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Highlights 
 

 A J-shaped dose-response was observed following N-methyl-N-nitrosourea 
treatment 

 Mechanistic studies indicated a possible role of p53 
 Hormesis is rare in Swansea University genotoxicity datasets generated since 

2004 
 Hormesis is, therefore, likely to be infrequent for genotoxic agents 
 
 

 

Abstract 

Hormesis is defined as a biphasic dose-response where biological effects of low doses of 

a stressor demonstrate the opposite effect to high-dose effects of the same stressor. 

Hormetic, or J-shaped, dose-response relationships are relatively rarely observed in 

toxicology, resulting in a limited understanding and even some skepticism of the concept. 

Low dose-response studies for genotoxicity endpoints have been performed at Swansea 

University for over a decade. However, no statistically significant decreases below 

control genotoxicity levels have been detected until recently. A hormetic-style dose-

response following a 24h exposure to the alkylating agent N-methyl-N-nitrosourea 

(MNU) was observed in a previous study for HPRT mutagenesis in the human 

lymphoblastoid cell line AHH-1. A second recent study demonstrated a J-shaped dose-

response for the induction of micronuclei by MNU in a 24h treatment in a similar test 

system. Following mechanistic investigations, it was hypothesized that p53 may be 

responsible for the observed hormetic phenomenon. As genotoxic carcinogens are a major 

causative factor of many cancers, consideration of hormesis in carcinogenesis could be 

important in safety assessment. The data examined here offer possible insights into 

hormesis, including its estimated prevalence, underlying mechanisms and lack of 

generalizability.   
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1.  Introduction 

1.1 Hormesis and genetic toxicology 

 

In biological systems, it is sometimes observed that the frequency of adverse events 

decreases below the background frequency at low doses before it starts to increase [1, 2]. 

As the dose-response contains both sub-background damage and toxic phases, it conforms 

to a “biphasic” trend, producing a J- or U-shaped, or inverted J- or U-shaped, dose-

response curve [3][4]. This form of dose-response is frequently referred to as the 

biological phenomenon “hormesis” if this follows a single exposure to a toxin, toxicant or 

radiation (Figure 1). If at least one exposure to an agent induces a protective effect 

against a subsequent larger exposure, this would be described as an “adaptive response”. 

Although hormesis and adaptive responses demonstrate some overlap, it is important to 

recognize these as distinct phenomena. Such responses of a cell or organism to a low dose 

of toxic agent is considered to be an adaptive compensatory process following an initial 

disruption in homeostasis [4]. 

 

Hormesis and adaptive responses are concepts shrouded in controversy and confusion[5]. 

There is an ongoing debate on the probability of hormesis existing. Some proponents 

claim that hormesis has been ignored by the scientific community, due to bias towards a 

linear no threshold (LNT) dose-response model [6], which has been favoured in 

genotoxicology, or to a threshold model in other areas of toxicology. As well as debates 

over whether hormesis and adaptive responses exist, there is the issue of whether these 

are generalisable phenomena, partly owing to their relative infrequency in 

genotoxicological datasets. To be generalisable, such phenomena should occur at 

frequencies approaching universality, being observed with all or most organisms, agents, 

endpoints and genotypes [7]. Therefore, a key aspect of determining whether hormesis is 

generalisable in genetic toxicology is whether it occurs in all or in the vast majority of 

dose-responses, or whether its occurrence is more limited [7]. However, based on current 

dose-responses, hormetic-style responses are in fact in the minority [8][9-11] and it also 

appears that no universal mechanism exists for hormesis, perhaps preventing it from 

being adopted in toxicological risk assessment [12]. However, the mechanisms underlying 

hormesis have previously been hypothesized and speculated upon [13]. The fact that 

previous studies were not aimed at the low-dose region means that it is unsurprising that 

hormetic effects were rarely observed. Whether current study designs are not optimized to 

capture a transient hormetic effect, whether few studies use low doses, or whether 

hormesis is truly not generalisable is unclear. 

