

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in :

Science of The Total Environment

Cronfa URL for this paper:

<http://cronfa.swan.ac.uk/Record/cronfa33150>

Paper:

Mastrolonardo, G., Hudspith, V., Francioso, O., Rumpel, C., Montecchio, D., Doerr, S. & Certini, G. (2017). Size fractionation as a tool for separating charcoal of different fuel source and recalcitrance in the wildfire ash layer.

Science of The Total Environment, 595, 461-471.

<http://dx.doi.org/10.1016/j.scitotenv.2017.03.295>

This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions. When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO database to judge whether or not it is copyright safe to add this version of the paper to this repository.

<http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/>

1

2 **Size fractionation as a tool for separating charcoal of different fuel**
3 **source and recalcitrance in the wildfire ash layer**

4

5 Giovanni Mastrolonardo^{1,2}, Victoria A. Hudspith³, Ornella Franciosi², Cornelia Rumpel⁴, Daniela
6 Montecchio¹, Stefan H. Doerr⁵, Giacomo Certini⁶

7

8 ¹*Department BIOSystem Engineering - Gembloux Agro-Bio Tech, University of Liege, Avenue
9 Maréchal Juin 27, B-5030 Gembloux, Belgium*

10 ²*Dipartimento di Scienze Agrarie, Università degli Studi di Bologna, V.le Fanin 40, 40127 Bologna,
11 Italy*

12 ³*wildFIRE Lab, Hatherly Laboratories, University of Exeter, Exeter, EX4 4PS, UK.*

13 ⁴*CNRS; Institute of Ecology and Environment Paris (IEES, UMR UPMC-UPEC-INRA -CNRS -
14 IRD), Campus AgraParisTech, Thiverval-Grignon, France.*

15 ⁵*Geography Department, Swansea University, Singleton Park, Swansea SA28PP, UK.*

16 ⁶*Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente (DISPAA), Università
17 degli Studi di Firenze, Piazzale delle Cascine 28, 50144 Firenze, Italy.*

18

19 Corresponding author G. Mastrolonardo, tel: +39 055 522 6509; fax: +39 055 522 6477
20 E-mail address: giovanni.mastrolonardo@gmail.com

21

22 **Keywords:** Forest fire; pyrogenic organic carbon; biochar; black carbon; thermal recalcitrance index;
23 charcoal reflectance.

24

25 **Highlights**

26 • Combustion products of two forest wildfires with different severity were analysed
27 • Collected material was divided into four size fractions (>2 , $2-1$, $1-0.5$, <0.5 mm)
28 • Size fractionation allowed isolating charred material with distinct properties
29 • Specific source fuels were preferentially sorted into specific size fractions
30 • Mineral ash content is a reliable indicator for selecting the best fractions to isolate

31

32 **Abstract**

33 Charcoal is a heterogeneous material exhibiting a diverse range of properties. This variability
34 represents a serious challenge in studies that use the properties of natural charcoal for reconstructing
35 wildfires history in terrestrial ecosystems. In this study, we tested the hypothesis that particle size is
36 a sufficiently robust indicator for separating wildfire combustion products into fractions with
37 distinct properties. For this purpose, we examined two different forest environments affected by
38 contrasting wildfires in terms of severity: a eucalypt forest in Australia, which experienced an
39 extremely severe wildfire, and a Mediterranean pine forest in Italy burned by wildfire of moderate
40 severity. We fractionated the ash/charcoal layers collected on the ground into four size fractions
41 (>2 , $2-1$, $1-0.5$, <0.5 mm) and analysed them for mineral ash content, elemental composition,
42 chemical structure (by IR spectroscopy), fuel source and charcoal reflectance (by reflected-light
43 microscopy), and chemical/thermal recalcitrance (by chemical and thermal oxidation).
44 At both sites, the smaller fraction (<0.5 mm) was by far the most abundant on a mass basis. The C
45 concentration and C/N ratio decreased with decreasing size fraction, while pH and the mineral ash
46 content followed the opposite trend. The coarser fractions showed higher contribution of amorphous
47 carbon and recalcitrance. We also observed that certain fuel types were preferentially represented
48 by particular size fractions. We conclude that the differences between ash/charcoal size fractions
49 were most likely primarily imposed by fuel source and secondarily by burning conditions. Size
50 fractionation can therefore serve as a valuable tool to characterise the wildfire combustion products,

51 as each fraction displays a narrower range of properties than the whole sample. We propose the
52 mineral ash content of the fractions as a reliable indicator for selecting the appropriate number of
53 fractions to analyse.

54

55 **1. Introduction**

56 Every year wildfires affect over 3% of Earth's vegetated land surface (Randerson et al., 2012),
57 which has large direct consequences for the global carbon (C) cycle because of the transformation
58 of a large amounts of organic matter (OM) to CO₂ (Alexis et al., 2007). However, wildfires do not
59 imply complete combustion of OM and incomplete combustion residues are released to the ground
60 (González-Pérez et al., 2004; Certini et al., 2011). The product of incomplete biomass combustion
61 is a carbon-rich heterogeneous black material, typically characterised by a condensed aromatic
62 structure, that can accumulate on the ground in large quantities across the burned area, and is
63 referred to as pyrogenic organic matter (PyOM) or pyrogenic carbon (PyC) (Santín et al., 2016a).
64 PyOM represents a continuum of materials showing a different degree of carbonization, which
65 ranges from slightly charred biomass to highly condensed soot (Masiello, 2004).

66 Within this continuum, charcoal comprises coarse particles (mm-cm) that retain the physical and
67 chemical properties necessary to identify its biomass source (Bird and Ascough, 2012; Knicker et
68 al., 2008; Scott, 2010). The aromatic structure gives charcoal an inherent recalcitrance to biotic and
69 abiotic degradation (Eckmeier et al., 2007; Wiechmann et al., 2015), which is further increased
70 once the charcoal is buried in soil, due to enhanced physical protection, to an extent that charcoal is
71 a common source of paleoenvironmental and archaeological proxy data (Ascough et al., 2008).

72 However, charcoal is a heterogeneous material (Bird and Ascough, 2012; Pyle et al., 2015), whose
73 variability is mostly due to differences in burning conditions (in terms of temperature, duration,
74 flaming or smouldering conditions, oxygen availability et cetera) and source materials (e.g., woody
75 or grass vegetation, leaves or branches, conifers or broadleaves) (Bodí et al., 2014; Knicker et al.,
76 2008; Merino et al., 2015; Santín et al., 2012; Wiechmann et al., 2015) and their interactive effect

77 (Hatton et al., 2016). Therefore, charcoal heterogeneity is particularly high in fire affected natural
78 forest ecosystems, due to an often wide diversity of species, fuel types, structure and density,
79 combine with a high spatial and temporal variability in fire behaviour (temperature, flame residence
80 time, oxygen availability) in a given fire (Pyle et al., 2015; Santín et al., 2016b).

81 The variability of charcoal composition and structure has obvious implications for charcoal stability
82 and transport (McBeath et al., 2013; Santín et al., 2016b) and, hence, on the role of this component
83 for soil organic matter on global carbon cycling (Santín et al., 2016a). Therefore, an important
84 research need is disentangle the complexity of the nature of charcoal. In context, some authors have
85 previously reported some positive findings in favour of size fractionation (*i.e.* Nocentini et al.,
86 2010; Rumpel et al., 2007; Francioso et al., 2011). In spite of its simplicity, however, this technique
87 is not yet extensively used in environmental studies. As highlighted by Michelotti and Miesel
88 (2015), the current knowledge on charcoal composition and fate is primarily based on studies
89 dealing with charcoal produced under experimental conditions in the laboratory, which it is not
90 fully representative of charcoal from wildfires (Alexis et al., 2010; Belcher and Hudspith, 2016).

