stabilise with growing k, whereas there

is approximately constant shift upwards with k. This suggests the following asymptotic

behaviour,

Qk(x) ∼ exp(ck)f(x) , (3.22)

with some constant c > 0, so

〈exp(ik(x+ iy))〉 ∼ exp(ck)

∫
dx f(x)eikx = exp(ck)f̂(k). (3.23)

How can this remain bounded for k →∞? The only possibility is that the Fourier transform

f̂(k) decays exponentially; this will be the case if f(x+ iy) is analytic in a strip |y| < const.

In particular f(x) has to be smooth. Looking at figure 8 one can see clearly that for β = 1.6

f(x) is developing a kink, wheres in the other two cases it at least appears to be smooth and

the effect of the pole appears to be negligible. Hence we may conclude that the incorrect

convergence is due to the failure of the bound (3.19).
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To summarise the findings in the one-pole model, we conclude that if close to the pole

the distribution drops to zero fast enough, e.g. exponentially in the case considered here,

the meromorphicity of the Langevin drift is not necessary an obstacle and correct results

can still be obtained. When on the other hand the distribution is not falling rapidly at the

pole, incorrect convergence is observed.

3.2 U(1) one-link model

In order to analyse what happens when poles are inside the distribution, we switch to the

following U(1) integral with a complex weight,

Z =

∫ π

−π
dx ρ(x), ρ(x) = [1 + κ cos(x− iµ)]np exp[β cos(x)]. (3.24)

This model was introduced in ref. [10] (for np = 1) as a toy model for QCD, with a complex

‘fermion determinant’

D(x;µ) = 1 + κ cos(x− iµ), (3.25)

satisfying [D(x;µ)]∗ = D(x;−µ∗). Complex Langevin dynamics was studied extensively in

ref. [10] for κ < 1, while problems for κ > 1 were first reported in ref. [34]. Subsequently

thimbles were analysed in ref. [52].

When κ < 1 the weight is positive when µ = 0, while for κ > 1 there is already a sign

problem at µ = 0. Concerning Langevin dynamics, we note that good results are obtained

when κ < 1 (and k not too large and negative), while problems emerge for κ > 1 and β

not too large [34, 52]. It should be noted that in view of the later sections even values

of np ≥ 2 can be physical as the QCD determinant has double zeroes when the Wilson

fermion formulation is used.

The complex drift reads

K(z) = −β sin(z)− npκ sin(z − iµ)

1 + κ cos(z − iµ)
. (3.26)

When κ < 1 there is an attractive fixed point at x = 0 and repulsive fixed points at x = ±π,

with poles located at zp = ±π + iyp, where cosh(yp − µ) = 1/κ. When κ > 1, poles are

at zp = xp + iµ, with cosxp = −1/κ. We start with a brief discussion of three sets of

parameters, all with np = 1:

(1) κ = 0.5, β = 1, µ = 1: pole at xp = ±π, yp = µ+ arccosh(1/κ);

(2) κ = 2, β = 5, µ = 1: poles at xp = ±2
3π, yp = µ;

(3) κ = 2, β = 0.3, µ = 1: poles at xp = ±2
3π, yp = µ.

Results of CL dynamics for the observables 〈eikz〉 (k = ±1, . . . ,±5) are shown in figure 9.

For set (1), we observe good results, except when k is large and negative, k = −4,−5. For

those values, fluctuations are large and increasing the simulation time does not improve

this, a sign of non or poor convergence. For set (2), excellent agreement with exact results

is obtained. For set (3), we observe agreement for large and positive k, but increasingly
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Figure 9. Re 〈exp ikz〉 for k = −5,−4, . . . , 4, 5 vs k, for parameter sets (1,2,3), all with np = 1

(the imaginary parts are negligible). The lines are the exact results.

worse behaviour as k is reduced. The results for k = −4,−5 have larger errors, but the

values of the averages are robust as the Langevin time is increased, hence here we find

incorrect convergence. Since for our choice of parameters the poles are located at yp > 0,

we note that exponentials with k > 0 (k < 0) will be less (more) sensitive to the presence of

the poles, as a suppression (enhancement) with e−ky (eky) arises naturally. This is indeed

supported by the data.

In the following we focus on the case where κ > 1 and β . 1, since this is where

complex Langevin dynamics converges, but possibly to an incorrect result. Moreover, we

will compare np = 1, 2 and 4.

3.2.1 Poles inside the distribution

We consider parameter set (3), with β = 0.3, κ = 2, µ = 1 and np = 1, 2 and 4. Classical

flow diagrams are given in figure 10 for np = 1, 2 (note the periodicity in x). Besides the

attractive ‘perturbative’ fixed point at x = 0, there is an additional attractive fixed point

at x = ±π. The other two fixed points are repulsive. It is clear to see from the flow

diagrams, and can be confirmed following a similar analysis as above, that the equilibrium

distribution will be contained in a horizontal strip between the two attractive fixed points.

Finally, the pole is attractive in the imaginary direction and repulsive in the real direction

(as always), making the pole an approximate bottleneck, just as in the real case considered

in section 3.1.2. Hence, as the attractive fixed points move closer together in the imaginary

direction, the distribution gets narrower and narrower.

In figure 11 we show logarithmic contour plots of the equilibrium distribution sampled

during the CL process in the complex plane for np = 1 (left) and 2 (right). Note that

the darker colours correspond to the most frequently visited regions. The position of the
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Figure 10. Classical flow diagrams in the U(1) model with β = 0.3, κ = 2, µ = 1, np = 1 (left) and

np = 2 (right). The blue (red) circles are fixed points (poles).

Figure 11. Logarithmic contour plots of the distribution in the xy plane, for β = 0.3, κ = 2, µ = 1,

np = 1 (left) and np = 2 (right).

pole can clearly be identified as the place where the distribution is pinched, resulting in

a bottleneck; this effect gets stronger with increasing np. The distribution is strictly zero

outside the strip set by the attractive fixed points.

To better understand this structure, we note that the approximately disconnected

regions (i.e. the ‘head’ and the ‘ears’ in figure 11) are characterised by the sign of the real

part of the determinant,

ReD = 1 + κ cos(x) cosh(y − µ), (3.27)

– 18 –



J
H
E
P
0
5
(
2
0
1
7
)
0
4
4

Figure 12. Logarithmic contour plots of the distribution of the complex determinant D, for

β = 0.3, κ = 2, µ = 1, np = 1 (left) and np = 2 (right).

and hence we will refer to them as G±,

G+ = {(x, y) | ReD > 0} , G− = {(x, y) | ReD < 0} , (3.28)

with G+ the ‘head’ and G− the ‘ears’. For np = 1, we observed frequent crossings between

the two regions. For np = 2, the crossings are rarer but still frequent enough such that

both regions are visited during long runs. This might, however, be due to the finite time

step. In the continuous time limit it is possible that the two regions that are not connected

by the process, i.e. the process might not be ergodic. Of course rare crossings make it

hard to collect good statistics. For np = 4 (not shown) no crossings were observed and the

distribution only has support in G+.

To translate these findings to an observable easily accessible also in more complicated

models and lattice theories, we consider the complex determinant. Logarithmic contour

plots of D are shown in figure 12. We observe a similar structure, with the zero of D acting

as the bottleneck. We will use this diagnostics in the more complicated models discussed

below.

In view of the formal justification, see section 2, it is important to know the rate at

which the distribution goes to zero at the pole. This is shown in figure 13 for the partially

integrated distribution Px(x) (left) and the real part of D (right). For np = 1 we observe

a linear decrease at the pole (recall that xp = ±2π/3), while for np = 2 the decay is faster.

For np = 4, the pole is not crossed and the entire dynamics takes places in G+. Since the

pole does not negatively influence the dynamics in this case, we expect good agreements

with the exact results, although there may be problems with ergodicity, similar to the real

case. This is demonstrated in figure 14, where Re 〈eikz〉 is shown on a logarithmic scale,

for 10 values of k. For np = 2 we find approximate agreement, especially for k close to 0.

For np = 4, good agreement is seen for all k values considered. This is consistent with the
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np = 2, 4. The lines are the exact results.

formal derivation: for np = 4 the pole is avoided and only the region sufficiently far from

D = 0 is relevant.

Finally, we stress once more that further support for the validity of the formal argu-

ments comes from the observed interplay of the observables and the pole: it is possible

that for some observables good agreement is found, while for others it is not. This cru-

cially depends on the region in configuration space most relevant for the observable under

consideration, as exemplified in this model by the observables 〈eikz〉, with k ≷ 0.

3.2.2 What does the CL simulation actually compute?

In order to further understand the relevance of the contributions from the nearly discon-

nected regions G±, we have analysed the results from Langevin simulations for 〈eikz〉 by

separating the trajectories based on the sign of the real part of D. The results are sum-
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k exact CL[G+] exact[G+] CL[G−] exact[G−]

−2 2.05781 1.9589(29) 1.94847 5.9554(90) 5.94936

−1 1.74691 1.87106(43) 1.87036 −2.6473(11) −2.64655

1 0.316378 0.33450(11) 0.334309 −0.32181(6) −0.321777

2 0.0702397 0.07013(9) 0.0697774 0.08675(10) 0.0866928

Table 2. Re〈eikz〉 for several values of k, when restricted to G± (Re D ≷ 0), for β = 0.3, κ =

2, µ = 1, with np = 2, comparing complex Langevin (CL) and exact results.

marised in table 2 in the columns labeled CL[G±]. We note that the results obtained when

restricted to G+ are close to the exact results, listed in the first column, but not quite

equal.

We can understand this as follows: first we shift the contour of integration of the

original integrals to go through the zeroes of ρ(z). For set (3) this means Im z = µ. Next

we split the integration into two contributions coming from the two inequivalent paths

connecting the zeroes, one living in G+ and the other in G−, and define

Z± ≡
∫
x∈G±

dx ρ(x+ iµ), (3.29)

and similarly

〈O〉± ≡
1

Z±

∫
x∈G±

dxO(x+ iµ)ρ(x+ iµ). (3.30)

The exact results, restricted to G±, are shown in table 2 in the columns labeled exact[G±].