 

1.2 Genotoxicity dose-response data generated at Swansea University 

J-shaped dose-responses have been observed relatively recently in our laboratory at 

Swansea University. Thomas et al. reported the first of these in 2013 for HPRT mutant 

frequency in the human lymphoblastoid cell line AHH-1 (Table 1). In their study, a 



statistically significant decrease in mutant frequency below the vehicle control level was 

observed for two low concentrations of MNU, 0.005 and 0.0075 µg/ml. The magnitude of 

the reduction relative to vehicle control was 45%. The second of these J-shaped dose-

responses will be discussed in Results. Prior to these findings, no such J-shaped dose-

responses had been identified. For over a decade, the effects of low concentrations of 

chemical agents on in vitro cell-based test systems have been studied within our 

laboratory (Table 1), which has extensive datasets from genetic toxicology testing 

conducted with a high standard of quality control. The use of low concentrations 

minimizes possible artefactual reductions in genotoxicity due to confounding cytotoxicity, 

and these conditions are therefore likely to facilitate the observation of hormesis should it 

occur. Both linear and non-linear (threshold) dose-responses have been observed thus far 

at Swansea University, yet only one previously published study to date has produced a J-

shaped dose-response [14]. The data contain a large number of experiments performed 

using the same facilities, equipment and laboratory protocols, facilitating direct 

comparisons between different chemical dose-responses. Furthermore, similar chemicals, 

exposure times, assays and cell types were often used across the different studies. For 

example, the majority of studies used MCL-5, AHH-1 or TK6, which are all human 

lymphoblastoid cell lines, with MCL-5 even being derived from AHH-1. The collection 

of datasets therefore offers novel insights into the prevalence of hormesis in genetic 

toxicology and the conditions required for its occurrence. This paper explores hormesis 

further by presenting new data for another J-shaped dose-response and considering this 

finding in relation to previous datasets for the low-dose region. The study could also 

provide further information on whether hormesis is likely to be a generalizable 

phenomenon. 

 

 

2. Materials and methods 

 
2.1 Test chemical. N-methyl-N-nitrosourea (MNU) (CAS Number: 684-93-5; molecular 

weight: 103.08; purity: 66%) was purchased from Sigma-Aldrich (Dorset, UK) and stored 

according to the manufacturer’s instructions (4oC, sealed). The relatively low purity of 

66% was associated with the inherent instability of MNU, which required the “impurities” 

acetic acid (2.3%) and H2O for its stabilisation. The presence of these compounds was not 

deemed to have any effects on genotoxicity or hormesis, due to their extremely low 

concentrations following subsequent dilutions of the test chemical stock. MNU, of which 

1g (not including impurities) was provided by the manufacturer, was diluted in DMSO 

(Fisher Scientific), as per the methods followed in a previous study using MNU {Thomas, 

2013 #15}. Dilutions from a master stock were made immediately before use and stored 

in the dark at 4oC for approximately 5 min until use. It was ensured that the solid was 

fully dissolved prior to further dilution of the stock solution, to prevent underestimation of 

toxic effects. When handling MNU, safety precautions, including arm length gloves and 

protective clothing, were implemented at all times.  

2.2 Cell culture. The human lymphoblastoid cell lines TK6 and NH32 were cultured in 

RPMI 1640 medium (Life Technologies) supplemented with 1% L-glutamine (Life 

Technologies) and 10% donor horse serum (BDGentest, Oxford). The cells were 

maintained in culture at densities between 1x105 and 1x106 cells/ml. TK6 cells were 

obtained from the Health Protection Agency Culture Collections, UK. NH32 cells were a 

kind gift from Professor Gerald Wogan, Massachusetts Institute of Technology, USA. 



2.3 In Vitro Micronucleus Assay. Please refer to Chapman et al.31 (2015) for the method 

followed.   

2.4 RNA isolation and quantitative real time-PCR. Real-time PCR was used to 

investigate relative mRNA expression levels for methylpurine-DNA glycosylase (MPG) 

in response to 24h exposure to MNU in TK6 cells. Changes might indicate whether MPG, 

a DNA repair glycosylase targeting methylation at N7-guanine sites, could have a notable 

impact on the observed dose-response. RNA was extracted from treated cell samples 

using RNeasy Mini Kit (Qiagen) and RNase-free DNase I Set (Qiagen) using the 

recommended protocols and for various treatment time points and concentrations. 