91 More research on natural charcoal is therefore needed.

92 This study focuses on the ash/charcoal layer from two forests burned at different severities. This
93 material was fractionated into four different size fractions (>2 , $2-1$, $1-0.5$, <0.5 mm) with the aim
94 to ascertain to which extent particle size fractionation is a reliable method to obtain specimens with
95 distinct composition. The size and number of fractions were those chosen by Nocentini et al.
96 (2010), so as to have a direct basis of comparison with the results of that work. Of these fractions
97 we also evaluated the thermal recalcitrance using the thermal recalcitrance index (R_{50}) developed by
98 Harvey et al. (2012) for biochar, *i.e.* charcoal produced under controlled standard conditions. Here,
99 for the first time, we tested to see if this index could also be applicable to wildfire charcoal. In fact,
100 R_{50} index is related to the thermal stability of a material, which is a function of bond energy. Thus,
101 the R_{50} index depends only on the molecular arrangement and chemical composition of a material
102 and, hence, there should be no effect of the parent material (e.g. hardwood, softwood, grass)

103 because the R_{50} index is primarily controlled by the formation conditions of char (Harvey et al.,
104 2012).

105

106 **2. Materials and Methods**

107

108 *2.1. Study sites*

109 The study sites were Orentano (hereafter called OR), 30 km east of Pisa, Central Italy, and Mount
110 Gordon (hereafter called MG), near Marysville, in the State of Victoria, south-east Australia.

111 OR (coordinates WGS84: 43°47'22.82"N, 10°39'52.30"E) has an elevation of 20 m a.s.l., a mean
112 annual precipitation of 893 mm and a mean annual temperature of 14.3 °C. The vegetation cover

113 was a mixed forest of Downy oak (*Quercus pubescens* Willd) and Maritime pine (*Pinus pinaster*
114 Aiton) with a thick understory of common fern (*Pteridium aquilinum* L.) and *Rubus* spp. In July

115 2011, an area of 3.3 ha underwent a wildfire considered 'moderately to highly severe' on the basis
116 of the visual scales of litter and vegetation consumption proposed by Chafer et al. (2004). Most of

117 the tree stems were still standing after the fire, partly or totally scorched, while the soil was covered

118 by an ash/charcoal layer with very little or no uncharred litter remaining. This layer was sampled

119 three days after the fire, prior to any rain. Additional information about the site, including a picture
120 of the burned area, is reported in Mastrolonardo et al. (2015a).

121 The climate at MG, is characterised by a mean annual precipitation of 670 mm and mean annual
122 temperature of 13 °C. The site was chosen because it represented an end-member in terms of fire

123 severity. It was affected by the so-called 'Black Saturday fire' in early February 2009. Fire-line

124 intensity was estimated to have exceeded 70,000–80,000 kW m⁻¹, which is one of the highest

125 reported in Australia (Royal Commission, 2009). The sampling site (37°31'56.30"S,

126 145°43'17.14"E) is 3 km SW of Marysville, on the road to Narbethong, 530 m a.s.l. in elevation. It

127 was a *Eucalyptus* spp. forest, where fire removed the entire litter layer, green vegetation, and woody

128 stems <10 mm in diameter. Accordingly, fire severity was classified as 'extreme', based on the

129 classification of Chafer et al. (2004). Sampling was performed in April 2009, two months after the
130 fire and following some light rainfall, but before the more intense precipitations of winter had
131 caused any significant mixing or removal of material from the ash/charcoal layer via erosion.
132 Additional information about the site, including pictures of the burned area, are reported in
133 Mastrolonardo et al. (2015a) and Santín et al. (2012).
134 In addition, we used published data from another study site, Migliarino (hereafter, MI), described
135 by Nocentini et al. (2010), for a direct comparison to our study site OR given their proximity and
136 similarity in terms of vegetation. MI, which is located 30 km west of Pisa, had a *Pinus pinea* forest
137 with a tangled bushy understory of *Quercus ilex*, *Smilax aspera* and *Erica arborea* that was affected
138 in July 2007 by a wildfire of 'high to very high' severity (Certini et al., 2011), based on the
139 classification of Chafer et al. (2004).

140

141 *2.2. Sampling and sample preparation*

142 At both study sites, OR and MG, sampling involved the entire ash/charcoal topsoil layer, which is
143 the particulate residue of the burning, consisting of minerals and charred organic components (Bodí
144 et al., 2014). This material was sampled on four parallel 20 m transects, laid out 5 m apart, choosing
145 a point at 5 m intervals, but sampling just one point out two (ten samples in total each site).

146 At the OR site, at each sampling point the ash/charcoal layer was carefully removed by a brush
147 within a 40 x 40 cm rigid frame, limiting, as far as possible, contamination from the underlying
148 mineral soil. Similarly, four samples of litter layer were taken randomly in an adjacent (50 m away)
149 unburned area, thereby excluding the presence in the litter layer of any charred material from a
150 previous fire.

151 At MG, a 30 x 30 cm square was sampled at each sampling point. The cohesive nature of the moist
152 ash/charcoal layer contrasted with the dry and highly water repellent underlying mineral soil,
153 allowing selectively sampling the former (Doerr et al., 2010; Santín et al., 2012). Once in the
154 laboratory, the samples were air dried and sieved into four size fractions: >2, 2–1, 1–0.5, <0.5 mm.

155 Although no unburned litter remained at MG for sampling, the presence of significant amounts of
156 charred material in the litter layer is unlikely here because of the long accumulation period of fresh
157 litter since the previous fire, *i.e.* 1939 (Santin et al., 2012).

158

159

160 *2.3. General chemical properties*

161 The mineral ash content of the size fractions was determined gravimetrically after dry combustion
162 in a muffle furnace at 550 °C for 6 h. The pH was measured potentiometrically on pulverised
163 sample combined with deionised water to a ratio 1:5. Carbon, nitrogen and hydrogen concentrations
164 were measured in triplicate on each sample by a Carlo Erba NA1500 elemental analyser, after pre-
165 treatment of samples with 6 M HCl at 80 °C to eliminate carbonates (Pansu and Gautheyrou, 2006).

166 The oxygen (O) content was calculated by difference on a dry ash-free basis. Carbon-thirteen (^{13}C)
167 was measured by an isotope ratio mass spectrometer (Micromass-Optima) and reported in $\delta^{13}\text{C}$ per
168 mil (‰) relative to the international standard Vienna-Pee Dee Belemite (VPDB).

169

170 *2.4. Chemical recalcitrance (resistance to dichromate oxidation)*

171 The chemical recalcitrance of charcoal in the size fractions was estimated on the basis of chemical
172 oxidation resistant carbon, as originally proposed by Bird and Gröke (1997). The oxidation was
173 performed on five replicates for each size fraction. Briefly, 200 mg of sample was mixed with 40
174 mL of a potassium dichromate solution (0.1 M $\text{K}_2\text{Cr}_2\text{O}_7$ /2M H_2SO_4) and maintained at 60° C for 24
175 h. Thereafter, the sample was washed at least four times with 50 mL distilled water and the residue
176 left to oven-dry at 50 °C. Weight loss was measured and the recovered C and N were determined by
177 the elemental analyser. The chemical oxidation resistant carbon and nitrogen fraction (called
178 COREC and COREN, respectively) were calculated through mass balance, *i.e.* subtracting the mass
179 of C and N in the residue from the mass of C and N in the untreated sample.

180

181 2.5. Thermal recalcitrance (TG analysis and R_{50} recalcitrance index)

182 Thermogravimetric/derivative thermogravimetric analysis (TG/DTG) was carried out in duplicate
183 using a TG-DTA92 instrument (SETARAM, France). Three to ten mg of pulverised sample was
184 weighed in an alumina crucible, isothermally heated to 30 °C for 10 min and then heated from 30 to
185 700 °C in a dynamic air atmosphere (air flow 8 L h⁻¹), at a rate of 10 °C min⁻¹.