The agreement between the restricted Langevin and exact results is convincing. This

should not be surprising, since the formal proof of correctness provided earlier is directly

applicable to the model restricted to G+ or G−.

Since the exact values for the full model can be obtained as

〈O〉exact =
Z+〈O〉+ + Z−〈O〉−

Z+ + Z−
, (3.31)

a way to obtain the correct results would be to combine the restricted simulation results

with the weights

w± ≡
Z±

Z+ + Z−
. (3.32)

Note that since Z−/Z+ ' 0.0281� 1, the deviation between full results and those restricted

to G+ is on the order of a few percent as well, as illustrated in table 2. The problem with

this prescription is of course that in realistic models the weights are not known. However,

below we will see that typically w− is tiny and can be approximated by zero; here it is

nonnegligible because we chose the rather extreme value κ = 2.

In the case of np = 4, the process never crosses into G−, which indicates a lack of

ergodicity, similar to what was found in section 3.1.2. The process simulates a version of

the original integral restricted to a path running between the zeroes, which is not quite

equal to the full integral. This causes a tiny systematic error which is, however, not visible

in the data since it is highly suppressed; for np = 4, Z−/Z+ ' 0.00302� 1.
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4 Lessons from simple models

The following lessons can be learned from the simple one-variable models.

Lesson 1 It has been suggested [34, 35] that the winding of the Langevin paths around

the pole is the source of the problem, because the pole corresponds to a logarithmic branch

point in the action. However, in the one-pole model of section 3.1 we have demonstrated

explicitly that no such winding occurs, since the pole lies either on the edge or outside the

distribution. Nevertheless wrong results can be encountered. Further indication that it is

not the winding which matters has been given in ref. [37], see also section 6 for the case of

full QCD.

Lesson 2 It has been said (see for instance ref. [37]) that it is sufficient for correctness

if the distribution P is ‘practically zero’ at the pole. Using again evidence from the one-

pole model, we note that this is not correct in general: for small β = 1.6 wrong results

are obtained, but P (x, y) vanishes at the pole. On the other hand, we have shown (and

demonstrated numerically for β = 4.8) that it is sufficient for P to be nonzero only in a

simply connected region whose closure does not contain the pole(s). The intermediate case

β = 3.2 seems to have at least a distribution P vanishing at very high (maybe infinite)

order at the pole, also leading to good results. All this can be understood in the light of the

fact discussed in section 2: the observables evolving according to eq. (2.8) typically develop

an essential singularity at the location of the pole of the drift.

Lesson 3 A strong attractive fixed point sufficiently far from any poles of the drift leads

to correct results. This almost obvious fact has been observed already earlier, e.g. in QCD

with static quarks [15].

Lesson 4 The existence of a ‘bottleneck’ between two regions G+ and G−, such as in the

U(1) one-link model of section 3.2, is a signal for potential trouble. The best variable to

analyse this is the determinant D (not raised to any power), because it can also be used in

more complicated lattice models, as we will see below.

Lesson 5 It is possible that the relative weight of one of the two regions is suppressed, i.e.

w− � w+. Then a modification of the process which includes only trajectories with Re

detD > 0, i.e. those contained in G+, or using long runs such that the weight of runs in

G− is naturally suppressed, seems to produce reasonably good results. On closer inspection,

however, it only gives approximate results, since only one part of the original complex

integral is represented, namely the part contained in G+. However, if indeed w− � w+,

this may give a numerically accurate approximation to the complete problem.

Lesson 6 The effect of increasing the strength of the pole by increasing np is twofold: on

the one hand the ‘pull’ in the imaginary directions towards the pole is increased, which is

bad; on the other hand the ‘push’ in the real directions away from the pole is strengthened,

which is good.
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In the one-pole model, with the pole on the imaginary axis, the first effect dominates:

hence increasing np makes the situation worse. We have checked that for np = 2, to obtain

correct results, a larger value of β is needed than for np = 1.

For parameter set (3) in the U(1) model the second effect dominates: increasing np
makes the bottleneck between the two regions G+ and G− narrower and inhibits transitions

between the two regions; furthermore it reduces the relative weight of G−. For np = 1 this

bottleneck does not prevent the process from moving between the two regions; for np = 2,

transitions are already rarer and it seems that each of the regions around the two attractive

fixed points supports an invariant measure by itself; for np = 4 no transitions are observed

even for extremely long runs. It should be noted that in lattice QCD with nf flavours of

Wilson fermions the degrees of freedom make np at least 2nf .

Lesson 7 The interplay between an observable and the distribution determines how close

the expectation value of the former is to the correct one: if the observable is naturally

suppressed/enhanced near the pole, it is possible to obtain, within the numerical error,

correct/manifestly incorrect results. This explains why one can encounter both apparently

correctly and manifestly incorrectly determined expectation values in a single analysis.

We will now take these lessons and see how they apply to more realistic models.

5 Effective SU(3) one-link model

In the following section we investigate the role of the zeroes and the ensuing lessons in a

system with more degrees of freedom, which is however still exactly solvable, namely an

effective SU(3) one-link model. Versions of this model have been considered before, see e.g.

refs. [10, 14]. Here, the form of the model and the choice of parameters is motivated by

QCD with heavy quarks (HDQCD), to be discussed in section 6.

The starting point is QCD with Nf flavours of Wilson fermions. At leading order in

the hopping expansion, the fermion determinant can be expressed as a product of factors

involving Polyakov loops at each spatial site, see section 6 below,

detM =
∏
x

det (1 + CPx)2Nf det
(

1 + C̃P−1
x

)2Nf
, (5.1)

where the remaining determinant is in colour space only4 and P(−1)
x are the (inverse)

Polyakov loops,

Px =

Nτ−1∏
τ=0

U(x,τ),4 P−1
x =

0∏
τ=Nτ−1

U−1
(x,τ),4, (5.2)

with Nτ the number of time slices in the temporal direction. The parameters C, C̃ arise

from the hopping expansion and read

C = (2κeµ)Nt , C̃ =
(
2κe−µ

)Nt . (5.3)

4Note that these expressions are valid for SU(Nc) and SL(Nc,C).
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Employing the temporal gauge we can see that the product of local factors is equivalent

to having only one temporal link in each factor. Using standard relations, again valid for

both SU(Nc) and SL(Nc,C), the remaining determinants can be expressed in terms of the

traced Polyakov loops,

Px =
1

Nc
trPx, P ′x =

1

Nc
trP−1

x . (5.4)

Explicitly, for Nc = 2 this gives

det (1 + CPx) = 1 + 2CPx + C2, det
(

1 + C̃P−1
x

)
= 1 + 2C̃P ′x + C̃2, (5.5)

and for Nc = 3,

det (1 + CPx) = 1 + 3CPx + 3C2P ′x + C3, (5.6)

det
(

1 + C̃P−1
x

)
= 1 + 3C̃P ′x + 3C̃2Px + C̃3. (5.7)

For larger Nc the relations become more complicated but the determinant always includes

a CNc term which dominates at large µ (making the sign problem increasingly harmless

toward the saturation regime). Notice that for SU(Nc), |Px|, |P ′x| ≤ 1. In the following we

concentrate on the Nc = 3 case.

5.1 Effective one-link model for HDQCD

To define an effective model for HDQCD in four dimensions we consider the resulting

fermion determinant on a single spatial lattice site, such that P = trU/3 and P ′ = trU−1/3

are the only degrees of freedom. Here U is the remaining temporal link in the temporal

gauge. To approximate the Yang-Mills integration of the lattice model we consider the

temporal link U surrounded by its neighbours, see figure 15, and replace the contributions

from the staples connected to U by a single matrix A, such that

SYM(U) = −β
6

(
trAU + trA−1U−1

)
. (5.8)

For an ordered lattice A = A−1 = 61I, while for a disordered lattice A ∈ GL(3,C) in general.

There are various ways to proceed [14]. Here we diagonalise U , with eigenvalues eiwk

(
∑

k wk = 0, k = 1, 2, 3). The group integral then includes the reduced Haar measure

H = sin2 w2 − w3

2
sin2 w3 − w1

2
sin2 w1 − w2

2
. (5.9)

The complete one-link action to consider now takes the form

S = −β
∑
k

(
eαk+iwk + e−αk−iwk

)
− ln detM − lnH, (5.10)

where the diagonal elements of A are represented by the αk’s (where we took out a factor

of 6). The Langevin drift is determined by K = −∇S and complex Langevin dynamics

can be implemented for all three wk’s or after eliminating the constraint
∑

k wk = 0 [14].

Zeroes in the Haar measure also lead to poles in the drift, but these generally do not lead
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Figure 15. Effective one-link model for the Polyakov line in temporal gauge in the field of its

neighbours.

to problems and, in fact, stabilise the dynamics. This has been discussed in ref. [14]. More

details concerning the distribution of zeroes of detM are given in appendix C.

As observables we consider

On = tr (Un) =
∑
k

einwk . (5.11)

Exact results are obtained by numerically integrating over the angles wk. When the action

is real, 〈O−n〉 = 〈On〉.
In order to determine reasonable parameter values, relevant for HDQCD, we write the

fermion determinant as

detM = D2Nf D̃2Nf , (5.12)

where

D = 1 + 3CP + 3C2P ′ + C3 =
(
1 + C3

) (
1 + aP + bP ′

)
, (5.13)

D̃ = 1 + 3C̃P ′ + 3C̃2P =
(

1 + C̃3
)(

1 + ãP ′ + b̃P
)
, (5.14)

with

a =
3C

1 + C3
, b = Ca, ã =

3C̃

1 + C̃3
, b̃ = C̃ã. (5.15)

Notice that a, b have maxima at C = 2−1/3 and 21/3, respectively, with the same value 22/3

independently on C. While the behaviour of the model does not depend on how C, C̃ are

parametrised, the interpretation in terms of physical lattice parameters does.