Synthesis of cDNA from RNA was completed using Quantitect Reverse Transcription Kit 

(Qiagen). qRT-PCR was performed using these samples, using Quantifast SYBR Green I  

(Qiagen) and appropriately designed and optimised primers. Primer nucleotide 

sequences: MPG forward: 5’ GGTCCGAGTCCCACGAAGCC 3’; MPG reverse: 5’ 

CTGCATGACCTGGGCCCCG 3’; ß-actin forward: 5’ GATGGCCACGGCTGCTTC 3’; 

ß-actin (ACTB) reverse: 5’ TGCCTCAGGGCAGCGGAA 3’. A BioRad iCycler was used 

to perform the real-time PCR and analysis using a standard curve was completed using 

BioRad iQ5 software. 

 

2.5 Protein isolation and immunoblotting. To investigate MPG protein levels in TK6 

cells, protein isolation and subsequent immunoblotting was used. This was to observe 

whether MPG expression was altered at the protein level without being altered at the 

transcription (in this case, mRNA) level. TK6 cell suspensions treated for 24h with MNU 

within the hormetic dose range were centrifuged at 250xg for 7min and washed twice in 

4oC phosphate-buffered saline (PBS) (Gibco). Cells were lysed at 4oC using 1x 

radioimmuno-precipitation lysis buffer (RIPA) (Sigma-Aldrich) supplemented with 

protease inhibitor cocktail (Sigma-Aldrich) and kept on ice for 5 min prior to vortexing, 

followed by centrifugation at 9,300 xg for 10 min at 4°C. Protein concentration was 

determined using the DC quantification assay (Biorad). Proteins (40µg) were mixed at a 

1:1 ratio with 1x Laemmli buffer (Sigma-Aldrich) and resolved on a 12% SDS 

polyacrylamide gel. Proteins were then electroblotted onto Immun-Blot PVDF 

membranes (Biorad) and blocked for 1h with 1x Tris-buffered saline-Tween 20 

containing bovine serum albumin (BSA) (5% solution) (Sigma-Aldrich). Membranes 

were separated and probed at 4°C overnight with MPG antibody (1:1000 dilution; M6195; 

Sigma-Aldrich) diluted in 5% BSA. After four washes with 1x Tris-buffered saline-

Tween 20 containing 5% BSA, the membrane was incubated for 1h in rabbit anti-mouse 

secondary antibody (1:10,000 dilution; ab6728-1, Abcam). Following this, a further three 

washes with 1x TBS-Tween 20 containing 5% BSA were performed. To correct for 

protein loading differences, blots were probed with mouse antibody to ß-actin (ab8226-

100, abcam), followed by rabbit anti-mouse secondary antibody. Immun-Star WesternC 

Chemiluminescence Kit (Biorad) was used for the immunodetection of proteins. Band 

densitometry was determined using the Quantity One software (Biorad). 

 

2.6 O6-benzylguanine as an inhibitor of O6-methylguanine DNA-methyltransferase 

(MGMT). To investigate whether the DNA repair enzyme MGMT is responsible for the 

hormetic dose-response, O6-benzylguanine (O6BG) (Sigma-Aldrich) was used as a 

MGMT inhibitor. O6BG in powder form was dissolved in methanol, and cells were 

treated with 10µM O6BG for 1h prior to dosing. Appropriate controls were included, i.e., 

methanol control, DMSO control, untreated control and O6BG only control. 

 



 

2.7 Statistical analysis. At least three biological replicates were completed for all 

experiments (except where indicated): replicates were performed on separate days with 

separate vials of cells and test chemicals. “n” refers to the number of these individual 

biological replicates. The mean values of these replicates are presented on the graphs, 

with error bars referring to standard deviation between replicates. Data were log-

transformed and assessed using the Levene statistic as to whether these conformed to a 

normal distribution. A one-way ANOVA with Dunnett’s 2-sided post hoc analysis was 

then performed to identify the first statistically significant increase or decrease relative to 

background MN levels (i.e., lowest observed effect level (LOEL)). The Dunnett’s test was 

selected because it permits multiple comparisons between treatments. Using the 2-sided 

Dunnett’s test is appropriate for the detection of both increases in frequency for 

genotoxicity relative to the vehicle control, and possible hormesis at low doses. 