186 The R_{50} recalcitrance index was calculated according to equation (1), as in Harvey et al. (2012):

187

188
$$R_{50,x} = T_{50,x} / T_{50,graphite} \quad (1)$$

189

190 Where $T_{50,x}$ and $T_{50,graphite}$ are the temperatures corresponding to 50% oxidation/volatilization of
191 charcoal in sample x and graphite, respectively. Values for $T_{50,x}$ were obtained directly from TG
192 thermograms that had been corrected for water and ash content. Since the instrument we used in this
193 analysis could not reach temperatures able to completely oxidise graphite (over 1000 °C), we
194 assumed $T_{50,graphite}$ value to be 886 °C, as calculated by Harvey et al. (2012) in similar conditions to
195 ours.

196

197 2.6. Infrared spectroscopy

198 Diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) spectra were recorded in
199 triplicate by a Bruker TENSOR series FT-IR Spectrophotometer (Bruker, Ettlingen, Germany)
200 equipped with an apparatus for diffuse reflectance (Spectra-Tech. Inc., Stamford, CT, USA).
201 Samples were diluted with KBr (Aldrich Chemical Co. Milwaukee, WI, USA), which was used also
202 as background reference. Spectrum was collected as Kubelka-Munk units. Curve-fitting analysis
203 was performed to calculate the area under each of the individual bands by using Grams/386
204 spectroscopic software (version 6.00, Galactic Industries Corporation, Salem, NH) as in
205 Mastrolonardo et al. (2015b). The integrals of the peaks relative to aromatic rings in amorphous

206 carbon (AC) at 1590-1600 cm⁻¹, carbonate (CO₃²⁻) at 1440-1450 cm⁻¹, and carboxyl group at 1700-
207 1720 cm⁻¹ were used for multivariate statistical analyses.

208

209 *2.7. Charcoal reflectance and fuel identification*

210 Two randomly chosen samples per site – hereafter called OR-1, OR-2, MG-1, and MG-2 – were
211 selected for microscopic analysis. A subsample each size fraction was embedded in polyester resin
212 and polished at the University of Exeter, UK. Three polished blocks were produced per size
213 fraction, with the exception of the OR-1 <0.5 and 1–0.5 mm fractions, where the sample was
214 plucked from the surface during polishing. The polished blocks were studied under oil with
215 reflectance intensity (RI) 1.514 at 23 °C, using a Zeiss Axio-Scope A1 optical microscope with a
216 TIDAS-MSP 200 microspectrometer and a × 50 objective (with × 32 eyepiece magnification).

217 Reflectance measurements were done manually using MSP200 v.3.47 software. Reflectance is a
218 photometric measurement of the amount of incident light that is reflected from the polished surface
219 of a charcoal sample (Ascough et al., 2010). This measurement is compared to the amount of light
220 reflected by a synthetic standard of known reflectance. The system was calibrated with the
221 following standards: strontium titanite (5.41% Ro), gadolinium gallium garnet (1.719% Ro), and
222 spinel (0.42% Ro). Each polished block was traversed in three equally spaced transects, and all
223 encountered particles were measured in quintuplicate. In total, 680 particles were analysed (i.e.,
224 3,400 measurements).

225 Under reflected-light it was also possible to identify the original fuel type and charcoal reflectance
226 had been shown to vary between the fuel types burned in the same wildfire (e.g. Hudspith et al.,
227 2014). However, fuel type identification using this method can be challenging. In fact, often the key
228 characters required for taxonomic identification can be determined only by studying multiple planes
229 of section whereas, once the charcoal sample is embedded in resin, just one randomly orientated
230 plane is sectioned. In this study, fuel type categories were identified only in the sufficiently coarse
231 fractions, i.e. >2, 2–1, 1–0.5 mm.

232

233 *2.8. Statistics*

234 Data of size fractions from the same study site were compared by one-way ANOVA at 95%
235 confidence level (SigmaPlot 12.0). Where data did not pass the normality test (Shapiro-Wilk) or the
236 Equal Variance Test, the Kruskal-Wallis one-way analysis of variance on ranks was used. The
237 Tukey Test was applied to determine the statistical difference between means.
238 Multivariate statistical analyses, Pearson correlation and Principal component analysis (PCA) were
239 performed using IBM SPSS statistics 22. The considered variables were: AC (amorphous carbon),
240 Carboxyl and CO₃ (all three calculated from integration of IR spectra); R₅₀; C; N; δ¹³C; pH; Ash.
241 Reflectance values were not considered because of the missing data for the finest fraction (<0.5
242 mm).

243

244 **3. Results**

245

246 *3.1. Ash/charcoal mass and C content*

247 At OR, the pine forest in Italy affected by a moderate severity fire, the ash/charcoal layer amounted
248 to 5.03 Mg ha⁻¹, which, given the mean OC concentration of 266 g kg⁻¹, corresponded to 1.34 Mg
249 OC ha⁻¹. At Mt. Gordon (MG), the eucalypt forest in Australia affected by an extremely severe fire,
250 the ash/charcoal load was very high in terms of mass, 60.53 Mg ha⁻¹ (Santín et al., 2012), but its OC
251 concentration was quite low, 79 g kg⁻¹, corresponding to 7.78 Mg OC ha⁻¹ (Santín et al., 2012).

252

253 *3.2. Size fractions mass and composition*

254 At OR, the <0.5 mm fraction was the most abundant (36% of total mass), while the two coarsest
255 fractions were quantitatively similar and amounted to 26% and 24% of total mass, respectively
256 (Table 1; Fig 1). At MG, the finest fraction was dominant in terms of mass, representing 66% of the
257 whole, while the coarsest fraction amounted to just 5% (Table 1; Fig 1).

258 At OR, size fractions showed a clear trend of decreasing C concentration with decreasing size, from
259 510.4 to 168.5 g kg⁻¹, while no trend was apparent for N, which ranged between 9.6 and 16.2 g kg⁻¹.
260 The C to N ratio decreased with decreasing size fraction, a trend found also by Nocentini et al.
261 (2010) at Migliarino (MI), a Mediterranean pine forest affected by a high severity fire. However, at
262 our study site in Orentano, the C/N ratio was almost half of that measured at MI (Table 1), which is
263 possibly indicative of less advanced charring at OR. Mineral ash content increased with decreasing
264 size fraction, with the finest fraction containing 70% ash. Such a trend was reported also by
265 Nocentini et al. (2010) at MI, although with much lower values (8% of mineral ash in the coarsest
266 fraction, up to 45% in the finest fraction). Given the alkalinity of ash, also the pH increased at OR
267 with decreasing size fraction, from 7.52 to 9.47.

268 At MG, the C content of the size fractions, from 442.8 to 63.3 g C kg⁻¹, was lower than that of the
269 corresponding specimens from OR. However, we found the same trends in C, N and mineral ash
270 content according to size fractions as observed at OR (Table 1). The finest fraction still stored more
271 than one third of the total C (38%) due to its high mass proportion, *i.e.* 66% of the total. The pH,
272 while showing the same increasing trend with decreasing size fraction found at OR, was
273 considerably lower at MG (from 6.81 to 7.36; Table 1).

274 The H/C and O/C atomic ratios of charcoal provide an indirect measurement of aromaticity because
275 charcoal formation processes at high temperatures implies H and O depletion in aromatic C rings
276 (Wiedemeier et al., 2015). While H/C atomic ratio showed a clear trend of increasing values with
277 decreasing size for both OR and MG charcoal fractions, O/C values did not show any trend or
278 significant difference between the fractions (Table 1). Plotting a Van Krevelen diagram of H/C and
279 O/C values, size fractions cluster into distinct fields (Fig. 2). In particular, at OR, the two coarsest
280 fractions showed a degree of condensation comparable to coal materials, while the two finest
281 fractions revealed much lower condensation. These results follow the same trend found at MI by
282 Nocentini et al. (2010), despite the coarsest fraction at that site showing much higher condensation
283 than the same fraction at OR (Fig. 2).