From eq. (5.3) it follows that the interesting values of µ are around

µ0
c = − ln(2κ), (5.16)

the critical chemical potential for onset at zero temperature, i.e. the chemical potential at

which the density changes from zero to nonzero [19]. This is illustrated in figure 16 (left),

where the µ dependence of a and b is shown for given Nτ and κ. With increasing κ, µ0
c

decreases and the peaks shift to the left, while with increasing Nτ the peaks become nar-

rower. We also note that the (anti-quark) contribution D̃ becomes increasingly irrelevant
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Figure 16. Left: coefficients a, b vs µ for Nτ = 8, κ = 0.12. Right: observables 〈O±1〉, 〈O±2〉 vs

β at Nτ = 8, κ = 0.12, µ = 0.

as Nτ increases, as C̃ becomes exponentially small. Hence we will usually neglect D̃. In

the following we use Nτ = 8, unless stated otherwise, and Nf = 1. Since in the one-link

model there is no transition as β is varied at µ = 0, see figure 16 (right), we choose to work

at β = 0.25, but we have also studied larger β values. We considered two κ values

κ = 0.120, µ0
c = 1.427, and κ = 0.145, µ0

c = 1.238, (5.17)

where µ0
c is the corresponding critical µ value (5.16), corresponding to C = 1. The sign

problem is (nearly) absent exactly at onset, where C = 1, a = b = 3/2, and D in eq. (5.13)

is real (D̃ is exponentially close to 1). This will explain some of the results below and has

been noted before [53, 54]. The behaviour for the two κ values is rather similar therefore

we shall only show the results for κ = 0.120.

Finally, to study the effect of the neighbouring links, represented by A, we consider

two cases:

1. ordered lattice: αk = 0;

2. (strongly) disordered lattice: {αk} = (0.2 + 1.5i,−0.2 + 3.1i, 0.2− 0.7i).

5.2 Ordered lattice

We first consider the ordered lattice (αk = 0). Figure 17 contains results for the observables

〈O±n〉 (n = 1, 2, 3), averaged over 100 trajectories, using random starting points. The runs

are relatively short: the total Langevin time is around 130, with 20% thermalisation. Note

that 〈O+n〉 and 〈O−n〉 are typically rather close together. We see very good agreement,

except around µ ' µ0
c = 1.425. The same behaviour is found at the larger κ = 0.145. We

hence focus on three µ values: µ =1.375 (below onset, CL fine), 1.425 (close to onset, CL

problematic), 1.475 (above onset, CL fine).

In figure 18 we show results for each of those µ values, using 50 independent, relatively

short, trajectories. The figures on the left show the observables against trajectory index.

When CL is fine, all trajectories fluctuate around the exact result. However, when CL

is problematic (middle figure), the trajectories appear to split in two groups, indicated
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Figure 17. Observables 〈O±n〉 (n = 1, 2, 3) vs µ for β = 0.25, Nτ = 8 and κ = 0.12 for the

ordered lattice, short runs. Exact results are given by the lines. The figure on the right shows a

blow-up around µ0
c = 1.425.

by the red and blue symbols. We identify those using the minimal absolute value of the

determinant on the trajectory,

dmin = min
trajectory

| detM |. (5.18)

Trajectories with dmin > dc ' 10−5 − 10−8 always appear to lead to correct results, while

the trajectories having dmin < dc lead to a wrong result (for definiteness we take dc = 10−6

in the following).

To investigate these two types of trajectories further, we show in figure 18 (right)

the corresponding scatter plots for the determinant. When CL works well, the points

from all trajectories appear similarly distributed, even when dmin gets very small. At the

middle µ value of µ = 1.425 a different picture appears: the trajectories of the first group

(dmin > dc) give a similar picture as at the lower and higher µ values (the “red fish”),

while the second group (dmin < dc) yields a very peculiar structure (the “blue whiskers”).

The appearance of two essentially disjoint contributions in the determinant is very similar

to what was observed in the U(1) one-link model. A red/blue code for identifying the

disjoint (“regular”/“deviant”) contributions is used in figures 18, 19, 22, and explained in

the captions.

In the scatter plot we showed results for the determinant detM = (DD̃)2 which enters

in the determination of the drift. More information, however, is provided by the unsquared

factors DD̃ ' D. In figure 19 (bottom left) we show the scatter plot of the unsquared

factors DD̃ ' D at µ = 1.425. The “blue whiskers” have ReD < 0 and come from

trajectories which approach the pole (zero of the determinant) with dmin < dc. As in the

simple models, a bottleneck separates them from the region with ReD > 0. Moreover,

the contributions have a very small weight. Depending on the starting configuration,

trajectories may run for a while in the region with negative Re D, before switching to

the positive side. The contributions from the “whiskers” therefore practically fades out

after enough thermalization: already after t ' 1000 all configurations appear in the region

ReD > 0, see figure 19 (top). Some of the results are summarised in table 3.
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Figure 18. Results at β = 0.25, κ = 0.12 and µ = 1.375 (top), µ = 1.425 (middle), µ = 1.475 (bot-

tom), using short runs, with Langevin time t . 130. Left: correlation between dmin = min | detM |
(upper data points) and trajectory averages of observables 〈On〉 for 50 trajectories (numbers are

shifted for clarity). Right: scatter plots for detM . The contributions from trajectories with

dmin > 10−6 (dmin < 10−6) are shown in red (blue). See text for further details.
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Figure 19. Top: histories of 10 long trajectories at µ = 1.425 for the ordered case, ReD

vs Langevin time, no thermalization. Trajectories depicted in blue started in the ReD < 0 “blue

whiskers” region (they typically soon switch to the ReD > 0 “red fish” region). Bottom left: scatter

plot for the unsquared determinant DD̃ ' D using 50 long trajectories with Langevin time 5600.

Blue points in the “red fish” region come from trajectories which started in the “blue whiskers” and

switched to the former (diluted in the figure). Right: scatter plot of the observable O1. Here red

(blue) points correspond to configurations with ReD > 0 (ReD < 0). Other parameters as above.

Similar as in section 3.2.2, we defined here partition functions and weights restricted

to subsectors, namely

Z± =

∫
DU θ(±Re detM)ρ(U), w± =

Z±
Z+ + Z−

, (5.19)

where ρ(U) is the original complex distribution. Table 3 also contains an estimate of how

much time is spent in the region with ReD < 0, which is denoted with p−. It should be

noted that p− depends on the details of transient behaviour and crossings, and is hence

not immediately related to w± = Z±/Z.

The exact relative weight of the region ReD < 0 is easily found and is O
(
10−4

)
. We

find that the process, once arrived in the positive region, only rarely visits the negative

region and typically only very briefly. Hence random starts with ReD < 0 give that region

an artificially large weight and a considerate choice of the start configuration will reduce

the necessity of long thermalisation times. These findings suggest it might be useful to

discard trajectories with dmin < dc and thus sample the ReD > 0 region only, to ensure
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1.375 〈trU〉 〈trU−1〉 〈trU2〉 〈trU−2〉 t(103) w− (p−)

CL 0.972 1.064 −0.729 −0.537 .1+.6

CLD 0.972 1.065 −0.729 −0.537 .1+.6

CL+ 0.972 1.064 −0.730 −0.538 1.+5.6

CL 0.970 1.063 −0.730 −0.538 2.+22. 6.× 10−4

CLD 0.970 1.063 −0.730 −0.538 2.+22.

CL+ 0.972 1.063 −0.731 −0.538 2.+22.

exact 0.972 1.065 −0.730 −0.537

ex.+ 0.972 1.065 −0.730 −0.537

ex.− −1.906 −0.575 0.038 −0.724 −1.09× 10−4

ex.pq 1.003 1.003 −0.628 −0.628

1.425 〈trU〉 〈trU−1〉 〈trU2〉 〈trU−2〉 t(103) w− (p−)

CL 0.885 0.892 −0.597 −0.595 .6+2.8

CLD 1.069 1.073 −0.648 −0.640 .6+2.8

CL+ 1.069 1.072 −0.649 −0.640 1.+5.6

CL 1.062 1.066 −0.647 −0.639 2.+22. 3.× 10−3

CLD 1.069 1.073 −0.649 −0.640 2.+22.

CL+ 1.069 1.073 −0.649 −0.640 2.+22.

CL− −1.139 −1.117 −0.106 −0.181 2.+22.

exact 1.069 1.073 −0.649 −0.640

ex.+ 1.069 1.073 −0.645 −0.640

ex.− −0.798 −1.606 −0.211 0.070 0.75× 10−4

ex.pq 1.071 1.071 −0.644 −0.644

Table 3. Simulation results at β = 0.25, κ = 0.12, Nτ = 8 and µ = 1.375, 1.425, in the ordered

case, from all trajectories (CL), from trajectories with dmin > dc (CLD), from all trajectories after

dropping the points with ReD < 0 (CL+), using 100 or 50 trajectories with varying length of

Langevin time t = ttherm.+ tmeas.. Errors are not indicated but are at the permille level. Imaginary

parts are zero within the error. Also indicated are exact results: full, restricted to ReD ≷ 0, and

phase quenched (pq). w− is the relative weight of the ReD < 0 region in the partition function,

for the simulation p− is given instead, estimated via the proportion of ReD < 0 points.

nearly correct convergence. We find that the value of dc does not need tuning, in the above

case any value between 10−5 − 10−8 is acceptable, see figure 20 (left). Alternatively one

can keep all trajectories but drop contributions from configurations with ReD < 0, as not

to lose statistics. This is demonstrated in figure 20 (right). Keeping only trajectories with

dmin > dc leads to the similar results.