 

3. Results   

3.1 MNU induced a J-shaped dose-response for two genotoxicity endpoints 

 

J-shaped dose-responses are relatively infrequent in genetic toxicology, and it was 

noteworthy, therefore, that our laboratory has identified two hormetic dose-response 

curves on separate occasions for two different endpoints following a 24h treatment in 

human lymphoblastoid cell lines with the same chemical: N-methyl-N-nitrosourea 

(MNU).  

 

The second J-shaped dose-response observed for MNU is presented here for the first time 

(Figure 2A), with the raw data in tabular form (Appendix A). The full dose-response for 

the higher dose region is included in a previous publication, with a LOEL at 0.46 µg/ml 

and a clear dose-dependent mutagenic effect at higher doses [31]. The full dose-response 

up to 1.1 µg/ml is also included here in a different form (Appendix B) for the purpose of 

illustrating that the hormetic dose belongs to a broader “J-shaped” dose-response. Rather 

than a frequency of gene mutations (HPRT), as in the study of Thomas et al.14, this study 

measured the frequency of micronuclei, indicative of a clastogenic effect in 

mononucleated cells. The statistically significant decrease in DNA damage occurred at 

(0.009 µg/ml), similar to the study by Thomas et al. (2013). The magnitude of the 

reduction in micronucleus frequency relative to the vehicle control was 55%. 

 

Further investigations were conducted to determine the mechanistic basis of the reduction 

below control levels for micronucleus frequency (Figure 2A). The induction of 

micronuclei in the p53-deficient cell line, NH32, was assessed at the same dose range as 

in TK6 to investigate whether functional p53 might be involved in the J-shaped dose-

response. Unlike TK6, NH32 cells produced no significant decrease below control 

damage levels and therefore no “hormetic” dose-response (Figure 2A). NH32 cells have 

an approximately 1.8x greater background micronucleus frequency than TK6, these being 

1.23% and 0.67%, respectively in Figure 2A.  

 

Two DNA repair proteins were studied to determine their involvement in the J-shaped 

dose-response. N-methylpurine DNA glycosylase (MPG) is involved in identifying 

alkylated bases, such as N7-methylguanine[34], and subsequent initiation of the base 



excision repair (BER) pathway due to abasic site formation[35]. MPG has previously 

been identified as being responsible for the threshold dose-response induced by alkylating 

agent ethyl methanesulfonate [24]. qRT-PCR and Western blotting were employed to 

investigate relative MPG mRNA and protein abundance, respectively, to study gene 

expression. MPG mRNA concentrations did not produce a statistically significant change; 

however, there was an increase of 1.5-fold observed at 0.009 µg/ml, prior to a 0.5-fold 

reduction below control levels at 0.114 µg/ml (Figure 2D). Similarly, MPG protein 

abundance (Figure 2C) remained unchanged across the dose range, including the 0.009 

µg/ml treatment.  

 

As Thomas et al. identified the involvement of MGMT in the J-shaped dose-response, the 

MGMT-inhibitor O6-benzylguanine (O6BG) was used in TK6 cells to determine whether 

DNA repair via MGMT might contribute to the hormetic curve presented in Figure 2A. 

MGMT performs direct repair of O6-methylguanine DNA adducts [36], which are 

typically induced by alkylating agents that target oxygen sites. No statistically significant 

difference was observed between cells with normal and inhibited MGMT (Figure 2D). 

Interestingly, while a decrease relative to control was observed at 0.009 µg/ml in cells not 

treated with the inhibitor, this was not statistically significant, in contrast to the dose-

response in Figure 2A.  

 

 

4. Discussion 

The aim of this study was to further explore the biphasic dose-responses observed in 

genotoxicity studies within our laboratory, including the underlying mechanistic basis of 

such phenomena. The primary data presented here focused on a single chemical, MNU, 

which was found to induce two separate biphasic dose-responses for two different 

genotoxicity endpoints.  