284 The $\delta^{13}\text{C}$ signature of charcoal depends on both source material and the charring conditions (Bird
285 and Ascough, 2012; Wiedemeier et al., 2015). At OR, the whole charcoal showed a slight change of
286 $\delta^{13}\text{C}$ signature ($-28.52 \pm 0.48 \text{ ‰}$) with respect to unburned litter ($-29.13 \pm 0.27 \text{ ‰}$), because of
287 potential preferential depletion of ^{12}C from organic material, particularly cellulose, during heating
288 (Bird and Ascough, 2012). Finally, no significant difference was found between the fractions at
289 both sites (Table 1).

290

291 *3.3. Structural features assessed by IR spectroscopy*

292 Overall, infrared spectra of size fractions from OR showed a gradual shift of major peaks moving
293 from coarse fractions to finer ones (Fig. 3). All spectra were characterized by a broad signal in the
294 region $4000\text{--}2500 \text{ cm}^{-1}$, attributable to strong stretching vibration of OH groups in Al--OH (3600--
295 3500 cm^{-1}) and hydroxyl linkage at around 3400 cm^{-1} . A shoulder between $3082\text{--}3066 \text{ cm}^{-1}$ could
296 be assigned to CH stretching in alkanes ($=\text{CH}_2$ and $=\text{CHR}$) and/or aromatic rings. The asymmetric
297 (2930 cm^{-1}) and symmetric (2840 cm^{-1}) $-\text{CH}$ stretching appeared as a weak shoulder in all spectra,
298 while the peaks in the range $1240\text{--}1200 \text{ cm}^{-1}$ probably belong to C--N and phenolic C--O stretching.
299 The region $2400\text{--}2000 \text{ cm}^{-1}$ showed weak peaks to assign to the CN stretching vibration of iso-
300 cyanate, nitrile and cyanamide groups (Francioso et al., 2011; Nocentini et al., 2010).

301 The coarsest fraction was characterized by a shoulder at 1719 cm^{-1} , due to C=O stretching vibration
302 in benzene-carboxylic acids (González-Pérez et al., 2004), and a couple of partly overlapping peaks
303 at 1350 and 1273 cm^{-1} , due to C--O stretching motion (Guo and Bustin, 1998). This result matches
304 the one by Nocentini et al. (2010), who at MI found carboxyl groups only in the coarsest size
305 fraction.

306 All fractions showed strong bands at around both 1590 and 1400 cm^{-1} , which decreased with
307 decreasing particles size and might be assigned to aromatic ring vibration in amorphous carbon
308 (Francioso et al., 2011). These groups would be not IR-active, but when the C is substituted with N
309 or O in the aromatic bonds, the symmetry of the rings is broken, promoting bond dipoles and an IR-

310 active signal (Kaufman et al., 1989). In the spectrum of the finest fraction (<0.5 mm), these peaks
311 almost disappeared and were overlapped by a peak at 1457 cm⁻¹, which, like the one at 880 cm⁻¹,
312 reveals the presence of carbonates (Tatzber et al., 2007). An increase of the signal at 1080–1035 cm⁻
313¹ with decreasing particle size, as also found at MI by Nocentini et al. (2010), could be attributable
314 to almost uncharred material, and/or to minerals (Madejová, 2003) from ash, or it could be due to
315 soil impurities present in the ash/charcoal layer sampled.

316 At MG, there were clear differences between size fractions larger and smaller than 1 mm (Fig. 3).

317 The IR spectra of the 2–1 and >2 mm fractions showed common features, such as the presence of
318 oxygenate groups, as displayed by the peaks at in the regions 3600-3000 cm⁻¹ (OH groups stretch)
319 and 2600-2400 cm⁻¹ (H bonding between OH groups), as well as at 1700 (stretching of carboxyl
320 group in acids) and 1380 cm⁻¹ (stretching of C-O group). The bands of amorphous carbon, which
321 appeared at around 1600 and 1400 cm⁻¹, were higher in these two fractions than in the smaller ones.
322 The smaller than 1 mm fractions had much higher content in mineral components than the larger
323 than 1 mm ones, as revealed by the more intense signals at 3600 cm⁻¹ (OH groups in Al-OH), 1050
324 cm⁻¹ (Si-O-Si, Si-O stretching), 920 cm⁻¹ (Al-OH stretching), 797 cm⁻¹ (Si-O stretching; Si-O-Al
325 stretch), and 679 cm⁻¹ (Si-O and Si- O-Al stretch). Finally, the two smallest fractions showed a band
326 at around 1600 cm⁻¹ that could refer to the OH-bending vibrations of hydration water molecules.
327

328 *3.4. Chemical and thermal charcoal recalcitrance*

329 Dichromate oxidation caused high loss of C and N in all size fractions (Table 2), with no clear trend
330 or statistical difference between fractions at both sites, probably because of the large range of
331 standard deviation values. This treatment is just one of the several used to quantify pyrogenic
332 carbon, better expressed as chemical oxidation resistant elemental C (COREC) (Reisser et al.,
333 2016). The COREC and COREN concentrations were similar in the fractions from both study sites,
334 amounting to about 40% of initial C and 25% of initial N (Table 2). The COREC/COREN (C/N)
335 ratio was much higher in the coarsest fraction than in the others, particularly at MG, therefore

336 highlighting a possible higher recalcitrance of this fraction. Recalcitrance of charcoal fractions was
337 also evaluated using the Recalcitrance index R_{50} that was developed by Harvey et al. (2012) for
338 biochar. R_{50} values were similar at OR and MG, the coarsest charcoal fraction showing slightly
339 higher values compared to the other fractions, which did not differ from each other (Table 2).

340

341 *3.5. Fuel type and charcoal reflectance*

342 In the MG samples, six categories of fuel were observed: 1) two distinct angiosperm 'wood' types
343 (identified based on the presence of vessels); 2) 'bark' (from either wood type); 3) 'herb' (or
344 parenchyma/non woody tissue); 4) 'roots' (intended as very fine roots, which likely relate to the
345 herbaceous surface cover, whereas potential larger trees roots were classified as 'wood' as they
346 could not be differentiated at this small particle size); 5) 'soil aggregates' and 6) 'decomposed
347 matter', which is strongly degraded plant material likely from the litter layer (Table 3). The OR
348 samples showed the same categories of fuel, however, one of the 'wood' types was gymnosperm
349 wood (based on the occurrence of pycnoxylic wood and repeating rectangular cells), as well as
350 charred 'needles' (from pine trees) and 'humified matter' (undifferentiated humified plant tissues).
351 At OR, wood was the main parent material in the coarsest charcoal fraction (>2 mm), on average
352 amounting to about half of the total (Table 3). In contrast, the medium fractions (2–1 mm and 1–
353 0.5 mm) were mainly composed of herbaceous fuels and degraded plant material from the litter
354 layer, and only to a lesser extent by wood (<28%).

355 At MG, the coarsest charcoal fraction was almost totally derived from wood (Table 3), whereas the
356 medium fractions contained a wider variety of parent material, principally soil aggregates and
357 secondarily decomposed material and wood. The considerable presence of soil aggregates is the
358 further evidence of a contribution of fire-affected mineral soil material to the ash/charcoal material
359 sampled. Although the fuel source composition of the finest (<0.5 mm) fraction was not quantified,
360 it seemed to be largely composed of burned soil aggregates, with a minor component of
361 decomposed material and wood, similar to the medium fractions.