As already suggested by figure 18 the signal for deviant contributions also shows up in

observables, as can be seen in figure 19 (right). In this long run and rather representative

case only three trajectories out of fifty contain configurations with ReD < 0, which lead to

outlying contributions in the observables. These few contributions falsify the averages by

nearly 1%, while the average over the other trajectories reproduces the exact result within
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Figure 20. Left: dependence of observables on the cutoff log(dc) at µ = 1.425. Right: observ-

ables vs µ from all trajectories after dropping configurations with ReD < 0, cf. figure 17 (right).

Parameters as in figure 17.

the error (. 0.1 %). The irregular signal is clear in the scatter plot of the observables,

which also suggests that they are related to certain initial configurations, such that their

weight will diminish in long runs.

The above effects become evident by plotting the correlation between the determinant

and various other quantities. In figure 21 we show the histograms of the probability distri-

butions of ReD and of one selected observable, O2 = trU2 (top). The scatter plots (middle,

bottom) show a clear correlation between ReD and the unitarity norm tr(U †U − 11), the

drift, and O2.

5.3 Disordered lattice

Next we consider a disordered lattice, i.e. we take into account the nontrivial effect of the

neighbours when the lattice theory is reduced to a one-link model, see eq. (5.10). We take

αk 6= 0 and choose the values given at the end of section 5.1. Figure 22 demonstrates the

behaviour of the unsquared determinant and for O1, see also table 4, which is very similar

as for the ordered case. We find that trajectories starting with ReD < 0 (“blue whiskers”)

need much more time to switch to the region with ReD > 0 (“red fish”). Nevertheless the

weight of the former is only about 0.001−0.05, and discarding the contribution with ReD <

0 decisively improves the results. The results, however, deteriorate with increasing lattice

disorder, which may indicate the effect of large excursions in the noncompact directions,

for which the adaptive stepsize and gauge cooling become essential. Since this was studied

in previous papers, we do not analyse this problem any further here.

5.4 Expansion

Finally we study the possibility to ameliorate the dynamics using an expansion of the

determinant, which is also discussed in appendix D for the simple models. We restrict

ourselves here to the ordered case. The fermionic part of the drift is of the form

K = D−1∂D + D̃−1∂D̃. (5.20)
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Figure 21. Top: histograms of ReD (left) and O2 = trU2 (right). Middle: correlation between

ReD and the unitarity norm tr(U †U−11) (left), and between ReD and the norm of the instantaneous

drift force. Bottom: correlation between ReD and O2 for Nt = 8 (left) and 16 (right). Parameters

as above, with µ = 1.425.

Neglecting the factor 1 + C3, which cancels in the drift, we write

D = 1 +X, X = aP + bP ′, (5.21)

and similar for D̃. The pole is at X = −1. We then write a Taylor expansion centred at

the shifted point λ, such that

1

D
=

1

λ+ 1

∞∑
n=0

(
λ−X
λ+ 1

)n
, (5.22)
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Figure 22. As in figure 19 for the strongly disordered lattice

1.375 〈trU〉 〈trU−1〉 〈trU2〉 〈trU−2〉
CL 0.666−0.005i 0.829+0.021i −0.779−0.037i −0.490+0.032i

CLD 0.653−0.025i 0.817+0.050i −0.774−0.105i −0.489+0.098i

CL+ 0.670−0.005i 0.832+0.021i −0.780−0.002i −0.490+0.031i

exact 0.660+0.011i 0.823+0.014i −0.774−0.010i −0.488−0.004i

ex.+ 0.659+0.011i 0.823+0.014i −0.774−0.010i −0.489−0.004i

ex.− −2.170+0.294i −0.309+0.298i 0.184+0.159i −0.848−0.140i

ex.pq 0.704+0.007i 0.717+0.015i −0.625−0.011i −0.605−0.020i

1.425 〈trU〉 〈trU−1〉 〈trU2〉 〈trU−2〉
CL 0.727−0.039i 0.748+0.044i −0.666−0.020i −0.626+0.019i

CLD 0.805−0.010i 0.825+0.016i −0.693−0.034i −0.650+0.071i

CL+ 0.808−0.020i 0.827+0.024i −0.692−0.060i −0.653+0.059i

CL− −2.5 +1.1i −2.5−1.1i 0.4 +1.2i 0.2−1.8i

exact 0.794+0.007i 0.809+0.012i −0.684−0.007i −0.654−0.001i

ex.+ 0.795+0.007i 0.810+0.012i −0.684−0.007i −0.654+0.001i

ex.− −1.021−0.219i −1.385+0.219i −0.111+0.097i −0.026−0.101i

ex.pq 0.797+0.007i 0.806+0.012i −0.678−0.007i −0.660+0.001i

Table 4. As in the previous table, for the disordered case. The Langevin time is t ' (1.+5.6)×103.

For µ = 1.375, w−/w = (−2.9 + 0.3i)× 10−4 and for µ = 1.425, w−/w = (2.2− 0.07i)× 10−4.
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Figure 23. Complex X plane, with the pole at X = −1. The expansion around X = λ has a

larger radius of convergence than around X = 0.
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Figure 24. Left: observables vs expansion order N using λ = (a + b). Right: observables vs µ

for λ = (a + b) at fixed N = 16. Parameters are β = 0.25, κ = 0.12, µ = 1.425, Nτ = 8, for the

ordered lattice, using short runs with Langevin time t ∼ 40.

and again similar for D̃, with parameter λ̃. Notice that the λ used here differs by one

unit from D0 used in appendix D. Since the pole is at X = −1, the expansion around

X = λ with conveniently chosen λ has an increased radius of convergence compared to the

expansion centred at X = 0, see figure 23.

The “regularisation parameters” λ, λ̃ can be chosen conveniently, and can also be

adapted during the simulation (dynamical analytic continuation, see appendix D). We

note here that this procedure can also be used for inverting matrices 11+ X, where a simple

choice for the regularisation term is λ11. In lattice QCD, this can e.g. be applied to the

fermion matrix. Notice that this shift is an exact procedure and does not represent an

approximation for which a subsequent extrapolation is needed. In practice the expansions

are of course truncated and their effectiveness depends on the radius of convergence, which

is however improved by the λ-shift.

In figure 24 results for this procedure are shown. We have tested λ real, imaginary and

0 (no regularisation). For the latter, the expansion shows runaways and does not converge.

With imaginary λ = i(a + b), the convergence was found to be not very good. On the

other hand, for real λ = a+ b the convergence and results are excellent. In figure 24 (left)

convergence of the expansion is shown at µ = 1.425, i.e. the µ value where the “whiskers”

affect the result. The expansion is truncated, n ≤ N , and the dependence on N is shown.
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Excellent convergence is observed. In figure 24 (right), observables are shown as a function

of µ, using a fixed N = 16 , leading to good agreement with the exact results (cf. figure 17).

We find therefore that meaningfully regularised expansions converge to the correct

results, even at µ values for which the standard procedure does not work. This can be

understood in the following way: choosing the shift such that the expansion point lies in

the “fish” region of the scatter plots, e.g. by choosing λ = a + b, the trajectories explore

this region and never enter the “blue whiskers” region, due to the bottleneck. Hence it has

the same effect as avoiding the ReD < 0 region altogether. A dynamical expansion which

adapts λ when approaching the edge of the domain of convergence is easy to implement

as well and will cover the full analyticity domain. In this case, however, it will also collect

data from the “blue whiskers”, leading to the same wrong results as when all trajectories

are used.

5.5 Discussion and tentative conclusions

As long as the parameters a, b, ã, b̃ are below 1, the Langevin process is found always to

converge to the correct results, within the error. Significant discrepancies appear for C ' 1

where a, b ' 1.5.

Although the measure is detM = (DD̃)2Nf ' D2Nf , the relevant factor for the analysis

is DD̃ ' D. The sign of ReD appears to identify two separate regions with two different

contributions to expectation values. This conspicuous situation appears close to onset.

The determinant also becomes squeezed in the imaginary direction. These regions show up

in the scatter plots as “red fish” (ReD > 0) and “blue whiskers” (ReD < 0), the former

producing good expectation values for the observable but the latter leading to strongly

deviant contributions. This outlying behaviour is also visible in the scatter plots of the

observables directly sensitive to the pole or the fermionic degrees of freedom, which may

provide a practical test in realistic lattice simulations at no cost, as the gauge invariant

observables are calculated anyway. The clear correlation between the ReD < 0 region and

the outlying contributions to various quantities is shown in figure 21, which also illustrates

the small weight of these regions.

At least in the examples analysed here the two regions appear separated by a bottleneck

which can only be crossed by trajectories approaching |D| = 0 below a certain threshold.

The approach to the pole can therefore signal the possible sampling of “deviant” contribu-

tions from the ReD < 0 region. The latter has a significantly smaller weight, which may

only appear as a quasi-transient whose contribution for very long Langevin trajectories

is extremely small. This suggests that discarding the contributions from the region with

ReD < 0 will automatically lead to good results. Long enough thermalisation times, or

adequate starting points in the ReD > 0 region can help by inhibiting the development

of these regions. The expansion, on the other hand, seems to do just that if we set the

expansion centre in the region of ReD > 0, leading to good results via this approach. We

note that the appearance of the bottleneck, separating the complex configuration space

into two regions, with w− � w+, is consistent with the findings in the U(1) model.

Larger β and/or larger Nτ show a picture consistent with the above one, supporting

these conclusions, see figure 25. Larger Nτ seems to increase the transient character of the
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Figure 25. Observables vs µ using all trajectories (CL) and trajectories with dmin > dc (CLD)

for β = 0.75, κ = 0.12, Nτ = 8 (left) and 16 (right). The Langevin time is t ∼ 2500.

“blue whiskers” region; for Nτ = 16 only one out of 50 trajectories enters this region and

it yields only a very small contribution.