 

4.1 J-shaped dose-responses are observed infrequently in our laboratory 
 

Following this study, a total of two J-shaped dose-responses were identified among the 

137 datasets considered here. In over a decade of the low-dose region being specifically 

studied in this laboratory, the fact that these were the first dose-responses to exhibit 

hormesis was intriguing, especially since they occurred for the same genotoxic agent for 

two different endpoints in studies of comparable design. In many cases, hormesis may be 

missed due to a lack of focus on the low-dose region and a lack of statistical power of the 

studies undertaken; this was not the case with our studies. It was noted that only one 

concentration (Figure 2A, B) of 0.009 µg/ml produced a significant decrease 

corresponding with hormesis. However, due to the high level of statistical significance (p 

< 0.01) and reproducibility of this result, we can be confident that this is a true biological 

effect. These reasons also imply that the performance of three replicates is sufficient. 

Indeed, it is possible that other doses within the region of 0.009 µg/ml may have been 

hormetic; for example, a small decrease was observed at 0.011 µg/ml (Appendix A). 

However, as this was not statistically significant, this dose cannot be concluded to be 

hormetic. 

 



The HPRT assay study of Thomas et al.14 produced the statistically significant reduction 

in mutation levels below vehicle control at concentrations in the region of 0.009 µg/ml, as 

was observed in the present study (Figure 2). The fact that similar hormetic dose ranges 

were identified makes a case for hormesis more convincing in both instances. However, 

previous studies that used a similar dose range of MNU did not produce a J-shaped dose-

response. A study by Doak et al. in 2007 included a linear dose-response for MNU in 

AHH-1 cells for micronucleus induction in binucleated cells and HPRT mutant frequency 

[17]. In contrast to the data presented in Figure 2, Doak et al. used a different cell line, 

AHH-1, and also the cytokinesis-blocked version of the assay involving cytochalasin B as 

a cytokinesis inhibitor. Prior to Thomas et al.14, Doak et al. 17 also performed the HPRT 

experiment with MNU using the same protocol and a similar dose-range, yet 0.0075 

µg/ml was found to be the LOEL, rather than a “hormetic” dose as Thomas et al. 

observed. It is unclear why the two studies produced different outcomes when the same 

concentrations, endpoints and cell lines were used. It is possible that minor technical 

differences could be responsible. For example, the Doak17 and Thomas14 studies were 

performed several years apart and undoubtedly used different batches or ages of test 

chemical. 

 

Only the acute, 24h dosing revealed hormetic effects for MNU, whereas the chronic 

dosing for both MNU and MMS did not give evidence for hormesis [31]. Originally, it 

was hypothesized that if hormesis were to be identified it would more likely be observed 

following the chronic dosing. It is possible that this relates to a narrow dose window and 

specific temporal conditions being required for observation of a hormetic effect.   

 

Due to the abundance of published data that centered on the low-dose region (Table 1), 

this study presents an opportunity to estimate the prevalence of J-shaped (i.e., biphasic) 

dose-responses for experiments performed in the same laboratory using similar protocols. 

Based on this literature, J-shaped dose-response curves were found to occur infrequently 

(2 cases in 137 dose-responses, a 1.4% frequency). This very low frequency of biphasic 

dose-responses suggests that hormesis itself is not a generalisable phenomenon, as it does 

not occur for all endpoints, cell types and chemicals tested in systems that have been 

shown to identify J-shaped curves. Chemical specificity also appears to be an important 

factor, as only MNU thus far has exhibited a hormetic-like effect. Hormesis could be 

assay-, endpoint- or cell-specific, and different conditions may be required for hormesis in 

the different cases. If so, this also argues that it is not broadly generalisable.  

 

While there are similarities between hormesis occurring after exposure to an array of 

individual doses and adaptive responses occurring after sequential treatments, the two 

should not be conflated. Appendix C presents data relating to the possibility of an 

adaptive response resulting from a pre-treatment with genotoxic agent prior to a 

subsequent larger concentration. To extend the present study, the “hormetic” dose of 

MNU, 0.009µg/ml, was employed as a priming dose. A reduction in the genotoxic effect 

of a high dose of MNU was not observed (Appendix C) and therefore provided no 

evidence of an adaptive response when a dose that had been shown to induce hormesis 

(Figure 2) was used as a priming dose prior to a larger “challenge” dose.