362 When the combined reflectance data were plotted according to size fraction and site (Fig. 4), one
363 sample from MG (MG-1) showed a median reflectance for the coarsest fraction (>2 mm $\%Ro_{median}$
364 1.79) significantly higher than all the other fractions ($\%Ro_{median}$ 0.60 - 0.91) from both samples from
365 MG. In contrast, at OR, reflectance was significantly higher in the fine fractions than in the >2 mm
366 one (Fig. 4). Finally, the median reflectances of the two finest fractions (<1 mm) were higher at OR
367 than at MG (Fig. 4). As charcoal reflectance is governed by the fuel type (*c.f.* Hudspith et al., 2014),
368 we shared the reflectance data in each fraction according to fuel type (Table 3). As many of the fuel
369 type categories we identified were likely derived from the same plant material (*i.e.* wood, bark and
370 needles) or source (*i.e.* ground fuels, including: roots, soil aggregates, humified and decomposed
371 plant material), data were further grouped into aboveground (understory and/or canopy level
372 including: wood, bark, herb, needle) and ground fuel categories (Fig. 5). Overall, the ground fuels
373 typically displayed populations of reflectances lower than aboveground fuels, despite the
374 contrasting fuel compositions and fire behaviour between the OR and MG sites (Fig. 5). Both OR
375 samples, in all fractions except the 1–0.5 mm one, showed a median reflectance of ground fuels
376 significantly lower than the one of aboveground fuels (Fig. 5). A significant difference in median
377 reflectance between the ground and the aboveground fuels was found also in one of the two
378 analysed samples from MG (MG-1), but not the other, where only the 1–0.5 mm fraction was
379 significantly different from the others (Fig. 5).

380

381 *3.6. Multivariate analysis*

382 Pearson correlation coefficients are shown in supplementary material (S1). Several variables at both
383 OR and MG were strongly and significantly correlated each other. The mineral ash content was
384 inversely related to R_{50} and to the C content. The latter was directly related to N and R_{50} and
385 inversely related to pH and carboxyl. Carboxyl was directly related to pH and ash. Carbonates were
386 revealed only by the IR spectra of OR samples. They were directly related to ash and carboxyl and

387 inversely related to C, AC and R_{50} . Finally, at MG, AC was inversely related only to carboxyl,
388 while at OR AC was also inversely related to pH, ash and directly related to C and R_{50} .

389 The PCA outcome for both OR and MG is displayed in Table 4. At OR, two components were
390 extracted by nine variables. The first principal component explained 69.2% of the total variation,
391 the second one 21.2%. PC1 was particularly influenced by C, AC, and R_{50} (negative contribution),
392 pH, ash and carboxyl (positive contribution). For PC2, $\delta^{13}\text{C}$ had a high positive effect. At MG two
393 components were extracted by 8 variables. Here the PC1 component explained 68.2 % of the total
394 variation, the second one 16.7%. PC1 was particularly influenced by the same factors as at OR (C,
395 AC, and R_{50} negatively, pH and ash positively), apart from carboxyl, which did not influence much
396 this first component. No variable had a strong (higher than 0.80) influence on PC2. Only $\delta^{13}\text{C}$ value
397 was high enough (0.76), the same variable influencing PC2 at OR.

398 When a new PCA was performed combining data from OR and MG, the intersection of Factor 1
399 and Factor 2 highlighted that groups were clustered according to site and size fraction (Fig. 6).

400 Overall, in both the study areas the fraction >2 mm appeared as isolated compared to the other ones,
401 but this effect was more evident at MG than OR.

402

403 4. Discussion

404 4.1. Composition and recalcitrance of charcoal from OR and MG

405 Whilst our results are derived from two specific forest ecosystems and should not readily
406 extrapolated to other environments, where different vegetation and fire characteristics may result in
407 differing charcoal formation (e.g. grassland), our data shows many notably differences to previous
408 studies. The C concentration at both OR and MG (Table 1), for instance, were quite low compared
409 to previously published data for charcoal in wildfire ash (e.g. Merino et al., 2015; Nocentini et al.,
410 2010; Rumpel et al., 2007; Wiechmann et al., 2015). Charcoal recalcitrance, as inferred by chemical
411 oxidation treatment, was also relatively low: COREC and COREN values from both OR and MG
412 (Table 2) were almost half of those reported by Rumpel et al. (2007), obtained on charcoal particles

413 larger than 2 mm with an oxidation time equal to ours. Also the thermal recalcitrance index
414 obtained from both OR and MG was relatively low (Table 2) if evaluated on the scale proposed by
415 Harvey et al. (2012). This scale comprises of three classes with decreasing recalcitrance: class A,
416 with $R_{50} \geq 0.70$, class B, with $0.50 \leq R_{50} < 0.70$, and class C, with $R_{50} < 0.50$. According to this scale
417 only the fraction >2 mm from OR belongs to class B, while all the others fractions from both the
418 sites belong to class C, thus denoting a generally low recalcitrance of our wildfire charcoal.
419 Nonetheless, it is worth highlighting that this scale was designed for biochar, a material produced
420 under very oxygen-limited conditions that can be expected to be more recalcitrant than wildfire
421 charcoal. Moreover, despite the differences in conditions in which biochar and wildfire charcoal
422 form, Harvey et al. (2012) noted that many of the biochar samples also belong to class C. Therefore,
423 it seems that the R_{50} index may be reliably used also on natural charcoal from forest wildfire,
424 although further studies are needed to confirm the validity of such a hypothesis for wildfire charcoal
425 from forest ecosystems or other environments.

426 Overall, the high mineral ash content, low C content and low recalcitrance of the charcoal from OR
427 and MG could plausibly be explained by significant contribution from uncharred material and/or
428 mineral soil. However, R_{50} values of charcoal were substantially higher than those reported for
429 uncharred material ($R_{50} < 0.39$; Harvey et al., 2012), suggesting that the contribution from the latter
430 was minor in all size fractions. That said, spectroscopy analysis and visual characterization of fuel
431 type clearly showed that, particularly at MG, the contribution from mineral soil to the ash/charcoal
432 samples was not negligible and increased with decreasing size fraction (Fig. 3; Table 3).
433 A high mineral ash content likely affected also the reliability of the data on O concentration
434 calculated by difference (Nocentini et al., 2010; Wiedemeier et al., 2015). A bias in O calculation
435 would explain also the lack of significant differences of the atomic O/C ratio values between the
436 charcoal fractions (Table 1). As a result, all charcoal fractions from both OR and MG showed
437 relatively low condensation degree (Fig. 2). Even, the sample richest in mineral ash, the fractions
438 <2 mm from MG, showed extremely high H/C and O/C ratios and a position in the Van Krevelen

439 diagram that is not in line with charcoal.

440 Natural post-fire mixing of mineral soil with the ash/charcoal top layer was unlikely to have
441 occurred at OR, since the short time elapsed between wildfire and sampling. We can also exclude
442 this at MG even so two months passed between the wildfire and sampling. The fragile ash layer was
443 visually fully intact at all sampling locations; clear evidence of little or no topsoil mixing induced
444 by wind, water or bioturbation. Therefore, the most likely explanation for the patterns discussed
445 above is that the extreme burning conditions at MG led to charring and disintegration of the very
446 top mineral soil layer, and this becoming part of the wettable ash layer, which overlay the lighter
447 coloured, structured and water repellent soil layer underneath.

448

449 *4.2. Relationship between size fractions and fire severity / fuel source*

450 The contrasting mass proportion of size fractions from OR and MG could indicate that higher
451 severity fires produce charred materials with smaller sizes and a reduced proportion of organic
452 content (Table 1). Indeed, it has been reported that charcoal particle size becomes finer with
453 increasing temperatures (Bodí et al., 2014; Brook and Wittenberg, 2016). However, under the same
454 fire conditions, different plant species and plant parts can result in charcoal particles of different
455 size (Bodí et al., 2014) and mineral ash content (Forbes et al., 2006). In this study, at OR and MG,
456 both pre-fire vegetation and fire behaviour differed greatly between sites, resulting in very different
457 charcoal formation conditions. Yet, as highlighted by the multivariate analyses (S1; Table 6), some
458 of the most important variables affecting the first principal component analysis and explaining
459 much of the total variance (68-69%), were the same at both study areas: pH, C and mineral ash
460 contents, charcoal aromaticity and recalcitrance. In particular, charcoal recalcitrance, C and mineral
461 ash contents were strongly related to each other and showed the same relationships at both sites
462 (S1).