We conclude that the development of ReD < 0 regions signals failure in the simulation:

although the weight of these regions is small, their contributions deviate strongly from the

ones with ReD > 0 and hence they may affect the results by many standard deviations.

Dropping, one way or the other, those contributions leads to results agreeing with the exact

ones, at the level of the statistical errors (at the permille level in these runs). The fact that

the process fails to account correctly for the region with ReD < 0 at certain parameter

values suggests, however, that we should attribute a possible systematic error proportional

with the weight of this region, which is O
(
10−2 − 10−4

)
in the examples studied here.

We may try to quantify the relevance of the region ReD < 0 by calculating the loga-

rithm of its relative weight, ∆Feff = − ln(w−/w+), using the exact integral expressions. As

can be seen in figure 26 (left), ∆Feff appears bounded from below, and even increasing with

Nτ for some µ values far from µ0
c . The bound is about 10% lower on the disordered lattice

but shows similar behaviour. With increasing number of fermion species, the difference in

free energy scales approximately with the number of flavours, ∆Feff(Nf ) ' Nf∆Feff(1),

see figure 26 (right). Since in HDQCD the lattice determinant is a product of factors of

the form D2 over the spatial lattice, we may ask how the spatial volume would manifest

itself in ∆F . Fully correlated Polyakov loops would then behave as if in the presence of

many flavours, but the general case is not trivial and will be discussed in the next section.

Extrapolating the lesson from this discussion to realistic QCD lattice calculations, we

conclude that one has to monitor the appearance of disconnected regions with a bottleneck

at |D| ' 0. This can be done by monitoring various quantities such as some selected

observables, the drift or the lowest determinant modes avoiding time consuming procedures.

Dropping by hand the occasional contributions of regions of type “blue whiskers” (ReD <

0) should already produce good results, while an estimate of the relative impact of such

contributions would suggest a measure for possible systematic errors.
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Figure 26. Left: difference ∆Feff between the free energy associated with the ReD < 0 region

and the full one vs Nτ . Right: ∆Feff(Nf ) vs Nf for Nf flavours (double logarithmic scale). The

straight line suggests a scaling ∆Feff(Nf ) = ∆Feff(1)Np
f with p ' 0.95. Parameters are β = 0.25,

κ = 0.12, ordered lattice, various µ.

6 Lattice QCD

In the following section we aim to apply the lessons found above to the case of QCD at

nonzero quark density, first in the case of heavy quarks (HDQCD) and then for full QCD,

using the staggered fermion formulation.

In QCD the partition function is, after integrating out the quarks fields, written as

Z =

∫
DU e−SYM detM ≡

∫
DU e−S , S = SYM − ln detM, (6.1)

where SYM is the Yang-Mills action, U are the gauge links, and M is the fermion matrix.

The Langevin update for the gauge links U reads [55], in a first-order discretised scheme,

with Langevin time t = nε,

Ux,ν(t+ ε) = exp
[
iλa
(
εKa

x,ν +
√
εηax,ν

)]
Ux,ν(t), (6.2)

where λa are the Gell-Mann matrices, normalised as Trλaλb = 2δab, and the sum over

a = 1, . . . , 8, is not written explicitly. More details can be found in refs. [10, 15, 16]. The

drift is generated by the action S and reads

Ka
x,ν = −Da

x,νS = −Da
x,νSYM + Tr

[
M−1Da

x,νM
]
. (6.3)

Hence the zeroes of the determinant show up as poles in the drift.

6.1 Heavy dense QCD

To assess the importance of these poles, we need to specify the fermion matrix. We consider

first heavy dense QCD. This approximation to full QCD can be obtained by a systematic

hopping-parameter expansion of the fermion determinant, preserving terms that cannot

be ignored for large chemical potential, as well as the terms related by symmetry under

µ→ −µ. For Wilson quarks, this amounts to an expansion in terms of κ, keeping κeµ fixed
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and preserving terms that go as κe−µ. A detailed discussion can be found in refs. [18, 56, 57],

see also refs. [58, 59] for combined hopping and strong-coupling expansions.

Here we consider the resulting theory at leading order, using Nf degenerate quark

flavours, for which the fermion determinant reads [10] (see also section 5)

detM =
∏
x

det
(

1 + heµ/TPx
)2Nf

det
(

1 + he−µ/TP−1
x

)2Nf
. (6.4)

The remaining determinant is in colour space only. The parameter h = (2κ)Nτ arises from

the hopping expansion (Nτ the number of time slices in the temporal direction) and P(−1)
x

are the (inverse) Polyakov loops, see eq. (5.1). Note that the gluon dynamics is included

in eq. (6.3) via the usual Wilson Yang-Mills lattice action, with gauge coupling β.

In order to study the zeroes of the determinant, we identify the basic building block of

determinant, defined such that the full determinant in the path integral weight is written as

detM =
∏
x

[
det M̃x

]2Nf
. (6.5)

Here the local determinants are

det M̃x = det
(

1 + heµ/TPx
)

det
(

1 + he−µ/TP−1
x

)
=
(
1 + 3zPx + 3z2P−1

x + z3
) (

1 + 3z̄P−1
x + 3z̄2Px + z̄3

)
, (6.6)

where z = heµ/T , z̄ = he−µ/T and

Px =
1

3
TrPx, P−1

x =
1

3
TrP−1

x . (6.7)

We study the zeroes of the local determinants rather than the full determinant, since this

is what is closest to the analysis carried out above and will allow us to focus on individual

factors getting small.

HDQCD has been used extensively to justify the results obtained with CL, e.g. via

reweighting [15, 19, 30]. Since reweighting and CL have very different systematic uncer-

tainties, the agreement of the results obtained by both methods is a strong argument for

the correctness of either approach. In particular, since reweighting does not suffer from

potential problems caused by zeroes of the determinant, agreement indicates that the latter

do not cause problems for CL.

We note here that HDQCD has also been used to test and compare variations of the

hopping parameter expansion to higher order [18], in particular with regard to the standard

hopping expansion, obtained via [60]

detM ≡ det(1− κQ) = exp
∞∑
n=1

−κ
n

n
TrQn, (6.8)

for which zeroes of the determinant do not appear. An expansion in spatial hopping terms

only, for which HDQCD is the leading-order term, has been discussed and assessed in

ref. [18].
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Figure 27. Left: fermionic density in units of the saturation density, n/nsat, and average phase

factor, see eq. (6.13), as a function of the chemical potential. Right: a blow-up around onset.

Parameters as in eq. (6.9) on a 84 lattice.

We now discuss some results in HDQCD, focussing on potential zeroes of the determi-

nant. We mostly use the following choice of parameters

β = 6, κ = 0.12, Nf = 1, N3
s = 83, Nτ = 8, 16. (6.9)

Note that the lattice spacing (or gauge coupling β) and the spatial volume (N3
s ) are fixed,

but we consider two temperatures (Nτ = 8, 16). In this theory, the quark number at zero

temperature changes from 0 below onset to saturation above onset, with nsat = Nspin ×
Ncolour ×Nf = 6Nf , and the critical chemical potential is given by

µ0
c = − ln(2κ) = 1.427. (6.10)

At nonzero temperature, this transition is smoothed and the critical chemical potential

µc(T ) < µ0
c , eventually connecting to the thermal confinement-deconfinement transition

line at higher temperature and lower chemical potential. A study of the phase diagram at

fixed lattice spacing can be found in ref. [19]. In figure 27 we show the density, in units of

saturation density, for the parameters in eq. (6.9) on the 84 lattice. The rapid rise around

µ = µ0
c is indeed observed.

Writing the determinant as a product of its absolute value and phase,

detM = | detM |eiϕ, (6.11)

and using the symmetry

[detM(µ)]∗ = detM(−µ∗), (6.12)

we can extract the average phase factor in the full (i.e. not in the phase-quenched) theory

via a computation of [10]

〈e2iϕ〉 =

〈
detM(µ)

detM(−µ)

〉
, (6.13)

which is accessible using CL dynamics. The result is shown in figure 27 as well. The sign

problem is severe in the onset region. At the critical chemical potential, the fermions are
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Figure 28. Histogram of the absolute value (top) and the phase angle (bottom) of the local

determinant det M̃x for several chemical potentials, on a 84 (left) and a 83 × 16 (right) lattice.

at ‘half-filling’, i.e. half of the available fermionic states are filled, and the theory becomes

particle-hole symmetric [54]. Exactly at µc, the sign problem becomes very mild, as the

first dominating factor in eq. (6.6) becomes real (z = 1). The sign problem due to the

second factor is very small, since z̄ = (2κ)2Nτ � 1.

To investigate the zeroes of the measure in HDQCD, we have analysed det M̃x, see

eq. (6.6). Note that the corresponding factor in the effective SU(3) model was discussed in

section 5. We find that the simulations largely avoid the zeroes of the determinant, except

in the vicinity of the critical chemical potential. This is illustrated in figure 28 (top), where

a histogram of the absolute value of the local determinant det M̃x is shown, on a double-

logarithmic scale for two lattice sizes. For small chemical potential, the absolute value of

the determinant is close to 1, as z, z̄ � 1. As µ is increased, the distribution widens and

its maximum shifts towards larger values. However, we also observe that the distribution

is nonzero for smaller values, with an apparent power decay towards zero. Based on these

simulations, we find the following behaviour

probability
(∣∣∣det M̃

∣∣∣) ∼ ∣∣∣det M̃
∣∣∣α , α ∼ 1.5− 1.6. (6.14)

Values close to zero are more likely when the chemical potential is close to the critical

value, but remain suppressed. This behaviour is seen for both lattice sizes, 84 and 83× 16,

with a broader distribution on the larger lattice.
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Figure 29. Probability density of the local determinant det M̃ on a logarithmic scale, for µ = 1.3

(left) and µ = 1.425 (right), on an 84 lattice with β = 6.0, κ = 0.12, Nf = 1. Note the different

vertical and horizontal scales.