Statistical power is a factor in the ability to detect hormesis and adaptive responses. Statistical 

power will increase with a greater magnitude of biological effects. In priming dose 

experiments, therefore, the reduction from the more potent treatment level is relatively easily 

measured. However, a chronic study is likely to involve comparisons between smaller 

exposures, meaning a reduction effect is more difficult to detect within a dataset of the same 

size.  That hormesis and adaptive responses should be regarded as distinct processes, rather 

than manifestations of a single process, is also reflected in studies in yeast, where a dose of 

hydrogen peroxide that induces a clear adaptive response to a subsequent high-dose challenge 

does not induce hormesis in the original sense of a biphasic curve from single exposures to 

each dose37. Thus, one may see hormetic treatments that do not induce an adaptive response, 

and one may see an adaptive response with no concomitant hormesis. 

 

The potential merit in identifying the hormetic dose range relative to the toxic dose range 

extends to the possible use of hormesis in risk assessment. However, this would require full 

dose-responses with multiple doses both in the “hormetic” and “toxic” regions.  Given the 

lack of generalisability of hormesis, as was reflected in the datasets analysed in this study 

(Table 1) and other sources 7,9,38,60, hormesis-based risk-assessment remains an unrealistic 

aim. 

 

 

4.2 p53 status may contribute to the J-shaped dose-response 
 

The mechanisms underlying the J-shaped dose-response observed in Figure 2 were 

investigated using several different experimental approaches. The first of these involved a 

comparison of p53-null NH32 cells to isogenic, p53-competent TK6 cells. The results 

suggested that functional p53 might be responsible for the J-shaped dose-response for 

micronucleus frequency observed in the latter cell line. Previous publications have also 

identified the involvement of p53 in genotoxicity dose-responses for TK6 cells [28, 31]. It is 

unclear whether p53 was responsible for Thomas et al.’s dose-response; unlike TK6 cells, 

AHH-1 cells are heterozygous for p53 function due to a base pair substitution at codon 282, 

with consequences including loss of the G1 checkpoint and delayed apoptotic cell death[37]. 

Indeed, more efficient repair of apurinic/apyrimidic sites by MPG in wild-type p53 cells than 

mutant p53 cells[38] may explain why a different mechanism may be responsible for Thomas 

et al.’s J-shaped dose-response. In relation to this, MPG protein expression (Figure 2C) 

remained unchanged at the present study’s hormetic dose, although a minor, non-significant 

increase in mRNA, which corresponded with the hormetic dose, was observed (Figure 2B). 

The fact that MPG expression was essentially unchanged does not rule out a role in the 

hormetic dose-response, as MPG is known to be a selective regulator of p53[38]. In 

unstressed cells, MPG binds to p53 and represses its activity [38]. Perhaps the 0.009 µg/ml 

concentration of MNU was sufficient to dissociate p53 and MPG without being sufficient to 

up-regulate MPG expression.  

 

In a similar mechanistic analysis, MGMT activity was not observed to change in the hormetic 

dose range, suggesting that it was not responsible for the TK6 J-shaped dose-response curve 

in Figure 2A. Heterogeneity in efficiency of inhibition by O6BG across a cell population has 

been suggested as a source of high statistical variability in MGMT- samples[14], and this may 

mask any effect of MGMT.  This may also be due to the cell line, TK6, expressing MGMT at 

non-detectable levels[39]. As there is limited evidence linking MGMT and p53 in human cells 

[19], this perhaps indicates that MGMT operates independently of p53, as Thomas et al. 

found that MGMT appeared to be responsible for the J-shaped dose-response in AHH-1 cells. 



DNA repair mechanisms have been implicated in genotoxin-induced hormesis in a variety of 

systems [14, 40-43]. Indeed, MGMT has been hypothesized to be responsible for hormetic 

dose-responses following exposure to alkylating agents [44, 45]. As MGMT is an inducible 

enzyme and repairs the highly mutagenic O6-methylguanine lesion, induction of MGMT 

would readily explain the reduction in mutant frequency observed by Thomas et al. It is 

acknowledged that there may be additional underlying mechanisms for hormesis, which 

include but are not limited to alterations in apoptosis [46, 47], [48], [49], [50] cell proliferation [42, 

51, 52] and antioxidant capacity [53],[54, 55],[56],[57],[25].  