463 Notwithstanding this, there were some clear differences in the ash/charcoal particle size
464 composition at the two sites. At MG, the coarsest fraction (>2 mm) was distinct from the others. In

465 fact, it was much richer in OM and the charcoal showed higher charring/condensation degree and,
466 apparently, higher recalcitrance. This result is probably an outcome of the fact that at MG
467 angiosperm wood was almost the only fuel source of this fraction (Table 3). Probably, only the
468 coarsest, highly lignified woody particles were not completely turned to ash or heavily reduced in
469 size by the extremely severe fire that occurred at this site. At OR, the differences between the size
470 fractions were consistent with those found at MG, but they were more gradual between the
471 fractions. In particular, the >2 mm fraction was more similar to the 2–1 mm fraction than at MG. At
472 OR, the source material in the coarsest fraction comprised wood, but also herbs and litter (Table 3).
473 With decreasing size fraction, the ground fuels became more abundant. Here, as at MG, the gradual
474 change in both composition and fuel types seems to confirm that parent material is a major
475 controlling factor of the nature of size fractions.

476 At both sites, the charcoal in the coarsest fraction (>2 mm) showed the highest C content,
477 aromaticity (AC), and condensation (low H/C and O/C), which, along with the slightly higher
478 thermal recalcitrance index (R_{50}), is indicative of longer residence time than the charcoal in the finer
479 fractions, as suggested by Ohlson et al. (2009). This is not surprising as larger charcoal pieces are
480 likely to be derived from down wood already present at the forest floor pre-fire, or trees and
481 branches fallen during the fire, which can all sustain some combustion after the passage of the main
482 flaming front. Consequently, fine charcoal seem to better reflect the characteristics of the main
483 flaming front, and hence fire severity, than coarse charcoal.

484 In this regard, reflectance is a measureable property of charcoal that could semi-quantitatively relate
485 to the duration of heating experienced by a given fuel (Belcher and Hudspith, 2016). This plausibly
486 occurs because charcoal reflectance progressively increases during the combustion process,
487 reaching a peak value just before the charcoal is converted to mineral ash (Belcher and Hudspith,
488 2016). As such, fuels of a given size and type that have been heated for longer durations will be
489 better combusted, resulting in smaller charcoal particles with higher reflectance. This is in
490 agreement with our results from OR, where the median ground fuel charcoal reflectance in the finer

491 fractions is significantly higher than the median reflectance of the ground fuels from the coarsest
492 fraction (Fig. 5). This would suggest that relatively more thermal energy was delivered to the
493 ground (Belcher and Hudspith, 2016), resulting in higher reflectance values for the ground fuels.
494 Fire conditions in the canopy and in the understory are usually different (Halofsky and Hibbs, 2008;
495 Knox and Clarke, 2016), which may partly explain why at MG charcoal reflectance was higher in
496 aboveground fuels of the coarsest fraction than in the ground fuels (Fig. 5). At MG, during the
497 wildfire the high wind speeds with gusts $>90 \text{ km h}^{-1}$ (Royal Commission, 2009) contributed to a
498 fast-moving fire front. The resulting short fire residence time would likely mean that post-frontal
499 smouldering combustion of the ground fuels was relatively minor and that comparatively less
500 thermal energy than at OR was delivered to the ground (as revealed by the low reflectance of
501 ground fuels; Fig. 5), despite the high degree of fuel consumption in the understory and ground
502 fuels (resulting in high ash production; Table 1). This finding is also supported by Doerr et al.
503 (2010) who, at MG, highlighted the noticeable dichotomy between the extreme fire intensity and the
504 moderate soil burn severity, as determined by the significant seedbed survival and presence of soil
505 water repellency close to the soil surface.

506

507 *4.3. Implications for future studies on freshly produced charcoal*

508 There is an increasing need to standardize methodologies for analysing the PyOM continuum,
509 including charcoal, and for separating fractions with narrower ranges of characteristics and
510 residence times in soil (Bird et al., 2015). Here we have shown that sieving is a cheap and time-
511 effective procedure to obtain fractions that comprise natural charcoal from forest wildfires with
512 specific properties in terms of parent material, chemical composition, and recalcitrance.
513 Considering all ash/charcoal as whole samples, in contrast, could lead to biased results or, at best, to
514 loss of information. At OR, for instance, elemental analysis of the whole ash/charcoal material gave
515 a quite similar result to the 1-0.5 mm fraction, which only represented 14% of the total mass of the
516 whole, hence being the least abundant and representative fraction (Table 1).

517 The four size-fractions we focused on in this study were chosen *a priori*, based on the work by
518 Nocentini et al. (2010), to enable direct comparison of samples from two Italian pine forest sites,
519 OR in this study, and MI in theirs. The best size thresholds to capture intrinsic differences of the
520 investigated material could be site-sensitive. To limit the number of time-consuming or expensive
521 analyses, recombination of some similar size fractions could possibly be done based on the “ash
522 content” of the fractions, which is simple to determine and seems to relate well to both elemental
523 composition and recalcitrance (S1). On this basis, for both OR and MG samples we could
524 recombine – or, better, after a preliminary assessment, avoid separating – the 2–1 mm and 1–0.5 mm
525 fractions. In fact, as well as the ash content, all the other variables that were compared with the
526 post-hoc test (*i.e.* C; N; $\delta^{13}\text{C}$; pH; H/C; O/C) did not show any statistical difference between the two
527 fractions (Table 1). This means that mixing those two fractions to reduce the number of samples to
528 analyze would not significantly impact the quality of the final information. However, the IR spectra
529 of MG may suggest some major structural differences between the 2–1 mm and 1–0.5 mm
530 fractions. Consequently, determining the number of size fractions to be separated based on the
531 mineral ash content alone certainly merits further investigation.

532

533 5. Conclusions

534 This study confirms the high variability of properties for the wildfires combustion products in
535 general and, in particular, for charcoal. Such variability seems to depend, at least in part, on fire
536 severity, since we found that a higher severity fire (*i.e.* MG), which implied greater consumption of
537 fuel, led to production of a higher proportion of ash and smaller charred particles with lower
538 recalcitrance. However, we found that also the parent fuel was an important controlling factor of
539 charcoal properties, perhaps even more important than fire conditions. In fact, certain fuels were
540 preferentially sorted into specific charcoal size-fractions, which showed distinct composition and
541 recalcitrance. Size fractionation is thus a simple, fast and cheap tool for partially overcoming the
542 inherent high variability of wildfire combustion products, and enabling obtaining specimens with a

543 narrower range of properties. The most appropriate number of fractions to analyse and their size
544 boundaries are probably site-specific, and thus should be defined on a case-by-case basis. We
545 propose for this purpose the mineral ash content of the separated size fractions as a powerful
546 indicator of substantial similarity of two or more fractions and, thus, of the opportunity to
547 recombine them for further analyses.

548 Finally, the thermal recalcitrance index R_{50} , previously tested on biochar, provided encouraging
549 results also on natural charcoal; therefore, this index deserves to be further validated on fresh
550 natural charcoal formed in different situations in terms of burning conditions and fuel type.

551

552 **Acknowledgments**

553 The first author, G.M., is a Marie-Curie COFUND postdoctoral fellow, co-founded by the European
554 Commission and the University of Liege (ref. number: 600405). The work of the first author, G.M.,
555 was supported by a mobility fellowship provided by the European Science Foundation (ref. number:
556 3690) under the framework of the MOLTER Program (MOlecular structures as drivers and tracers
557 of TERrestrial C fluxes). For the Mount Gordon site, sample collection and analysis were supported
558 by a UK Natural Environment Research Council Urgency Grant (NE/F00131X/ 1) held by S.H.
559 Doerr. Patrick Lane, Petter Nyman, Richard Shakesby, Gary Sheridan, and Hugh Smith supported
560 sample collection in Australia. S.H. Doerr acknowledges support during manuscript preparation via
561 a *Leverhulme Research Fellowship* (RF-2016-456\2). All Authors thank two anonymous reviewers
562 for their useful comments on the manuscript.