Also shown in figure 28 are the distributions for the phase angle Φ, defined via

det M̃ =
∣∣∣det M̃

∣∣∣ eiΦ. (6.15)

Note that −π < Φ < π and that the distributions are symmetric around zero. Away from

the critical chemical potential, the distribution drop to zero rapidly; around µc we observe

a decay ∼ 1/Φ3. The relation between this phase and the phase of the full determinant ϕ

is not immediate. However, we note that in general it is expected that the latter will vary

rapidly, as the full determinant is a product of 2NfN
3
s local determinants.

To compare with the results presented in the previous sections, we show in figure 29 the

probability density of the local determinants on a logarithmic scale, for two values of the

chemical potential close to µ0
c = 1.427, namely µ = 1.3 (left) and 1.425 (right). Note the

very different horizontal and vertical scales. These distributions look remarkably similar

to those encountered in the simpler cases, although with only a very thin presence of the

‘whiskers’, if at all. We find that at the critical point the distribution is highly elongated

in the positive real direction, and that it shrinks again for µ > µc. Exactly at µc, the

distribution shrinks in the imaginary direction, leading to a much smaller typical phase of

the determinant, and thus a milder sign problem. This explains the milder sign problem

at µ = µc, as observed via 〈e2iϕ〉 in figure 27. There are some configurations where Re

det M̃ < 0, but these appear very infrequent and do not carry substantial weight.

However, at lower temperatures a clear sign of the whiskers appears, which indicates

the possibility of contamination from configurations with Re det M̃ < 0. This is illustrated

in figure 30, where we show results at a fixed lattice spacing, on a 84 and 164 lattice, such

that the temperature is twice as low on the 164 lattice. Close to µc, the weight of the

region with Re det M̃ < 0 is approx. 0.005% on the 84 lattice and 0.08% on a 164 lattice,
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Figure 30. As in figure 29, on a 84 (left) and 164 (right) lattice at β = 5.9, κ = 0.12, µ =

1.425, Nf = 1. Note the different scale.

indicating a growing importance as the temperature is lowered. At the lower temperature,

the “whiskers” are remarkably similar to those encountered in the SU(3) one-link model.

In figure 31 we aim to reduce the lattice spacing, while keeping the physical volume and

the temperature constant. Here we see that the power decay towards zero remains approxi-

mately the same and hence the role of configurations with a small absolute value of the local

determinant does not change when going (somewhat) closer to the continuum limit. We

also investigated whether changing Nf influences the appearance of the whiskers. While

using a larger Nf is beneficial, configurations with determinants in the whiskers do appear

at low temperatures. Finally we have studied the volume dependence of the weights w±,

signifying the importance of the regions G±, as suggested by the analysis of the one-link

models, but did not find a clear suppression of the region with ReD < 0.

We hence conclude that the zeroes of the determinant for HDQCD appear to have no

effect except close to the critical chemical potential. Since for those chemical potentials

the sign problem is quite mild, this observation is not related to the severeness of the sign

problem but to details of the CL process. Although the zeroes might influence the results

in this region, the relative weight of configurations with Re det M̃ < 0 is quite small and

their influence is therefore suppressed.

6.2 Full QCD

Finally, we consider full QCD, with dynamical fermions. We note that full QCD is nu-

merically much more costly than HDQCD, as the inversion of the fermion matrix has to

be carried out numerically for every update. Similarly, an assessment of the zeroes of the

determinant is harder, since it requires the computation of the full determinant. It should

be noted that the determinant itself is not required for the Langevin update, only M−1

evaluated on a fixed vector [16].
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Figure 31. As in figure 28, with a decreasing lattice spacing (β = 5.8, 6.0, 6.2), while keeping

the physical volume approximately constant (with lattice volume 84, 124, 164), using κ = 0.12, µ =

1.425, Nf = 1.

Here we show results obtained using staggered fermions, with the (unimproved) stag-

gered fermion matrix

Mxy = mδxy +
∑
ν

1

2
ηνx

[
eµδν4Uν,xδx+aνy − e−µδν4U−1

ν,y δx−aνy

]
, (6.16)

where ηνx are the staggered sign functions, η1x = 1, η2x = (−1)x1 , η3x = (−1)x1+x2 ,

η4x = (−1)x1+x2+x3 . Note that this formulation describes four tastes, due to the fermion

doubling.

There are several indications for full QCD that, at least at high temperatures and for

the quark masses considered, the CL simulations are unaffected by poles in the drift: these

include comparisons to systematic hopping-parameter expansions, which have holomor-

phic actions [18], comparisons to reweighting, which does not depend on the action being

holomorphic [61], and by observing spectral properties of the fermion matrix [7] (see also

below). At low temperature, it is at present not known whether poles affect the CL results,

partly because simulations are more expensive due to the larger values of Nτ required, or

are hindered by the ineffectiveness of gauge cooling on coarse lattices.

In order to study the phase of the determinant in full QCD we start from an initial

configuration on the SU(3) submanifold. After thermalisation we then follow the evolution

of the phase. The results are shown in figure 32, for a 83 × 4 and a 123 × 4 lattice. On the

smaller volume and for the smaller chemical potentials µ/T = 0.4 and 1.2, one observes

very mild time dependence with no winding of the phase around the origin. For the larger

chemical potentials µ/T = 2.0 and 3.2, however, we see frequent crossings of the negative

real axis. This signals that there is a sign problem in the theory which is hard to counter

with reweighting, as the average phase factor gets close to zero. As expected, this behaviour

gets worse as the volume is increased.

The corresponding histograms are shown in figure 33, for three different spatial vol-

umes, namely 83, 123, 163, with fixed Nτ = 4. As expected, the distribution is localised
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Figure 32. Typical Langevin evolution of the phase of the fermion determinant, on a 83 × 4 (top)

and 123 × 4 (bottom) lattice at β = 5.3, m = 0.05 and Nf = 4 staggered fermion flavours, for

µ/T = 0.4, 1.2 (left) and µ/T = 2, 3.2 (right).
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Figure 33. Histogram of the phase of the determinant for three spatial volumes for µ/T = 0.4

(left) and µ/T = 1.2 (right). Other parameters as in figure 32.
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Figure 34. Spectrum of the staggered fermion operator on a 83 × 4 lattice (top four panels) and

123×4 lattice (bottom four panels), for µ/T = 0.4, 1.2, 2.0, 3.2. The free spectrum is shown as well.

Other parameters as in figure 32.
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Figure 35. Histogram of the absolute value of eigenvalues for full QCD, gained averaging the

spectrum from 100 configurations.

on the smallest volume, but gets increasingly wider as the volume and/or the chemical

potential are increased.

To relate this behaviour to possible zeroes of the determinant, we have computed

the eigenvalue spectrum of the Dirac operator for typical configurations in the ensemble,

using the same setup as in figure 32. Figure 34 contains the spectra, while figure 35

contains histograms of the absolute values of the eigenvalues, obtained by averaging over

100 configurations. We note that in spite of the frequent circlings of the origin by the

fermionic determinant there are typically no eigenvalues close to zero, suggesting that the

probability density of configurations around the singularities of the drift is very small, as

in the simpler models discussed above. The change of the total phase is given by the sum

of the changes over all the eigenvalues, so in contrast to toy models the frequent crossing

of the negative real axis does not suggest that the poles are affecting the CL dynamics.

We note that the increase of the volume, from 83 to 123, leaves the shape of the spectrum

very similar, but increases the density of eigenvalues.

To summarize our findings, in full QCD at high temperatures the singularities of

the drift appears to be outside the support of the probability density of configurations.

We conclude therefore that in this situation complex Langevin dynamics provides correct

results, in line with the formal arguments and the lessons from the simple models. What

happens at lower temperatures remains an open question.

7 Discussion

In this section we summarise the key findings and discuss them in the context of the

various models. The main objective was to understand the role of zeroes in the path integral

measure after analytic continuation in the context of complex Langevin dynamics, in which

the zeroes show up as poles in the Langevin drift. Since the derivation of the justification

of the complex Langevin approach for complex measures relies on holomorphicity of the

drift, the presence of poles makes a re-analysis of this derivation necessary.
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We have shown that a crucial role is again played by the behaviour of the observables

considered and the (real and nonnegative) distribution, which is a solution of the associ-

ated Fokker-Planck equation and effectively sampled during the Langevin process. While

for holomorphic drifts it is the behaviour at large imaginary directions in the complex

configuration space that matters, for meromorphic drifts we have shown that an additional

constraint arises from the behaviour close to the poles: to justify the method it is necessary

to be able to perform partial integration, without picking up finite boundary terms, both

around the poles and for large imaginary directions. This condition gives a requirement of

fast decay of the distribution in those regions. In simple cases it is possible to verify this

requirement analytically, for instance when it can be shown that the distribution is strictly

zero in those regions, but for most models this has to be verified a posteriori by diagnosing

the output from numerical simulations.

Besides this, we also found that time-evolved observables typically have an essential

singularity at a pole. However, this is counteracted by the distribution going to zero at this

pole, with nontrivial angular behaviour. This ensures that the contribution to expectation

values from this region is finite, but not that boundary terms are necessarily absent.

In order to further understand and support these analytical considerations, we have

subsequently analysed a number of models and theories with increasing complexity, from

the one-pole model with one degree of freedom to full QCD at nonzero baryon density,

with the aim of extracting common features. Logically a pole can be outside, on the edge

of, or inside the distribution, and we have given examples of each of these. As expected,

when the pole is outside, it does not interfere with the Langevin process. The possibility

of a pole on the edge is important, since it indicates that it is not the winding around the

pole that matters, but the decay of the distribution towards the pole. Indeed, we have

encountered both correct and incorrect convergence in this case, and this can be traced

back to the fast decay of the distribution, or lack thereof.