 

 

4.3 Conclusions 

 

The mechanisms responsible for J-shaped curves for low-dose regions and genotoxicity 

endpoints were further explored. New MNU data were presented, with p53 predicted to partly 

explain the dose-response. J-shaped curves were found to occur at very low frequency in the 

literature generated at Swansea University, suggesting that hormesis is unlikely to be 

generalisable across different endpoints, cell types and test chemicals.  This fact argues that 

hormesis cannot serve as a default assumption in risk assessment. While hormesis-based risk 

assessment is not feasible, an awareness of hormesis contributes to the broad-based 

understanding of dose-response relationships.  
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Appendix A. Raw data for the micronucleus dose-response presented in Figure 2A. Only 

0.009 µg/ml produced a statistically significant decrease compared to the DMSO-treated 

vehicle control, denoted by ** (i.e., p=0.003). 

 
MNU (µg/ml) Data points for individual replicates 

0 0.679 0.861 0.485 

0.593 0.670 0.683 

0.928 1.025 0.977 

0.620 0.572 0.364 

0.002 0.544 0.590 0.492 

0.005 0.772 0.660 0.585 

0.475 0.502 0.244 

0.009 ** 0.357 0.310 0.220 

0.011 0.455 0.389 - 

0.018 0.878 0.658 0.390 

0.023 0.744 0.750 0.561 

0.034 0.609 0.455 0.562 

0.045 1.206 0.319 0.440 
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Legends for figures 
 

Figure 1. Schematic diagram of a J-shaped (biphasic) dose-response curve characteristic of 

hormesis. The hormetic region represents protective overcompensation by cellular processes 

to reverse damage, resulting in a proportion of endogenous damage also being repaired and 

leading to reduction of damage below background damage levels. This leads to an apparent 

improvement in cellular fitness. At doses lower than those within the hormetic zone, levels of 

agent are too low to stimulate a measurable effect. At high doses, toxic effects are observed. 

Adapted from: [58] and [59] 

 

Figure 2A. MNU 24h treatment dose-response for the micronucleus assay in TK6 cells (n= or 

>2), centering on the low-dose, “hormetic” region. Data points for individual replicates are 

represented by circular symbols. A statistically significant decrease relative to the 0µg/ml 

control was observed at 0.009µg/ml (p<0.01, denoted by **). B. Average values for MNU 

24h treatment dose-response for the micronucleus assay in TK6 cells (n=3, black line) and 

NH32 cells (n=2, grey line). No statistically significant decrease was observed in NH32 

(p>0.05). C. Western blotting for DNA repair glycosylase, MPG, demonstrated no dose-

dependent changes across MNU doses tested (n=3). One representative replicate is shown in 

C. D. No statistically significant changes in MPG mRNA expression levels (n=3, line) were 

observed. DNA repair enzyme MGMT’s (n=4, bars) effects upon micronucleus frequency 

(%), studied via use of a MGMT inhibitor (O6BG), also remained unchanged (p>0.05) at the 

hormetic dose range. 

 

 
Appendix B. Illustration of the approximately “J-shaped” nature of the dose-response curve. 

A full dose-response for MNU MN frequency (%), including significantly genotoxic doses 

not included in Figure 2A and 2B, as well the hormetic dose (p < 0.05 denoted by *, p < 0.01 

denoted by **, p < 0.001 denoted by ***). The log10 of the values for MNU dose (x axis) was 

plotted in order to account for the differences in magnitude across the tested dose-range. 