563

564 **References**

565 Alexis, M.A., Rasse, D.P., Rumpel, C., Bardoux, G., Péchot, N., Schmalzer, P., Drake, B., Mariotti,
566 A., 2007. Fire impact on C and N losses and charcoal production in a scrub oak ecosystem.
567 Biogeochemistry 82, 201–216.

568 Alexis, M.A., Rumpel, C., Knicker, H., Leifeld, J., Rasse, D., Péchot, N., Bardoux, G., Mariotti, A.,
569 2010. Thermal alteration of organic matter during a shrubland fire: A field study. *Org. Geochem.*
570 41, 690–697. doi:10.1016/j.orggeochem.2010.03.003

571 Ascough, P.L., Bird, M.I., Scott, A.C., Collinson, M.E., Cohen-Ofri, I., Snape, C.E., Le Manquais,
572 K., 2010. Charcoal reflectance measurements: Implications for structural characterization and
573 assessment of diagenetic alteration. *J. Archaeol. Sci.* 37, 1590–1599.
574 doi:10.1016/j.jas.2010.01.020

575 Ascough, P., Bird, M., Wormald, P., Snape, C., Apperley, D., 2008. Influence of pyrolysis variables
576 and starting material on charcoal stable isotopic and molecular characteristics. *Geochim.*
577 *Cosmochim. Acta* 72, 6090–6102.

578 Belcher, C.M., Hudspith, V.A., 2016. The formation of charcoal reflectance and its potential use in
579 post-fire assessments. *Int. J. Wildl. Fire* 25, 775–779. doi:10.1071/WF15185

580 Bird, M.I., Ascough, P.L., 2012. Isotopes in pyrogenic carbon: A review. *Org. Geochem.* 42, 1529–
581 1539. doi:10.1016/j.orggeochem.2010.09.005

582 Bird, M.I., Gröcke, D.R., 1997. Determination of the abundance and carbon isotope composition of
583 elemental carbon in sediments. *Geochim. Cosmochim. Acta* 61, 3413–3423. doi:10.1016/S0016-
584 7037(97)00157-9

585 Bird, M.I., Wynn, J.G., Saiz, G., Wurster, C.M., McBeath, A., 2015. The pyrogenic carbon cycle.
586 *Annu. Rev. Earth Planet. Sci.* 43, 273–298. doi:10.1146/annurev-earth-060614-105038

587 Bodí, M.B., Martin, D.A., Balfour, V.N., Santín, C., Doerr, S.H., Pereira, P., Cerdà, A., Mataix-
588 Solera, J., 2014. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects.
589 *Earth-Science Rev.* doi:10.1016/j.earscirev.2013.12.007

590 Brook, A., Wittenberg, L., 2016. Ash-soil interface: Mineralogical composition and physical
591 structure. *Sci. Total Environ.* Ahead of Print. doi:10.1016/j.scitotenv.2016.02.123

592 Certini, G., Nocentini, C., Knicker, H., Arfaioli, P., Rumpel, C., 2011. Wildfire effects on soil
593 organic matter quantity and quality in two fire-prone Mediterranean pine forests. *Geoderma* 167–
594 168, 148–155. doi:10.1016/j.geoderma.2011.09.005

595 Chafer, C.J., Noonan, M., Macnaught, E., 2004. The post-fire measurement of fire severity and
596 intensity in the Christmas 2001 Sydney wildfires. *Int. J. Wildl. Fire* 13, 227–240.
597 doi:10.1071/WF03041

598 Doerr, S.H., Shakesby, R.A., Smith, H.G., Sheridan, G.J., Lane N.J., Bell, T. & Blake, W.H. The
599 catastrophic Victoria fires of 2009: extreme fire intensity, but only moderate soil burn severity?
600 Reconstructing fire behaviour from soil, ash and seedbank survival data. *Proceedings of the 6th*
601 *International Conference on Forest Fire Research*, 15–18th Nov. 2010, Coimbra, Portugal. Paper
602 #279.

603 Eckmeier, E., Gerlach, R., Skjemstad, J.O., Ehrmann, O., Schmidt, M.W.I., 2007. Minor changes in
604 soil organic carbon and charcoal concentrations detected in a temperate deciduous forest a year
605 after an experimental slash-and-burn. *Biogeosciences* 4, 377–383. doi:10.5194/bg-4-377-2007

606 Forbes, M.S., Raison, R.J., Skjemstad, J.O., 2006. Formation, transformation and transport of black
607 carbon (charcoal) in terrestrial and aquatic ecosystems. *Sci. Total Environ.* 370, 190–206.
608 doi:10.1016/j.scitotenv.2006.06.007

609 Francioso, O., Sanchez-Cortes, S., Bonora, S., Roldán, M.L.M.L., Certini, G., 2011. Structural
610 characterization of charcoal size-fractions from a burnt *Pinus pinea* forest by FT-IR, Raman and
611 surface-enhanced Raman spectroscopies. *J. Mol. Struct.* 994, 155–162.
612 doi:10.1016/j.molstruc.2011.03.011

613 González-Pérez, J.A., González-Vila, F.J., Almendros, G., Knicker, H., 2004. The effect of fire on
614 soil organic matter-a review. *Environ. Int.* 30, 855–70. doi:10.1016/j.envint.2004.02.003

615 Guo, Y., Bustin, R.M., 1998. FTIR spectroscopy and reflectance of modern charcoals and fungal
616 decayed woods: implications for studies of inertinite in coals. *Int. J. Coal Geol.* 37, 29–53.
617 doi:10.1016/S0166-5162(98)00019-6

618 Halofsky, J.E., Hibbs, D.E., 2008. Determinants of riparian fire severity in two Oregon fires, USA.
619 Can. J. For. Res. 38, 1959–1973. doi:10.1139/X08-048

620 Hammes, K., Schmidt, M.W.I., Smernik, R.J., Currie, L.A., Ball, W.P., Nguyen, T.H., Loucheouarn,
621 P., Houel, S., Elmquist, M., Cornelissen, G., Skjemstad, J.O., Dunn, J.C., Hatcher, P.G.,
622 Hockaday, W.C., Smith, D.M., Hartkopf-fro, C., Bo, A., Gschwend, P.M., Flores-cervantes,
623 D.X., Largeau, C., Rumpel, C., Guggenberger, G., Kaiser, K., Rosa, M. De, Manning, D.A.C.,
624 Lo, E., 2007. Comparison of quantification methods to measure fire-derived (black/elemental)
625 carbon in soils and sediments using reference materials from soil, water, sediment and the
626 atmosphere. Global Biogeochem. Cycles 21, GB3016. doi:10.1029/2006GB002914

627 Harvey, O.R., Kuo, L.J., Zimmerman, A.R., Loucheouarn, P., Amonette, J.E., Herbert, B.E., 2012.
628 An index-based approach to assessing recalcitrance and soil carbon sequestration potential of
629 engineered black carbons (biochars). Environ. Sci. Technol. 46, 1415–1421.
630 doi:10.1021/es2040398

631 Hatton, P.-J., Chatterjee, S., Filley, T.R., Dastmalchi, K., Plante, A.F., Abiven, S., Gao, X.,
632 Masiello, C.A., Leavitt, S.W., Nadelhoffer, K.J., Stark, R.E., Bird, J.A., 2016. Tree taxa and
633 pyrolysis temperature interact to control the efficacy of pyrogenic organic matter formation.
634 Biogeochemistry 130, 103–116. doi:10.1007/s10533-016-0245-1

635 Hudspith, V.A., Belcher, C.M., Yearsley, J.M., 2014. Charring temperatures are driven by the fuel
636 types burned in a peatland wildfire. Front. Plant Sci. 5, 714. doi:10.3389/fpls.2014.00714

637 Kaufman, J.H., Metin, S., Saperstein, D.D., 1989. Symmetry breaking in nitrogen-doped amorphous
638 carbon: Infrared observation of the Raman-active G and D bands. Phys. Rev. B 39, 13053.