As a side remark, we note that further support for our analytical understanding comes

from the observed interplay between observables, drift and the distribution: if the ob-

servable is naturally suppressed (enhanced) near the pole, it is possible to obtain correct

(incorrect) results. This explains why in one analysis one can encounter both correctly and

incorrectly determined or nonconverging expectation values.

When the pole is inside the distribution, we have found that it typically leads to a bot-

tleneck, i.e. a region in configuration space which is difficult to pass and effectively divides

the configuration space in two, nearly disjoint regions. For QCD and QCD-like models,

it is zeroes of the determinant that correspond to poles and determine the location of the

bottleneck. Hence the complex-valued determinant, preferably not raised to any powers

(such as Nf ), or the real part of the determinant, provide useful diagnostic observables to

analyse the dynamics. We have studied a number of models in this way, namely U(1) and

SU(3) one-link models and heavy dense QCD (HDQCD) in four dimensions. In all of these,

we indeed observed similar behaviour: the emergence of two regions, which were denoted

with G± and are identified by the sign of the real part of the determinant (before raising

it to a power). We found that it is typically the region with positive real part that dom-

inates the dynamics, but that excursions to G− can upset expectation values, even when
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their relative weight is suppressed. In some cases the bottleneck is particularly difficult to

pass, which may occur when the order of the zero is increased. It is possible to analyse

each region G± separately. The error made by restricting the simulation to G+ can then

be estimated and was typically seen to be small, depending on the parameters used. In

the SU(3) one-link model and HDQCD, the process is affected by zeroes close to the half

filling point, where the sign problem is milder. In this case the region G− took the form

of characteristic “whiskers”: even though the relative weight of these regions was small,

the contribution to expectation values could be large. Hence an exclusion of this region

improves the results, but with a systematic uncertainty. In HDQCD we found indications

that the role of zeroes is unchanged when the lattice spacing is decreased, while keeping

the physical volume approximately constant. Finally, we considered QCD with dynamical

staggered quarks at high temperature and analysed the eigenvalues of the Dirac operator.

Here we noted that there are typically no eigenvalues close to zero, which suggests that

complex Langevin dynamics is applicable in this part of the phase diagram.

8 Summary and Outlook

We have given a detailed analysis of the role of poles in the Langevin drift, in the case of

complex Langevin dynamics for theories with a sign problem. Since the standard derivation

of the formal justification relies on holomorphicity of the drift, we have revisited the deriva-

tion and shown that, besides the requirement of a fast decay of the probability distribution

at large imaginary directions, an additional requirement of fast decay near the pole(s) is

present. The probability distribution is typically not known a priori, but its decay can be

analysed a posteriori.

We then studied a number of models, from simple integrals to QCD at nonzero baryon

chemical potential, and found support for the analytical considerations. In the cases when

the simulation is affected by the pole(s), we found that typically the configuration space is

divided into two regions, connected via a bottleneck. For theories with a complex fermion

determinant, such as QCD, the bottleneck is determined by the zeroes of the determinant.

In the simple models, and even for QCD in the presence of heavy (static) quarks, this

understanding is sufficient to analyse the reliability of the Langevin simulation.

In full QCD, with dynamical quarks, ideally it requires knowledge of the (small) eigen-

values of the fermion matrix throughout the simulation, which is nontrivial. At high

temperature, it was shown that the eigenvalues are typically not close to zero. Hence the

most important outstanding question for QCD refers to the low-temperature region in the

phase diagram. Here a number of hurdles remains to be taken. When eigenvalues become

very small, the conjugate gradient algorithm used in the fermion matrix inversion becomes

ineffective. This is common to many problems at nonzero density, even in the absence

of a sign problem, and requires e.g. a regulator. A successful approach in this case has

not yet been developed. Besides this, on coarse lattices gauge cooling, which stabilises

the Langevin process, is ineffective. This situation is improved on finer lattices, which are

however more expensive due to the larger values of Nτ required. A definite statement on
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the applicability of complex Langevin dynamics throughout the QCD phase diagram can

only be made once further analysis of theses issues has been brought to a conclusion.
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A Second-order poles: a solvable real example

In this appendix, we discuss the special case of a second-order pole in a solvable example.

Statement 1 When there is a pole with residue 2 in the drift (corresponding to a second-

order zero in the density) and the Laurent expansion around the pole has no constant term,

then O(x+ iy; t) has no essential singularity, only a simple pole.

A simple example is the following: consider the action

− S(z) = −ωz
2

2
+ ln(zn), (A.1)

leading to

K(z) =
n

z
− ωz, L̃ =

d2

dz2
+
(n
z
− ωz

) d

dz
. (A.2)

A simple computation then gives

L̃z =
n

z
− ωz, L̃2z − n(n− 2)

z3
+ ω2z, L̃

1

z
=

2− n
z3

+ ω
1

z
, (A.3)

so that for n = 2 no higher singularities are produced by L̃n to z. The more general

statement follows easily by computation.

This model (which is a special case of the models considered in section 2.1), has

some interesting features, in particular the complete spectrum of L̃ and the evolution of

holomorphic observables can be determined. Because the model is real we now write x

instead of z and drop the tilde, i.e. we consider

L =
d2

dx2
+
(n
x
− ωx

) d

dx
(A.4)
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and its dual

LT =
d2

dx2
− d

dx

(n
x
− ωx

)
. (A.5)

For n = 2 one can actually find the complete spectrum of L,LT : because the model is real,

a well-known fact [63] is that L is conjugate to a self-adjoint operator −H,

H = − exp(−S/2)L exp(S/2) = − d2

dx2
− 1

4
ω2x2 − 3ω

2
, (A.6)

which is, up to constant, the Hamiltonian of a harmonic oscillator. It has apparently a

negative eigenvalue; this is, however, deceptive: so far we have been sloppy about the

boundary conditions at x = 0. The drift is strongly repulsive away from the origin along

the real axis, the probability density ρ is vanishing quadratically there and the Langevin

process does not cross the origin.

This means that mathematically we have to consider H with 0-Dirichlet boundary

conditions at the origin. To avoid confusion, we call the corresponding Hamiltonian HD.

All functions in the domain of definition of HD have to have at least a square integrable

second derivative; this means that they are continuous and vanish at the origin. The

ground state wave function of H (ignoring the b.c. at 0), which superficially seems to

belong to a negative eigenvalue of HD, is not in the domain of definition (neither are all

even eigenfunctions of H). Actually, because there is no communication between the two

half-lines, we may as well consider the problem only on one of the half-lines R±. From now

on we choose R+.

The eigenfunctions of HD are thus the odd eigenfunctions of H

ψ2n+1(x) = N2n+1 exp

(
−ωx

2

4

)
H2n+1

(√
ω

2
x

)
, n = 0, 1, . . . , (A.7)

with eigenvalues (2n + 1)ω and N2n+1 such that they are normalised on R+; Hn are the

Hermite polynomials. The eigenfunctions of L are then found as

φn = ψ2n+1 exp(S/2) = ψ2n+1 exp(ωx2/4)/x, n = 0, 1, . . . , (A.8)

while those of LT are

φ̂n = ψ2n+1 exp(−S/2) = ψ2n+1 exp(−ωx2/4)x, n = 0, 1, . . . . (A.9)

The ground state of L is thus a constant c and the ground state of LT is

φ̂0(x) = ρ(x) = cx2 exp(−ωx2/4), (A.10)

as it has to be.

The first excited state of L is φ2 = N3(x2 − 3/ω); it belongs to the eigenvalue −2ω.

We thus find

etLx2 = e−2ωtx2 +
3

ω

(
1− e−2ωt

)
, (A.11)

which converges to the correct expectation value

〈x2〉 =
3

ω
(A.12)

for t→∞. Similarly convergence to the correct value is found for all even functions.
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How about the superficially unstable mode 1/x, see eq. (A.3)? It corresponds to

the ground state of H on L2(R), which is not in the domain of definition of HD. The

odd eigenfunctions of H are complete in the subspace of odd functions; hence the odd

eigenfunctions restricted to R+ are complete in L2(R+) and so the apparent eigenvector of

HD with a negative eigenvalue ψ0 should be considered as a L2(R+) convergent series

ψ0(x) =
∞∑
n=0

anψ2n+1(x) (A.13)

with

an =

∫ ∞
0

dxψ0(x)ψ2n+1(x). (A.14)

Instead of considering −HD as a self-adjoint operator on L2(R+) we may consider L itself

as a self-adjoint operator on the Hilbert space H obtained as (the completion of) the set

of functions φ on R+ with the scalar product

(φ, φ′) ≡
∫ ∞

0
dx e−Sφ(x)∗φ′(x). (A.15)

The eigenfunctions φn, n = 0, 1, . . ., are orthogonal with respect to this scalar product. So

we can write equivalently

1

x
=

∞∑
n=0

anφn(x), (A.16)

where the convergence is now to be understood in the sense of H. 1
x is in H, but not in

the domain of definition of L.

B Solutions to the sign problem for real models with poles

In this appendix we consider real models with a zero in the density and hence a pole in

the Langevin drift, with a weight of the form motivated by the U(1) one-link model in

section 3, i.e.

ρ(x) = [1 + κ cos(x)]np . (B.1)

B.1 One pole, np odd

Since the models are real, one might attempt to treat them by the real Langevin method.

But a simple consideration shows that for a real model with a sign problem this cannot

produce correct results. The reason is that the real Langevin equation will have a positive

equilibrium measure on the real axis and thus cannot reproduce all the averages which

would be obtained with a signed measure. When we modify the process to allow it move

out into the complex plane, the story changes: it seems then a priori not impossible that a

positive measure on C reproduces correctly the averages of holomorphic observables with

a signed measure on R and there are examples that bear this out. A simple example is

given by

ρ(x) = 1 + κ cos(x), κ > 1. (B.2)
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It is easy to verify that the correct expectation values are reproduced by the positive

density in C,

P (x, y) = (1 + cos(x))
1√
2πσ

exp

[
− y

2

2σ

]
(B.3)

with

σ = 2 log κ . (B.4)

This simple solution is, however, unrelated to the CL method.