 
Appendix C. Micronucleus frequency (%) following a priming dose study (n=2). TK6 cells 

were pre-treated with the dose of MNU observed previously to induce a statistically 

significant decrease in micronucleus frequency (0.009 µg/ml, Figure 2A), for 24h. A dose of 

0.2 µg/ml was then administered to cells and cells were incubated for 24h. No statistically 

significant difference was observed between cells treated with the priming dose and those 

with no priming dose. 
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Table 1. Summary of the dose-responses from positive genotoxicity assays for diverse 

endpoints generated at Swansea University. Only one of 136 published datasets produced a J-

shaped dose-response (in bold). The current study increases the number to two of 137 

datasets.  Criteria for inclusion included a dose-response (i.e., > or = 3 treatment 

concentrations) for a genotoxicity endpoint. CBMN = Cytokinesis-blocked micronucleus 

assay. EMS = ethyl methanesulfonate. ENU = N-ethyl-N-nitrosourea. HPRT = Hypoxanthine-

guanine phosphoribosyltransferase (HPRT) Gene Mutation Assay. MMS = methyl 

methanesulfonate. MN = Micronucleus Assay. MNU = N-methyl-N-nitrosourea. RSMN = 

Reconstructed Skin Micronucleus Assay.  

 

 

Publication Chemical Number 

of dose-

responses 

Genotoxicity 

Assay/Endpoint 

Exposure 

time 

Cell 

line/type 

Parry et al., 2004 

[15] 

8-

Hydroxyquinoline, 

MMS, 4-

nitroquinoline 1-

oxide 

3 CBMN 1 CC AHH-1 

Jenkins et al., 

2006 [16] 

Deoxycholic acid 

(pH 5.5 or 7.4) 

2 CBMN 24 h OE33 

Doak et al., 2007 

[17] 

MMS, MNU, 

EMS, ENU 

12 CBMN, HPRT 24 h AHH-1, 

MT-1 

Jenkins et al., 

2008 [18] 

Deoxycholic acid 1 CBMN 21 h OE33 

Doak et al., 2008 

[19] 

MMS  2 HPRT, N7-meG 

adducts 

24 h AHH-1 

Johnson and 

Parry, 2008[20] 

Bisphenol A, 

rotenone 

2 CBMN 24 h AHH-1, 

MCL-5, 

V79 

Johnson et al., 

2010a [21] 

Vinblastine, 

diethylstilboestrol 

8 CBMN, MN (no 

cytochalasin B) 

3h, 24h CHO 

Johnson et al., 

2010b [22] 

Sudan-1, Para Red 7 CBMN, HPRT 24 h AHH-1, 

MCL-5 

Kayani and Parry, 

2010 [23] 

Ethanol, 

acetaldehyde 

2 CBMN 22 h MCL-5 

Zair et al., 2011 

[24] 

EMS, ENU 12 CBMN, HPRT 24 h AHH-1 

Seager et al., 

2012 [25] 

H2O2, KBrO3, 

menadione 

6 CBMN, HPRT 4 h AHH-1 

Singh et al., 2012 

[26]  

Fe2O3, Fe3O4 

(dextran-coated 

and uncoated 

ultrafine 

superparamagnetic 

iron oxide 

nanoparticles) 

4 CBMN 24 h MCL-5 

Thomas et al., 

2013 [14] 

MNU 1 HPRT 24 h AHH-1 



Manshian et al., 

2013 [27] 

Single walled 

carbon nanotubes 

11 CBMN, HPRT 24 h, 48 h BEAS-2B, 

MCL-5 

Brüsehafer et al., 

2014 [28] 

Mitomycin-C 

(4h), cytarabine 

(24h) 

4 CBMN 4 h, 24 h TK6/NH32 

Chapman et al., 

2014 [29] 

MMS, 

Mitomycin-C, 

H2O2, Methyl 

carbamate 

5 RSMN (CBMN) 

in EpiDerm 

48 h Primary 

epidermis 

Brüsehafer et al., 

2015 [30]  

4-Nitroquinoline 

1-oxide 

11 CBMN, MN (no 

cytochalasin B), 

HPRT, Comet 

assay 

4 h MCL-5, 

AHH-1 

L5178Y 

Chapman et al., 

2015 [31] 

MMS, MNU  6 MN (no 

cytochalasin B) 

24h, 5 day, 10 

day 

TK6, NH32 

Manshian et al., 

2015 [32] 

CdSe/ZnS 

nanoparticles 

24 CBMN 1 and 3 cell 

cycles 

HFF-1, 

BEAS-2B, 

TK6 

Shah et al., 2016 

[33] 

Benzo[a]pyrene 11 CBMN, HPRT 4h, 23h TK6 

Total = 

136 

 

 

 
 
 