639 Knicker, H., Hilscher, A., González-Vila, F.J., Almendros, G., 2008. A new conceptual model for
640 the structural properties of char produced during vegetation fires. Org. Geochem. 39, 935–939.
641 doi:10.1016/j.orggeochem.2008.03.021

642 Knox, K.J.E., Clarke, P.J., 2016. Measuring fire severity: Are canopy, understorey and below-
643 ground measures coupled in sclerophyll forest fires? *Plant Ecol.* 217, 607–615.
644 doi:10.1007/s11258-016-0609-6

645 Madejová, J., 2003. FTIR techniques in clay mineral studies. *Vib. Spectrosc.* 31, 1–10.
646 doi:10.1016/S0924-2031(02)00065-6

647 Masiello, C.A., 2004. New directions in black carbon organic geochemistry. *Mar Chem* 92, 201–
648 213. doi:10.1016/j.marchem.2004.06.043

649 Mastrolonardo, G., Rumpel, C., Forte, C., Doerr, S.H., Certini, G., 2015a. Abundance and
650 composition of free and aggregate-occluded carbohydrates and lignin in two forest soils as
651 affected by wildfires of different severity. *Geoderma* 245–246, 40–51.
652 doi:10.1016/j.geoderma.2015.01.006

653 Mastrolonardo, G., Francioso, O., Di Foggia, M., Bonora, S., Forte, C., Certini, G., 2015b. Soil
654 pyrogenic organic matter characterisation by spectroscopic analysis: a study on combustion and
655 pyrolysis residues. *J. Soils Sediments* 15, 769–780. doi:10.1007/s11368-014-1034-x

656 McBeath, A. V., Smernik, R.J., Krull, E.S., 2013. A demonstration of the high variability of chars
657 produced from wood in bushfires. *Org. Geochem.* 55, 38–44.
658 doi:10.1016/j.orggeochem.2012.11.006

659 Merino, A., Chávez-Vergara, B., Salgado, J., Fonturbel, M.T., García-Oliva, F., Vega, J.A., 2015.
660 Variability in the composition of charred litter generated by wildfire in different ecosystems.
661 *CATENA* 133, 52–63. doi:10.1016/j.catena.2015.04.016

662 Michelotti, L.A., Miesel, J.R., 2015. Source material and concentration of wildfire-produced
663 pyrogenic carbon influence post-fire soil nutrient dynamics. *Forests* 6, 1325–1342.
664 doi:10.3390/f6041325

665 Nocentini, C., Certini, G., Knicker, H., Francioso, O., Rumpel, C., 2010. Nature and reactivity of
666 charcoal produced and added to soil during wildfire are particle-size dependent. *Org. Geochem.*
667 41, 682–689. doi:10.1016/j.orggeochem.2010.03.010

668 Ohlson, M., Dahlberg, B., Økland, T., Brown, K.J., Halvorsen, R., 2009. The charcoal carbon pool
669 in boreal forest soils. *Nat. Geosci.* 2, 692–695. doi:10.1038/ngeo617

670 Pansu, M., Gautheyrou, J., 2006. *Handbook of Soil Analysis: Mineralogical, Organic and Inorganic*
671 *Methods*. Springer, New York.

672 Parsons, A., Robichaud, P.R., Lewis, S.A., Napper, C., Clark, J.T., 2010. Field guide for mapping
673 post-fire soil burn severity. *Gen. Tech. Rep. RMRS-GTR-243*. U.S. Department of Agriculture,
674 Forest Service, Rocky Mountain Research Station, Fort Collins, CO, 49 pp. Available at
675 http://www.fs.fed.us/rm/pubs/rmrs_gtr243.pdf.

676 Pyle, L.A., Hockaday, W.C., Boutton, T., Zygourakis, K., Kinney, T.J., Masiello, C.A., 2015.
677 Chemical and Isotopic Thresholds in Charring: Implications for the Interpretation of Charcoal
678 Mass and Isotopic Data. *Environ. Sci. Technol.* 49, 14057–14064. doi:10.1021/acs.est.5b03087

679 Randerson J.T., Chen Y., Van Der Werf G.R., Rogers B.M., Morton D.C., 2012. Global burned
680 area and biomass burning emissions from small fires. *J. Geophys. Res. Biogeosci.* 117, G04012.
681 doi:10.1029/2012JG002128

682 Reisser, M., Purves, R.S., Schmidt, M.W.I., Abiven, S., 2016. Pyrogenic Carbon in Soils: A
683 Literature-Based Inventory and a Global Estimation of Its Content in Soil Organic Carbon and
684 Stocks. *Front. Earth Sci.* 4, 1–14. doi:10.3389/feart.2016.00080

685 Royal Commission, 2009. Victorian Bushfire Royal Commission—Interim Report. Chapter 1: The
686 February 2009 Fires. Parliament of Victoria, 2009 Victorian Bushfires Royal Commission.

687 Rumpel, C., González-Pérez, J.A., Bardoux, G., Largeau, C., Gonzalez-Vila, F.J., Valentin, C.,
688 2007. Composition and reactivity of morphologically distinct charred materials left after slash-
689 and-burn practices in agricultural tropical soils. *Org. Geochem.* 38, 911–920.
690 doi:10.1016/j.orggeochem.2006.12.014

691 Santín, C., Doerr, S.H., Kane, E., Masiello, C., Ohlson, M., Preston C., de la Rosa, A., Dittmar, T.,
692 2016a. Towards a global assessment of pyrogenic carbon from vegetation fires. *Global Change*
693 *Biol.* 22, 76–91. doi:10.1111/gcb.12985

694 Santín, C., Doerr, S.H., Merino, A., Bryant, R., Loader, N.J., 2016b. Forest floor chemical
695 transformations in a boreal forest fire and their correlations with temperature and heating
696 duration. *Geoderma* 264, 71–80. doi:10.1016/j.geoderma.2015.09.021

697 Santín, C., Doerr, S.H., Shakesby, R.A., Bryant, R., Sheridan, G.J., Lane, P.N.J., Smith, H.G., Bell,
698 T.L., 2012. Carbon loads, forms and sequestration potential within ash deposits produced by
699 wildfire: New insights from the 2009 “Black Saturday” fires, Australia. *Eur. J. For. Res.* 131,
700 1245–1253. doi:10.1007/s10342-012-0595-8

701 Scott, A.C., 2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis.
702 *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 291, 11–39. doi:10.1016/j.palaeo.2009.12.012

703 Tatzber, M., Stemmer, M., Spiegel, H., Katzlberger, C., Haberhauer, G., Mentler, A., Gerzabek,
704 M.H., 2007. FTIR-spectroscopic characterization of humic acids and humin fractions obtained
705 by advanced NaOH, Na₄P₂O₇, and Na₂CO₃ extraction procedures. *J. Plant Nutr. Soil Sci.* 170,
706 522–529. doi:10.1002/jpln.200622082

707 Wiechmann, M.L., Hurteau, M.D., Kaye, J.P., Miesel, J.R., 2015. Macro-particle charcoal C
708 content following prescribed burning in a mixed-conifer forest, Sierra Nevada, California. *PLoS*
709 One 10. doi:10.1371/journal.pone.0135014

710 Wiedemeier, D.B., Abiven, S., Hockaday, W.C., Keiluweit, M., Kleber, M., Masiello, C.A.,
711 McBeath, A. V., Nico, P.S., Pyle, L.A., Schneider, M.P.W., Smernik, R.J., Wiesenberg, G.L.B.,
712 Schmidt, M.W.I., 2015. Aromaticity and degree of aromatic condensation of char. *Org. Geochem.* 78, 135–143. doi:10.1016/j.orggeochem.2014.10.002