B.2 One pole, np even

For np > 0 and even, there is no sign problem, but the lack of ergodicity exists as well. In

this case, because of the stronger repulsion away from the pole, our simulations typically

do not cross the pole, and so produces incorrect results when started on one side of the

pole. (If there is a symmetry x → −x, this defect can easily be remedied by starting the

process with equal probability on either side of the pole). Another way to facilitate the

crossing and achieve correct results is by adding a small imaginary noise term.

A simple cure consists in the reweighting with the sign factors, as follows. Replace the

observable O(x) by

O(x) sgn Reρ(x) (B.5)

and compute by real or complex Langevin

〈O〉 ≡ 〈O(x+ iy) sgn Re ρ(x)〉
〈sgn Re ρ(x)〉

, (B.6)

where the symbol 〈·〉 stands for the ordinary real or complex Langevin long time average.

But this cure, like any reweighting method, while it works for one-variable models, it is

not very useful for lattice models. So we will not pursue it any further.

B.3 A cure for compact real models

The final cure we consider is for a real but nonpositive weight ρ. Let c be a constant such

that

ρ+ c > 0 (B.7)

and define

σ ≡ ρ+ c. (B.8)

Then for any observable satisfying
∫
Odx = 0 we can rewrite 〈O〉 as

〈O〉ρ =
〈O〉σ
〈ρ/σ〉σ

, (B.9)

because

〈O〉 =

∫
σOdx∫
σdx

∫
σdx∫
ρdx

. (B.10)

So a correct procedure is to run real Langevin with the drift derived from the positive

density σ and correct the normalisation as shown above.
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Figure 36. U(1) one-link model for κ = 2, µ = 0, β = 0.5; data points: cured CLE vs α = ce−β/κ,

solid lines: exact results.

We take the U(1) model with np = 1, such that

σ(x) = c+ [1 + κ cos(x)] eβ cos(x). (B.11)

The drift for the modified Langevin process is now

Kσ = −κ sin(x) + β sin(x) [1 + κ cos(x)]

ce−β cos(x) + 1 + κ cos(x)
. (B.12)

A full set of observables satisfying the condition
∫
Odx = 0 are the exponentials exp(ikx),

k 6= 0. For the normalisation factor we have

〈n(x)〉σ ≡ 〈ρ/σ〉σ =

〈
1 + κ cos(x)

ce−β cos(x) + 1 + κ cos(x)

〉
σ

. (B.13)

This procedure works very well, as shown in figure 36. Note that in the figure, the

horizontal axis is

α =
ce−β

κ
, (B.14)

which increases as c is increased (c = 0 is the original process). The observables are Re/Im

eikx with k = 1, 2.

As expected, the numerical results start agreeing with the exact results as soon as c is

large enough to make σ nonnegative. Therefore a plot like this can also serve to determine

the minimal c for which correct results are obtained and a priori knowledge about the

zeroes of the density ρ is not required.

The advantage of this cure is that it can be easily generalised to the complex case

µ 6= 0; it turns out that it does work reasonably well, but not perfectly, provided µ is not

very large. But again, since the cure involves some reweighting, it is not very useful for

lattice systems.
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C Zeroes of the HDQCD determinant

In this appendix, we further consider the HDQCD determinant for gauge group SU(3) or

SL(3,C), reduced to a single link U . We will demonstrate that zeroes of the determinant

do not come as isolated points.

As discussed in section 5, the determinant contains the factors

D = det(1 + CU), D̃ = det(1 + C̃U−1), (C.1)

such that detM = (DD̃)2Nf . For a discussion of its zeroes we may look at each factor sepa-

rately. Let us first consider D. The eigenvalues of U can be parametrised as z1, z2, 1/(z1z2);

in terms of these

D = (1 + Cz1)(1 + Cz2)(1 +
C

z1z2
). (C.2)

In C2, parametrised by z1, z2, the determinant vanishes on the three submanifolds given by

(1) : z1 = − 1

C
, (2) : z2 = − 1

C
, (3) : z1z2 = −C. (C.3)

But there is a different way to think about this: define

u ≡ trU = z1 + z2 +
1

z1z2
, v ≡ trU−1 =

1

z1
+

1

z2
+ z1z2. (C.4)

u and v are algebraically independent and can be used instead of z1 and z2 to parametrise

conjugacy classes of SL(3, C). The map from z1, z2 to u, v is not one-to-one, since inter-

changing z1 and z2 will leave u, v unchanged. The inverse map from u, v to z1, z2 will have

branch points where any two eigenvalues coincide.

The fact that u, v ignore permutations of the eigenvalues is actually an advantage

because D too remains unchanged. The zeroes of D are then determined by

1 + C3 + Cu+ C2v = 0 or u = −Cv − C−1 − C2. (C.5)

The three manifolds (1,2,3) in eq. (C.3) are thus mapped into a single manifold given by

eq. (C.5). This manifold is an affine complex plane in the space C2 (affine means that it

does not go through the origin).

trU−1 does not have to be computed by taking the inverse of U ; one can instead use

the identity, valid for U ∈ SL(3, C),

trU−1 =
1

2

(
(trU)2 − trU2

)
. (C.6)

So we get, using u2 = trU2,

D = 1 + C3 + Cu+
C2

2

(
u2 − u2

)
, (C.7)

which vanishes on a complex parabola.

The determinant factor D̃ is quite similar; proceeding as before we find

D̃ = C̃ + C̃2 + u+ C̃−1v = C̃ + C̃2 + u+
1

2
C̃−1(u2 − u2), (C.8)

so its zeroes are again described either by a complex affine plane in u, v or a complex

parabola in u, u2. The main point is that they are real manifolds of codimension two, so

there are no isolated zeroes.

– 54 –



J
H
E
P
0
5
(
2
0
1
7
)
0
4
4

D Expansion methods

One possibility to deal with the pole is to use power series expansions in order to approxi-

mate the meromorphic drift by polynomials. In QCD the pole in the drift is always due to

a zero of the determinant. In the one-pole model the role of the determinant is played by

the factor D(x) ≡ x− zp.

D.1 One-pole model

We explain the approach in the one-pole model. We study two basic procedures:

(1) Fixed expansion: let Dnp be the ‘determinant’ causing problems due to its zeroes.

Consider the drift caused by D,

KD(z) = np
D′(z)

D(z)
. (D.1)

In order to obtain a holomorphic approximation to KD, we choose a point (x0, y0)

not too far from the peak of the distribution but far enough from the pole(s). We

then expand 1/D around this point to order N as follows: let D0 ≡ D(x0, y0), then

replace 1/D by

1

DN
≡ 1

D0

N∑
n=0

(
D0 −D
D0

)n
=

1− (1−D/D0)N+1

D
. (D.2)

Since this is a polynomial in D, there is no indeterminacy when D = 0. The difference

between the exact value 1/D and 1/DN is (1 −D/D0)N+1, which converges to 0 if

and only if |D/D0| < 0. There could be problems if the process goes outside the

region of convergence, but experience shows that typically the drift will tend to keep

the process inside the region of convergence. An illustrative example is shown in

figure 37. Because the expansion point (x0, y0) is chosen once and for all, we call this

the fixed expansion. In any case, by varying N one can check whether this is the

case. Numerical studies using this fixed expansion are presented below for the U(1)

one-link model and for the SU(3) one-link model in section 5.

(2) Dynamic expansion: one may choose different expansion points (xi, yi), withD(xi, yi),

in such a way that the domain of analyticity is covered, while always staying well

inside the domain of convergence. The quality of the expansion can be fixed by

changing (xi, yi) to the actual configuration point whenever (1−D/D0)n+1 > ε with

some pre-chosen ε. If ε is chosen small enough we should not find any appreciable

difference between the results using D and DN . By studying various situations we

find that, as expected, the dynamically expanded drift generally performs just like

the unexpanded one: it works where the latter works and it fails where the latter

fails.
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Figure 37. Flow pattern for the one-pole model at β = 0, zp = 1, using the Taylor expansion

to order N = 10 with D0 = 1 (left) and the full expression (right). The black circle indicates the

radius of convergence, while the red lines show where the radial component of the flow changes sign.

D.2 U(1) one-link model

We now apply the expansion method to the U(1) one-link model and focus on the fixed

expansion. Consider the factor

Dnp(x) = (1 + κ cos(x− iµ))np , (D.3)

appearing in ρ(x). The drift caused by this,

KD(z) = np
D′(z)

D(z)
(D.4)

has two poles for κ > 1. As described for the one-pole model we obtain a holomorphic

approximation to KD by choosing a point z0 = x0 + iy0 somewhere near the center of the

equilibrium distribution; here the natural choice is z0 = iµ, i.e. D(z0) = 1 + κ. The Taylor

expansion of 1/D around this point to order N then looks as in eq. (D.2). Again the drift

from the expansion tends to keep the process inside the region of convergence, as shown in

figure 38.

We have tested this approach numerically, using expansions to order 10 and 20, making

sure that the centre of the expansion was chosen reasonably far away from the poles and

near the maximum of the distribution P (x, y) in the region with positive ReD, i.e. G+.

We found the results to be more or less comparable to the ones obtained by restricting the

process to G+, and not a great difference between orders 10 and 20.

Hence we conclude that the fixed expansion is a potential cure of the ills of meromorphic

drift in the cases where restricting the process to G+ works as well. It should be noted

though that potentially significant, though much reduced deviations from the exact results

remain.
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Figure 38. Flow pattern for the U(1) one-link model at β = 0.3, np = 1, µ = 1, κ = 2;, using the

Taylor expansion to order N = 10 with D0 = 1 + κ cos(0.8i) (left) and the full expression (right).
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